Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Dataset Augmentation Allows Deep Learning-Based Virtual Screening To Better Generalize To Unseen Target Classes, And Highlight Important Binding Interactions

Jack Scantlebury, Nathan Brown, View ORCID ProfileFrank Von Delft, View ORCID ProfileCharlotte M. Deane
doi: https://doi.org/10.1101/2020.03.06.979625
Jack Scantlebury
†Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan Brown
‡BenevolentAI, 4-8 Maple St, London, W1T 5HD, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Frank Von Delft
¶Structural Genomics Consortium (SGC), University of Oxford, Oxford, OX3 7DQ, UK
§Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
‖Department of Biochemistry, University of Johannesburg, Aukland Park, Johannesburg 2006, South Africa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Frank Von Delft
Charlotte M. Deane
†Department of Statistics, University of Oxford, 24-29 St Giles, Oxford, OX1 3LB, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Charlotte M. Deane
  • For correspondence: deane@stats.ox.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading
  • http://dude.docking.org/

Back to top
PreviousNext
Posted March 15, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Dataset Augmentation Allows Deep Learning-Based Virtual Screening To Better Generalize To Unseen Target Classes, And Highlight Important Binding Interactions
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Dataset Augmentation Allows Deep Learning-Based Virtual Screening To Better Generalize To Unseen Target Classes, And Highlight Important Binding Interactions
Jack Scantlebury, Nathan Brown, Frank Von Delft, Charlotte M. Deane
bioRxiv 2020.03.06.979625; doi: https://doi.org/10.1101/2020.03.06.979625
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Dataset Augmentation Allows Deep Learning-Based Virtual Screening To Better Generalize To Unseen Target Classes, And Highlight Important Binding Interactions
Jack Scantlebury, Nathan Brown, Frank Von Delft, Charlotte M. Deane
bioRxiv 2020.03.06.979625; doi: https://doi.org/10.1101/2020.03.06.979625

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Molecular Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3580)
  • Biochemistry (7534)
  • Bioengineering (5488)
  • Bioinformatics (20709)
  • Biophysics (10267)
  • Cancer Biology (7942)
  • Cell Biology (11597)
  • Clinical Trials (138)
  • Developmental Biology (6576)
  • Ecology (10151)
  • Epidemiology (2065)
  • Evolutionary Biology (13565)
  • Genetics (9504)
  • Genomics (12801)
  • Immunology (7891)
  • Microbiology (19472)
  • Molecular Biology (7624)
  • Neuroscience (41939)
  • Paleontology (307)
  • Pathology (1253)
  • Pharmacology and Toxicology (2182)
  • Physiology (3254)
  • Plant Biology (7017)
  • Scientific Communication and Education (1291)
  • Synthetic Biology (1944)
  • Systems Biology (5412)
  • Zoology (1109)