
Long-read error correction: a survey and qualitative comparison

Pierre Morisse1, Thierry Lecroq2 and Arnaud Lefebvre2

1 Normandie Université, UNIROUEN, INSA Rouen, LITIS, 76000 Rouen, France
2 Normandie Univ, UNIROUEN, LITIS, 76000 Rouen, France

Abstract

Third generation sequencing technologies Pacific Biosciences and Oxford Nanopore Technologies were respec-
tively made available in 2011 and 2014. In contrast with second generation sequencing technologies such as
Illumina, these new technologies allow the sequencing of long reads of tens to hundreds of kbps. These so called
long reads are particularly promising, and are especially expected to solve various problems such as contig and
haplotype assembly or scaffolding, for instance. However, these reads are also much more error prone than
second generation reads, and display error rates reaching 10 to 30%, according to the sequencing technology
and to the version of the chemistry. Moreover, these errors are mainly composed of insertions and deletions,
whereas most errors are substitutions in Illumina reads. As a result, long reads require efficient error correc-
tion, and a plethora of error correction tools, directly targeted at these reads, were developed in the past nine
years. These methods can adopt a hybrid approach, using complementary short reads to perform correction,
or a self-correction approach, only making use of the information contained in the long reads sequences. Both
these approaches make use of various strategies such as multiple sequence alignment, de Bruijn graphs, hidden
Markov models, or even combine different strategies. In this paper, we describe a complete survey of long-read
error correction, reviewing all the different methodologies and tools existing up to date, for both hybrid and
self-correction. Moreover, the long reads characteristics, such as sequencing depth, length, error rate, or even
sequencing technology, can have an impact on how well a given tool or strategy performs, and can thus dras-
tically reduce the correction quality. We thus also present an in-depth benchmark of available long-read error
correction tools, on a wide variety of datasets, composed of both simulated and real data, with various error
rates, coverages, and read lengths, ranging from small bacterial to large mammal genomes.

1 Introduction

Since their inception in 2011 and 2014, third generation sequencing technologies Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT) became widely used and allowed the sequencing of massive amount
of data. These technologies distinguish themselves from second generation sequencing technologies, such as
Illumina, by the fact that they allow to produce much longer reads, reaching length of tens of kbps on average,
and up to 1 million bps [29]. Thanks to their length, these so called long reads are expected to solve various
problems, such as contig and haplotype assembly of large and complex organisms, scaffolding, or even structural
variant calling, for instance. These reads are however extremely noisy, and display error rates of 10 to 30%,
while second generation short reads usually reach error rates of around 1%. Moreover, long reads error are
mainly composed of insertions and deletions, whereas short reads mainly contain substitutions. As a result, in
addition to a higher error rate, the error profiles of the long reads are also much more complex than the error
profiles of the short reads. In addition, ONT reads also suffer from bias in homopolymer regions, and thus
tend to contain systematic errors in such regions, when they reach more than 6 bps. As a consequence, error
correction is often used as a first step in projects dealing with long reads. Since the error profiles and error
rates of the long reads are much different than those of the short reads, this necessity led to new algorithmic
developments, specifically targeted at these long reads.

Two major ways of approaching long-read correction were thus developed. The first one, hybrid correction,
makes use of additional short reads data to perform correction. The second one, self-correction, on the con-
trary, attempts to correct long reads solely based on the information contained in their sequences. Both these
approaches rely on various strategies, such as multiple sequence alignment, de Bruijn graphs, or hidden Markov
models, for instance. As a result, a plethora of long-read correction methods were developed since 2012, and 29
different tools are available as of today.

1

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


1.1 Contribution

In this paper, we propose a complete survey of long-read error correction tools. In particular, we dress a
summary of every single approach described in the literature, both for hybrid correction and for self-correction.
In addition, we also dress a list of all the available methods, and briefly describe the strategy they rely on. We
thus propose the most complete survey on long-read correction up to date.

Additionally, long reads characteristics, such as the sequencing depth, the length, the error rate, and the
sequencing technology, can impact how well a given tool or strategy performs. As a result, a given tool
performing the best on a given dataset does not mean that this same tool will perform the best on other
datasets, especially if their characteristics fluctuate from one another. As a result, we also present an in-
depth benchmark of available long-read correction tools, on a total of 20 different datasets, displaying diverse
characteristics. In particular, we assess both simulated and real data, and rely on datasets having varying read
lengths, error rates, and sequencing depths, ranging from smaller bacterial to large mammal genomes.

2 State-of-the-art

As mentioned in Section 1, the literature describes two main approaches to tackle long-read error correction. On
the one hand, hybrid correction makes use of complementary, high quality, short reads to perform correction.
On the other hand, self-correction attempts to correct the long reads solely using the information contained in
their sequences.

One of the major interests of hybrid correction is that error correction is mainly guided by the short reads
data. As a result, the sequencing depth of the long reads has no impact on this strategy whatsoever. As a
result, datasets composed of a very low coverage of long reads can still be efficiently corrected using a hybrid
approach, as long as the sequencing depth of the short reads remains sufficient, i.e. around 50x.

Contrariwise, self-correction is purely based on the information contained in the long reads. As a result,
deeper long reads coverages are usually required, and self-correction can thus prove to be inefficient when dealing
with datasets displaying low coverages. The required sequencing depth to allow for an efficient self-correction
is however reasonable, as it has been shown that from a coverage of 30x, self-correction methods are able to
provide satisfying results [62].

In this section, we present the state-of-the-art of available long-read error correction methods. More par-
ticularly, we describe the various methodologies adopted by the different tools, and list the tools relying on
each methodology, both for hybrid and self-correction. Details about performances, both in terms of resource
consumption and quality of the results, are however not discussed here. Experimental results of a subset of
available correction tools, on various datasets displaying diverse characteristics, are presented in Section 3. A
summary of available hybrid correction tools is given Table 1. A summary of available self-correction tools is
given Table 2.

2.1 Hybrid correction

Hybrid correction was the fist approach to be described in the literature. This strategy is based on a set of
long reads and a set of short reads, both sequenced for the same individual. It aims to use the high quality
information contained in the long reads to enhance the quality of the long reads. As first long read sequencing
experiments displayed high error rates (> 15% on average), most methods relied on this additional use of short
reads data. Four different hybrid correction approaches thus exist:

1. Alignment of short reads to the long reads. Once the short reads are aligned, the long reads can indeed
be corrected by computing a consensus sequence from the subset of short reads associated to each long
read. PBcR / PacBioToCA [35], LSC [4], Proovread [25], Nanocorr [23], LSCplus [27], CoLoRMap [26],
and HECIL [15] are all based on this approach.

2. Alignment of long reads and contigs obtained from short reads assembly. In the same fashion, long reads
can also be corrected with the help of the contig they align to, by computing consensus sequences from
these contigs. ECTools [43], HALC [6], and MiRCA [30] adopt this methodology.

3. Use of de Bruijn graphs, built from the short reads’ k-mers. Once built, the long reads can indeed be
anchored to the graph. It can then be traversed, in order to find paths allowing to link together anchored
regions of the long reads, and thus correct unanchored regions. LoRDEC [59], Jabba [52], FMLRC [67],
and ParLECH [16] rely on this strategy.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


4. Use of Hidden Markov Models. These can indeed be used in order to represent the long reads. The models
can then be trained with the help of short reads, in order to extract consensus sequences, representing the
corrected long reads. Hercules [21] is based on this approach.

Other methods, such as NaS [49] and HG-CoLoR [53], combine different of the aforementioned approaches
in order to counterbalance their advantages and their drawbacks. We describe each approach more into details,
and summarize the core algorithm of each tool, in the following subsections.

2.1.1 Short reads alignment

This approach was the first long-read error correction approach described in the literature. It consists of
two distinct steps. First, the short reads are aligned to the long reads. This step allows to cover each long
reads with a subset of related short reads. This subset can then be used to compute a high quality consensus
sequence, which can, in turn, be used as the correction of the original long read. The different methods adopting
this approach mainly vary by the alignment methods they use, and also by algorithmic choices made during the
consensus sequences computation.

PBcR / PacBioToCA (2012)

PBcR can compute alignment with the help of the aligner developed and included in the tool, with BLASR
[11], or with Bowtie [40]. In order to reduce computational times, and avoid unsignificant alignments, alignments
are only computed between short reads and long reads that share a sufficient number of k-mers. Moreover, only
the short reads that align throughout their whole length are considered for the correction of the long reads
they’re associated to. Each short read can thus be aligned to multiple long reads. However, on a same, given
long read, a short read is only considered once, for the correction of the region to which it aligns with the
highest identity.

Moreover, to avoid covering repeated regions of different long reads with the same subset of short reads,
the short reads are associated to the repeats they are more likely to belong to, according to the identity of the
alignments. Each short read is thus only authorized to participate to the correction of the N long reads to
which it aligns with the highest identity, where N roughly represents the sequencing depth of the long reads.
Thus, the different repeats are only covered by the short reads representing them the best.

Finally, a consensus sequence is generated from the subset of short reads covering each long read, with the
help of the consensus module included in the assembler AMOS. [58]. This module computes the consensus
sequence in multiple steps, in a iterative way. At each step, all the short reads are aligned to the current
consensus (being the long read itself during the first step), in order to generate a multiple sequence alignment
(MSA). This MSA is then used to compute a new consensus sequence, with a majority vote at each position.
Iterations stop when the new consensus sequence is identical to the previous step’s consensus sequence.

PBcR thus produces split corrected long reads. Indeed, extremities of the long reads that are not covered by
alignments are not included in the consensus sequence computation, and are thus not reported in the corrected
versions of the long reads. Moreover, if gaps of coverage are spotted along a long read sequence, the corrected
version of this read is split, and each covered region is reported independently, in order to avoid introducing
incorrect bases in the corrected long reads.

LSC (2012)

LSC starts by compressing homopolymers regions, both in the short reads and in the long reads. To this aim,
homopolymers are replaced by a single occurrence of the repeated nucleotide. For instance, the sequence CTTAGGA
is compressed as CTAGA. This compression step is used to facilitate the alignments computation. Moreover, in
order to be able to perform the symmetric operation, and decompress the reads, an index is also computed.
This index is composed of two arrays for each compressed read, associating the position of the homopolymers
to the length of these homopolymers in the original read. Once the reads are compressed, the long reads
are concatenated, in order to obtain larger sequences. During this concatenation step, consecutive reads are
separated by a block of n nucleotides N , where n represents the average length of the sort reads.

Short reads are then aligned to these new sequences, obtained after concatenation. By default, alignments
are computed with Novoalign1, although LSC is also compatible with other, less resource-consuming aligners,

1http://www.novocraft.com/products/novoalign

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


such as BWA [47] or SeqAlto [55]. After this alignment step, a subset of short reads if associated to each long
read.

Each long is then corrected by computing local consensus sequences from the short reads, on regions where
alignments define substitutions, deletions or insertions between the long read and the short reads. Moreover,
compressed homopolymers regions, whether they are located on the long read or on the short reads, are also
locally corrected in the same fashion. For each aforementioned region, the sequences of all the short reads
covering the region are temporarily decompressed. A local consensus sequenced is thus computed with a majority
vote, in order to correct this region in the long read. The bases of the long read that do not correspond to any
of these regions are thus left unmodified by the correction step. Once all the regions requiring correction have
been processed, compressed homopolymers regions of the long reads, unmodified during the correction step, are
decompressed and left unmodified in the sequences of the corrected long reads.

LSC thus produces trimmed corrected long reads, defined, for each read, as the sequence of the uncompressed
long read, from the leftmost base to the rightmost base, covered by at least one short read. However, bases of
the long reads that could not be corrected are not reported in a different case from the corrected bases. As a
result, the corrected long reads cannot further be split after correction.

Proovread (2014)

Proovread computes alignments with the help of SHRiMP2 [17]. Although this tool/ is used as the default
aligner, all the aligners reporting their results in SAM format, like BWA, Bowtie or Bowtie2 [39] are compatible
with Proovread and can easily be used. A validation step is then applied, in order to filter out low quality
alignments. To this aim, Proovread uses scores that are normalized according to the length of the alignments,
in a local context. For this purpose, the long reads are represented as a series of consecutive, small windows of
fixed length L (L = 20 by default). Each alignment is thus assigned to one of these windows, according to the
position of its center.

Once the alignments have been allocated to the different windows, only the alignments having the highest
scores in each window are considered for the consensus sequence computation, during the next step. To compute
this consensus sequence, a matrix composed of a column per nucleotide used used for each long reads. This
matrix is filled with the bases from the short reads, according to the information contained in the alignments
selected during the previous step. The consensus sequence is then computed with a majority vote on each
column of the matrix. If no base coming from a short read is available for a given column, the base of the
original long read is conserved. Moreover, a score mimicking the Phred quality score is assigned to each base of
the corrected long read. This score is defined from the support of the base that was chosen as the consensus, in
the corresponding column of the matrix.

In order to reduce time and memory consumption of the alignment step, which can be extremely costly
when the required level of sensitivity is high, Proovread proposes an iterative procedure for alignment and
correction, where the alignment sensitivity is increased at each step. This strategy is composed of three cycles
of pre-correction and of a finishing step. Thus, during the pre-correction cycles, only a subset of 20, 30, and
50% of the original set of reads is used, respectively for the first, second, and third cycle. During the first cycle,
the short reads are quickly aligned, with a moderate level of sensitivity. Long reads are then pre-corrected
with the help of the aligned short reads, as described in the previous paragraph. Moreover, regions of the long
reads that are sufficiently covered by the short reads are masked, and are thus not further considered in the
following alignment and correction cycles. Two additional pre-correction cycles are then applied, using larger
subsets of the short reads, and increasing levels of sensitivity. On average, the first two cycles are enough to
mask more than 80% of the long reads sequencing. Finally, for the finishing step, the mask are removed from
the pre-corrected long reads, and the complet set of short reads is aligned with a high sensitivity, in order to
perform a last correction step, and thus polish previous pre-corrections.

Proovread thus produces corrected long reads both in their trimmed version and in their split version. The
splitting step is indeed not dependent on the correction step, and relies on the pseudo-Phred quality scores
assigned to each bases of the corrected long reads. Low quality regions of the corrected long reads can thus
easily be identified and removes, in order to only retain high quality regions.

Nanocorr (2015)

Nanocorr computes alignments with the help of BLAST [2]. A set of alignments, composed of both correct
alignments, spanning almost through the whole length of the short reads, and incorrect of partial alignments
of the short reads is thus obtained. A first filtering step is then applied to these alignments, in order to
remove alignment that are too short, and fully included in another, larger alignment. A dynamic programming
algorithm, based on the longest increasing subsequences problem [61] is then applied, in order to select the

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


optimal subset of short reads alignments covering each long read.
From this subset, a consensus sequence is computed, with the help of a DAG, using the consensus module

PBDAGCon, described Section 2.2.1.
Nanocorr thus produces untrimmed corrected long reads. Moreover, bases of the long reads that could not

be corrected are not reported in a different case from the corrected bases, for the reasons mentioned in the
description of PBDAGCon, Section 2.2.1. As a result, the corrected long reads cannot further be trimmed or
split after correction.

LSCplus (2016)

LSCplus is based on the same principle as LSC, which we previously presented. It however brings a few
modifications in terms of implementation and optimization during the alignment and correction steps. First,
as in LSC, the homopolymers regions, both in the short reads and in the long reads, are compressed and
replaced by a single occurrence of the repeated nucleotide. The index allowing to retrieve the original size of
the homopolymers is however altered compared to that of LSC. Indeed, in LSCplus, this index is composed of a
single array for compressed each read, registering, for each position (whether it compressed or not), the number
of bases in the original read. Moreover, unlike LSC, the long reads are not concatenated in larger sequences
before performing the alignment step. The short reads are thus directly aligned to the long reads, with the help
of Bowtie2.

Each long read can then be corrected, using the subset of short reads associated to it. A consensus sequence
is thus computed, with a majority vote, at each position of the compressed long read. Unlike LSC, which
decompresses regions requiring correction before computing the consensus, the most frequent nucleotide at each
position is determined before decompression, in LSCplus. One the most frequent nucleotide has been chosen,
LSCplus performs decompression, and the size of the homopolymer is determined from the information contained
in the indexes of the short reads that align at this position. The sequence thus obtained is concatenated at the
end of the global consensus sequence, which is iteratively built, as the compressed long read bases are processed.
Bases corresponding to uncovered positions of the long reads are decompressed without further modifications,
and concatenated at the end of the global consensus sequence as well.

Unlike LSC, LSCplus thus produces corrected long reads both in their trimmed and in their untrimmed
versions. As for LSC, the sequence of a trimmed long read is defined as the sequence of the uncompressed long
read, from the leftmost base to the rightmost base, covered by at least one short read. Once again, as for LSC,
bases of the long reads that could not be corrected are not reported in a different case from the corrected bases.
As a result, the corrected long reads cannot further be split after correction.

CoLoRMap (2016)

CoLoRMap computes alignments with the help of BWA-MEM [44]. An alignment graph is then built for
each long read, from the subset of short reads that align to it. This graph is directed and weighted, and each
vertex is defined from the alignment of a short read to the long read. An edge is defined between two vertices u
and v if the short reads associated to these two vertices share a prefix / suffix overlap, over a sufficient length,
and with at most one error. At least, the weight of an edge between two vertices u and v is defined as the edit
distance between the suffix of the read associated to v that is not included in the overlap, and the original long
read.

Each connected component of this graph is then processed independently. For each of these connected
components, a source vertex, corresponding to the leftmost aligned short read of the component, and a target
vertex, corresponding to the rightmost aligned short read, are defined. Dijkstra’s algorithm [18] is then used,
in order to find the shortest path of the graph allowing to link the source and the target. This path, through
the short reads associated to the traversed vertices, dictates a correction for the region of the long read which
is covered by the alignments contained in this connected component.

To correct long reads regions that were not covered by any short read during the alignment step, CoLoRMap
makes use of the information carried by the paired reads than can be sequenced from second generation se-
quencing technologies. One-End Anchors (OEA) are thus defined, in order to correct these uncovered regions.
These OEA are short reads than could not be aligned, but whose mate could be aligned to a region flanking
the uncovered region to correct. The set of OEA associated to a given uncovered region of a long read can thus
be defined be observing the alignments located in the flanking, corrected regions.

For this second correction step, short reads are aligned to the corrected long reads, obtained at the end of the
previous step, once again with the help of BWA. The short reads can indeed easily be aligned to the corrected
regions of the long reads, due to the low divergence between their sequences and the corrected regions of the long
reads. For each region of a given long read that could not be corrected during the previous step, CoLoRMap

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


defines a set of OEA, by observing the alignments located in the flanking regions. The reads composing this
set of OEA are then assembled, with the help of Minia [12], in order to obtain a set of contigs, which is then,
in turn, used to correct the uncovered region.

CoLoRMap thus produces untrimmed corrected long reads. However, the bases of the long reads that could
not be corrected are not reported in a different case from the corrected bases. Thus, the corrected long reads
can easily be trimmed or split after correction, in order to get rid of their uncorrected regions.

HECIL (2018)

HECIL computes alignments with the help of BWA-MEM. From these alignments, erroneous positions, de-
noting disagreements (insertions, deletions or substitutions) between a given long read and the short reads that
align to it are marked. For each of this positions, the set of aligned short reads is processed, and and two
correction steps are applied.

First, in case of strong consensus (i.e. at least 90%) of the short reads at a given position, the nucleotide
of the long read is replaced by the consensus nucleotide from the short reads. This first step, inspired by other
methods relying on majority votes, allows for a quick first correction step. Moreover, it also allows to avoid
spurious correction at certain positions, performed from high-frequency, but low-quality short reads. The cor-
rections that are realized during this first step also allow to greatly reduce the number of positions to process
during the next step.

In a second time, for the remaining erroneous positions, a score is associated to each aligned short read,
by combining the quality of the short read, obtained through its Phred score, to the similarity score of the
alignment between the short read and the long read. The main motivation behind this combined score is that
the incorporation of short reads quality into the problem of long-read correction had not been tackled by any
state-of-the-art method at that time. For each erroneous position, the base from the short read which minimizes
the combined score is chosen as then correction of the long read’s base. In case of a tie between multiple short
reads, the base from the short read having the highest quality is chosen as the correction.

Moreover, HECIL also defines an iterative learning methodology. More precisely, the two previously de-
scribed correction steps are applied iteratively. At each iteration, the previously defined combined scores are
used in order to define a subset of high-confidence positions to correct. Only the positions contained in this
subset are thus corrected during this given iteration. These positions are then fixed and marked, and are thus no
longer modified during subsequent iterations. By only correcting the best subset of position for each iteration,
HECIL aims to perform better correction during the following iterations, since these iterations will benefit from
the higher quality of the long reads, increased by the previous iterations. Thus, at each iteration, the short
reads are realigned to the updated long reads, and the two correction steps are performed on a new subset
of high-confidence positions. The iterations are stopped when the number of unique k-mers of the long reads
varies less than a given threshold between two consecutive iterations, or once a user-defined maximum number
of iterations is reached.

HECIL thus produces untrimmed corrected long reads. Indeed, local corrections are performed on the long
reads, on positions denoting disagreements with the aligned short reads. Thus, the uncovered extremities of
the long reads cannot be modified or corrected. Moreover, the covered bases of the long read that could not
be corrected are not reported in a different case from the corrected bases. As a result, the corrected long reads
cannot further be split after correction.

2.1.2 Contigs alignement

Given their length, short reads can be difficult to align to repeated regions, or to extremely noisy regions of
the long reads. This approach aims to address this issue by first assembling the short reads. Indeed, the contigs
obtained after assembling the short reads are much longer than the original short reads. As a result, they can
cover the repeated of highly erroneous regions of the long reads much more efficiently, by using the context of
the adjacent regions during alignment. In the same fashion as the short reads alignment strategy described
in Section 2.1.1, the contigs aligned with the long reads can then be used to compute high quality consensus
sequences, and thus correct the long reads they’re associated to. Once again, the different methods adopting
this strategy vary by the alignment methods they use, and by algorithmic choices made during consensus
computation.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


ECTools (2014)

ECTools requires a set of short reads assembled into unitigs as a basis for its error correction process. This
means that the short reads assembly has to be performed before launching ECTools, and that it is thus not
automatically generated during the error correction process. The assembly can thus be produced by any tool,
although the authors recommend using Celera [56], as it guarantees that each short reads is included in a
unitig, by creating unitigs composed of a single short read, if necessary. This allows ECTools to ensure all the
information contained in the short reads will be transmitted to the set of unitigs, and that no information will
be lost during the assembly process.

The unitings are aligned to the long reads with the help of Nucmer, which is available in the MUMmer [38]
suite of tools. The subset of unitigs that covers the best each long read is then chosen and used for its correction.
This optimal subset is computed with the help of an algorithm based on the longest increasing subsequences
problem, which is also available in the MUMmer suite of tools. Once computed, this subset of unitigs is used
to correct the long read. The bases of the long read which are different from those of the selected unitigs are
identified, and the long read is corrected according to the bases of the unitigs.

ECTools thus produces split corrected long reads. Uncovered extremities of the long reads are first removed
from the sequences of the corrected long reads. Then, internal, uncovered regions, are considered as uncorrected,
and are labeled with an error rate of 15%. In the same fashion, covered regions are considered as corrected, and
are labeled with an error rate of 1%. The average error rate of each corrected long read is then computed on
its whole length, according to these labels, and is then compared to a minimal quality threshold. If the average
quality of a given long read is below that threshold, the read is then split, by removing the longest uncorrected
region from its sequence. This process is then recursively applied to each obtained fragment, until they are all
above the minimum quality threshold.

HALC (2017)

In the same way as ECTools, HALC also requires a set of assembled short reads as a basis for its error
correction process. Once again, assembly of the short reads thus has to be performed before launching HALC,
and is not automatically generated during the error correction process. Unlike ECTools, HALC however makes
use of the contigs generated by the assembly, instead of only using the unitigs. The long reads are thus aligned
to the contigs, with the help of BLASR [11], to initiate the error correction process.

An undirected graph is then built from the alignments between the long reads and the short reads. This
allows to represent the alternative alignments, in particular in repeated regions, by different paths. Vertices of
the graph are thus defined from the regions of the contigs to which a long read aligned. An edge is present
between two vertices if at least a pair of adjacent regions of a given long read aligned to the two regions of the
contigs corresponding to theses vertices.

This graph is also weighted, and the weight of each edge is computed according to two rules. First, the
weight of an edge (u, v) is set to 0 if the regions corresponding to vertices u and v are adjacent in one of the
contigs. Contrariwise, for a given edge (u, v) for which the regions corresponding to vertices u and v are not
adjacent in any of the contigs, the weight is set to max{C0 − C, 0}. C0 represents the long read coverage on
the contigs, whereas C represents the number of adjacent regions of the long reads that align to the regions
corresponding to vertices u and v.

Once the graph is built, each long read is processed and corrected independently. To this aim, paths
representing alternative alignments are search through the graph. The path displaying the lowest cumulative
weight is then computed via a dynamic programming algorithm, and the regions of the contigs corresponding
to the traversed vertices are used to correct the long read.

However, with this approach, adjacent regions of the long reads that are corrected with the help of non-
adjacent contigs regions have a high chance of being repeated regions. Thus, they also have a high chance of
having been corrected with similar repeats whether than with the true genome regions they actually belong
to. Such regions are recorded, and their correction is then polished with the help of LoRDEC, another hybrid
correction tool presented in Section 2.1.3.

HALC thus produces untrimmed corrected long reads. However, the last polishing step, being based on
LoRDEC, allows to report the corrected bases in a different case from the uncorrected bases. As a result, the
corrected long reads can easily be trimmed or split after correction, in order to get rid of their uncorrected
regions. In particular, untrimmed, trimmed, and split corrected long reads are all reported by HALC.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


MiRCA (2018)

Unlike previously presented methods, MiRCA starts by applying a filtering step to the short reads. Indeed,
although they display a much higher quality than the long reads, short reads also contain sequencing errors
that can lead to imprecisions during the assembly step and during the alignment step of the long reads to the
obtained contigs. Thus, in MiRCA, short reads containing too many errors are removed, and are not considered
during the following steps. This filtering step relies on a frequency analysis of the short reads’ k-mers. Short
reads containing too many weak k-mers (i.e. k-mers appearing less frequently than a given threshold) are thus
filtered out.

High-quality short reads are then assembled with the help of SPAdes [5], an assembler based on a de Brujn
graph, that allows to ensure that all the information contained in the short reads is preserved in the obtained
set of contigs. These contigs are then aligned to the long reads with the help of BLAST+ [48].

The long reads can then be corrected from the obtained alignments. In the case a unique contig aligns to
a given region of a long read, this region is simply replaced by the sequence of the aligned contig. In the case
where multiple contigs are aligned to a same given region of a long reads, these alignments define a multiple
sequence alignment, and a majority vote is used to correct the region of the long read. If the majority vote does
not allow to define a consensus nucleotide at a given position, the long read nucleotide at this position is kept
as the correction.

MiRCA thus produces trimmed corrected long reads. Indeed, extremities of the long reads to each no contig
aligned cannot be processed by the algorithm, and are thus removed from the sequences of the corrected long
reads. However, the internal regions of the long reads that were not covered by a single contig, and that could
not be corrected, are not reported in a different case from the corrected bases. As a result, corrected long reads
cannot further be split after correction.

2.1.3 De Bruijn graphs

Another alternative to the alignment of short reads to the long reads is the direct use of a de Bruijn graph,
built from the short reads k-mers. This approach aims to avoid the explicit step of short reads assembly
altogether, contrary to methods mentioned in Section 2.1.2, and instead directly use the graph to correct the
long reads. The graph is first built from the k-mers of the short reads. The long reads can then be anchored
to the graph according to their k-mers. Finally, the graph can be traversed, in order to find paths, and link
anchored regions of the long reads together, and thus correct erroneous, unanchored, regions. Methods adopting
this approach vary by the way they represent the graph, but also by the way they anchor the long reads to the
graph, and by the way they correct unanchored regions.

LoRDEC (2014)

LoRDEC starts by building a de Bruijn graph from the solid k-mers (i.e. k-mers that appear more frequently
than a given threshold) of the short reads. This filtering step of the weak k-mers allow the avoid the introduction
of errors during the correction of the long reads, as it limits the presence of tips and bubbles in the graph. The
solid k-mers of the long reads are then used as anchor points on the graph. The graph is then traversed, from
and towards the vertices corresponding to these anchors, in order to find paths allowing to corrected regions of
the long reads that are only composed of weak k-mers. Thus, if a given long reads does not contained any solid
k-mer, it cannot be corrected.

Given the high error rates of the long reads, a small k-mer size has to be chosen for the graph construction,
in order to allow the correction of a as much long reads as possible. Thus, it is recommended to build the
graph for values of k between 19 and 23. Two different correction approaches are then applied, according to
the localization of the region to correct. Internal regions and extremities of the long reads are indeed corrected
differently.

In the first case, solid k-mers located in the flanking regions of the region to correct are used as anchor points
on the graph. The solid k-mers located on the left of the region to corrected define sources, whereas the solid
k-mers located on the left define targets. The graph is thus traversed, in order to find a path between a source
and a target k-mer. Once found, such a path dictates a correction for the erroneous region of the long read. In
order to find an optimal path, at each branching path, the edge minimizing the edit distance to the erroneous
region of the long read is chosen. However, a limit on the maximal number of branching paths that can be
explored is set, in order to avoid extensive and costly traversals of the graph. Several pairs of source and target

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


k-mers are thus considered, in order to limit the cases where no path can be found to correct a weak k-mers
region. As a result, the graph is traversed multiple times for the correction of a given region. Several of these
traversals can thus find a path between two anchor k-mers, and dictate a correction for the erroneous region
of the long read. In this case, the path dictating the sequence minimizing the edit distance to the erroneous
region of the long read is chosen as the correction.

In the second case, one of the source of target k-mer is missing, and the search thus cannot be stopped
when a path between two k-mers is found. In this case, the graph is only traversed from a solid k-mer close to
the erroneous region. The traversal of the graph stops when the length of the erroneous extremity of the long
read is reached, when the edit distance between the current path and the erroneous region is too high, or when
to edge can be followed out of the current vertex. Once the graph traversal is over, the obtained sequence is
realigned to the extremity of the long read. This allow to to determine the prefix (resp. the suffix) of the graph
sequence that aligns the best to the extremity of the long read. The aligned prefix (resp. suffix) of the long
read extremity is thus corrected with the prefix (resp. suffix) of the graph sequence. This alignment step allows
to ensure divergent sequences, caused by inappropriate traversals of the graph, are no used as correction.

Two correction passes are thus applied for each long read, once from the left to the right, and once from the
right to the left. Indeed, the long reads are corrected on the fly by the graph traversals. These corrections thus
allow to generate new solid k-mers that can be used as anchor points by the second correction pass. Moreover,
repeats and sequencing errors that are present in the short reads can lead to the traversal of different subgraphs,
according to the extremity that is chosen as the starting point of the path search.

LoRDEC thus produces untrimmed corrected long reads. However, bases corresponding to solid k-mers are
reported in a different case from bases corresponding to weak k-mers. As a result, the corrected long reads can
easily be trimmed or split after correction, in order to get rid of their uncorrected regions. Two additional tools
allowing to perform these operations are provided along with LoRDEC.

Jabba (2016)

Unlike previously presented methods, Jabba starts by correcting the short reads, in order to limit the impact
of their sequencing errors on the quality of the de Bruijn graph, and thus on the quality of the correction. To
this aim, the authors recommend using Karect [1], although any correction tool can be used. The de Bruijn
graph is then built from the k-mers of the corrected short reads. To further reduce the impact of the errors
contained in the graph on the correction of the long reads, another correction procedure is applied to the graph
itself. More precisely, the tips are eliminated, and the bubbles are removed from the graph, by selecting, for
each of them, the highest supported path. The construction and correction of the graph is performed with the
help of Brownie2.

Moreover, unlike LoRDEC, Jabba does not rely on the study of k-mers that appear both in the graph and
in the long reads to find anchor points, but rather uses Maximal Exact Matches (MEM) between the long reads
and the vertices of the graph. Thereby, since the graph also displays a high quality, due to the two correction
processes, large values of k can be used for its construction. Usually, the graph is built with k = 75. Using
such values of k allows to reduce the complexity of the graph, by resolving short repeats, of size smaller than
k, directly inside the graph, which, in turns, allows to facilitate the alignment of the long reads to the graph,
during the following step.

A seed-and-extend strategy is applied to align the long reads to the graph. First, the MEMs, which represent
the seeds, are computed with the help of essaMEM [66]. This method is based on an enhanced suffix array, built
for the sequence obtained by concatenating all the vertices of the graph, as well as their reverse-complements.
Once the seeds of a given long read are computed, they are placed of the graph. To this aim, several passes are
performed on the long read. For each iteration, all the regions of the long reads that have not yet been aligned
are considered. For each of these regions, the longest seeds are used, in order to determine the vertices to which
this region can be aligned. The quality of the alignments between each vertex and the long read region are
then verified. Alignments that are fully included in longer alignments (called containments), and alignments
covering a fraction of the vertex that is below a given threshold are then filtered, and are thus not considered
during the following step.

Once the alignments between the regions of the long read and the vertices of the graph are computed for the
current iteration, the alignments between the vertices are chained, by following the paths of the graph. Each
alignment on a vertex is thus extended, by considering all the possible paths of the graph starting from this
vertex. If the vertex only has one outgoing edge, the alignment is extended along that edge. If multiple outgoing
edges are available from this vertex, the length of the target vertex of each edge is studied. The extension taking
place between two regions of the long read, a maximal distance between the two edges can be defined, and edges
that are too long are thus not considered. In the case where no outgoing edge can be followed from a given

2https://github.com/biointec/brownie

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


vertex, the corresponding region of the long read reprocessed and realigned during the next iteration.
Once all the iterations have been performed, several alignments usually remain possible for each long reads.

The alignment covering the largest proportion of the long read sequence is thus selected, and used for the
correction. For the correction of the extremities of the long read, the alignment is extended along unique paths
of the graph. If the long read extends outside of these unique paths, its extremities are trimmed. Indeed,
correcting these extremities is extremely time consuming, since they need to be aligned to all the possible
paths, as no seed can be used to guide the alignment. This problem is thus not tackled by Jabba, as the gain
in quality if to weak compared to the computational cost.

Jabba thus produces split corrected long reads. Indeed, as mentioned in the previous paragraph, extremities
of the reads are not corrected outside of the longest unique path of the graph to which they align. Moreover, in
cases where, even after multiple iterations, no edge can be followed to extend the alignment of a given vertex,
a direct path between the first and the last seed of the long read does not exist. In this case, Jabba splits the
long read, and independently corrects and outputs the different regions of this read that could be aligned and
chained along the graph.

FMLRC (2018)

FMLRC relies on a principle that is similar to that of LoRDEC. Indeed, it also builds a de Bruijn graph
from the k-mers of the shorts reads, and uses the solid k-mers of the long reads as anchor points on this graph,
in order to find paths allowing to correct the regions of the long reads only composed of weak k-mers. One
of the main differences between FMLRC and LoRDEC is that the de Bruijn graph is implicitly represented
in FMLRC, with the help of an FM-index built from the sequence obtained by concatenating the set of short
reads. As a result, the edges between the different vertices are found by querying the FM-index. The size ok k
thus does not have to be known at construction time, but is rather directly chosen at execution time. This way,
the FM-index allows to represent all the de Bruijn graphs, and not simply a single, fixed order, graph. Such a
graph is called a variable-order de Bruijn graph. However, unlike LoRDEC, the weak k-mers of the long reads
are not filtered, and all the k-mers of the short reads are thus present in the graph.

The correction of the long reads is then realized in the same way as LoRDEC. For regions composed of
weak k-mers bordered by two regions composed of solid k-mers, source and target k-mers are defined on each
bordered regions, and used as anchor points on the graph. A path is then searched through the graph, from
the source toward the target, and from the target toward the source. Indeed, the search can traverse different
subgraphs, according to its starting point. As in LoRDEC, if multiple paths are found, the one minimizing the
edit distance to the erroneous region of the long read is chosen as the correction. For erroneous regions located
at the extremities of the long reads, the solid k-mers that is the closest to the erroneous region is chosen as
the anchor point. The graph is thus traversed, and the traversal stops when the length of the path reaches the
length of the erroneous region to correct. Several paths can thus be obtained, and the one minimizing the edit
distance to the erroneous region of the long read is, once again, chosen as the correction.

However, unlike LoRDEC, FMLRC performs two passes of correction for each long read. A first pass is
performed with a small value of k (k = 20 by default), and a second pass in then performed, with a larger value
of k (k = 59 by default). The first pass usually manages to correct most errors, and the second pass allows to
polish the correction, especially in repeated regions, which are easier to resolve with the help of a higher order
de Bruijn graph. Moreover, unlike LoRDEC, the solidity threshold of the long reads’ k-mers is dynamically
adjusted for each long read, according to the chosen k-mer size and to the k-mers frequencies of this long read.
The limit on the maximal number of branching paths that can be explored is also set according to the k-mer
size, in order to reduce the number of branches exploration during the first pass. Indeed, the traversal of the
first graph can be extremely costly, due to the important number of branching paths in repeated regions, when
using a small k-mer size. These regions are rather resolved during the second correction pass, where a greater
number of branches exploration is allowed, and where the k-mer size is higher.

FMLR thus produces untrimmed corrected long read. However, unlike LoRDEC, bases corresponding to
solid k-mers are not reported in a different case from bases corresponding to weak k-mers. As a result, the
corrected long reads cannot further be trimmed or split after correction.

ParLECH (2019)

Unlike other DBG based methods, ParLECH relies on two distinct correction steps, depending on the type
of errors. A first step is thus dedicated to the correction of indels, and another step focuses on the correction
of substitutions, which can be introduced by the short reads during the correction of indels.

For the correction of indels, ParLECH first builds the de Bruijn graph from the k-mers of the short reads.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


The graph is stored in a key-value hashmap, with the help of HazelCast 3, where the k-mers define the keys,
and where predecessors and successors of these k-mers define the values. Moreover, a number of occurrences
is associated to each key. In the same fashion as in previously presented methods, regions solely composed of
weak k-mers are corrected by traversing the graph, using flanking, solid k-mers as anchor points. If multiple
paths allow to link together a given pair of anchors, the path maximizing the minimum k-mer coverage between
two vertices is chosen as the correction.

For the correction of substitutions, ParLECH first divides the long reads into shorter fragments, approxi-
matively of the size of the short reads. Indeed, k-mers in smaller subregions usually have similar abundances.
This allows ParLECH to divide the long reads into sequences of high and low coverage fragments. If a fragment
belongs to a low coverage region of the genome, most of its k-mers are expected to have a low coverage. On
the contrary, most of its k-mers are expected to have a high coverage. This methodology allows ParLECH to
better distinguish low coverage genomic k-mers, and high coverage erroneous k-mers. Once the long reads have
been fragmented, the Person’s skew coefficient of the k-mer coverage of each fragment is computed, and used
as a threshold to classify fragments as correct or erroneous. If the coefficient of a fragment falls within a given
interval, the fragment is considered as correct. Otherwise, it is considered as erroneous. Moreover, fragments
with mostly low-coverage k-mers are ignored.

After classification, the erroneous fragments are divided into subsets of high and low coverage. To this
aim, if the median k-mer coverage of a fragment is greater than the median coverage of the whole set of k-
mers, the fragment is considered as high coverage. Otherwise, it is considered as low coverage. To correct
substitutions, ParLECH makes use of a majority vote algorithm similar to that of Quake [31]. However, unlike
Quake, ParLECH makes use of different thresholds for high a low coverage regions, in order to improve accu-
racy. For each erroneous base detected during the previous step, ParLECH attempts to replace it with all the
other possible nucleotides, and computes the coverage of all the k-mers with this new base. The erroneous base
is thus replaced by the base such that all k-mers containing this base exceed or equal the threshold for this region.

2.1.4 Hidden Markov models

Hidden Markov models, used for short read error correction, were also adopted for the error correction of
long reads. To this aim, models are first initialized in order to represent the original long reads. A subset of
short reads is then assigned to each long read, by alignment. Each subset of short reads can then be used to
train the model it is associated to. Finally, the trained models can be used to compute consensus sequences,
and thus correct the long reads they represent.

Hercules (2018)

Like LSC and LSCplus, Hercules starts by compressing homopolymers regions of the long reads and of the
short reads. The compressed short reads are then filtered, and those that are shorter than a given threshold
are removed. Such short reads could indeed ambiguously align to the long reads. The remaining short reads
are then aligned to the long reads. Bowtie2 is used by default, although any aligner can be used, as long as it
outputs alignments in SAM format.

After computing the alignment, Hercules decompresses both the long reads and the short reads, and recom-
putes the beginning positions of the alignments, according to the uncompressed sequences. However, unlike
other methods based on the alignment of short reads to the long reads, Hercules then only uses the beginning
positions of the alignments, and does not make use of any other information reported by the aligner. Thus, the
choice of the bases used to correct the long reads is not performed by the aligner.

Each long read is then represented with the help of a profile Hidden Markov Model (pHMM). These pHMMs
have three different type of states, allowing to represent deletions, insertions, or matches / mismatches. The
aim of Hercules is to make use of the pHMM to produce the consensus sequence of the long read, which is
defined as the most probable sequence, among all the sequences that can be produced by the model. However,
the consensus that can be produced by a classical pHMM is only based on match states. As a result, in order
to take into account insertion and deletion states during consensus computation, the pHMM are modified in
Hercules. Loops on insertion states are removed, and replaced by multiple, distinct, insertion states. Deletion
states are also removed, and replaced by deletion transitions. Once the model of a given long read is built, emis-
sion and transmission probabilities of each state are initialized according to the error profile of the sequencing

3https://hazelcast.com/

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


technology.
The model is then updated according to the information contained in the short reads. To this aim, each

alignment of a short read to a long read is considered independently. First, the subgraph corresponding to the
region of the long read which is covered by this short read is extracted. Then, this subgraph is trained, with the
help of the information contained in the selected short read, with the help of the Forward-Backward algorithm
[8]. Emission and transmission probabilities of each vertex are thus updated by the algorithm, independently
and exclusively in each subgraph, using the probabilities of the initial model. In the case a vertex is considered
and updated in multiple subgraphs, its final probabilities, in the trained model, are defined by computing the
average probability of each subgraph it appears in. Uncovered regions of the long reads cannot yield subgraphs.
Emission and transmission probabilities of the initial models are thus kept, for the corresponding vertices.

Once all the alignments have been considered, and once all the subgraphs have been trained, the model is
updated according to these subgraphs. Viterbi algorithm [64] is then used, in order to decode the consensus
sequences of the updated model. This algorithm considers the pHMM associated to each long read, and searches
for a path, from the initial state to the final state, which produces the highest emission and transmission prob-
abilities, via a dynamic programming approach.

Hercules thus produces untrimmed corrected long reads. Indeed, the consensus sequence of a long read is
extracted from the pHMM by searching for a path from the initial to the final state, representing respectively
the first and the last base of this read. The entire length of the long reads is thus preserved after correction.
Moreover, bases associated to subgraphs that could be trained are not reported in a different case than the
bases to which no short read aligned. As a result, the corrected long reads cannot further be trimmed or split
after correction.

2.1.5 Combination of strategies

Other methods combine different of the aforementioned strategies, in order to balance their advantages and
drawbacks. For instance, NaS combines a first step of short reads alignment to a second step of short reads
recruitment and assembly, in order to correct the long reads. HG-CoLoR also relies on a first step relying on
short reads alignment, but then makes use of a variable order de Bruijn graph, in order to correct regions of
the long reads that were not covered by the original alignments. We describe these two tools below.

NaS (2015)

Unlike previously presented methods, which either perform local correction on specific long reads regions, or
compute consensus sequences from short reads alignments, NaS generates corrected long reads by assembling
subsets of related short reads. These sequences, called synthetic long reads, are computed as follows.

First, the alignments between the short reads and the long reads are computed either with the help of BLAT
[32] or LAST [33], according to the chosen correction mode (fast or sensitive, respectively). The short reads
thus aligned to the long reads define seeds. For each long read, a seed-and-extend strategy is then applied. The
seeds are compared to the set of short reads, in order to recruit new similar short reads, that allow to cover the
regions of the long reads that were not covered by the initial alignments. This recruitment step is performed
with the help of Commet [50], which considers two short reads are similar if they share a sufficient number of
non-overlapping k-mers.

After recruiting new short reads, the subset of short reads formed by these new reads and by the seeds is
assembler with the help of Newbler [65]. A unique contig is usually built, although in repeated regions, a few
short reads originating from the wrong copy of the repeat can be erroneously recruited, and thus yield additional
contigs that should not be associated to the original long read. To address this issue, and produce a single contig
for each long read, the contig graph is explicitly built. This graph is a directed and weighted graph, for which
the contigs defined the vertices. An edge is present between two vertices if the associated contigs overlap. The
weights are however associated to the vertices, and not to the edges. Thus, the weight of each vertex is defined
as the coverage of the contig by the seed short reads. Once graph is built, Floyd-Warshall algorithm [22, 68] is
used in order to extract the shortest path. The final contig is thus obtained by combining the contigs associated
to the vertices traversed by this path.

Finally, the short reads are realigned to the obtained contig, in order to verify is consistency. The contig is
then defined as the correction of the original long read, if it is sufficiently covered by short reads.

Unlike previous methods, that usually either trim or split the corrected long reads, NaS rather tends to extend
the reads, and thus produce corrected long reads that are longer than the original reads they are associated to.
This is caused by the fact that the recruitment process often includes short reads that are located outside the

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


extremities of the original long read to the subset of short reads used for the assembly. Such a behavior can
thus assemble corrected sequences that span outside of the original long reads.

HG-CoLoR (2018)

HG-CoLoR combines together a short read alignment and a de Bruijn graph approach into a seed-and-extend
strategy. Unlike other methods, it starts by correcting the short reads, in order to get rid of as much sequencing
errors as possible. Indeed, since these short reads will be aligned to the long reads, and will also be used to
build the graph, they need to reach a high level of quality to avoid the introduction of errors into the corrected
long reads.

HG-CoLoR then aligns the corrected short reads to the long reads with the help of BLASR. A set of seeds
is thus defined for each long read, and covered regions of the long reads can directly be corrected with help of
these seeds. After the alignment step, a variable order de Bruijn graph is built from the solid k-mers of the
corrected short reads. Unlike FMLRC, this graph is built with the help of PgSA [37]. Moreover, HG-CoLoR
allows to explore every order of the graph, between a minimum order k and a maximum order K, instead of
limiting the graph explorations to two different orders. To correct uncovered regions of the long reads, the
prefixes and suffixes of the seeds that aligned to covered regions are used as sources and targets on the graph,
which is traversed to perform correction. The graph is always explored starting from its highest order. The
order of the graph is thus only locally decreased if no edge can be followed out of the current node, or if all its
edges, for the current order, have already been explored and did not allow to link the source and the target.
At branching paths, for a given order k, HG-CoLoR performs a greedy selection and explores the edge leading
to the k-mer having the highest number of occurrences. Thus, when a path between two anchors is found, it
is considered as optimal, due to that greedy selection strategy, and due to the fact that the order of the graph
is only locally decreased. As a result, it is thus directly chosen as the correction of the uncovered region of
the long read. As in other methods, a maximal number of branches explorations is also set, in order to avoid
resource consuming traversals of the graphs. Moreover, if a given pair of seeds cannot be link after reaching that
limit, HG-CoLoR can attempt to skip a certain number of seeds, and thus try link together the same source
to different targets. A maximal number of skips is also set, and if no source-target pair could be linked, the
uncovered region of the long read remains uncorrected.

Finally, as seeds do not always cover the extremities of the long reads, HG-CoLoR keeps on traversing the
graph after linking together all the seeds, in order to correct the extremities of the long reads. The graph is
thus traversed, until the whole length of the processed long read has been corrected, or until a branching path
is reached. If the extremities of the original long read could not be reached, they are reported unmodified in
the corrected long read.

HG-CoLoR thus produces untrimmed corrected long reads. However, the corrected bases, whether they come
from seeds or from graph traversals, are reported in a different case from the uncorrected bases. As a result,
the corrected long reads can easily be trimmed or split after correction, in order to get rid of their uncorrected
regions. In particular, untrimmed, trimmed, and split corrected long reads are all reported by HG-CoLoR.

2.2 Self-correction

Self-correction aims to avoid the use of short reads data altogether, and to correct long reads solely based on
the information contained in their sequences. Third generation sequencing technologies indeed evolve fast, and
now allow the sequencing of long reads reaching error rates of 10-12%. As a result, correction is still required
to properly deal with errors, but self-correction has recently undergone important developments. Two different
self-correction approaches thus exist:

1. Multiple sequence alignment. This approach is similar to the hybrid approaches relying on short reads
or contigs alignments, described in Section 2.1.1 and in Section 2.1.2. Indeed, once aligned against each
other, the long reads can be corrected by computing a consensus sequence for each of them, in the same
fashion as in the hybrid approaches. PBDAGCon (the correction module used in the HGAP assembler)
[13], PBcR-BLASR [34], Sprai4 [24], PBcR-MHAP [9], FalconSense (the correction module used in the
assembler Falcon) [14], Sparc [70], the correction module used in the assembler Canu [36], MECAT [69]
and FLAS [7] rely on this approach.

2. Use of de Bruijn graphs. In a similar manner as the hybrid correction approach using de Bruijn graphs,
described in Section 2.1.3, once the graph is built, it can be used to anchor the reads. The graph can then

4http://zombie.cb.k.u-tokyo.ac.jp/sprai/index.html

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

http://zombie.cb.k.u-tokyo.ac.jp/sprai/index.html
https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


be traversed, in order to find paths allowing to link together anchored regions of the long reads, and thus
corrected unanchored, erroneous regions. LoRMA [60] and Daccord [63] are based on this approach.

As for hybrid correction, other methods, such as CONSENT [54], combine these two approaches, in order
to counterbalance their advantages and their drawbacks. We describe each approach more into details, and list
the related tools, in the following subsections.

2.2.1 Multiple sequence alignment

This approach is highly similar to the short reads alignment approach for hybrid correction, described in
Section 2.1.1, and to the contigs alignment approach described in Section 2.1.2. It is thus composed of a first
step of overlaps computation between the long reads, and of a second step of consensus computation from the
overlaps. The overlaps computation can be performed either via a mapping strategy, which only provides the
positions of the similar regions of the long reads, of via alignment, which provides the positions of the similar
regions, as well as their actual base to base correspondence in terms of matches, mismatches, insertions and
deletions. For the consensus computation step, a directed acyclic graph (DAG) is usually built in order to
summarize the alignments, and extract a consensus sequence. Methods adopting this strategy thus vary by the
overlapping strategy they rely on, but also by algorithmic choices made during the consensus computation step.

PBDAGCon (2013)

PBDAGCon is a consensus module, include in the assembler HGAP. First, the alignments between the
reads are computed with the help of BLASR. For each read, a DAG is then built, from the set of similar reads
determined during the previous step. The vertices of this graph are labeled according to the bases of the reads.
An edge is present between two vertices if there exists a read containing the two bases corresponding to these
vertices consecutively (i.e. there is an edge between u and v if uv is a factor of any read). This way, every read
can be represented by a unique path in this graph. Each vertex is thus supported by a given set of reads, and
each edge is also supported by a given set of reads. The graph can thus be weighted, by defining the weight of
an edge as the number of reads that support it, i.e. the number of reads that contain the factor dictated by
the two vertices.

The graph is built iteratively. First, it is initialized with the sequence of the read to be corrected. All the
edges are thus initialized with weight 1. The graph is then updated, by adding the other reads sequentially,
with the help of the information contained in the alignments. This way, if an alignment corresponds to vertices
and edges that are already present in the graph, the weight of the corresponding edges are simply incremented.
Otherwise, new vertices and edges are created if necessary, and the weight of the edges are set to 1.

One all the reads have been added to the graph, the consensus sequence of the original read can be computed.
To this aim, a score is assigned to each vertex, according to the weight of its outgoing edges. The path that
maximizes the cumulative score of the traversed vertices is then searched through the graph, with the help of
a dynamic programming algorithm. The starting point of this path is defined as the vertex corresponding the
first base of the original read, and the ending point is defined as the vertex corresponding to its last base.

PBDAGCon thus produces untrimmed corrected long reads. Indeed, the consensus sequence of a read is
computed by searching for a path in the graph between the vertices corresponding to the first and last base of
this read. The entire length of the original reads is thus preserved by the correction process. Moreover, the
bases of the original reads that could not be corrected, due to a lack of coverage, are not reported in a different
case from the corrected bases. As a result, the corrected long reads cannot further be trimmed or split after
correction.

PBcR-BLASR (2013)

PBcR-BLASR is a modified version of the PBcR hybrid correction tool, described in Section 2.1.1, that
adapts to the problem of self-correction. Thus, the alignment between the reads are first computed with the
help of BLASR. The obtained alignments are then used to correct the reads, with the help of the PBcR correction
algorithm.

Since it relies on the PBcR algorithm, PBcR-BLASR thus produces split corrected long reads, for the reasons
mentioned in the description of the PBcR algorithm, in Section 2.1.1.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Sprai (2014)

Sprai starts by computing the alignments between the reads with the help of BLAST+. The set of similar
reads that align to a given read can thus be used to define a multiple sequence alignment. This multiple sequence
alignment is then polished, with the help of ReAligner [3], in order to to maximize it score by modifying its
layout, while conserving it global structure. The main aim is to gather similar bases onto identical columns
of the matrix representing the multiple sequence alignment. Indeed, local choices are performed when aligning
two reads together, in particular in regions denoting insertions and deletions. Such errors being frequent in
long reads, the combination of several alignments into a single multiple sequence alignment does not necessarily
ensures the coherence of the choices made in each independent alignment. The polishing thus aims to restore
this coherence, by locally modifying the multiple sequence alignment, in order to gather enough support at each
position.

To this aim, all the sequences includes in the multiple sequence alignment are considered independently.
Each of these sequences is then realigned to the multiple sequence alignment, from which the sequence being
processed has been excluded, via a dynamic programming algorithm. The multiple sequence alignment is thus
updated, according to the result of the alignment computation. Other sequences are then considered iteratively,
and the process is thus repeated, until the score of the multiple sequence alignment no longer increases. The
final multiple sequence alignment obtained is then used to compute the consensus sequence of the original read,
with a majority vote at each position.

Sprai thus produces untrimmed corrected long reads. Indeed, the multiple sequence alignments are always
built at the scale of the whole reads. Therefore, the consensus computed via majority vote also contain the
uncovered bases of the reads. Moreover, the bases coming from the original reads, and that could not be
corrected due to a lack of coverage, are not reported in a different case from the corrected bases. As a result,
the corrected long reads cannot further be trimmed or split after correction.

PBcR-MHAP (2015)

PBcR-MHAP is a upgraded version of PBcR-BLASR. In this version, the computation of the alignments
between the reads, previously performed with BLASR, is replaced by a mapping strategy called MHAP (Min-
Hash Alignment Process). In this approach, the k-mers of the reads are extracted and converted into integer
fingerprints with the help of hash functions. A sketch, whose size is defined by the number of hash functions, is
thus built for each read. For each of these hash functions, the k-mer of the read that generates the smallest value
is chosen as a part of the sketch. Such a k-mer is called a min-mer. The sketch of a read is thus defined a the
ordered set of the integer fingerprints of its min-mers. The fraction of entries shared by two reads sketches can
thus be used to estimate their similarity. Thus, if two given sketches share a sufficient similarity, the min-mers
they both share are localized on the corresponding reads, and the median difference between their positions
is computed, in order to determine the positions of the overlap between the two reads. A second iteration of
this process is then applied, only on overlapping regions, in order to obtain a better estimate of the similarity
between these sequences.

Once the overlaps between all the reads have been computed, the overlaps can be used to correct the reads.
However, the algorithm used both in PBcR and PBcR-BLASR is replaced by two new consensus modules :
FalconSense, which is faster but less sensitive, and PBDAGCon, which is slower but more accurate. These
two algorithms are not detailed here, but are described in their respective presentations. Moreover, these two
algorithms are not applied one after the other, and the choice as to which one to use is left to the user.

PBcR-MHAP thus produces split corrected long reads if FalconSense is used, and untrimmed corrected long
reads, for which uncorrected bases are not reported in a different case from the corrected bases, if PBDAGCon
is used. We do not further detail the specificities of these corrected reads, since they are explained in the
respective description of FalconSense and PBDAGCon.

FalconSense (2016)

FalconSense is a correction module, which is included in the assembler FALCON. First, the alignments
between the reads are computed with the help of DALIGNER [57]. The set of similar reads which align to a
given read is then independently realigned to this read, without allowing mismatches, and thus encoding every
edit operation with insertions and deletions. For each alignment position between the original read A and one
of its similar reads B, a tag is generated. Each of these tags is composed of the four following fields:

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


1. The position of read A;

2. The offset from this position on the read A. This value differs from 0 when an insertion is present on read
B at this alignment position, and thus indicates the size of the offset between the position on read A and
the position on the alignment;

3. The base of read A at this position;

4. The base of read B at this position.

Once all the tags have been defined, for every position of each alignment between the original read and
its similar reads, an alignment graph can be built. This graph is a weighted DAG, whose vertices are defined
by the tags. An edge is created between two vertices if their corresponding tags are consecutive in one of
the alignments. The weight of such an edge is thus set to 1 if it was not already present, and is incremented
otherwise. Once the final graph is built, the tag associated to an edge between two vertices represents the
number of reads supporting the connexion between these two vertices.

The consensus sequence of the original read can then be computed, by applying a dynamic programming
algorithm to the graph, in order to find the highest weighted path between the vertices corresponding to the
first and to the last tags associated to the original read. The bases associated to the fourth field of the tags
along that path thus dictate the consensus sequence.

FalconSense thus produces split corrected long reads. Indeed, the consensus sequence of a read is computed
by searching for a path in the graph, between the first and the last tag associated to this read. Since these tags
are computed according to the alignments associated to this read, its uncovered extremities result in a lack of
tags, and thus in a lack of vertices and edges in the graph. As a result, these uncovered extremities cannot be
included in the consensus sequence computation, and are thus not reported. Moreover, internal regions of a
given read which are not covered by alignments also imply a lack of tags, vertices, and edges in the graph. In
this case, several traversals are thus performed in the different subgraphs corresponding to covered regions of
this read. Several consensus sequences are thus computed independently for each of these regions.

Sparc (2016)

Sparc starts by computing the alignments between the reads with the help of BLASR. For each read, a mod-
ified de Bruijn graph is then built, from its set of similar reads, determined during the alignment step. Unlike a
classical de Bruijn graph, the vertices of this graph are not only defined from the k-mers of the reads, but also
from the positions of these k-mers in the read. Two independent vertices are thus built for two identical k-mers,
if they are located at different positions, unlike a classical de Bruijn graph, which only defines a unique vertex
in such a case. This necessity to create independent vertices for a same k-mer located at different positions can
be explained by the small k values used by Sparc (l ≤ 3 in practice). Moreover, representing identical k-mers
at different positions with distinct vertices also allows to avoid cycles in the graph, and thus compel it to be
a DAG. Although the values of k are small, this graph is different from the DAG used in PBDAGCon, as the
latter only stores bases of the reads, and not small k-mers.

Moreover, Sparc builds a sparse graph, and only stores one k-mer in every n bases. Edges between the
vertices represent consecutive k-mers of the reads, and are labeled with the sequences that allow to link the
corresponding vertices. The graph is also weighted, each edge being weighted with the number of reads sup-
porting it. The graph is the initialized from the original read being processed, setting the weight of every edge
to 1, and is then iteratively updated according to the alignments associated to this read, in the same way as
in PBDAGCon. The weight of the edges are thus are thus incremented if a given alignment corresponds to an
existing region of the graph, and new vertices and edges are created otherwise. On the final graph is built, a
consensus sequence can be computed, by searching for the highest weighted path, between the first and the last
vertex associated to the original read, with the help of a dynamic programming algorithm, in the fashion as
PBDDAGCon.

Sparc thus produces untrimmed corrected long reads. Indeed, the consensus sequence of a read is obtained by
searching for a path between the first and the last vertex associated to this read. Since these vertices represent
respectively the first and the last k-mer of the read, the entire length of the reads is preserved after correction.
As for PBDAGCon, bases from the original reads than could not be corrected, due to a lack of coverage, are
not reported in a different case from the corrected bases. As a result, the corrected long reads cannot further
be trimmed or split after correction.

Moreover, Sparc also proposes a hybrid mode, allowing to use complementary short reads during the align-
ment step. In this case, the correction process globally remains unchanged. The major difference is that higher
weights are associated to edges which are supported by short reads, so they have higher chances of being chosen
during the consensus sequence computation.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Canu (2017)

The correction module of the assembler Canu is an updated version of PBcR-MHAP. During the mapping
step, the creation of the sketches is altered, in order to adjust the probability whether to include or not certain
k-mers. Indeed, a k-mer that appears frequently in the set of reads should have a lower weight, as it not
representative of the true origin of a read within the genome. In contrast, a k-mer which is present in few reads
but that appears several times in a single read should have a higher weight, as it represents a greater proportion
of the length of this read. A combination of these weights, called tf-idf weight (term frequency inverse document
frequency) is thus applied to each k-mer of the reads.

To this aim, for each entry of a read sketch, instead of applying a single hash function to each k-mer, N hash
functions are applied, where N corresponds to the tf-idf weight of the k-mer. This way, k-mers having a high
tf-idf weight are hashed several times, which increases their chances of being of the sketch. This application of
the tf-idf weight to the sketches allows to increase the sensitivity of the overlaps, and to decrease the number
of repetitive overlaps. The second iteration of the process, allowing to better estimate the similarity between
overlapping regions, is also altered compared to PBcR-MHAP. In particular, a single hash function is used to
build the sketches of the overlapping regions.

As in PBcR-MHAP, the overlaps are then used to correct the reads. This step is also improved, and allows
to select an optimal subset of overlaps to use for the correction of each read, via a strategy similar to that of
the hybrid version of PBcR. However, since the base to base alignments are unavailable, the score associated to
each overlap is computed according to its length and to the estimate similarity between the two sequences. Each
read is thus only authorized to participate to the correction of its N most similar reads, where N represents
the sequencing depth of the reads. This approach allows to reduce the bias induced by repeated regions, by
avoiding to always cover these regions with the same sets of reads.

The retained overlaps of each read are then used for correction. The correction is performed with the help of
FalconSense, which has been adopted as the default algorithm, while PBDAGCon support has been discarded.
Moreover, the FalconSense algorithm is also slightly altered. In particular, the edges of the graph which have a
low weight are removed, to ensure that only well supported edges are traversed during the consensus sequence
computation.

The Canu correction module thus produces split corrected long reads, for the reasons mentioned in the
description of FalconSense.

MECAT (2017)

MECAT also relies on a mapping strategy to compute the overlaps between the reads. This strategy is based
on the determination of k-mers shared between the reads, in order to define the overlaps. To this aim, the reads
are first divided in several blocks, of 1,000 to 2,000 bps. The reads are then indexed in a hash table, using
their k-mers as keys, and the positions of these k-mers in the blocks as the values. To find overlaps between
the reads, the k-mers from the blocks associated to the reads are processed and queried in the hash table. A
block from a given read thus overlap a block from another read if these two blocks share a sufficient number of
k-mers. By extension, a given read overlaps another read if at least a pair of blacks from these two reads do
overlap.

A filtering step is the applied, via a scoring system, in order to filter out excessive and uninformative
overlaps. To this aim, k-mers pairs are considered within two overlapping blocks. A distance, called DDF
(Distance Difference Factor), is then computed between the pairs of k-mers that are shared by the two blocks.
This distance is computed according to the occurrence positions of the k-mers within their respective block. A
distance shorter than a given threshold indicates that the k-mers are supporting each other. In such a case, the
scores of these k-mers are incremented. The k-mer having the highest score within a bloc is then defined as a
seed for the following step, if this score is high enough. If several k-mer share the same highest score, one of
these k-mers is randomly chosen.

The scoring system is then extended from the current block to its neighbor blocks, after obtaining the seed.
The DDF are computed between this seed and the k-mers from the neighbor blocks. As before, if the DDF of a
k-mers pair is below a given threshold, the score of the seed is incremented. If more than 80% of the DDFs of
a neighbor block are below that threshold, the block is marked, and the scores of its k-mers are not computed.
If some blocks remain unmarked after an iteration, the whole process is repeated on these blocks, and the score
of their k-mers are computed, as described in the previous paragraph.

After computing all the scores of the k-mers that are shared by two overlapping reads, a base to base
alignment of these two reads can be computed. To this aim, the k-mers of these reads are ordered according
to their scores. The k-mers displaying the highest scores are then used as seeds, in order to ease the alignment
computation. Is the length of the final alignment is at least as large as the size of a block, and if the divergence

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


between the two sequences is low enough, the alignment is considered as valid, and is reported.
To correct a given read, the reads overlapping it are sorted, and considered in the decreasing order of the

cumulative scores of their k-mers, which are computed during the previous step, via their DDF. Base to base
local alignments are thus computed between the read to correct, and the reads overlapping it, in decreasing
order of their scores. Moreover, in order to avoid the bias related to chimeric reads and to repeated sequences,
an alignment between two reads is filtered out if its length is shorter than 90% of the length of the shortest read.
The local alignments computation stops once 100 alignments have been produced, or when all the reads have
been processed. Since the DDF score allows to estimate the length of the overlaps, computing local alignments
only between the read to correct and its overlapping reads displaying the highest scores allow to gather sufficient
information to perform a quick correction, all the while avoiding the computation of repetitive alignments, that
would only bring little additional information.

A new correction strategy, combining the principles of both PBDAGCon and FalconSense is then applied.
To this aim, the alignments related to the read to correct are summarized in a consensus table that contains
the counts of matches, insertions, and deletions, for each position of the read. This table is then browsed, in
order to determine three different type of regions, that require different correction approaches.

1. Trivial regions, which are composed of consistent matches and of a small number of insertions (usually
< 6);

2. Regions which are composed of consistent deletions, and of a small number of insertions (< 6);

3. More complex regions, composed of a greater number of insertions (≥ 6).

For the two first types of regions, correction is performed by determining the consensus base according to
the counts stored in the table. For the third type of regions, a DAG is built, and the consensus is computed by
searching for the highest weighted path, via a dynamic programming approach. Since such regions are usually
short (< 10 bps), consensus can be computed quickly from the DAG.

MECAT thus produces split corrected long reads. Indeed, the blocks of the reads for which no overlap could
be found cannot be corrected, whether they are located at the extremities or in internal regions of the reads.
These blocks are thus removed from the corrected reads sequences, and consecutive blocks for which overlaps
could be found are reported independently.

FLAS (2019)

FLAS is a wrapper of the MECAT algorithm, which we presented previously. It allows to polish the overlaps
before correction, but also to use corrected regions of the reads in order to correct their uncorrected regions.
First, the overlaps between the reads are computed with the MECAT mapping strategy. A directed graph is
then built from these overlaps. Each vertex of this graph represents a read, and an edge is present between two
vertices u and v if the reads associated to these vertices share at least an overlap, over a sufficient length. Once
the graph is built, its maximal cliques are computed, with the help of the Bron-Kerbosch algorithm [10, 19, 20].

Pairs of maximal cliques that share common vertices are then processed, in order to find additional overlaps
between the corresponding reads, or to remove erroneous overlaps. Three different case can indeed be at the
origin of common vertices in a given pair of maximal cliques. These common vertices thus require specific
handling.

1. The reads from the two cliques originate from the same genome region, and the overlaps between the
reads associated to the common vertices are thus correct;

2. The reads from the two cliques originate from different genome regions, but the reads associated to the
common vertices span these two regions, and their overlaps are thus correct;

3. The reads from the two cliques originate from different genome regions, and the reads associated to the
common vertices originate from a single of these two regions, and share erroneous overlaps with the reads
originating from the other region.

These differences can be determined by comparing the number of common vertices, s, to the number of
vertices of the smallest maximal clique of the pair, c. Indeed, among all the overlaps, the number of correct
overlaps is usually larger than the number of erroneous overlaps. As a result, if s represents less than 50% of
the vertices of c, the common vertices are considered as belonging to the third case.

Otherwise, common vertices are considered as belonging to the first or second case. To distinguish between

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


these two cases, the number of reads associated to the common vertices that have a region overlapping the reads
from one clique, and a different region overlapping the reads from the other clique, is computed. If this number
represents at least 50% of the set of the common vertices of the two cliques, the common vertices are considered
as belonging to the second case. In the other case, the common vertices are considered as belonging to the first
case.

For the maximal cliques belonging to the first case, the overlaps between the reads associated to the vertices
of the cliques are recomputed, in order to produce additional overlaps, and thus be able to correct larger regions
of these reads.

For the maximal cliques belonging to the second case, the reads associated to the common vertices span the
two genome regions corresponding to the cliques. No supplementary alignment can thus be computed, and no
specific action is necessary.

Finally, for the maximal cliques belonging to the third case, the common vertices have to be assigned to a
single of the two cliques. To this aim, each common vertex is considered independently. The average similarity
of the overlaps between the read associated to the vertex and the other reads of each clique is then computed.
The vertex is thus removed from the clique with which it displays the lowest average similarity.

Once the overlaps have been polished, according to these three different cases, the MECAT algorithm is
used to perform error correction of the reads.

A second correction step is then applied, where the corrected regions of the reads are used in order to correct
the regions that could not be corrected during the first step. To this aim, the overlaps between the corrected
regions of the reads are computed with the MECAT mapping strategy. A graph representing the overlaps is
then built, in the same fashion as in the previous step. The reads are then aligned to this graph, in order to
perform correction. For reads composed of both corrected and uncorrected regions, the corrected regions can
be uniquely aligned to the graph, and thus be used as anchor points. The uncorrected regions can then be
aligned along paths that allow to link together the corrected regions, and can thus be corrected with the help
of the information contained in the followed paths. Moreover, reads solely composed of uncorrected regions can
also be aligned to paths of the graph, as it is generated from corrected data, and thus contains a small number
of errors. In cases where an uncorrected region of a reads aligns with several paths, the path to which the
region aligns with the highest identity is chosen as the correction. If no alignment stands out, the path which
is supported by the greatest number of reads is chosen.

FLAS thus produces split corrected long reads. Indeed, FLAS relies on MECAT’s mapping and correction
strategies. The regions (or blocks, as defined in MECAT) of the reads for which no overlap is found thus
cannot be corrected. These regions are thus removed from the corrected reads sequences whether their are
located at the reads extremities or not. Consecutive regions for which overlaps could be found are thus reported
independently. However, unlike MECAT, FLAS also produces a trimmed version of the corrected reads, which
retains the internal regions that could not be corrected due to a lack of overlaps.

2.2.2 De Bruijn graphs

This approach is similar to the hybrid correction approach using de Bruijn graphs, mentioned in Section
2.1.3. In a first step, the graph is built from the long reads k-mers, and in a second step, the graph is traversed
in order to find paths allowing to correct unanchored regions of the long reads. The main difference with the
hybrid approach comes from the fact that the graph is, here, only constructed from the solid k-mers from the
long reads. The methods adopting this approach mainly differ by the scale at which the graph is build. On the
one hand, it can either be built globally, by studying the frequency of all the k-mers appearing in the reads. On
the other hand, it can be built locally, by first computing overlaps between the long reads, in order to define
small similar regions of the long reads, and then building small, local graphs at the scale of these regions.

LoRMA (2016)

LoRMA adapts the principle of the hybrid correction tool LoRDEC to the problem of self-correction. The
graph is thus built from the solid k-mers of the reads. The reads can then be anchored to the graph, with the
help of their solid k-mers. In the same fashion as LoRDEC, regions composed of weak k-mers, and bordered
by regions composed of solid k-mers, are corrected by searching for paths of the graph that allow to link an
anchor from the left flanking region to an anchor of the right flanking region. In a similar way, regions composed
of weak k-mers, and located at the extremities of the reads, are corrected by using a neighbor solid k-mer as
anchor point on the graph, and by traversing the graph, using the same stopping conditions as LoRDEC.

The principle of FMLRC, to perform several passes of correction, with increasing values of k, is also adopted

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


in LoRMA. Given the initial error rates of the reads, the first correction pass is performed with a small value of
k. Although such small values of k do not allow to correct large weak k-mers regions, due to the high number
of branching paths in the graph, small regions can nevertheless be corrected. Hence, after each correction pass,
solid k-mers regions grow longer, and a larger value of k can thus be used during the following passes. Moreover,
the number of branching paths of the graph also decreases, and larger weak k-mers can thus be corrected. By
iteratively reaching high values of k, the whole reads can thus eventually be corrected. Unlike FMLRC, LoRMA
however does not use a variable order de Bruijn graph, but instead builds a new graph at each step, according
to the chosen value of k.

The corrected reads are then split: regions only composed of weak k-mers are removed, in order to retain
only regions solely composed of solid k-mers. The correction of these split reads is then polished via a second
correction phase, relying on multiple sequence alignments. To this aim, a de Bruijn graph is built from the
corrected reads k-mers, without setting any solidity threshold. The simple paths (i.e. with no branching paths)
of the graph are then enumerated, in order to define the path of the graph which dictates the sequence of each
read. Each path is thus composed of a set of simple paths, called segments. For each of these segments, the set
of reads that traverse it is saved. Reads that are similar to a given read can thus be retrieved with the help of
the graph, via their common k-mers, by following the path associated to this read, and selecting the reads that
traverse common segments. This subset of similar reads is then filtered, in order to only retain the reads that
share a sufficient number of k-mers with the initial read.

A consensus sequence can then be computed, from the original read and its set of similar reads. To this aim,
the consensus sequence is first initialized as the initial read itself. This consensus is then iteratively updated,
by aligning the similar reads. Each of these similar reads is thus considered independently, and aligned to the
current consensus. The current multiple sequence alignment is thus updated, and the consensus is then, in turn,
updated according to the multiple sequence alignment, via a majority vote at each position. This process is thus
repeated until all the similar reads have been considered and aligned. The final multiple sequence alignment is
then browsed, and the consensus positions supported by at least two reads are used to polish the correction of
the initial read.

Due the the splitting step performed after the correction pass with the increasing-size de Bruijn graphs,
LoRMA produces split corrected long reads. Moreover, during the multiple sequence alignment step, bases
covered by less that two other reads are reported in a different case from bases covered by a greater number of
reads. As a result, the corrected reads can easily further be trimmed or split after correction.

Daccord (2017)

Although it also relies on de Bruijn graphs, Daccord differentiates itself from LoRMA, and does not built
a unique graph from the solid k-mers of the whole set of reads. Indeed, it rather builds a set of local graphs,
on small regions of subsets of similar reads, defined after a preliminary alignment step. Daccord thus starts by
computing the alignments between the reads, with the help of DALIGNER. An alignment between two reads
A and B is thus represented by an alignment tuple (Ab, Ae, Bb, Be, S, E), where:

• Ab and Ae represent, respectively, the beginning and ending positions of the alignment, on A;

• Bb and Be represent, respectively, the beginning and ending positions of the alignment, on B;

• S represents the orientation of B relatively to A (forward or reverse-complement);

• E represent the edit script (i.e. the sequence of edit operations allowing to transform A[Ab..Ae] into
B[Bb..Be], if S = 0, or into B[Bb..Be] if S = 1 (where B represents the reverse-complement of B).

A set of alignment tuples between a given read A and other reads thus define an alignment pile for the read
A. The alignment pile of a given read A thus allows to represent the set of reads that align to A, and that
are required for the construction of the local de Bruijn graph allowing to correct this read. These graphs are
defined on small windows of less than 100 bps of the alignment pile. With the help of the information contained
in this alignment pile, the sequences of the read that need to be included in the different windows can easily
be extracted. Moreover, only the sequences from the reads that fully span a given window are used to built its
associated de Bruijn graph. In particular, reads whose alignments begin or end inside of this window are thus
not considered. Furthermore, the windows can be overlapping, and do not necessarily partition the alignment
pile into a set of non-overlapping intervals.

Each window of the alignment pile is then processed independently. First, the de Bruijn graph of the
window is built from the k-mers of factors of the reads that are included in this window, and that respect the
aforementioned conditions. As for the previously described methods that rely on de Bruijn graphs, a source
vertex and a target vertex are defined in order to guide the traversal of the graph, which yields a consensus

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


sequence for the window. The source vertex is defined, in the left part of the window, as the most frequent first
k-mer found in the factors of the reads included in the window. Symmetrically, the target vertex is defined, in
the right part of the window, as the most frequent last k-mer found in the factors of the reads included in the
window. Several pairs of such k-mers are however considered, in order to reduce the number of cases in which
no path could be be found.

Unlike other methods based on the traversal of de Bruijn graphs that were previously presented, the graph is
not traversed from the source towards the target nor for the target towards the source. Indeed, Daccord rather
traverses the graph in both directions simultaneously, and searches for common vertices that allow to join the
two paths. The traversals can thus yield a set of different paths. In this case, the consensus of the window
is chosen by aligning the sequences of the obtained paths to the factor of the read A which is included in the
window, and by choosing the sequence having the smallest edit distance with this factor. The procedure is thus
repeated with all the other windows of the alignment pile of the read to correct.

Once the consensus sequences of all the windows have been computed, the read can eventually be corrected.
To this aim, the consensus associated to each window of the alignment pile is aligned to the corresponding
factor of the read. The edit scripts that allow to transform the factors of the read A associated to each window
into their respective consensus sequences are thus computed. The windows are then once again considered
independently, in order to define position pairs, from these edit scripts. For a window beginning at position b
on the read A, the position pair (b + i, 0) is assigned to the i-th edit operation which is not an insertion, and
the position pair (b + i,−d) is associated to the d-th edit operation which is an insertion, before the i-th edit
operation which is not an insertion, considering operation from right to left. Each position pair is annotated
with the corresponding base of the window consensus. Once all the windows have been processed, position pairs
are sorted, and the consensus sequence of the read is obtained with a majority vote on each position pair, by
observing their associated bases.

Daccord thus produces split corrected long reads. Indeed, it is likely that the path searching in the graph
does not yield a consensus for a given window. In this case, this windows cannot be considered during the
realignment step of the consensus sequences to the initial read. As a result, its edit script, as well as the
position pairs associated to it, cannot be determined. These missing consensus sequences thus result in missing
position pairs in the sequence of ordered position pairs. The consensus sequence of the read thus cannot be
computed on these missing position pairs, and multiple consensus sequences, corresponding to sequences of
consecutive position pairs, are produced independently.

2.2.3 Combination of strategies

As for hybrid correction, some methods also rely on combinations of the two previously described strategies.
For instance, CONSENT [54] relies on both multiple sequence alignment and de Bruijn graphs, which it combines
into a two-step error correction process.

CONSENT (2019)

CONSENT first computes overlaps between the reads, using a mapping approach, with the help of Minimap2
[46]. From these alignments, as in Daccord, alignment piles are then defined for each read. Small windows,
of a few hundreds of bp, are then defined on these alignment piles. Each window is processed independently,
in two different steps. First, a multiple sequence alignment strategy is used, in order to compute a consensus
sequence. Then, the consensus further goes through a second correction step, in which a local de Bruijn graph
is built and traversed, in order to further polish remaining errors.

For the multiple alignment step, unlike other methods that would compute independent, pairwise alignments
between the window to correct and other windows of the pile, and then summarize them alignments into a DAG,
CONSENT computes an actual MSA between all the sequences. To this aim, it makes use of poaV2 [42, 41],
a algorithm that computes MSA with the help of partial order graphs. These graphs are DAGs, and are used
as data structures containing all the MSA information. Fore a given MSA, the graph is thus enriched at each
step, by aligning the new sequences to it, and updating it with additional vertices and edges, if necessary.
Unlike other methods, this strategy thus allows CONSENT to both compute MSA and built the DAG used for
consensus computation at the same time.
However, POAv2 is resource consuming, even of windows of a few hundreds bp. To address this issue, CON-
SENT relies on an efficient segmentation strategy, that allows to compute MSA and consensus on much shorter
sequences, thus greatly reducing computational costs. First, common k-mers between the sequences included
in the window being processed are computed. Using a dynamic programming algorithm, the longest chain of

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


consecutive k-mers, common to the sequences, is then computed. This way, MSA and consensus sequences only
need to be computed on subsequences bordered by the k-mers of the chain. CONSENT then reconstructs the
global consensus, by concatenating the local consensus and the k-mers that were used for segmentation.

After consensus computation, a few erroneous bases might remain. To further enhance the quality of the
corrected window, CONSENT thus performs a second correction phase, where the consensus sequence is pol-
ished with the help of a de Bruijn graph. First, the graph is thus built from the solid k-mers of the sequences
included in the window. Due to the small size of the windows, a small k-mers size (usually, k = 9) can also be
used. As in other de Bruijn graph based methods presented previously, solid k-ùers of the consensus are used
as anchor points on the graph, and weak k-mer regions are corrected, by searching for paths of the graph that
allow to link together two anchors. In the same fashion, extremities of the consensus are polished by following
the highest weighted edges of the graph, until the length of the path reaches the length of the extremity to
correct, or until a branching path is reached.

Finally, after computing and polishing the consensus of a given window, the obtained sequence is locally
aligned to the original read, around the positions the window originates from, to actually perform correction.
This process is thus applied to each window of the alignment pile, until the read is completely corrected.

CONSENT thus produces trimmed corrected long reads. Indeed, since windows cannot be defined on the
uncovered extremities of the long reads, CONSENT cannot process and correct these extremities. They are
thus removed from the sequences of the corrected long reads. Moreover, during the consensus polishing step,
CONSENT reports bases corresponding to solid k-mers and bases corresponding to weak k-mers in a different
case. The corrected long reads can thus easily further be split after correction.

2.3 Summary

In the section, we described the state-of-the-art of available methods for the error correction of long reads,
whether they adopt a hybrid or a self-correction approach. Four main approaches were described for self-
correction: the alignment of short reads to the long reads, the alignment of contigs obtained from short reads
assembly and long reads, the use of de Bruijn graphs, and the use of hidden Markov models. Other methods also
combine different strategies to benefit from their different advantages. Two approaches were described for self-
correction: multiple sequence alignment, and use of de Bruijn graphs. As for hybrid correction, other methods
also combine these two strategies to counterbalance their advantages and drawbacks. The algorithmic principles
of each error correction method have also been described. Available hybrid correction tools are summarized
in Table 1. Available self-correction tools are summarized in Table 2. These tables also recall the approaches
these different methods rely on, the way they output the reads (i.e. trimmed / split or not), the year they
were released, as well as the technology (PacBio or ONT) they were validated on, in their respective publications.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Method Approach
Output reads

Case Release Validated on
Complete Trimmed Split

PBcR Short reads alignment 6 6 4 6 2012 PacBio
LSC Short reads alignment 6 4 6 6 2012 PacBio
ECTools Contigs alignment 6 6 4 6 2014 PacBio
LoRDEC De Bruijn graphs 4 6 6 4 2014 PacBio
Proovread Short reads alignment 4 6 4 6 2014 PacBio
Nanocorr Short reads alignment 4 6 6 6 2015 ONT
NaS Short reads alignment 4 6 6 6 2015 ONT
CoLoRMap Short reads alignment 4 6 6 4 2016 PacBio
Jabba De Bruijn graphs 6 6 4 6 2016 PacBio
LSCplus Short reads alignment 4 4 6 6 2016 PacBio
HALC Contigs alignment 4 4 4 4 2017 PacBio
HECIL Short reads alignment 4 6 6 6 2018 PacBio
Hercules Hidden Markov models 4 6 6 6 2018 PacBio
FMLRC De Bruijn graphs 4 6 6 6 2018 PacBio

HG-CoLoR
Short reads alignment

4 4 4 4 2018 PacBio + ONT
+ de Bruijn graphs

MiRCA Contigs alignment 6 4 6 6 2018 ONT
ParLECH De Bruijn graphs - - - - 2019 PacBio

Table 1: List of available hybrid correction tools. Complete reads correspond to reads which are neither
trimmed nor split. The case column indicates whether the method reports corrected bases in a different case
from the uncorrected bases.

Method Approach
Output reads

Case Release Validated on
Complete Trimmed Split

PBcR-BLASR Multiple sequence alignment 6 6 4 6 2013 PacBio
PBDAGCon Multiple sequence alignment 4 6 6 6 2013 PacBio
Sprai Multiple sequence alignment 4 6 6 6 2014 PacBio
PBcR-MHAP

Multiple sequence alignment 4 6 6 6 2015 PacBio
(PBDAGCon)
PBcR-MHAP

Multiple sequence alignment 6 6 4 6 2015 PacBio
(FalconSense)
FalconSense Multiple sequence alignment 6 6 4 6 2016 PacBio
LoRMA De Bruijn graphs 6 6 4 6 2016 PacBio
Sparc Multiple sequence alignment 4 6 6 6 2016 PacBio + ONT
Canu Multiple sequence alignment 6 6 4 6 2017 PacBio + ONT
Daccord De Bruijn graphs 6 6 4 6 2017 PacBio + ONT
MECAT Multiple sequence alignment 6 6 4 6 2017 PacBio + ONT

CONSENT
Multiple sequence alignment

6 4 6 4 2019 PacBio + ONT
+ de Bruijn graphs

FLAS Multiple sequence alignment 6 4 4 6 2019 PacBio

Table 2: List of available self-correction tools. Complete reads correspond to reads which are neither
trimmed nor split. The case column indicates whether the method reports corrected bases in a different case
from the uncorrected bases.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3 Qualitative comparison

In this section, we present an in-depth benchmark of available hybrid and self-correction tools described in
Section 2, and summarized in Table 1 and in Table 2. The following methods are however excluded from the
benchmark, for the reasons mentioned below:

• FalconSense: this tool could not be installed on any of the computers used in our experiments;

• HECIL: this tool did not manage to correct any read, and produced a set of corrected read identical to
the set of uncorrected reads, for all the datasets;

• LSCplus: this tool is not available for download anymore;

• MiRCA: this tool stopped and reported an error during the correction of all the datasets;

• ParLECH: this tool could not be installed on any of the computers used in our experiments;

• PBcR: this tool stopped and reported an error during the correction of all the datasets;

• PBcR-BLASR and PBcR-MHAP: this two tools are preliminary versions of the correction module from
the assembler Canu. Only the latter, which is the most recent, is thus evaluated in the benchmark;

• PBDAGCon: this tool did not manage to produce any corrected read for all the datasets;

• Sparc: this tool stopped and reported an error during the correction of all the datasets;

• Sprai: this tool stopped and reported an error during the correction of all the datasets.

3.1 Datasets

We evaluated these correction methods on a wide variety of datasets, composed of both simulated and real
data, displaying various error rates, read length and sequences depths, and ranging from small bacterial to large
mammal genomes. These datasets are summarized in Table 3.

Dataset Number of reads Number of bases (Mbp) Average length (bp) Coverage Error rate (%) Accession
Simulated PacBio data
A. baylyi 20x 8,795 72 8,202 20x 18.57 -
E. coli 20x 11,306 93 8,226 20x 18.65 -
S. cerevisiae 20x 30,132 247 8,204 20x 18.61 -
C. elegans 20x 244,277 2,004 8,204 20x 18.62 -
E. coli 30x 16,959 140 8,235 30x 12.29 -
S. cerevisiae 30x 45,198 371 8,216 30x 12.28 -
C. elegans 30x 366,416 3,006 8,204 30x 12.28 -
E. coli 60x (low) 33,918 279 8,211 60x 12.28 -
S. cerevisiae 60x (low) 90,397 742 8,204 60x 12.29 -
C. elegans 60x (low) 732,832 6,011 8,220 60x 12.28 -
A. baylyi 60x (medium) 26,296 216 8,213 60x 18.59 -
E. coli 60x (medium) 33,918 279 8,217 60x 18.62 -
S. cerevisiae 60x (medium) 90,397 743 8,221 60x 18.61 -
C. elegans 60x (medium) 732,832 6,022 8,218 60x 18.60 -
Real ONT data
A. baylyi real 89,011 381 4,284 106x 29.91 Genoscope1

E. coli real 22,270 134 5,999 29x 20.54 Genoscope2

S. cerevisiae real 205,923 1,173 5,698 95x 44.51 Genoscope3

C. elegans real 363,500 2,008 5,524 20x 28.93 ERR1802061
D. melanogaster 1,327,569 9,064 6,828 63x 14.55 SRX3676783
H. sapiens4 1,075,867 7,256 6,744 29x 17.60 PRJEB23027
Illumina data
A. baylyi 900,000 224 250 50x 1 ERR7889135

E. coli 775,500 232 300 50x 1 Genoscope6

S. cerevisiae 2,500,000 625 250 50x 1 Genoscope7

C. elegans 20,057,100 5,000 250 50x 1 ART [28]

Table 3: Characteristics of the datasets used during the experiments.
1http://www.genoscope.cns.fr/externe/nas/datasets/MinION/acineto/
2http://www.genoscope.cns.fr/externe/nas/datasets/MinION/ecoli/
3http://www.genoscope.cns.fr/externe/nas/datasets/MinION/yeast/
4 Only reads from chromosome 1 were used. This dataset contains ONT ultra-long reads, reaching lengths up
to 340 kbps.
5http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/acineto/
6http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/ecoli/
7http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/yeast/

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

http://www.genoscope.cns.fr/externe/nas/datasets/MinION/acineto/
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/ecoli/
http://www.genoscope.cns.fr/externe/nas/datasets/MinION/yeast/
http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/acineto/
http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/ecoli/
http://www.genoscope.cns.fr/externe/nas/datasets/Illumina/yeast/
https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.2 Benchmark summary

To evaluate the quality of the correction provided by each tool, we used ELECTOR [51], a software specially
developed for large scale error correction tools benchmark, that allows to assess both the correction of simulated
and real data. In particular, it reports the error rates of the reads before and after correction, as well as the
recall and the precision of the assessed tools, among other metrics, when ran on simulated data. With real
data, it is able to perform remapping of the reads to the reference genome with the help of Minimap2 [46],
and reports the average identity of the alignments as well as the genome coverage, among other metrics. It is
also able to perform assembly of the corrected reads, with the help of Miniasm [45], and reports the number of
aligned contigs, the NGA50, the NGA75, and the genome coverage, among other metrics.
We present results in various subsections, according to the characteristics of the assessed datasets. In particular,
we distinguish seven different categories of datasets.

1. Datasets with high error rate and high coverage. This corresponds to the A. baylyi real and S. cerevisiae
real datasets of Table 3. We present these results in Section 3.3, Table 4.

2. Datasets with high error rate a low coverage. This corresponds to the C. elegans real dataset of Table 3.
We present these results in Section 3.4, Table 5.

3. Datasets with medium error rate and low coverage. This corresponds to the A. baylyi 20x, E. coli 20x,
S. cerevisiae 20x, C. elegans 20x and E. coli real datasets of Table 3. We present these results in Section
3.5, Tables 8 and 7.

4. Datasets with medium error rate and medium coverage. This corresponds to the A. baylyi 60x (medium),
E. coli 60x (medium), S. cerevisiae 60x (medium) and C. elegans 60x (medium) datasets of Table 3. We
present these results in Section 3.6, Table ??.

5. Datasets with low error rate and low coverage. This corresponds to the E. coli 30x, S. cerevisiae 30x and
C. elegans 30x datasets of Table 3. We present these results in Section 3.7, Table 9.

6. Datasets with low error rate and medium coverage. This corresponds to the E. coli 60x (low), S. cerevisiae
60x (low) and C. elegans 60x (low) datasets of Table 3. We present these results in Section 3.8, Table 10.

7. Datasets containing ONT ultra-long reads. This corresponds to the H. sapiens dataset of Table 3. We
present these results in Section 3.9, Table 11.

3.3 High error rate, high coverage

Tool Remapping Assembly
A. baylyi S. cerevisiae A. baylyi S. cerevisiae

C
o
L
o
R
M
a
p

Number of reads 36,422 72,017 Number of contigs 1 71
Number of bases 141,415,030 165,218,405 Number of aligned contigs 1 68
Average length (bp) 3,882 2,294 Number of breakpoints 54 47
Aligned reads (%) 99.9973 99.7403 NGA50 (bp) 3,588,032 204,052
Average identity (%) 99.5079 99.6958 NGA75 (bp) 3,588,032 88,468
Genome coverage (%) 100.0000 99.1528 Genome coverage (%) 96.4454 87.1140
Runtime 3 h 41 min 10 h 44 min
Memory (MB) 13,028 18,241

E
C
T
o
o
ls

Number of reads 6,882 21,780 Number of contigs 101 313
Number of bases 36,892,324 116,347,153 Number of aligned contigs 101 313
Average length (bp) 5,360 5,341 Number of breakpoints 0 0
Aligned reads (%) 100.0000 100.0000 NGA50 (bp) 12,654 7,294
Average identity (%) 98.6844 98.6497 NGA75 (bp) 8,579 7,294
Genome coverage (%) 95.3957 87.2324 Genome coverage (%) 55.6888 48.0243
Runtime 26 min 3 h 13 min
Memory (MB) 862 2,256

F
M
L
R
C

Number of reads 89,011 205,923 Number of contigs 1 54
Number of bases 390,735,419 1,185,455,434 Number of aligned contigs 1 54
Average length (bp) 4,389 5,756 Number of breakpoints 21 69
Aligned reads (%) 27.7741 31.7497 NGA50 (bp) 3,673,304 378,469
Average identity (%) 99.6779 96.7164 NGA75 (bp) 3,673,304 186,053
Genome coverage (%) 100.0000 99.8120 Genome coverage (%) 96.8804 92.2118
Runtime 2 h 01 min 6 h 15 min
Memory (MB) 449 876

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Remapping Assembly
A. baylyi S. cerevisiae A. baylyi S. cerevisiae

H
A
L
C

Number of reads 42,188 135,050 Number of contigs 2 82
Number of bases 189,757,075 255,641,564 Number of aligned contigs 2 82
Average length (bp) 4,497 1,892 Number of breakpoints 36 75
Aligned reads (%) 99.6444 99.5091 NGA50 (bp) 2,420,463 313,785
Average identity (%) 99.8345 99.2933 NGA75 (bp) 1,207,743 146,613
Genome coverage (%) 100.0000 99.1874 Genome coverage (%) 97.3183 92.0039
Runtime 47 h 41 min 2 h 56 min
Memory (MB) 10,577 2,329

H
er
cu

le
s

Number of reads 89,011 205,923 Number of contigs 1 174
Number of bases 383,188,837 1,173,722,512 Number of aligned contigs 1 171
Average length (bp) 4,304 5,699 Number of breakpoints 49 10
Aligned reads (%) 21.5468 22.7682 NGA50 (bp) 3,537,383 3,384
Average identity (%) 81.3432 71.4998 NGA75 (bp) 3,537,383 3,384
Genome coverage (%) 100.0000 99.7669 Genome coverage (%) 97.4830 29.1838
Runtime 16 h 53 min 12 h 13 min
Memory (MB) 4,438 19,885

H
G
-C

o
L
o
R

Number of reads 25,536 76,193 Number of contigs 2 53
Number of bases 284,883,716 512,438,767 Number of aligned contigs 2 53
Average length (bp) 11,156 6,725 Number of breakpoints 5 72
Aligned reads (%) 99.9883 99.7126 NGA50 (bp) 3,595,353 470,355
Average identity (%) 99.9760 99.7176 NGA75 (bp) 3,595,353 212,761
Genome coverage (%) 100.0000 99.5341 Genome coverage (%) 99.9182 95.3867
Runtime 1 h 34 min 8 h 51 min
Memory (MB) 3,750 11,575

J
a
b
b
a

Number of reads 17,483 37,703 Number of contigs 17 176
Number of bases 179,366,684 243,374,292 Number of aligned contigs 17 176
Average length (bp) 10,259 6,455 Number of breakpoints 1 2
Aligned reads (%) 99.9714 98.5386 NGA50 (bp) 216,570 45,205
Average identity (%) 99.9226 99.8889 NGA75 (bp) 184,851 6,507
Genome coverage (%) 99.8170 93.3275 Genome coverage (%) 93.7381 72.0151
Runtime 2 min 7 min
Memory (MB) 1,217 1,217

L
o
R
D
E
C

Number of reads 50,776 196,091 Number of contigs 2 66
Number of bases 175,140,999 220,706,773 Number of aligned contigs 2 66
Average length (bp) 3,449 1,125 Number of breakpoints 73 126
Aligned reads (%) 99.8779 98.5094 NGA50 (bp) 3,010,005 361,726
Average identity (%) 99.9448 98.8168 NGA75 (bp) 3,010,005 178,604
Genome coverage (%) 100.0000 98.8934 Genome coverage (%) 94.6755 90.0706
Runtime 16 min 1 h 09 min
Memory (MB) 436 797

L
S
C

1

Number of reads - 10,054 Number of contigs - 2
Number of bases - 36,116,073 Number of aligned contigs - 2
Average length (bp) - 3,592 Number of breakpoints - 0
Aligned reads (%) - 93.2664 NGA50 (bp) - 5,393
Average identity (%) - 88.5159 NGA75 (bp) - 5,393
Genome coverage (%) - 88.2405 Genome coverage (%) - 0.1190
Runtime - 8 h 58 min
Memory (MB) - 1,431

N
a
n
o
co

rr

Number of reads 24,105 66,953 Number of contigs 1 170
Number of bases 173,666,898 231,317,559 Number of aligned contigs 1 170
Average length (bp) 7,204 3,454 Number of breakpoints 41 26
Aligned reads (%) 99.7884 98.8873 NGA50 (bp) 3,647,559 84,048
Average identity (%) 98.3639 97.1970 NGA75 (bp) 3,647,559 44,028
Genome coverage (%) 100.0000 99.5137 Genome coverage (%) 98.2877 89.5144
Runtime 22 h 28 min 158 h 53 min
Memory (MB) 616 3,128

N
a
S
2

Number of reads 24,063 71,793 Number of contigs 1 159
Number of bases 212,707,189 426,326,355 Number of aligned contigs 1 159
Average length (bp) 8,839 5,938 Number of breakpoints 2 17
Aligned reads (%) 100.0000 99.8231 NGA50 (bp) 3,600,775 85,205
Average identity (%) 99.9900 99.8985 NGA75 (bp) 3,600,775 43,313
Genome coverage (%) 100.0000 98.7695 Genome coverage (%) 99.9986 89.7248
Runtime 94 h 19 min > 16 days
Memory (MB) 2,099

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Remapping Assembly
A. baylyi S. cerevisiae A. baylyi S. cerevisiae

P
ro
o
v
re
a
d

Number of reads 38,432 91,055 Number of contigs 3 77
Number of bases 155,655,071 160,204,364 Number of aligned contigs 3 74
Average length (bp) 4,050 1,759 Number of breakpoints 60 48
Aligned reads (%) 100.0000 99.7156 NGA50 (bp) 1,304,077 176,285
Average identity (%) 99.9686 99.8979 NGA75 (bp) 1,304,077 80,275
Genome coverage (%) 100.0000 99.1089 Genome coverage (%) 92.7046 86.0619
Runtime 3 h 25 min 13 h 42 min
Memory (MB) 10,618 8,709

C
a
n
u
3

Number of reads 8,632 - Number of contigs 19 -
Number of bases 80,666,491 - Number of aligned contigs 19 -
Average length (bp) 9,345 - Number of breakpoints 3 -
Aligned reads (%) 99.9421 - NGA50 (bp) 2,146,043 -
Average identity (%) 94.5919 - NGA75 (bp) 99,247 -
Genome coverage (%) 99.7861 - Genome coverage (%) 93.6289 -
Runtime 31 min -
Memory (MB) 3,015 -

C
O
N
S
E
N
T

Number of reads 16,928 24,862 Number of contigs 1 186
Number of bases 183,088,372 178,658,682 Number of aligned contigs 1 185
Average length (bp) 10,815 7,186 Number of breakpoints 23 18
Aligned reads (%) 99.4506 96.7702 NGA50 (bp) 3,494,031 3,326
Average identity (%) 91.9470 76.7265 NGA75 (bp) 3,494,031 3,326
Genome coverage (%) 100.0000 98.1075 Genome coverage (%) 99.1676 36.9326
Runtime 48 min 40 min
Memory (MB) 5,150 14,663

D
a
cc
o
rd

4

Number of reads 53,926 - Number of contigs 2 -
Number of bases 174,962,080 - Number of aligned contigs 2 -
Average length (bp) 3,244 - Number of breakpoints 4 -
Aligned reads (%) 97.1906 - NGA50 (bp) 3,472,403 -
Average identity (%) 93.2546 - NGA75 (bp) 3,472,403 -
Genome coverage (%) 100.0000 - Genome coverage (%) 100.0000 -
Runtime 43 min -
Memory (MB) 25,801 -

F
L
A
S

Number of reads 18,658 34,483 Number of contigs 2 114
Number of bases 165,473,591 220,777,235 Number of aligned contigs 2 114
Average length (bp) 8,868 6,402 Number of breakpoints 32 8
Aligned reads (%) 99.8553 84.1197 NGA50 (bp) 1,610,377 2,974
Average identity (%) 91.6074 77.1713 NGA75 (bp) 1,610,377 2,974
Genome coverage (%) 100.0000 98.6900 Genome coverage (%) 96.9851 21.8854
Runtime 32 min 39 min
Memory (MB) 3,015 7,398

L
o
R
M
A

5

Number of reads 333,041 48,824 Number of contigs 1 -
Number of bases 76,354,713 11,246,944 Number of aligned contigs 1 -
Average length (bp) 229 230 Number of breakpoints 0 -
Aligned reads (%) 99.9168 57.6397 NGA50 (bp) 4,949 -
Average identity (%) 98.0710 95.2610 NGA75 (bp) 4,949 -
Genome coverage (%) 66.4788 3.6315 Genome coverage (%) 0.1406 -
Runtime 29 min 1 h 35 min
Memory (MB) 31,575 1,505

M
E
C
A
T

Number of reads 16,811 14,740 Number of contigs 1 102
Number of bases 154,436,057 83,553,890 Number of aligned contigs 1 102
Average length (bp) 9,186 5,668 Number of breakpoints 3 2
Aligned reads (%) 100.0000 99.4573 NGA50 (bp) 3,335,596 3,163
Average identity (%) 91.4676 80.0763 NGA75 (bp) 3,335,596 3,163
Genome coverage (%) 100.0000 92.6533 Genome coverage (%) 99.9985 15.1658
Runtime 23 min 14 min
Memory (MB) 2,978 7,374

Table 4: Comparison of the different error correction tools, on high error rate and high coverage datasets. This
corresponds to the A. baylyi real and S. cerevisiae real datasets of Table 3. 1 LSC stopped and reported and error
during the correction of the A. baylyi dataset. 2 NaS was stopped after 16 days on the S. cerevisiae datasets.
Corrected long reads were obtained from the Genoscope website. 3 Canu stopped and reported an error during
the correction of the S. cerevisiae dataset. 4 Daccord could not perform correction on the S. cerevisiae dataset,
since the alignment step with DALIGNER required more than 128 GB of memory. 5 LoRMA corrected reads
could not be assembled for the S. cerevisiae dataset.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.4 High error rate, low coverage

For these experiments, we exclude the following tools from the comparison, for the reasons mentioned below:

• HALC, because it stopped and reported an error during correction;

• LSC, because of its large runtimes on previous experiments;

• Nanocorr, because of its large runtimes on previous experiments;

• NaS, because of its large runtimes on previous experiments;

• Daccord, because it could not perform correction, since the alignment step with DALIGNER required
more than 128 GB of memory;

• FLAS, because it stopped and reported an error during correction;

• MECAT, because it stopped and reported an error during correction.

Tool Remapping Assembly

C
o
L
o
R
M
a
p

Number of reads 184,092 Number of contigs 1,246
Number of bases 418,509,369 Number of aligned contigs 1,237
Average length (bp) 2,273 Number of breakpoints 617
Aligned reads (%) 99.9473 NGA50 (bp) 58,411
Average identity (%) 98.6614 NGA75 (bp) 11,122
Genome coverage (%) 96.4079 Genome coverage (%) 76.6546
Runtime 91 h 18 min
Memory (MB) 31,349

E
C
T
o
o
ls
1

Number of reads 18 Number of contigs -
Number of bases 54,323 Number of aligned contigs -
Average length (bp) 3,017 Number of breakpoints -
Aligned reads (%) 100.0000 NGA50 (bp) -
Average identity (%) 98.4596 NGA75 (bp) -
Genome coverage (%) 0.016 Genome coverage (%) -
Runtime 81 h 25 min
Memory (MB) 5,023

F
M
L
R
C

Number of reads 363,500 Number of contigs 1,047
Number of bases 2,063,059,647 Number of aligned contigs 1,042
Average length (bp) 5,675 Number of breakpoints 713
Aligned reads (%) 78.1986 NGA50 (bp) 91,545
Average identity (%) 96.5611 NGA75 (bp) 40,293
Genome coverage (%) 99.9932 Genome coverage (%) 82.9120
Runtime 7 h 54 min
Memory (MB) 7,141

H
er
cu

le
s

Number of reads 363,500 Number of contigs 1,356
Number of bases 2,012,600,582 Number of aligned contigs 1,348
Average length (bp) 5,536 Number of breakpoints 425
Aligned reads (%) 72.8468 NGA50 (bp) 36,090
Average identity (%) 82.3142 NGA75 (bp) 690
Genome coverage (%) 99.9776 Genome coverage (%) 66.7194
Runtime 20 h 36 min
Memory (MB) 32,000

H
G
-C

o
L
o
R

Number of reads 305,777 Number of contigs 989
Number of bases 1,567,516,029 Number of aligned contigs 988
Average length (bp) 5,126 Number of breakpoints 461
Aligned reads (%) 99.8653 NGA50 (bp) 96,058
Average identity (%) 99.5430 NGA75 (bp) 41,829
Genome coverage (%) 99.9655 Genome coverage (%) 82.6239
Runtime 83 h 10 min
Memory (MB) 19,836

J
a
b
b
a

Number of reads 270,929 Number of contigs 880
Number of bases 433,372,687 Number of aligned contigs 880
Average length (bp) 1,599 Number of breakpoints 15
Aligned reads (%) 97.2901 NGA50 (bp) 2,046
Average identity (%) 99.9430 NGA75 (bp) 2,046
Genome coverage (%) 95.2852 Genome coverage (%) 30.0434
Runtime 59 min
Memory (MB) 13,362

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Remapping Assembly
L
o
R
D
E
C

Number of reads 167,699 Number of contigs 21
Number of bases 221,676,779 Number of aligned contigs 16
Average length (bp) 1,321 Number of breakpoints 9
Aligned reads (%) 96.0137 NGA50 (bp) 589
Average identity (%) 98.2718 NGA75 (bp) 589
Genome coverage (%) 85.0782 Genome coverage (%) 0.0854
Runtime 1 h 15 min
Memory (MB) 2,373

P
ro
o
v
re
a
d

Number of reads 364,244 Number of contigs 1,095
Number of bases 1,329,812,416 Number of aligned contigs 1,086
Average length (bp) 3,650 Number of breakpoints 509
Aligned reads (%) 99.7194 NGA50 (bp) 80,171
Average identity (%) 99.6065 NGA75 (bp) 31,114
Genome coverage (%) 99.9358 Genome coverage (%) 79.6994
Runtime 119 h 48 min
Memory (MB) 20,254

C
a
n
u

Number of reads 340,826 Number of contigs 1,272
Number of bases 1,843,278,326 Number of aligned contigs 1,259
Average length (bp) 5,408 Number of breakpoints 512
Aligned reads (%) 76.7204 NGA50 (bp) 54,194
Average identity (%) 90.6784 NGA75 (bp) 416
Genome coverage (%) 99.9783 Genome coverage (%) 76.9836
Runtime 14 h 19 min
Memory (MB) 9,178

C
O
N
S
E
N
T

Number of reads 256,568 Number of contigs 1,279
Number of bases 1,475,025,831 Number of aligned contigs 1,268
Average length (bp) 5,749 Number of breakpoints 624
Aligned reads (%) 96.7615 NGA50 (bp) 49,620
Average identity (%) 91.6888 NGA75 (bp) 1,606
Genome coverage (%) 99.7682 Genome coverage (%) 73.1300
Runtime 9 h 50 min
Memory (MB) 20,382

L
o
R
M
A

2

Number of reads 38,121 Number of contigs -
Number of bases 10,277,321 Number of aligned contigs -
Average length (bp) 269 Number of breakpoints -
Aligned reads (%) 91.5506 NGA50 (bp) -
Average identity (%) 97.6599 NGA75 (bp) -
Genome coverage (%) 1.6269 Genome coverage (%) -
Runtime 1 h 13 min
Memory (MB) 32,275

Table 5: Comparison of the different error correction tools, on high error rate and low coverage datasets. This
corresponds to the C. elegans real dataset of Table 3. 1 ECTools corrected long reads could not be assembled.
2 LoRMA corrected long reads could not be assembled.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.5 Medium error rate, low coverage

3.5.1 Simulated data

Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans

C
o
L
o
R
M
a
p

Number of bases 64,353,820 81,060,058 210,966,804 571,054,288
Error rate (%) 0.1336 0.1946 0.2655 2.6255
Deletions 71,639 165,412 434,983 14,745,290
Insertions 7,062 9,193 51,627 374,284
Substitutions 51,954 62,188 279,378 3,722,575
Recall (%) 99.9923 99.9890 99.9805 99.8445
Precision (%) 99.8707 99.8118 99.7413 97.4526
Trimmed / split reads 1,666 2,067 6,970 64,051
Mean missing size (bp) 939.2 1,497.5 1,396.2 3,234.8
Extended reads 8,463 10,730 28,117 96,953
Mean extension size (bp) 260.3 308.8 251.6 233
Low quality reads 12 20 121 332
Short reads 689 1,036 2,166 181,741
Homopolymer ratio 1.0000 1.0000 0.9826 0.9962
Runtime 57 min 1 h 25 min 4 h 42 min 125 h 44 min
Memory (MB) 6,198 9,659 13,544 32,188

E
C
T
o
o
ls

Number of bases 36,892,324 6,261,214 116,347,153 54,323
Error rate (%) 1.2086 1.3991 1.2428 1.4652
Deletions 77,464 13,883 246,662 123
Insertions 395,759 76,702 1,275,965 702
Substitutions 40,670 7,026 140,703 45
Recall (%) 98.8241 98.6228 98.8048 98.5410
Precision (%) 98.7923 98.6012 98.7581 98.5348
Trimmed / split reads 5,628 1,595 18,270 18
Mean missing size (bp) 2,730.3 4,103.1 2,747.6 4,770.3
Extended reads 0 0 0 0
Mean extension size (bp) 0 0 0 0
Low quality reads 0 0 0 0
Short reads 0 0 0 0
Homopolymer ratio 1.0064 1.0000 0.9991 1.0045
Runtime 17 min 8 min 57 h 12 min 77 h 59 min
Memory (MB) 862 917 2,256 5,028

F
M
L
R
C

Number of bases 64,715,552 83,732,334 223,529,739 1,832,773,801
Error rate (%) 0.1194 0.1930 1.0016 3.3582
Deletions 26,253 54,707 643,464 20,717,465
Insertions 89,640 185,196 2,289,467 52,872,229
Substitutions 22,637 45,795 546,972 16,628,231
Recall (%) 99.9142 99.8498 99.1797 97.8709
Precision (%) 99.8815 99.8081 99.0020 96.6643
Trimmed / split reads 20 28 114 3,090
Mean missing size (bp) 26.2 29.4 17.2 32.8
Extended reads 0 0 9 295
Mean extension size (bp) 0 0 290.8 31
Low quality reads 13 29 120 744
Short reads 0 0 0 0
Homopolymer ratio 1.0000 1.0000 0.9741 1.0000
Runtime 23 min 29 min 1 h 19 min 8 h 02 min
Memory (MB) 387 408 906 7,939

H
A
L
C

Number of bases 63,708,698 81,199,351 212,266,193 1,588,220,052
Error rate (%) 0.1113 0.1537 0.4212 1.5288
Deletions 59,157 115,973 1,035,978 35,970,722
Insertions 8,273 15,034 100,874 2,520,363
Substitutions 5,206 13,764 198,853 2,919,936
Recall (%) 99.9937 99.9918 99.9734 99.8945
Precision (%) 99.8909 99.8497 99.5872 98.4961
Trimmed / split reads 2,358 3,816 12,043 153,855
Mean missing size (bp) 341.7 547.3 577.5 777.2
Extended reads 24 24 71 772
Mean extension size (bp) 25.2 31.1 53.2 40.9
Low quality reads 2 2 160 2,582
Short reads 101 254 3,436 170,934
Homopolymer ratio 1.0000 1.0000 1.0580 0.9978
Runtime 22 min 24 min 1 h 19 min 5 h 59 min
Memory (MB) 597 965 2,115 2,323

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
H
er
cu

le
s

Number of bases 70,375,149 91,064,066 242,189,693 1,976,944,911
Error rate (%) 10.5079 10.6411 10.9420 11.9249
Deletions 1,319,811 1,753,865 4,655,235 40,229,132
Insertions 7,040,655 9,211,444 25,099,150 216,151,231
Substitutions 1,113,866 1,447,112 4,003,822 35,147,508
Recall (%) 89.6376 89.4974 89.3519 88.3131
Precision (%) 89.4946 89.3613 89.0615 88.0792
Trimmed / split reads 8 14 42 706
Mean missing size (bp) 22.2 20.5 20.1 30.4
Extended reads 5 14 65 133
Mean extension size (bp) 22.6 24.6 194.1 23
Low quality reads 13 29 143 678
Short reads 0 0 0 0
Homopolymer ratio 0.9982 1.0000 1.0000 1.0014
Runtime 6 h 23 min 7 h 47 min 32 h 38 min 199 h 42 min
Memory (MB) 1,724 1,633 18,771 31,039

H
G
-C

o
L
o
R

Number of bases 65,065,102 84,089,814 219,744,436 1,726,223,265
Error rate (%) 0.0430 0.0691 0.2959 0.6524
Deletions 11,561 28,955 339,174 9,986,160
Insertions 15,803 33,409 548,419 5,156,404
Substitutions 1,869 3,147 79,127 775,253
Recall (%) 99.9991 99.9982 99.9900 99.9682
Precision (%) 99.9574 99.9315 99.7071 99.3554
Trimmed / split reads 133 498 4,562 71,079
Mean missing size (bp) 264.7 274.5 677.4 866.3
Extended reads 5,969 8,180 19,237 140,791
Mean extension size (bp) 67 71.1 72.5 72.2
Low quality reads 2 0 99 621
Short reads 0 4 496 8,849
Homopolymer ratio 1.0000 1.0000 0.9741 1.0000
Runtime 51 min 51 min 4 h 55 min 88 h 10 min
Memory (MB) 1,432 1,517 3,237 19,730

J
a
b
b
a

Number of bases 68,653,634 87,851,697 216,794,630 1,480,673,578
Error rate (%) 0.0862 0.0636 0.1058 0.1909
Deletions 53,665 42,166 112,063 1,865,824
Insertions 9,913 7,041 95,757 649,951
Substitutions 1,919 466 21,954 102,639
Recall (%) 99.9977 99.9975 99.9973 99.9929
Precision (%) 99.9150 99.9370 99.8950 99.8106
Trimmed / split reads 639 1,204 6,387 87,670
Mean missing size (bp) 3,323.5 2,735.3 2,166.6 2,853.8
Extended reads 8,267 10,402 25,214 168,261
Mean extension size (bp) 850.4 922.7 1,080.5 1,043.1
Low quality reads 10 18 115 661
Short reads 179 386 2,954 34,239
Homopolymer ratio 1.0000 1.0000 0.9563 1.0000
Runtime 2 min 2 min 5 min 45 min
Memory (MB) 1,217 1,218 1,217 13,360

L
o
R
D
E
C

Number of bases 60,892,408 77,969,503 188,228,237 1,154,508,245
Error rate (%) 0.0712 0.1474 0.5400 1.2643
Deletions 48,836 128,344 1,385,989 23,642,857
Insertions 8,473 21,205 122,252 1,584,355
Substitutions 6,144 17,896 229,925 1,845,645
Recall (%) 99.9921 99.9890 99.9483 99.8871
Precision (%) 99.9313 99.8570 99.4730 98.7542
Trimmed / split reads 2,951 4,786 22,470 210,051
Mean missing size (bp) 1,155.2 1,033.9 857.6 1,350.9
Extended reads 0 0 3 30
Mean extension size (bp) 0 0 1,285.3 156.9
Low quality reads 2 0 252 1,966
Short reads 260 737 22,811 474,725
Homopolymer ratio 1.0000 1.0000 0.9741 0.9995
Runtime 6 min 8 min 28 min 6 h 01 min
Memory (MB) 438 455 799 2,238

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
L
S
C

Number of bases 37,111,831 44,310,080 122,224,269 771,778,062
Error rate (%) 5.8260 5.2598 6.1549 6.7716
Deletions 372,086 438,428 1,630,573 14,922,136
Insertions 1,835,695 1,991,268 6,295,946 40,404,903
Substitutions 253,915 286,969 895,587 5,874,295
Recall (%) 94.6923 95.2419 94.6340 94.7734
Precision (%) 94.2025 94.7706 93.8772 93.2623
Trimmed / split reads 5,990 7,307 20,257 147,403
Mean missing size (bp) 3,008.4 3,031.8 2,962.6 2,934.9
Extended reads 24 85 145 289
Mean extension size (bp) 22.7 24 24.3 26.1
Low quality reads 0 0 47 271
Short reads 599 944 2,453 29,243
Homopolymer ratio 1.0026 1.0000 0.9833 0.9938
Runtime 47 min 47 min 9 h 42 min 117 h 34 min
Memory (MB) 337 328 1,756 1,852

N
a
n
o
co

rr
1

Number of bases 64,372,749 83,338,435 220,133,609 -
Error rate (%) 0.4099 0.3043 0.4723 -
Deletions 72,260 77,573 276,444 -
Insertions 301,605 261,194 1,023,357 -
Substitutions 54,832 57,152 258,241 -
Recall (%) 99.6491 99.7715 99.6679 -
Precision (%) 99.5928 99.6989 99.5322 -
Trimmed / split reads 1,574 1,602 5,076 -
Mean missing size (bp) 322.8 279.4 349.6 -
Extended reads 0 0 1 -
Mean extension size (bp) 0 0 20 -
Low quality reads 1 0 46 -
Short reads 0 0 0 -
Homopolymer ratio 1.0000 1.0000 1.0158 -
Runtime 2 h 52 min 3 h 17 min 39 h 52 min -
Memory (MB) 173 166 2,345 -

N
a
S
2

Number of bases 58,963,977 78,034,042 207,085,378 -
Error rate (%) 2.1095 1.3035 2.7483 -
Deletions 714,139 530,425 2,102,677 -
Insertions 1,100,737 948,398 5,112,655 -
Substitutions 94,241 86,401 504,562 -
Recall (%) 99.9158 99.9468 99.9077 -
Precision (%) 97.8969 98.7009 97.2615 -
Trimmed / split reads 339 274 2,187 -
Mean missing size (bp) 2,361.4 2,370.8 2,437.7 -
Extended reads 6,688 8,070 22,658 -
Mean extension size (bp) 1,371.8 1,781.2 1,488.4 -
Low quality reads 1,651 1,751 5,040 -
Short reads 0 0 0 -
Homopolymer ratio 1.0000 1.0000 1.0000 -
Runtime 24 h 24 min 28 h 48 min 217 h 20 min -
Memory (MB) 2,099 2,099 2,099 -

P
ro
o
v
re
a
d

Number of bases 62,131,071 80,950,481 210,578,217 1,651,572,671
Error rate (%) 0.1122 0.1220 0.2075 0.5320
Deletions 73,995 127,118 670,850 21,888,508
Insertions 1,364 2,255 26,710 239,748
Substitutions 1,066 3,344 30,808 464,923
Recall (%) 99.9944 99.9938 99.9880 99.9599
Precision (%) 99.8897 99.8808 99.7964 99.4820
Trimmed / split reads 3,221 4,485 14,211 98,127
Mean missing size (bp) 299.5 268.1 332.5 599.5
Extended reads 11 18 45 242
Mean extension size (bp) 27.3 23.8 257 79.3
Low quality reads 1 0 124 1,357
Short reads 861 752 2,834 24,984
Homopolymer ratio 1.0000 1.0000 0.9669 0.9935
Runtime 52 min 1 h 18 min 4 h 24 min 79 h 33 min
Memory (MB) 5,784 6,029 10,435 20,213

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
C
a
n
u

Number of bases 66,632,351 86,443,218 229,555,492 1,873,188,109
Error rate (%) 4.9496 5.2422 5.0619 4.9561
Deletions 738,704 1,011,985 2,574,320 20,233,048
Insertions 3,517,266 4,804,729 12,252,413 97,517,920
Substitutions 622,602 841,679 2,197,172 17,594,481
Recall (%) 95.2430 94.9490 95.1477 95.2663
Precision (%) 95.0573 94.7647 94.9459 95.0524
Trimmed / split reads 547 764 2,216 14,407
Mean missing size (bp) 27.1 27.2 35.1 29.5
Extended reads 53 66 178 1,462
Mean extension size (bp) 32.3 27.4 30.7 32.5
Low quality reads 0 0 43 305
Short reads 0 0 0 0
Homopolymer ratio 1.0055 1.0000 0.9937 1.0120
Runtime 12 min 14 min 32 min 4 h 37 min
Memory (MB) 2,974 2,821 3,274 6,950

C
O
N
S
E
N
T

Number of bases 48,390,086 61,487,428 166,101,116 1,359,131,353
Error rate (%) 8.2534 8.5423 8.2652 9.5548
Deletions 4,778,369 6,371,753 16,549,340 155,680,250
Insertions 1,613,389 2,076,177 5,404,368 50,056,903
Substitutions 114,628 142,283 455,785 6,084,369
Recall (%) 97.9538 97.9155 98.0349 97.9553
Precision (%) 91.8579 91.5687 91.8483 90.5794
Trimmed / split reads 8,332 10,835 28,621 230,249
Mean missing size (bp) 1,507.1 1,581.7 1,498 1,401
Extended reads 100 112 267 2,373
Mean extension size (bp) 133.8 110.3 106.9 92.2
Low quality reads 0 0 57 471
Short reads 0 0 0 0
Homopolymer ratio 1.0070 1.0000 0.9788 0.9765
Runtime 6 min 8 min 22 min 3 h 49 min
Memory (MB) 1,020 1,552 4,514 14,522

D
a
cc
o
rd

3

Number of bases 64,669,977 83,773,362 222,050,951 -
Error rate (%) 0.4694 0.3965 0.5447 -
Deletions 121,756 75,627 470,101 -
Insertions 275,390 321,532 977,499 -
Substitutions 25,146 33,860 200,541 -
Recall (%) 99.8647 99.8817 99.8591 -
Precision (%) 99.5371 99.6077 99.4630 -
Trimmed / split reads 328 119 991 -
Mean missing size (bp) 445.5 369.9 410.4 -
Extended reads 0 0 0 -
Mean extension size (bp) 0 0 0 -
Low quality reads 0 0 49 -
Short reads 17 4 54 -
Homopolymer ratio 1.0061 1.0000 0.9810 -
Runtime 16 min 24 min 1 h 10 min -
Memory (MB) 3,509 4,538 14,111 -

F
L
A
S

Number of bases 35,567,295 44,048,436 125,103,108 662,199,783
Error rate (%) 2.1958 2.2848 2.4742 9.1804
Deletions 777,449 879,707 2,963,186 71,270,551
Insertions 590,885 801,154 2,362,512 40,983,626
Substitutions 75,331 89,736 322,562 9,060,762
Recall (%) 99.6847 99.6914 99.6456 99.2995
Precision (%) 97.8309 97.7424 97.5575 90.8881
Trimmed / split reads 4,992 6,372 17,066 110,818
Mean missing size (bp) 2,040.3 2,097.1 2,051.1 1,806.9
Extended reads 44 78 215 5,956
Mean extension size (bp) 196.4 343.2 280 198.2
Low quality reads 1,868 2,591 6,081 85,161
Short reads 97 149 339 2,725
Homopolymer ratio 0.9806 1.0000 0.9783 0.9964
Runtime 2 min 3 min 9 min 1 h 13 min
Memory (MB) 1,231 1,354 2,259 10,371

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
L
o
R
M
A

Number of bases 676,120 884,592 6,279,242 11,394,637
Error rate (%) 0.6305 0.9261 1.6624 5.0838
Deletions 3,032 5,139 195,481 996,348
Insertions 1,112 744 21,776 83,683
Substitutions 1,156 2,136 14,201 110,710
Recall (%) 99.9766 99.9733 99.8771 99.7216
Precision (%) 99.3790 99.0871 98.3563 94.9446
Trimmed / split reads 340 667 2,990 36,351
Mean missing size (bp) 3,183.5 3,115.5 1,927.7 1,165.9
Extended reads 0 0 6 24
Mean extension size (bp) 0 0 1,383.2 195.4
Low quality reads 14 0 201 2,476
Short reads 446 1,248 8,683 125,774
Homopolymer ratio 1.0000 1.0000 1.0000 1.0000
Runtime 5 min 5 min 20 min 3 h 42 min
Memory (MB) 32,118 32,183 32,183 32,041

M
E
C
A
T

Number of bases 46,854,371 58,979,203 162,057,920 870,965,775
Error rate (%) 0.5340 0.5243 0.6555 0.6540
Deletions 223,296 267,547 975,507 5,379,870
Insertions 66,725 82,121 263,724 1,566,201
Substitutions 5,883 7,575 52,975 139,668
Recall (%) 99.8289 99.8317 99.8015 99.8196
Precision (%) 99.4817 99.4915 99.3636 99.3597
Trimmed / split reads 4,802 6,304 16,034 120,325
Mean missing size (bp) 2,036.7 2,114.5 2,069.5 2,320.8
Extended reads 0 0 1 41
Mean extension size (bp) 0 0 23 354.7
Low quality reads 0 0 50 583
Short reads 0 0 0 1
Homopolymer ratio 1.0008 1.0057 0.9810 0.9938
Runtime 22 sec 26 sec 1 min 20 sec 18 min 20 sec
Memory (MB) 1,202 1,322 2,207 10,340

Table 6: Comparison of the different error correction tools, on medium error rate and low coverage simulated
datasets. This corresponds to the A. baylyi 20x, E. coli 20x, S. cerevisiae 20x and C. elegans 20x datasets
of Table 3. 1 Nanocorr was not launched on the C. elegans dataset due to its large runtimes. 2 NaS was not
launched on the C. elegans dataset due to its large runtimes. 3 Daccord could not perform correction on the
C. elegans dataset, since the alignment step with DALIGNER required more than 128 GB of memory.

3.5.2 Real data

Tool Remapping Assembly

C
o
L
o
R
M
a
p

Number of reads 25,635 Number of contigs 1
Number of bases 114,722,711 Number of aligned contigs 1
Average length (bp) 4,475 Number of breakpoints 40
Aligned reads (%) 100.0000 NGA50 (bp) 4,657,185
Average identity (%) 99.5751 NGA75 (bp) 4,657,185
Genome coverage (%) 100.0000 Genome coverage (%) 98.5239
Runtime 2 h 01 min
Memory (MB) 12,121

E
C
T
o
o
ls
1

Number of reads 1,639 Number of contigs -
Number of bases 6,261,214 Number of aligned contigs -
Average length (bp) 3,820 Number of breakpoints -
Aligned reads (%) 100.0000 NGA50 (bp) -
Average identity (%) 98.4789 NGA75 (bp) -
Genome coverage (%) 26.9638 Genome coverage (%) -
Runtime 12 min
Memory (MB) 922

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Remapping Assembly

F
M
L
R
C

Number of reads 22,270 Number of contigs 1
Number of bases 134,402,291 Number of aligned contigs 1
Average length (bp) 6,035 Number of breakpoints 3
Aligned reads (%) 98.2937 NGA50 (bp) 4,642,134
Average identity (%) 99.9252 NGA75 (bp) 4,642,134
Genome coverage (%) 100.0000 Genome coverage (%) 100.0000
Runtime 43 min
Memory (MB) 384

H
A
L
C

Number of reads 24,159 Number of contigs 1
Number of bases 130,674,260 Number of aligned contigs 1
Average length (bp) 5,408 Number of breakpoints 17
Aligned reads (%) 100.0000 NGA50 (bp) 4,644,236
Average identity (%) 99.9273 NGA75 (bp) 4,644,236
Genome coverage (%) 100.0000 Genome coverage (%) 99.3693
Runtime 2 h 14 min
Memory (MB) 2,237

H
er
cu

le
s

Number of reads 22,270 Number of contigs 1
Number of bases 134,641,551 Number of aligned contigs 1
Average length (bp) 6,045 Number of breakpoints 63
Aligned reads (%) 95.815 NGA50 (bp) 4,655,108
Average identity (%) 85.7397 NGA75 (bp) 4,655,108
Genome coverage (%) 100.0000 Genome coverage (%) 97.9754
Runtime 10 h 15 min
Memory (MB) 2,104

H
G
-C

o
L
o
R

Number of reads 21,986 Number of contigs 1
Number of bases 133,956,298 Number of aligned contigs 1
Average length (bp) 6,092 Number of breakpoints 5
Aligned reads (%) 100.0000 NGA50 (bp) 4,643,849
Average identity (%) 99.9589 NGA75 (bp) 4,643,849
Genome coverage (%) 100.0000 Genome coverage (%) 99.9739
Runtime 59 min
Memory (MB) 1,508

J
a
b
b
a

Number of reads 22,086 Number of contigs 47
Number of bases 128,040,222 Number of aligned contigs 47
Average length (bp) 5,797 Number of breakpoints 2
Aligned reads (%) 99.9457 NGA50 (bp) 133,278
Average identity (%) 99.9687 NGA75 (bp) 61,014
Genome coverage (%) 99.4309 Genome coverage (%) 95.0742
Runtime 2 min
Memory (MB) 1,220

L
o
R
D
E
C

Number of reads 31,728 Number of contigs 1
Number of bases 125,542,707 Number of aligned contigs 1
Average length (bp) 3,956 Number of breakpoints 71
Aligned reads (%) 96.6118 NGA50 (bp) 4,659,557
Average identity (%) 99.9300 NGA75 (bp) 4,659,557
Genome coverage (%) 100.0000 Genome coverage (%) 97.7848
Runtime 13 min
Memory (MB) 458

L
S
C

Number of reads 16,744 Number of contigs 7
Number of bases 93,660,098 Number of aligned contigs 7
Average length (bp) 5,593 Number of breakpoints 42
Aligned reads (%) 100.0000 NGA50 (bp) 1,214,279
Average identity (%) 91.1945 NGA75 (bp) 548,948
Genome coverage (%) 100.0000 Genome coverage (%) 98.6104
Runtime 1 h 10 min
Memory (MB) 1,832

N
a
n
o
co

rr

Number of reads 21,764 Number of contigs 1
Number of bases 128,375,708 Number of aligned contigs 1
Average length (bp) 5,898 Number of breakpoints 33
Aligned reads (%) 99.9954 NGA50 (bp) 4,662,932
Average identity (%) 99.1417 NGA75 (bp) 4,662,932
Genome coverage (%) 100.0000 Genome coverage (%) 99.1316
Runtime 5 h 48 min
Memory (MB) 354

N
a
S

Number of reads 21,818 Number of contigs 1
Number of bases 172,918,739 Number of aligned contigs 1
Average length (bp) 7,925 Number of breakpoints 6
Aligned reads (%) 100.0000 NGA50 (bp) 4,641,680
Average identity (%) 99.9793 NGA75 (bp) 4,641,680
Genome coverage (%) 100.0000 Genome coverage (%) 99.9674
Runtime 72 h 02 min
Memory (MB) 2,099

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Remapping Assembly

P
ro
o
v
re
a
d

Number of reads 25,338 Number of contigs 1
Number of bases 125,795,081 Number of aligned contigs 1
Average length (bp) 4,964 Number of breakpoints 48
Aligned reads (%) 100.0000 NGA50 (bp) 4,658,520
Average identity (%) 99.9633 NGA75 (bp) 4,658,520
Genome coverage (%) 100.0000 Genome coverage (%) 98.4384
Runtime 2 h 14 min
Memory (MB) 7,166

C
a
n
u

Number of reads 17,223 Number of contigs 1
Number of bases 121,934,133 Number of aligned contigs 1
Average length (bp) 7,079 Number of breakpoints 4
Aligned reads (%) 99.9942 NGA50 (bp) 4,457,202
Average identity (%) 93.8627 NGA75 (bp) 4,457,202
Genome coverage (%) 100.0000 Genome coverage (%) 99.9802
Runtime 35 min
Memory (MB) 3,264

C
O
N
S
E
N
T

Number of reads 18,143 Number of contigs 1
Number of bases 124,479,635 Number of aligned contigs 1
Average length (bp) 6,861 Number of breakpoints 14
Aligned reads (%) 100.0000 NGA50 (bp) 4,519,816
Average identity (%) 94.2336 NGA75 (bp) 4,519,816
Genome coverage (%) 100.0000 Genome coverage (%) 99.7372
Runtime 22 min
Memory (MB) 2,239

D
a
cc
o
rd

Number of reads 26,502 Number of contigs 6
Number of bases 119,130,415 Number of aligned contigs 6
Average length (bp) 4,495 Number of breakpoints 1
Aligned reads (%) 99.9170 NGA50 (bp) 1,140,945
Average identity (%) 96.7690 NGA75 (bp) 995,717
Genome coverage (%) 100.0000 Genome coverage (%) 99.9572
Runtime 20 min
Memory (MB) 6,515

F
L
A
S

Number of reads 16,775 Number of contigs 19
Number of bases 100,467,965 Number of aligned contigs 19
Average length (bp) 5,989 Number of breakpoints 36
Aligned reads (%) 99.8808 NGA50 (bp) 307,489
Average identity (%) 91.4421 NGA75 (bp) 210,170
Genome coverage (%) 100.0000 Genome coverage (%) 99.3639
Runtime 8 min
Memory (MB) 1,611

L
o
R
M
A

2

Number of reads 108,980 Number of contigs -
Number of bases 17,947,836 Number of aligned contigs -
Average length (bp) 164 Number of breakpoints -
Aligned reads (%) 99.9128 NGA50 (bp) -
Average identity (%) 98.6822 NGA75 (bp) -
Genome coverage (%) 25.0530 Genome coverage (%) -
Runtime 12 min
Memory (MB) 32,117

M
E
C
A
T

Number of reads 16,089 Number of contigs 7
Number of bases 106,757,446 Number of aligned contigs 7
Average length (bp) 6,635 Number of breakpoints 1
Aligned reads (%) 100.0000 NGA50 (bp) 843,326
Average identity (%) 92.2218 NGA75 (bp) 610,826
Genome coverage (%) 100.0000 Genome coverage (%) 99.9204
Runtime 4 min
Memory (MB) 1,681

Table 7: Comparison of the different error correction tools, on a medium error rate and low coverage real dataset.
This corresponds to the E. coli real dataset of Table 3. 1 ECTools corrected reads could not be assembled. 2

LoRMA corrected reads could not be assembled.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.6 Medium error rate, medium coverage

Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
C
o
L
o
R
M
a
p
1

Number of bases 163,469,531 195,090,745 496,462,088 -
Error rate 0.2847 0.4841 0.5088 -
Deletions 381,859 993,426 1,827,202 -
Insertions 39,322 49,908 202,518 -
Substitutions 227,605 251,725 1,023,892 -
Recall 99.9831 99.9712 99.9679 -
Precision 99.7247 99.5320 99.5053 -
Trimmed / split reads 10,325 12,378 37,316 -
Taille manquante moyenne 1,897.5 2,280.1 2,385.6 -
Extended reads 22,578 27,910 69,906 -
Taille moyenne d’extension 212.9 251.0 196.8 -
Low quality reads 28 36 282 -
Short reads 10,357 10,861 27,833 -
Ratio taille homopolymers 0.9913 1.0000 1.0042 -
Runtime 2 h 52 min 3 h 32 min 10 h 51 min -
Memory (MB) 13.132 15.990 18.972 -

F
M
L
R
C

Number of bases 195,182,619 252,027,858 674,591,322 5,526,058,984
Error rate 0..005 0.2741 1.0792 3.4246
Deletions 145,662 228,943 2,146,125 65,413,791
Insertions 502,754 853,350 7,457,074 163,114,555
Substitutions 130,122 210,729 1,885,718 53,017,848
Recall 99.8400 99.7630 99.1029 97.8036
Precision 99.8006 99.7269 98.9245 96.5988
Trimmed / split reads 63 84 308 9,214
Taille manquante moyenne 33.7 14.9 31.8 32.6
Extended reads 4 6 18 984
Taille moyenne d’extension 34.0 55.7 176.4 30.2
Low quality reads 52 63 340 2,315
Short reads 0 0 0 0
Ratio taille homopolymers 1.0000 1.0000 1.0032 0.7904
Runtime 1 h 07 min 1 h 25 min 3 h 52 min 23 h 36 min
Memory (MB) 409 428 895 7,938

H
A
L
C

Number of bases 189,974,036 240,901,559 632,932,482 4,729,802,695
Error rate 0.1175 0.1468 0.4350 1.5007
Deletions 214,063 309,688 3,248,553 107,463,874
Insertions 29,571 43,596 310,542 6,493,145
Substitutions 17,315 42,546 594,421 8,320,720
Recall 99.9918 99.9918 99.9714 99.8916
Precision 99.8850 99.8564 99.5740 98.5250
Trimmed / split reads 7,183 12,042 37,380 465,219
Taille manquante moyenne 598.4 758.9 729.0 864.2
Extended reads 61 55 218 1,956
Taille moyenne d’extension 31.3 30.5 65.5 42.9
Low quality reads 5 4 499 7,243
Short reads 319 821 10,890 516,489
Ratio taille homopolymers 1.0000 1.0000 0.9993 1.0000
Runtime 5 h 16 min 3 h 05 min 4 h 14 min 18 h 12 min
Memory (MB) 3,146 2,688 2,409 5,578

H
G
-C

o
L
o
R

2

Number of bases 196,441,510 252,224,483 654,754,845 -
Error rate 0.0447 0.0820 0.2949 -
Deletions 43,219 99,355 1,048,431 -
Insertions 45,639 123,916 1,485,531 -
Substitutions 6,432 14,387 274,343 -
Recall 99.9989 99.9984 99.9908 -
Precision 99.9559 99.9188 99.7082 -
Trimmed / split reads 734 2,587 15,953 -
Taille manquante moyenne 575.7 734.0 1,108.5 -
Extended reads 18,788 250,60 59,420 -
Taille moyenne d’extension 103.5 106.8 110.0 -
Low quality reads 0 1 271 -
Short reads 12 14 1,230 -
Ratio taille homopolymers 1.0000 1.0000 1.0000 -
Runtime 1 h 33 min 1 h 39 min 10 h 40 min -
Memory (MB) 2,130 2,747 7,316 -

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
J
a
b
b
a

Number of bases 206,618,316 262,664,049 651,032,022 -
Error rate 0.0874 0.0594 0.0922 -
Deletions 152,141 106,718 266,144 -
Insertions 31,500 28,159 274,263 -
Substitutions 4,467 1,003 58,593 -
Recall 99.9980 99.9988 99.9976 -
Precision 99.9136 99.9411 99.9085 -
Trimmed / split reads 1,917 3,748 19,668 -
Taille manquante moyenne 3,116.2 2,776.5 2,224.5 -
Extended reads 24,669 31,072 75,271 -
Taille moyenne d’extension 836.8 896.4 1,079.2 -
Low quality reads 37 52 354 -
Short reads 578 1,142 9,443 -
Ratio taille homopolymers 1.0000 1.0000 1.0000 -
Runtime 2 min 2 min 5 min -
Memory (MB) 1,215 1,220 1,217 -

L
o
R
D
E
C

Number of bases 181,008,925 231,286,209 562,268,349 3,486,299,514
Error rate 0.0625 0.1423 0.5208 1.2020
Deletions 114,292 392,797 4,294,506 71,409,761
Insertions 22,578 57,835 360,338 4,710,829
Substitutions 15,740 49,721 669,770 5,452,250
Recall 99.9934 99.9887 99.9487 99.8970
Precision 99.9398 99.8620 99.4919 98.8149
Trimmed / split reads 9,286 14,599 68,952 687,330
Taille manquante moyenne 1,265.7 1,124.1 839.9 1,159.5
Extended reads 1 2 8 88
Taille moyenne d’extension 60.0 25.0 879.9 162.7
Low quality reads 52 62 879 7,235
Short reads 3,695 6,479 175,136 2,415,613
Ratio taille homopolymers 1.0000 1.0000 0.9988 0.8843
Runtime 13 min 24 min 1 h 17 min 17 h 24 min
Memory (MB) 430 458 797 2,320

P
ro
o
v
re
a
d
3

Number of bases 185,254,462 238,343,371 582,618,950 -
Error rate 0.2382 0.2626 0.3130 -
Deletions 507,394 884,818 2,576,850 -
Insertions 2,527 4,468 61,534 -
Substitutions 5,967 19,282 113,279 -
Recall 99.9928 99.9893 99.9871 -
Precision 99.7656 99.7434 99.6923 -
Trimmed / split reads 14,741 22,793 70,024 -
Taille manquante moyenne 399.2 388.9 567.7 -
Extended reads 12 21 26 -
Taille moyenne d’extension 25n1 26.9 505.2 -
Low quality reads 3 0 415 -
Short reads 1,324 1,403 15,113 -
Ratio taille homopolymers 0.9565 1.0000 1.0006 -
Runtime 3 h 30 min 5 h 21 min 17 h 38 min -
Memory (MB) 14,475 14,306 20,100 -

C
a
n
u

Number of bases 113,074,830 84,731,584 233,891,897 2,018,823,460
Error rate 0.6196 0.5674 0.6847 0.8828
Deletions 315,662 181,791 738,971 11,392,385
Insertions 395,443 275,110 896,245 9,151,300
Substitutions 25,626 15,970 74,696 605,305
Recall 99.6344 99.6564 99.5995 99.5294
Precision 99.3873 99.4363 99.3205 99.1259
Trimmed / split reads 14,624 15,448 41,826 349,404
Taille manquante moyenne 2,656.7 2,409.7 2,381.8 2,429.7
Extended reads 82 69 181 1,778
Taille moyenne d’extension 26n1 27.7 53.7 32.7
Low quality reads 1 0 104 1,043
Short reads 362 737 1,817 15,036
Ratio taille homopolymers 1.0182 1.0077 0.9773 0.9885
Runtime 22 min 15 min 41 min 5 h 37 min
Memory (MB) 4,628 3,540 3,650 7,052

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
C
O
N
S
E
N
T

Number of bases 157,025,017 201,954,943 539,862,948 4,393,920,843
Error rate 1.2774 1.2531 1.4309 2.1802
Deletions 1,747,520 2,142,584 7,280,698 125,609,247
Insertions 1,066,354 1,386,428 3,826,520 35,808,412
Substitutions 86,763 110,746 392,819 4,833,713
Recall 99.6019 99.5955 99.5868 99.5042
Precision 98.7452 98.7682 98.5942 97.8579
Trimmed / split reads 23,418 30,379 80,740 650,917
Taille manquante moyenne 1,325.3 1,351.3 1,315.4 1,243.0
Extended reads 1 1 2 149
Taille moyenne d’extension 28.0 26.0 31.5 113.0
Low quality reads 0 1 213 4,900
Short reads 3,239 4,002 11,199 105,744
Ratio taille homopolymers 1.0000 1.0000 1.0029 0.9837
Runtime 23 min 30 min 1 h 24 min 14 h 22 min
Memory (MB) 4,347 4,808 11,088 17,388

D
a
cc
o
rd

4

Number of bases 194,674,108 251,327,413 235,508,504 -
Error rate 0.0484 0.0283 0.4190 -
Deletions 89,549 15,689 1,288,109 -
Insertions 59,010 50,132 550,838 -
Substitutions 11,248 21,053 83,275 -
Recall 99.9892 99.9930 99.9177 -
Precision 99.9529 99.9723 99.5929 -
Trimmed / split reads 341 117 3,081 -
Taille manquante moyenne 302.5 130.0 1,377.0 -
Extended reads 0 0 1 -
Taille moyenne d’extension 0.0 0.0 22.0 -
Low quality reads 0 0 48 -
Short reads 7 2 315 -
Ratio taille homopolymers 1.0000 1.0000 1.0011 -
Runtime 36 min 49 min 47 min -
Memory (MB) 11,267 14,398 31,990 -

F
L
A
S

Number of bases 164,962,117 209,893,136 555,375,307 3,601,229,111
Error rate 0.8227 0.7795 0.9486 2.3761
Deletions 1,358,586 1,561,943 5,346,704 86,057,509
Insertions 725,577 915,376 2,921,977 78,458,765
Substitutions 93,550 111,358 396,177 11,864,157
Recall 99.7894 99.8018 99.7709 99.7365
Precision 99.2001 99.2422 99.0760 97.6522
Trimmed / split reads 10,326 13,544 36,178 357,506
Taille manquante moyenne 1,854.2 1,887.9 1,868.7 1,983.0
Extended reads 35 41 174 8,944
Taille moyenne d’extension 10,047.3 228.0 10,051.8 199.2
Low quality reads 917 1,315 3,795 95,284
Short reads 64 94 263 4,899
Ratio taille homopolymers 1.0000 1.0000 0.9951 1.0006
Runtime 19 min 24 min 1 h 01 min 7 h 03 min
Memory (MB) 2,081 2,443 5,056 11,429

L
o
R
M
A

Number of bases 30,907,458 38,839,669 108,376,053 302,853,378
Error rate 0.2369 0.2552 0.4330 1.0741
Deletions 69,492 82,841 533,434 4,198,185
Insertions 6,059 8,965 65,060 314,039
Substitutions 5,371 16,286 71,794 485,037
Recall 99.9852 99.9847 99.9689 99.9391
Precision 99.7666 99.7487 99.5720 98.9343
Trimmed / split reads 29,426 37,783 103,451 740,225
Taille manquante moyenne 1,841.2 1,781.0 1,718.8 1,030.7
Extended reads 0 0 6 58
Taille moyenne d’extension 0.0 0.0 821.0 259.6
Low quality reads 36 10 608 5,170
Short reads 166,606 213,126 593,186 4,223,980
Ratio taille homopolymers 1.0000 1.0000 1.0000 1.0000
Runtime 17 min 25 min 1 h 56 min 20 h 48 min
Memory (MB) 31,976 31,818 31,687 31,884

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

A. baylyi E. coli S. cerevisiae C. elegans
M
E
C
A
T

Number of bases 97,093,166 121,976,082 322,237,718 1,283,874,393
Error rate 0.4936 0.4693 0.5463 0.5107
Deletions 427,238 515,933 1,585,591 5,839,768
Insertions 131,467 153,655 480,274 1,918,807
Substitutions 12,353 14,170 52,759 125,770
Recall 99.8166 99.8276 99.8031 99.8437
Precision 99.5224 99.5460 99.4707 99.5008
Trimmed / split reads 9,968 12,617 32,642 151,297
Taille manquante moyenne 1,617.3 1,617.1 1,649.4 1,670.8
Extended reads 0 0 3 19
Taille moyenne d’extension 0.0 0.0 2,855.7 116.2
Low quality reads 0 0 79 285
Short reads 0 0 0 0
Ratio taille homopolymers 0.9942 1.0000 0.9972 0.9937
Runtime 2 min 3 min 9 min 1 h 37 min
Memory (MB) 2,031 2,391 4,991 10,942

Table 8: Comparison of the different error correction tools, on medium error rate and medium coverage datasets.
This corresponds to the A. baylyi 60x (medium), E. coli 60x (medium), S. cerevisiae 60x (medium) and C.
elegans 60x (medium) datasets of Table 3. 1 Colormap was not launched on the C. elegans dataset due to its
large runtimes. 2 HG-CoLoR was not launched on the C. elegans dataset due to its large runtimes. 3 Proovread
was not launched on the C. elegans dataset due to its large runtimes. 4 Daccord could not perform correction
on the C. elegans dataset, since the alignment step with DALIGNER required more than 128 GB of memory.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.7 Low error rate, low coverage

For these experiments, we exclude the following tools from the comparison, for the reasons mentioned below:

• ECTools, because of its unsatisfying results on previous experiments;

• Hercules, because of its unsatisfying results and large runtimes on previous experiments;

• LSC, because of its unsatisfying results on previous experiments;

• Nanocorr, because of its large runtimes on previous experiments;

• NaS, because of its large runtimes on previous experiments;

Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

C
o
L
o
R
M
a
p

Number of bases 134,398,575 343,101,257 1,197,628,902
Error rate (%) 0.1137 0.3183 0.8955
Deletions 14,929 346,678 1,900,447
Insertions 36,705 291,959 1,036,546
Substitutions 92,329 449,592 7,663,104
Recall (%) 99.9881 99.9135 99.9165
Precision (%) 99.8880 99.6860 99.1230
Trimmed / split reads 31 845 8,587
Mean missing size (bp) 3,729.9 4,242.4 5,180.3
Extended reads 16,644 42,853 168,676
Mean extension size (bp) 305.5 305.5 252.3
Low quality reads 13 65 208
Short reads 269 1,606 194,369
Homopolymer ratio 1.0000 1.0071 0.9967
Runtime 1 h 33 min 4 h 36 min 150 h 21 min
Memory (MB) 13,097 14,243 32,267

F
M
L
R
C

Number of bases 131,066,466 348,205,441 2,820,835,418
Error rate (%) 0.0320 0.2447 1.4161
Deletions 11,502 273,645 15,775,123
Insertions 16,155 427,404 16,783,150
Substitutions 8,752 196,210 10,932,609
Recall (%) 99.9919 99.9032 99.6795
Precision (%) 99.9686 99.7579 98.6018
Trimmed / split reads 2 44 2,090
Mean missing size (bp) 17 66 28.4
Extended reads 0 3 106
Mean extension size (bp) 0 0 31.3
Low quality reads 41 151 1,121
Short reads 0 0 0
Homopolymer ratio 1.0000 1.0000 0.9915
Runtime 45 min 1 h 59 min 11 h 55 min
Memory (MB) 400 892 7,937

H
A
L
C

Number of bases 130,839,109 347,722,386 2,819,386,712
Error rate (%) 0.1565 0.3611 1.0897
Deletions 121,296 444,792 9,586,042
Insertions 40,749 403,321 12,999,176
Substitutions 23,408 405,608 9,627,633
Recall (%) 99.9799 99.9387 99.7543
Precision (%) 99.8466 99.6455 98.9252
Trimmed / split reads 1,013 2,812 31,158
Mean missing size (bp) 140.8 151.8 101.8
Extended reads 6 47 599
Mean extension size (bp) 28.8 28.8 40.2
Low quality reads 41 136 1,195
Short reads 0 1 2
Homopolymer ratio 1.0000 1.0000 1.0000
Runtime 1 h 17 min 1 h 53 min 9 h 30 min
Memory (MB) 1,714 1,892 2,853

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

H
G
-C

o
L
o
R

Number of bases 131,346,207 346,708,590 2,794,826,522
Error rate (%) 0.0726 0.5115 1.1664
Deletions 39,908 1,342,278 26,965,036
Insertions 49,798 550,820 9,324,074
Substitutions 5,741 162,266 1,509,055
Recall (%) 99.9986 99.9592 99.9104
Precision (%) 99.9279 99.4937 98.8449
Trimmed / split reads 626 4,141 59,301
Mean missing size (bp) 178.9 331.7 214.8
Extended reads 8,293 16,823 130,681
Mean extension size (bp) 30.3 30.3 29.4
Low quality reads 0 60 435
Short reads 0 7 2
Homopolymer ratio 1.0000 1.0012 1.0000
Runtime 1 h 20 min 7 h 20 min 108 h 26 min
Memory (MB) 1,538 3,656 27,212

J
a
b
b
a

Number of bases 133,959,455 340,101,149 2,463,694,280
Error rate (%) 0.0771 0.1067 0.2319
Deletions 80,450 209,683 4,332,786
Insertions 15,541 155,778 1,242,983
Substitutions 573 33,825 236,640
Recall (%) 99.9981 99.9975 99.9913
Precision (%) 99.9237 99.8941 99.7702
Trimmed / split reads 2,037 10,781 148,923
Mean missing size (bp) 2,601.5 1,992.5 2,805.6
Extended reads 15,416 37,196 247,049
Mean extension size (bp) 638.6 638.6 947.3
Low quality reads 2 77 367
Short reads 874 5,946 69,905
Homopolymer ratio 1.0000 1.0000 1.0000
Runtime 2 min 5 min 43 min
Memory (MB) 1,220 1,215 13,362

L
o
R
D
E
C

Number of bases 131,052,792 348,420,743 2,823,537,319
Error rate (%) 0.0695 0.3990 1.2710
Deletions 32,861 297,482 8,411,355
Insertions 35,620 694,323 19,478,144
Substitutions 24,234 480,342 10,963,740
Recall (%) 99.9831 99.8123 99.4191
Precision (%) 99.9328 99.6093 98.7441
Trimmed / split reads 181 2,354 56,726
Mean missing size (bp) 63.7 79.7 126.2
Extended reads 2 2 149
Mean extension size (bp) 25.5 25.5 38.9
Low quality reads 22 97 558
Short reads 0 0 3
Homopolymer ratio 1.0000 1.0000 0.9979
Runtime 12 min 35 min 11 h 30 min
Memory (MB) 460 799 2,320

P
ro
o
v
re
a
d

Number of bases 130,360,408 342,457,860 2,703,725,143
Error rate (%) 0.1615 0.2365 0.4325
Deletions 169,197 845,704 20,509,633
Insertions 1,309 30,583 189,378
Substitutions 6,636 43,845 654,789
Recall (%) 99.9953 99.9912 99.9711
Precision (%) 99.8409 99.7668 99.5738
Trimmed / split reads 8,571 29,179 153,272
Mean missing size (bp) 44.1 85.6 227.3
Extended reads 0 3 45
Mean extension size (bp) 0 0 87.9
Low quality reads 0 135 1,899
Short reads 29 1,202 15,249
Homopolymer ratio 1.0000 1.0000 1.0000
Runtime 1 h 59 min 5 h 37 min 85 h 23 min
Memory (MB) 8,368 16,777 29,934

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

C
a
n
u

Number of bases 129,533,580 226,459,133 2,773,456,245
Error rate (%) 0.4156 1.1052 0.5008
Deletions 247,325 803,320 6,013,667
Insertions 237,224 1,371,782 6,130,158
Substitutions 19,506 145,574 517,864
Recall (%) 99.7647 99.1766 99.7103
Precision (%) 99.5887 98.9036 99.5040
Trimmed / split reads 9,422 33,164 170,416
Mean missing size (bp) 128.9 1,762.6 126.5
Extended reads 55 51 1,100
Mean extension size (bp) 26.7 28.5 28.1
Low quality reads 0 41 393
Short reads 3 509 147
Homopolymer ratio 1.0116 1.0040 0.9990
Runtime 19 min 29 min 9 h 09 min
Memory (MB) 4,613 3,681 6,921

C
O
N
S
E
N
T

Number of bases 129,647,002 344,457,307 2,789,537,501
Error rate (%) 0.3142 0.4091 0.7902
Deletions 254,833 853,156 12,522,232
Insertions 134,538 456,318 8,794,630
Substitutions 18,772 112,883 2,296,195
Recall (%) 99.9430 99.9321 99.8773
Precision (%) 99.6906 99.5971 99.2204
Trimmed / split reads 14,681 38,872 309,728
Mean missing size (bp) 86.7 83.8 80.8
Extended reads 0 5 107
Mean extension size (bp) 0 0 83.1
Low quality reads 0 41 424
Short reads 0 0 0
Homopolymer ratio 1.0000 0.9967 1.0077
Runtime 17 min 46 min 9 h 36 min
Memory (MB) 2,390 5,523 21,819

D
a
cc
o
rd

1

Number of bases 131,020,333 347,992,121 -
Error rate (%) 0.0248 0.1259 -
Deletions 4,326 73,057 -
Insertions 13,333 123,760 -
Substitutions 15,965 265,120 -
Recall (%) 99.9965 99.9874 -
Precision (%) 99.9757 99.8762 -
Trimmed / split reads 5 102 -
Mean missing size (bp) 478.8 188.5 -
Extended reads 0 5 -
Mean extension size (bp) 0 0 -
Low quality reads 0 47 -
Short reads 0 21 -
Homopolymer ratio 1.0000 1.0000 -
Runtime 14 min 1 h 19 min -
Memory (MB) 6,813 31,798 -

F
L
A
S

Number of bases 129,692,582 344,252,752 2,728,691,582
Error rate (%) 0.2720 0.3272 0.7613
Deletions 308,007 967,396 22,672,322
Insertions 92,042 273,904 7,047,712
Substitutions 6,952 35,833 1,451,039
Recall (%) 99.9291 99.9131 99.8613
Precision (%) 99.7385 99.6843 99.2541
Trimmed / split reads 1,900 5,082 72,527
Mean missing size (bp) 434 438.3 581.6
Extended reads 0 1 578
Mean extension size (bp) 0 0 161.2
Low quality reads 5 58 7,480
Short reads 0 0 24
Homopolymer ratio 1.0076 0.9972 1.0036
Runtime 12 min 29 min 3 h 07 min
Memory (MB) 1,639 2,935 10,565

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

L
o
R
M
A

Number of bases 2,378,146 14,071,752 32,644,556
Error rate (%) 1.1962 2.1640 3.6960
Deletions 27,701 474,954 2,058,432
Insertions 1,631 40,421 123,001
Substitutions 6,271 35,339 182,811
Recall (%) 99.9209 99.8351 99.7269
Precision (%) 98.8208 97.8564 96.3449
Trimmed / split reads 11,737 35,483 227,760
Mean missing size (bp) 225.6 179.1 158.1
Extended reads 0 3 16
Mean extension size (bp) 0 0 492.7
Low quality reads 7 485 2,758
Short reads 63,731 199,074 1,163,973
Homopolymer ratio 1.0000 1.0000 1.0000
Runtime 10 min 46 min 8 h 19 min
Memory (MB) 32,155 31,899 31,827

M
E
C
A
T

Number of bases 106,842,493 284,618,017 2,083,992,906
Error rate (%) 0.2569 0.3040 0.3908
Deletions 238,111 738,020 7,017,472
Insertions 46,384 154,073 1,559,772
Substitutions 2,525 16,281 93,949
Recall (%) 99.9302 99.9160 99.8903
Precision (%) 99.7533 99.7072 99.6212
Trimmed / split reads 6,625 16,957 148,957
Mean missing size (bp) 1,261 1,229.9 1,468.4
Extended reads 0 0 9
Mean extension size (bp) 0 0 598.1
Low quality reads 0 44 188
Short reads 0 0 0
Homopolymer ratio 1.0104 1.0043 0.9966
Runtime 2 min 5 min 48 min
Memory (MB) 1,600 2,907 10,535

Table 9: Comparison of the different error correction tools, on low error rate and low coverage datasets. This
corresponds to the E. coli 30x, S. cerevisiae 30x and C. elegans 30x datasets of Table 3. 1 Daccord could not
perform correction, since the alignment step with DALIGNER required more than 128 GB of memory.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.8 Low error rate, medium coverage

• ECTools, because of its unsatisfying results on previous experiments;

• Hercules, because of its unsatisfying results and large runtimes on previous experiments;

• LSC, because of its unsatisfying results on previous experiments;

• Nanocorr, because of its large runtimes on previous experiments;

• NaS, because of its large runtimes on previous experiments;

Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

C
o
L
o
R
M
a
p
1

Number of bases 266,210,819 663,617,071 -
Error rate (%) 0.1621 0.6143 -
Deletions 98,293 1,930,344 -
Insertions 112,511 1,216,405 -
Substitutions 199,934 1,036,618 -
Recall (%) 99.9631 99.7755 -
Precision (%) 99.8400 99.3917 -
Trimmed / split reads 185 3,913 -
Mean missing size (bp) 3,787.2 3,746.2 -
Extended reads 33,047 82,438 -
Mean extension size (bp) 297.7 297.7 -
Low quality reads 33 145 -
Short reads 653 4,679 -
Homopolymer ratio 1.0089 0.9946 -
Runtime 3 h 01 min 8 h 08 min -
Memory (MB) 19,898 24,375 -

F
M
L
R
C

Number of bases 261,387,632 695,239,831 5,652,356,620
Error rate (%) 0.0292 0.2469 1.4213
Deletions 24,753 551,321 31,671,968
Insertions 31,069 872,824 33,701,759
Substitutions 17,368 391,349 21,909,721
Recall (%) 99.9944 99.9006 99.6764
Precision (%) 99.9714 99.7557 98.5966
Trimmed / split reads 14 106 4,147
Mean missing size (bp) 17.7 48.5 28.9
Extended reads 0 8 242
Mean extension size (bp) 0 0 28.1
Low quality reads 85 360 2,315
Short reads 0 0 0
Homopolymer ratio 1.0000 1.0000 0.9856
Runtime 1 h 28 min 3 h 57 min 23 h 25 min
Memory (MB) 403 893 7,937

H
A
L
C

Number of bases 260,933,848 694,333,491 5,649,091,260
Error rate (%) 0.1522 0.3648 1.0880
Deletions 233,633 883,877 19,179,388
Insertions 84,745 822,236 25,917,654
Substitutions 48,696 827,403 19,226,301
Recall (%) 99.9785 99.9354 99.7550
Precision (%) 99.8509 99.6420 98.9269
Trimmed / split reads 2,033 5,707 61,894
Mean missing size (bp) 147.3 131.6 102
Extended reads 11 60 1,284
Mean extension size (bp) 22.4 22.4 42.6
Low quality reads 79 329 2,512
Short reads 0 1 0
Homopolymer ratio 1.0000 1.0000 0.9852
Runtime 4 h 57 min 4 h 25 min 19 h 10 min
Memory (MB) 2,747 2,487 5,716

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

H
G
-C

o
L
o
R

2
Number of bases 261,879,085 690,178,663 -
Error rate (%) 0.0771 0.5995 -
Deletions 87,607 2,824,556 -
Insertions 113,291 1,924,555 -
Substitutions 14,055 374,714 -
Recall (%) 99.9987 99.9433 -
Precision (%) 99.9234 99.4059 -
Trimmed / split reads 1,569 9,700 -
Mean missing size (bp) 264.1 496.2 -
Extended reads 19,498 40,638 -
Mean extension size (bp) 33.2 33.2 -
Low quality reads 1 235 -
Short reads 0 45 -
Homopolymer ratio 1.0000 1.0000 -
Runtime 2 h 03 min 12 h 23 min -
Memory (MB) 2,744 7,297 -

J
a
b
b
a

Number of bases 267,665,882 678,936,284 4,934,623,442
Error rate (%) 0.0716 0.1040 0.2312
Deletions 146,631 387,538 8,496,067
Insertions 30,775 340,301 2,534,990
Substitutions 1,171 63,194 419,150
Recall (%) 99.9984 99.9975 99.9916
Precision (%) 99.9292 99.8967 99.7710
Trimmed / split reads 4,095 21,726 298,954
Mean missing size (bp) 2,507.2 1,996 2,804.2
Extended reads 30,786 74,343 493,302
Mean extension size (bp) 633.2 633.2 949.5
Low quality reads 1 183 731
Short reads 1,649 11,922 140,889
Homopolymer ratio 1.0000 1.0000 1.0000
Runtime 2 min 5 min 49 min
Memory (MB) 1,220 1,215 13,360

L
o
R
D
E
C

Number of bases 261,360,235 695,578,111 5,657,161,182
Error rate (%) 0.0684 0.3984 1.2731
Deletions 65,549 613,150 16,882,129
Insertions 70,097 1,389,483 38,979,226
Substitutions 47,336 974,285 21,920,160
Recall (%) 99.9832 99.8136 99.4201
Precision (%) 99.9339 99.6100 98.7420
Trimmed / split reads 393 4,657 113,843
Mean missing size (bp) 65.3 78.9 126.3
Extended reads 0 2 273
Mean extension size (bp) 0 0 48
Low quality reads 35 214 1,263
Short reads 0 1 11
Homopolymer ratio 1.0000 1.0000 1.0160
Runtime 20 min 1 h 09 min 23 h 30 min
Memory (MB) 457 794 2,332

P
ro
o
v
re
a
d
3

Number of bases 259,647,167 671,307,477 -
Error rate (%) 0.1689 0.2568 -
Deletions 358,693 2,080,733 -
Insertions 2,837 56,965 -
Substitutions 15,499 102,130 -
Recall (%) 99.9948 99.9902 -
Precision (%) 99.8335 99.7467 -
Trimmed / split reads 18,693 68,598 -
Mean missing size (bp) 54.3 148.2 -
Extended reads 4 10 -
Mean extension size (bp) 20.2 20.2 -
Low quality reads 0 501 -
Short reads 172 7,658 -
Homopolymer ratio 1.0000 1.0000 -
Runtime 4 h 07 min 11 h 51 min -
Memory (MB) 15,245 23,591 -

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

C
a
n
u

Number of bases 218,652,792 599,325,043 5,112,430,638
Error rate (%) 0.7404 0.7919 0.7934
Deletions 563,365 1,678,564 14,729,573
Insertions 827,596 2,412,967 20,996,517
Substitutions 72,521 240,442 1,897,014
Recall (%) 99.4781 99.4488 99.4573
Precision (%) 99.2658 99.2148 99.2131
Trimmed / split reads 27,690 73,001 569,082
Mean missing size (bp) 985.8 858.1 651.3
Extended reads 47 176 1,658
Mean extension size (bp) 29.0 53.7 37.2
Low quality reads 0 104 941
Short reads 187 354 1,845
Homopolymer ratio 1.0158 1.0108 1.0065
Runtime 24 min 1 h 11 min 9 h 30 min
Memory (MB) 3,674 3,710 7,050

C
O
N
S
E
N
T

Number of bases 259,078,481 689,502,352 5,603,760,432
Error rate (%) 0.1722 0.2918 0.5730
Deletions 341,549 1,280,545 18,391,216
Insertions 55,787 582,869 12,737,445
Substitutions 8,354 115,614 2,826,988
Recall (%) 99.9843 99.9481 99.9119
Precision (%) 99.8306 99.7125 99.4345
Trimmed / split reads 27,380 71,027 571,107
Mean missing size (bp) 71.8 68.1 67.1
Extended reads 0 2 187
Mean extension size (bp) 0 0 122.2
Low quality reads 0 107 849
Short reads 0 0 0
Homopolymer ratio 1.0000 1.0000 0.9653
Runtime 36 min 1 h 46 min 27 h 04 min
Memory (MB) 4,849 11,325 32,284

D
a
cc
o
rd

4

Number of bases 261,274,775 694,845,174 -
Error rate (%) 0.0214 0.0400 -
Deletions 6,353 51,217 -
Insertions 19,335 132,765 -
Substitutions 28,842 75,540 -
Recall (%) 99.9971 99.9928 -
Precision (%) 99.9790 99.9606 -
Trimmed / split reads 13 73 -
Mean missing size (bp) 58.8 276.8 -
Extended reads 0 4 -
Mean extension size (bp) 0 0 -
Low quality reads 0 113 -
Short reads 0 0 -
Homopolymer ratio 1.0000 1.0000 -
Runtime 54 min 2 h 26 min -
Memory (MB) 18,450 32,190 -

F
L
A
S

Number of bases 260,324,873 689,491,882 5,583,925,852
Error rate (%) 0.1547 0.2034 0.3997
Deletions 378,728 1,273,157 25,708,666
Insertions 53,059 220,507 5,628,454
Substitutions 3,141 30,665 1,249,658
Recall (%) 99.9546 99.9418 99.9175
Precision (%) 99.8526 99.8049 99.6104
Trimmed / split reads 403 1,274 30,950
Mean missing size (bp) 182.4 223.4 305.4
Extended reads 1 5 588
Mean extension size (bp) 102 102 156.7
Low quality reads 4 241 7,506
Short reads 0 0 14
Homopolymer ratio 0.9967 1.0000 0.9890
Runtime 38 min 1 h 30 min 10 h 45 min
Memory (MB) 2,428 4,984 13,682

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Metric
Dataset

E. coli S. cerevisiae C. elegans

L
o
R
M
A

Number of bases 170,581,660 442,516,834 780,732,399
Error rate (%) 0.1285 0.2225 0.6446
Deletions 163,750 1,197,979 5,515,626
Insertions 25,117 129,027 369,539
Substitutions 21,604 106,535 581,292
Recall (%) 99.9865 99.9785 99.9547
Precision (%) 99.8743 99.7812 99.3649
Trimmed / split reads 40,347 108,516 1,154,643
Mean missing size (bp) 1,007 970.3 412.3
Extended reads 0 4 13
Mean extension size (bp) 0 0 685.7
Low quality reads 4 797 3,575
Short reads 187,376 522,390 9,256,368
Homopolymer ratio 1.0000 1.0000 1.0000
Runtime 1 h 39 min 5 h 25 min 31 h 04 min
Memory (MB) 31,682 31,828 32,104

M
E
C
A
T

Number of bases 232,519,767 616,247,287 4,937,676,257
Error rate (%) 0.1714 0.2088 0.2675
Deletions 392,085 1,228,519 12,514,560
Insertions 43,487 168,401 1,985,795
Substitutions 2,006 14,471 107,294
Recall (%) 99.9547 99.9428 99.9258
Precision (%) 99.8362 99.7996 99.7415
Trimmed / split reads 3,622 9,606 112,978
Mean missing size (bp) 365 380.7 566.8
Extended reads 0 0 30
Mean extension size (bp) 0 0 165
Low quality reads 0 92 443
Short reads 0 0 0
Homopolymer ratio 0.9967 1.0000 1.0000
Runtime 5 min 16 min 2 h 43 min
Memory (MB) 2,387 4,954 10,563

Table 10: Comparison of the different error correction tools, on low error rate and medium coverage datasets.
This corresponds to the E. coli 60x (low), S. cerevisiae 60x (low) and C. elegans 60x (low) datasets of Table
3. 1 Colormap was not launched on the C. elegans dataset due to its large runtimes. 2 HG-CoLoR was not
launched on the C. elegans dataset due to its large runtimes. 3 Proovread was not launched on the C. elegans
dataset due to its large runtimes. 4 Daccord could not perform correction on the C. elegans dataset, since the
alignment step with DALIGNER required more than 128 GB of memory.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


3.9 Ultra-long reads

• ECTools, because of its unsatisfying results on previous experiments;

• Hercules, because of its unsatisfying results and large runtimes on previous experiments;

• LSC, because of its unsatisfying results on previous experiments;

• Nanocorr, because of its large runtimes on previous experiments;

• NaS, because of its large runtimes on previous experiments;

• Proovread, because it could not be installed on the computer we performed these experiments on;

• Daccord, because it could not perform correction, since the alignment step with DALIGNER required
more than 128 GB of memory.

Tool Remapping Assembly

C
o
L
o
R
M
a
p

Number of reads 419,332 Number of contigs 404
Number of bases 1,510,947,079 Number of aligned contigs 404
Average length (bp) 3,603 Number of breakpoints 52
Aligned reads (%) 99.9764 NGA50 (bp) 1,126
Average identity (%) 96.4502 NGA75 (bp) 1,126
Genome coverage (%) 91.9475 Genome coverage (%) 4.5428
Runtime 304 h 10 min
Memory (MB) 80,613

F
M
L
R
C

Number of reads 1,075,867 Number of contigs 66
Number of bases 7,647,637,034 Number of aligned contigs 63
Average length (bp) 7,108 Number of breakpoints 275
Aligned reads (%) 93.1494 NGA50 (bp) 2,010
Average identity (%) 95.3985 NGA75 (bp) 2,010
Genome coverage (%) 92.4947 Genome coverage (%) 47.8800
Runtime 77 h 15 min
Memory (MB) 16,381

H
A
L
C

Number of reads 1,065,270 Number of contigs 72
Number of bases 7,256,690,308 Number of aligned contigs 69
Average length (bp) 6,812 Number of breakpoints 256
Aligned reads (%) 97.4287 NGA50 (bp) 1,239
Average identity (%) 94.9728 NGA75 (bp) 1,239
Genome coverage (%) 92.4495 Genome coverage (%) 48.0811
Runtime 26 h 47 min
Memory (MB) 7,739

H
G
-C

o
L
o
R

Number of reads 970,212 Number of contigs 196
Number of bases 6,553,413,717 Number of aligned contigs 196
Average length (bp) 6,754 Number of breakpoints 393
Aligned reads (%) 99.8157 NGA50 (bp) 4,628
Average identity (%) 98.8042 NGA75 (bp) 4,628
Genome coverage (%) 92.4523 Genome coverage (%) 49.6926
Runtime 167 h 47 min
Memory (MB) 50,898

J
a
b
b
a

Number of reads 1,059,671 Number of contigs 2,032
Number of bases 3,460,536,974 Number of aligned contigs 2,032
Average length (bp) 3,265 Number of breakpoints 83
Aligned reads (%) 89.8926 NGA50 (bp) 3,418
Average identity (%) 99.9888 NGA75 (bp) 3,418
Genome coverage (%) 87.7037 Genome coverage (%) 28.8106
Runtime 8 h 23 min
Memory (MB) 25,917

L
o
R
D
E
C

Number of reads 1,075,867 Number of contigs 111
Number of bases 6,850,695,672 Number of aligned contigs 108
Average length (bp) 6,368 Number of breakpoints 655
Aligned reads (%) 89.9923 NGA50 (bp) 2,281
Average identity (%) 91.7205 NGA75 (bp) 2,281
Genome coverage (%) 92.4693 Genome coverage (%) 48.3585
Runtime 12 h 52 min
Memory (MB) 7,902

C
a
n
u

Number of reads 717,436 Number of contigs 361
Number of bases 5,604,822,256 Number of aligned contigs 359
Average length (bp) 7,812 Number of breakpoints 275
Aligned reads (%) 97.6001 NGA50 (bp) 951,801
Average identity (%) 90.4029 NGA75 (bp) 267,665
Genome coverage (%) 92.3293 Genome coverage (%) 88.0860
Runtime 14 h 04 min
Memory (MB) 10,295

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


Tool Remapping Assembly
C
O
N
S
E
N
T

Number of reads 869,462 Number of contigs 248
Number of bases 6,348,740,755 Number of aligned contigs 245
Average length (bp) 7,301 Number of breakpoints 871
Aligned reads (%) 99.5864 NGA50 (bp) 3,760,455
Average identity (%) 93.0004 NGA75 (bp) 1,368,818
Genome coverage (%) 92.3993 Genome coverage (%) 88.9587
Runtime 8 h 30 min
Memory (MB) 45,869

F
L
A
S
1

Number of reads 717,973 Number of contigs 259
Number of bases 5,695,206,077 Number of aligned contigs 258
Average length (bp) 7,932 Number of breakpoints 317
Aligned reads (%) 99.0611 NGA50 (bp) 1,622,624
Average identity (%) 90.9952 NGA75 (bp) 346,914
Genome coverage (%) 92.3690 Genome coverage (%) 88.4068
Runtime 4 h 57 min
Memory (MB) 14,957

L
o
R
M
A

Number of reads 6,796,439 Number of contigs 4
Number of bases 1,247,317,428 Number of aligned contigs 4
Average length (bp) 183 Number of breakpoints 0
Aligned reads (%) 96.4997 NGA50 (bp) 2,742
Average identity (%) 97.8254 NGA75 (bp) 2,742
Genome coverage (%) 28.6189 Genome coverage (%) 0.0060
Runtime 13 h 07 min
Memory (MB) 50,435

M
E
C
A
T

1

Number of reads 667,532 Number of contigs 249
Number of bases 5,479,325,177 Number of aligned contigs 248
Average length (bp) 8,208 Number of breakpoints 199
Aligned reads (%) 99.9495 NGA50 (bp) 1,783,022
Average identity (%) 91.6925 NGA75 (bp) 462,658
Genome coverage (%) 91.4387 Genome coverage (%) 88.7002
Runtime 1 h 53 min
Memory (MB) 11,075

Table 11: Comparison of the different error correction tools, on a dasaset containing ONT ultra-long reads.
This corresponds to the H. sapiens dataset of Table 3. 1 Reads longer than 50 kbp were filtered out, since they
caused the programs to stop with an error.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


4 Conclusion

In this paper, we presented the state-of-the-art of long-read error correction, tackling both hybrid and self-
correction. For each approach, we described the different existing methodologies, and listed all tools available
at the moment. Four different approaches thus exist for hybrid correction: short reads alignment, contigs align-
ment, use of de Bruijn graphs and use of hidden Markov models. For self-correction, two main methodologies
exist: multiple sequence alignment and use of de Bruijn graphs. As of today, a total of 29 different methods
exist for performing long-read error correction.

We also showcased how the long reads datasets characteristics can impact the quality of the correction. In
particular, our experiments show that self-correction performs better than hybrid correction as the sequencing
depth grows. Oppositely, given high error rates, hybrid correction tends to perform the best, even when the
sequencing depth is high. In addition, our experiments also underline the fact that self-correction tends to
perform better when the complexity of the sequenced organism grows.

Further work shall focus on a more in-depth description of each available tool, to give the reader a better
understanding of the algorithmic differences exiting between tools adopting the same approaches. In addition,
more datasets could also be studied, in a order to provide better guidelines as to which tool to chose according
to the datasets characteristics.

Acknowledgments

Part of this work was performed using computing resources of CRIANN (Normandy, France), project 2017020.

References

[1] A. Allam, P. Kalnis, and V. Solovyev. Karect: accurate correction of substitution, insertion and deletion
errors for next-generation sequencing data. Bioinformatics, 31:3421–3428, 2015.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search tool.
Journal of molecular biology, 215(3):403–10, 1990.

[3] E. L. Anson and E. W. Myers. ReAligner: A Program for Refining DNA Sequence Multi-Alignments.
Journal of Computational Biology, 4(3):369–383, 2009.

[4] K. F. Au, J. G. Underwood, L. Lee, and W. H. Wong. Improving PacBio Long Read Accuracy by Short
Read Alignment. PLoS ONE, 7(10):1–8, 2012.

[5] A. Bankevich, S. Nurk, D. Antipov, A. A. Gurevich, M. Dvorkin, A. S. Kulikov, V. M. Lesin, S. I.
Nikolenko, S. O. N. Pham, A. D. Prjibelski, A. V. Pyshkin, A. V. Sirotkin, N. Vyahhi, G. Tesler, M. A.
X. A. Alekseyev, and P. A. Pevzner. SPAdes: A New Genome Assembly Algorithm and Its Applications
to Single-Cell Sequencing. J. Comput. Biol., 19(5):455–477, 2012.

[6] E. Bao and L. Lan. HALC: High throughput algorithm for long read error correction. BMC Bioinformatics,
18:204, 2017.

[7] E. Bao, F. Xie, C. Song, and D. Song. FLAS: fast and high-throughput algorithm for PacBio long-read
self-correction. Bioinformatics, 2019.

[8] L. E. Baum. An Inequality and Associated Maximization Technique in Statistical Estimation for Prob-
abilistic Functions of {M}arkov Processes. In O. Shisha, editor, Inequalities {III}: {P}roceedings of the
Third Symposium on Inequalities, pages 1–8, University of California, Los Angeles, 1972. Academic Press.

[9] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy. Assembling large
genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnology, 33:623–630,
2015.

[10] C. Bron and J. Kerbosch. Algorithm 457: Finding All Cliques of an Undirected Graph. Commun. ACM,
16(9):575–577, 1973.

[11] M. J. Chaisson and G. Tesler. Mapping single molecule sequencing reads using basic local alignment with
successive refinement (BLASR): application and theory. BMC Bioinformatics, 13:238, 2012.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


[12] R. Chikhi and G. Rizk. Space-efficient and exact de Bruijn graph representation based on a Bloom filter.
Algorithms for Molecular Biology, 2:1–9, 2013.

[13] C.-S. Chin, D. H. Alexander, P. Marks, A. A. Klammer, J. Drake, C. Heiner, A. Clum, A. Copeland, J. Hud-
dleston, E. E. Eichler, S. W. Turner, and J. Korlach. Nonhybrid, finished microbial genome assemblies
from long-read SMRT sequencing data. Nature Methods, 10:563–569, 2013.

[14] C. S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G. T. Concepcion, A. Clum, C. Dunn, R. O’Malley,
R. Figueroa-Balderas, A. Morales-Cruz, G. R. Cramer, M. Delledonne, C. Luo, J. R. Ecker, D. Cantu,
D. R. Rank, and M. C. Schatz. Phased diploid genome assembly with single-molecule real-time sequencing.
Nature Methods, 13(12):1050–1054, 2016.

[15] O. Choudhury, A. Chakrabarty, and S. J. Emrich. HECIL: A hybrid error correction algorithm for long
reads with iterative learning. Scientific Reports, 8(1):1–9, 2018.

[16] A. K. Das, S. Goswami, K. Lee, and S. J. Park. A hybrid and scalable error correction algorithm for indel
and substitution errors of long reads. BMC Genomics, 20(Suppl 11):1–15, 2019.

[17] M. David, M. Dzamba, D. Lister, L. Ilie, and M. Brudno. SHRiMP2: Sensitive yet practical short read
mapping. Bioinformatics, 27(7):1011–1012, 2011.

[18] E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1(1):269–
271, 1959.

[19] D. Eppstein, M. Löffler, and D. Strash. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal
Time. In O. Cheong, K.-Y. Chwa, and K. Park, editors, Algorithms and Computation, pages 403–414,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[20] D. Eppstein and D. Strash. Listing All Maximal Cliques in Large Sparse Real-World Graphs. In P. M.
Pardalos and S. Rebennack, editors, Experimental Algorithms, pages 364–375, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg.

[21] C. Firtina, Z. Bar-Joseph, C. Alkan, and A. E. Cicek. Hercules: a profile HMM-based hybrid error correction
algorithm for long reads. Nucleic Acids Research, 46(21), 2018.

[22] R. W. Floyd. Algorithm 97: Shortest Path. Commun. ACM, 5(6):345—-, 1962.

[23] S. Goodwin, J. Gurtowski, S. Ethe-Sayers, P. Deshpande, M. Schatz, and W. R. McCombie. Oxford
Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome. bioRxiv, page 13490, 2015.

[24] K. Gotoh, T. Yasunaga, T. Imai, D. Motooka, K. Yoshitake, T. Horii, M. Miyamoto, M. Kasahara, T. Iida,
K. Arakawa, S. Nakamura, and N. Goto. Performance comparison of second- and third-generation se-
quencers using a bacterial genome with two chromosomes. BMC Genomics, 15(1):699, 2014.

[25] T. Hackl, R. Hedrich, J. Schultz, and F. Förster. Proovread: Large-scale high-accuracy PacBio correction
through iterative short read consensus. Bioinformatics, 30(21):3004–3011, 2014.

[26] E. Haghshenas, F. Hach, S. C. Sahinalp, and C. Chauve. CoLoRMap: Correcting Long Reads by Mapping
short reads. Bioinformatics, 32:i545–i551, 2016.

[27] R. Hu, G. Sun, and X. Sun. LSCplus: a fast solution for improving long read accuracy by short read
alignment. BMC Bioinformatics, 17(1):451, 2016.

[28] W. Huang, L. Li, J. R. Myers, and G. T. Marth. ART: a next-generation sequencing read simulator.
Bioinformatics, 28:593–594, 2012.

[29] M. Jain, S. Koren, K. H. Miga, J. Quick, A. C. Rand, T. A. Sasani, J. R. Tyson, A. D. Beggs, A. T.
Dilthey, I. T. Fiddes, and Others. Nanopore sequencing and assembly of a human genome with ultra-long
reads. Nature biotechnology, 36(4):338, 2018.

[30] M. Kchouk and M. Elloumi. An Error Correction and DeNovo Assembly Approach for Nanopore Reads
Using Short Reads. Current Bioinformatics, 13(3):241–252, 2018.

[31] D. R. Kelley, M. C. Schatz, and S. L. Salzberg. Quake: quality-aware detection and correction of sequencing
errors. Genome biology, 11(11):R116, 2010.

[32] W. J. Kent. BLAT - The BLAST-Like Alignment Tool. Genome research, 12:656–664, 2002.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


[33] S. M. Kielbasa, R. Wan, K. Sato, S. M. Kiebasa, P. Horton, and M. C. Frith. Adaptive seeds tame genomic
sequence comparison. Genome Research, 21:487–493, 2011.

[34] S. Koren, G. P. Harhay, T. P. L. Smith, J. L. Bono, D. M. Harhay, S. D. Mcvey, D. Radune, N. H. Bergman,
and A. M. Phillippy. Reducing assembly complexity of microbial genomes with single-molecule sequencing.
Genome Biology, 14(9):R101, sep 2013.

[35] S. Koren, M. C. Schatz, B. P. Walenz, J. Martin, J. T. Howard, G. Ganapathy, Z. Wang, D. A. Rasko,
W. R. McCombie, E. D. Jarvis, and Adam M Phillippy. Hybrid error correction and de novo assembly of
single-molecule sequencing reads. Nature biotechnology, 30(7):693–700, 2012.

[36] S. Koren, B. P. Walenz, K. Berlin, J. R. Miller, N. H. Bergman, and A. M. Phillippy. Canu: scalable
and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Research,
27:722–736, 2017.

[37] T. Kowalski, S. Grabowski, and S. Deorowicz. Indexing Arbitrary-Length k-Mers in Sequencing Reads.
PLOS ONE, 10:1–16, 2015.

[38] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and S. L. Salzberg. Versatile
and open software for comparing large genomes. Genome Biology, 5:R12, jan 2004.

[39] B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nat Methods, 9(4):357–359,
2012.

[40] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment of short
DNA sequences to the human genome. Genome biology, 10(3):R25, 2009.

[41] C. Lee. Generating consensus sequences from partial order multiple sequence alignment graphs. Bioinfor-
matics, 19(8):999–1008, 2003.

[42] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order graphs. Bioinfor-
matics, 18(3):452–464, 2002.

[43] H. Lee, J. Gurtowski, S. Yoo, S. Marcus, W. R. McCombie, and M. Schatz. Error correction and assembly
complexity of single molecule sequencing reads. bioRxiv, page 006395, 2014.

[44] H. Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 2013.

[45] H. Li. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics,
32(14):2103–2110, 2016.

[46] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–3100, 2018.

[47] H. Li and R. Durbin. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinfor-
matics, 25(14):1754–1760, 2009.

[48] T. L. Madden, C. Camacho, N. Ma, G. Coulouris, V. Avagyan, K. Bealer, and J. Papadopoulos. BLAST+:
architecture and applications. BMC Bioinformatics, 10(1):421, 2009.

[49] M.-A. Madoui, S. Engelen, C. Cruaud, C. Belser, L. Bertrand, A. Alberti, A. Lemainque, P. Wincker, and
J.-M. Aury. Genome assembly using Nanopore-guided long and error-free DNA reads. BMC Genomics,
16:327, 2015.

[50] N. Maillet, G. Collet, T. Vannier, D. Lavenier, and P. Peterlongo. Commet: Comparing and combining
multiple metagenomic datasets. In IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), Belfast, United Kingdon, 2014.

[51] C. Marchet, P. Morisse, L. Lecompte, A. Lefebvre, T. Lecroq, P. Peterlongo, and A. Limasset. ELECTOR:
evaluator for long reads correction methods. NAR Genomics and Bioinformatics, 2(1), 2020.

[52] G. Miclotte, M. Heydari, P. Demeester, S. Rombauts, Y. Van de Peer, P. Audenaert, and J. Fostier. Jabba:
hybrid error correction for long sequencing reads. Algorithms for Molecular Biology, 11:10, 2016.

[53] P. Morisse, T. Lecroq, and A. Lefebvre. Hybrid correction of highly noisy long reads using a variable-order
de Bruijn graph. Bioinformatics, pages 1–19, 2018.

[54] P. Morisse, C. Marchet, A. Limasset, T. Lecroq, and A. Lefebvre. CONSENT: Scalable self-correction of
long reads with multiple sequence alignment. bioRxiv, page 546630, 2019.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/


[55] J. C. Mu, H. Jiang, A. Kiani, M. Mohiyuddin, N. B. Asadi, and W. H. Wong. Fast and accurate read
alignment for resequencing. Bioinformatics, 28(18):2366–2373, 2012.

[56] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, M. J. Flanigan, S. A. Kravitz, C. M.
Mobarry, K. H. Reinert, K. A. Remington, E. L. Anson, R. A. Bolanos, H. H. Chou, C. M. Jordan, A. L.
Halpern, S. Lonardi, E. M. Beasley, R. C. Brandon, L. Chen, P. J. Dunn, Z. Lai, Y. Liang, D. R. Nusskern,
M. Zhan, Q. Zhang, X. Zheng, G. M. Rubin, M. D. Adams, and J. C. Venter. A whole-genome assembly
of Drosophila. Science, 287(5461):2196–2204, 2000.

[57] G. Myers. Efficient Local Alignment Discovery amongst Noisy Long Reads. In D. Brown and B. Mor-
genstern, editors, Algorithms in Bioinformatics, pages 52–67, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

[58] M. Pop, A. Phillippy, A. L. Delcher, and S. L. Salzberg. AMOScmp-reprint. Briefings in Bioinformatics,
5(3):12, 2004.

[59] L. Salmela and E. Rivals. LoRDEC: Accurate and efficient long read error correction. Bioinformatics,
30:3506–3514, 2014.

[60] L. Salmela, R. Walve, E. Rivals, and E. Ukkonen. Accurate selfcorrection of errors in long reads using de
Bruijn graphs. Bioinformatics, 33:799–806, 2017.

[61] C. Schensted. Longest Increasing and Decreasing Subsequences. Canadian Journal of Mathematics, 13:179–
191, 1961.

[62] F. J. Sedlazeck, P. Rescheneder, M. Smolka, H. Fang, M. Nattestad, A. Von Haeseler, and M. C. Schatz.
Accurate detection of complex structural variations using single-molecule sequencing. Nature Methods,
15(6):461–468, 2018.

[63] G. Tischler and E. W. Myers. Non Hybrid Long Read Consensus Using Local De Bruijn Graph Assembly.
bioRxiv, 2017.

[64] A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm.
IEEE Transactions on Information Theory, 13(2):260–269, 1967.

[65] G. A. Volkmer, G. P. Irzyk, X. V. Gomes, V. B. Makhijani, G. T. Roth, R. Plant, M. Lei, M. P. McKenna,
K. E. McDade, K. B. Jirage, J. M. Rothberg, K. A. Vogt, J. W. Simpson, J. Li, J. R. Nobile, G. J. Sarkis,
L. A. Bemben, K. R. Tartaro, J. F. Simons, S. C. Jando, M. P. Weiner, J. R. Lanza, M. Margulies, S. B.
Dewell, A. Tomasz, C. H. Ho, J. R. Knight, M. T. Ronan, S. H. Wang, J. H. Leamon, H. Lu, S. M.
Lefkowitz, E. W. Myers, P. Yu, M. L. I. Alenquer, L. Du, M. Egholm, J.-B. Kim, T. P. Jarvie, Y.-J. Chen,
E. Nickerson, K. L. Lohman, R. F. Begley, Y. Wang, M. Srinivasan, J. Berka, W. He, B. P. Puc, Z. Chen,
M. S. Braverman, S. Helgesen, S. Attiya, W. E. Altman, J. M. Fierro, J. S. Bader, and B. C. Godwin.
Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437(7057):376–380, 2005.

[66] M. Vyverman, B. De Baets, V. Fack, and P. Dawyndt. EssaMEM: Finding maximal exact matches using
enhanced sparse suffix arrays. Bioinformatics, 29(6):802–804, 2013.

[67] J. R. Wang, J. Holt, L. McMillan, and C. D. Jones. FMLRC: Hybrid long read error correction using an
FM-index. BMC Bioinformatics, 19(1):1–11, 2018.

[68] S. Warshall. A Theorem on Boolean Matrices. J. ACM, 9(1):11–12, 1962.

[69] C. L. Xiao, Y. Chen, S. Q. Xie, K. N. Chen, Y. Wang, Y. Han, F. Luo, and Z. Xie. MECAT: Fast
mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nature Methods,
14(11):1072–1074, 2017.

[70] C. Ye and Z. S. Ma. Sparc: a sparsity-based consensus algorithm for long erroneous sequencing reads.
PeerJ, 4:e2016, 2016.

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.977975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.977975
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	Contribution

	State-of-the-art
	Hybrid correction
	Short reads alignment
	Contigs alignement
	De Bruijn graphs
	Hidden Markov models
	Combination of strategies

	Self-correction
	Multiple sequence alignment
	De Bruijn graphs
	Combination of strategies

	Summary

	Qualitative comparison
	Datasets
	Benchmark summary
	High error rate, high coverage
	High error rate, low coverage
	Medium error rate, low coverage
	Simulated data
	Real data

	Medium error rate, medium coverage
	Low error rate, low coverage
	Low error rate, medium coverage
	Ultra-long reads

	Conclusion

