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ABSTRACT 

Decisions do not occur in isolation, but are embedded in sequences of other decisions, often pertaining 
to the same source of evidence. Here, we characterized the impact of intermittent choices on the 
accumulation of a protracted stream of decision-relevant evidence towards a final decision. Human 
participants performed two versions, based on perceptual or numerical evidence, of a decision task that 
required two successive judgments at different times during the evidence stream: an intermittent 
response consisting of a binary choice, and a continuous estimation at the end of the evidence stream. 
In a control condition, subjects executed a choice-independent motor response instead of binary choice 
as the intermittent response. In both, perceptual and numerical tasks, the intermittent choice reduced 
the sensitivity of subsequent evidence, and flipped the relative temporal weighting of early and late 
evidence in the final estimation judgment. The individual extent of the choice-induced overall (non-
selective) sensitivity reduction predicted the extent of the selective down-weighting of subsequent 
evidence inconsistent with the initial choice, a form of confirmation bias. In sum, active decisions about 
a protracted evidence stream profoundly alter the dynamics of evidence accumulation, consistent with 

an active, modulatory mechanism triggered by the choice.  
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INTRODUCTION 

Many decisions are made under uncertainty, on the basis of noisy, incomplete, or ambiguous decision-
relevant ‘evidence’. An extensive body of research on perceptual decisions under uncertainty has 
converged on the idea that evidence about the state of the sensory environment is continuously 
accumulated across time [1,2]. In the perceptual choice tasks commonly used in the laboratory (but 
see [3–5]), performance is maximized by weighing evidence equally across time [1]. Yet, the evidence 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.06.979690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.979690
http://creativecommons.org/licenses/by/4.0/


2 

weighting applied by human and non-human decision-makers often deviates substantially from such 
flat weighting profiles (but see [6,7]): some studies found stronger weighting of early evidence 
(‘primacy’; [8–11]), others stronger weighting of late evidence (‘recency’; [12–14]), and yet others even 
non-monotonic weighting profiles [15].  
 
 Most of these studies of perceptual choice have focused on the within-trial factors governing 
decision-making, ignoring interactions between consecutive decisions or stimuli. However, real-life 
decisions are not isolated events, but embedded in a sequence of judgments based on continuous 
streams of information. Indeed, a growing body of evidence has shown that  perceptual choices are  
biased by the choices made on previous trials [16–32]. Recently developed task protocols provide new 
tools for assessing the impact of choices on the accumulation of subsequent decision evidence. These 
tasks prompt two successive judgments within the same trial: commonly a binary choice followed up 

by a continuous estimation [33–38] or a confidence [39,40] judgment. Specifically, some tasks prompt 
binary choice and estimation judgments sequentially, separated by a second evidence stream 
presented in between [35,39,40,38]. These task designs have led us to two insights. First, the overall 
sensitivity to evidence following the intermittent choice is reduced in a non-selective (‘global’) fashion, 
a finding obtained in the domain of numerical decisions [35]. Second, sensitivity for information 
consistent with the binary choice is selectively enhanced, at the expense of less sensitivity for choice-
inconsistent evidence, a choice-induced evidence re-weighting that produced a bias to confirm the 
initial choice and that was found for both perceptual and numerical decisions [38]. In the latter study, 
we did not examine the non-selective impact of choice in reducing sensitivity for subsequent evidence.  
 
 Here, we re-analyzed the datasets from both the previous studies [35,38] to develop a more 
comprehensive understanding of these two choice-dependent effects (selective evidence re-weighting 
and non-selective sensitivity reduction), as well as their relationship. We tested for the following three 
outstanding issues: (i) if the choice-induced sensitivity reduction observed in the domain of numerical 
decisions generalizes to the domain of perceptual decisions; (ii) how an intermittent overt choice affects 
the temporal weighting of evidence, and (iii) if and how the overt choice-induced, overall reduction of 
sensitivity relates to the choice-induced confirmation bias towards consistent evidence.  

MATERIALS AND METHODS 

Perceptual task 

Participants were presented with two random dot motion stimuli in succession, and were asked to 
estimate the average motion direction across the two intervals in each trial (Figure 1A). A white line 
plotted on top of the circular aperture served as the reference, whose position changed between trials. 
An auditory cue after the first interval instructed the participants to either (i) report a binary choice about 
the direction of dots in the first interval (clockwise or counter-clockwise w.r.t the reference; two-third 
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proportion of all trials), or (ii) make a choice-independent button press (one-third proportion of all trials). 
This intermittent response allowed us to investigate if participants showed different sensitivity to the 
second stimulus depending on whether they reported a binary choice (so called “Choice trials”), or 
made a choice-independent motor response (so called “No-Choice trials”). The delay between the first 
and second stimuli was fixed (2 seconds), regardless of the reaction time of the subject. Half of all 
choice trials ended with an auditory feedback about the correctness of the binary choice to motivate 
participants to take the binary choice component seriously. The coherence of the stimuli was fixed at a 
pre-determined level for each subject, while the direction of coherent dots in the two intervals was 
sampled independently from five possible values (-20°, -10°, 0°, 10°, 20° relative to the reference line). 
23 possible combinations of directions were used in the experiment (excluding the two most obviously 
conflicting directions: -20°/20° and 20°/-20°).  
 

 In all the analyses that follow, we used trials where participants made an estimation judgment 
(Choice trials and No-Choice trials). We excluded trials in which participants did not comply with the 
instructions i.e., when they pressed the mouse wheel on Choice trials or a choice key on No-Choice 
trials, trials in which the binary choice response time was below 200 ms, and trials where estimations 
were outliers. Outliers were defined as those trials whose estimations fall beyond 1.5 times the 
interquartile range above the upper-quartile or below the lower-quartile of estimations. Together, these 
excluded trials corresponded to ~7% of the total trials across participants.  
 
 We analyzed data from the same set of participants as in our earlier report [38]. Please refer to 
this report for a detailed description of the task, participants, and stimuli used in the experiments. 

Numerical task 

We reanalyzed data from the numerical integration task in [35] using the same analyses methods as 

the perceptual task. The task has a similar structure as the perceptual task above, with the exception 
that participants saw 16 numerical samples displayed in succession and reported their mean as a 
continuous estimate. Like the perceptual task, participants received a cue midway through the trial (i.e., 
after the first 8 samples) to either report a binary choice about the mean of the 8 samples (greater, or 
less than 50), or make a choice-independent motor response. In 50% of all trials, the trial terminated 
with feedback after the binary choice. On another 25% of the trials, participants saw the second stream 
of 8 numerical samples and made the continuous estimation judgment at the end (Choice trials). In the 
rest 25% of trials, participants made a choice-independent motor response (No-Choice trials) instead 
of the binary choice, and a continuous estimation judgment at the end. We analyzed data from all the 
trials where participants made the estimation judgment (50% of all trials).  
 
 We analyzed data from 20 out of 21 participants participated in the study. The remaining subject 
(subject 21) failed to do the task (Spearman’s correlation between estimation and mean evidence in 
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No-Choice trials: rho = 0.18, p = 0.117; and in Choice trials: rho = 0.17, p = 0.156). Please see the 
earlier reports [35,38] for more detailed description of the task, stimuli, and participants. 
 

 
 

Figure 1. Behavioral tasks: Schematic of sequence of events within a trial  
A. Perceptual task. After a first random dot motion stimulus was shown for 750 ms, participants received an 
auditory cue about whether to report a binary choice about the net motion direction (Choice trials) or to continue 
the trial (No-Choice trials). The choice entailed discriminating the motion direction as CW or CCW with respect to 
the reference (white line shown at about 45° in this example). On half the Choice-trials, auditory feedback was 
then given and the trial terminated. In the other half, and in all No-Choice trials, a second motion stimulus was 
presented (with equal coherence as the first, but independent direction), and participants were asked to report a 
continuous estimate of the mean direction of both stimuli by dragging a line along the screen with the mouse. See 
here for a video of the task structure. B. Numerical task. After the first sequence of eight numerical samples, 
participants were instructed to either press the space bar (a quarter of all trials; No-Choice trials), or to give their 
binary choice about the average of the eight samples (mean > or < 50; Choice trials). On two-thirds of Choice trials 
(constituting a half of all trials), auditory feedback was presented and the trial terminated. In the rest, a second 
sequence of eight numerical samples was presented and participants were instructed to give a continuous estimate 
of the mean across the two sequences. Adapted from [38] under a CC-BY license. 

Pupillometry 

Horizontal and vertical gaze position as well as pupil diameter were recorded at 1000 Hz using an 
EyeLink 1000 (SR Research). The eye tracker was calibrated before each block. Blinks detected by 
the EyeLink software were linearly interpolated from -150 ms to 150 ms around the detected velocity 
change. All further data analysis was done using FieldTrip [41] and custom Matlab scripts. We 
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estimated the effect of blinks and saccades on the pupil response through deconvolution, and removed 
these responses from the data using linear regression. The pupil signal was bandpass filtered from 
0.01 to 10 Hz using a second-order Butterworth filter, z-scored per block of trials, and down-sampled 
to 20 Hz. For both experimental conditions (Choice, No-Choice), we then averaged the time courses 
across trials, time-locked to either the onset of the evidence sequence. 

Modelling estimation reports 

General approach 
We used a statistical modelling approach to estimate the relative contributions of the sensory evidence 
(i.e., physical stimulus corrupted by sensory noise) conveyed by both successive dot motion stimuli to 
participants’ trial-by-trial estimation reports, as in our previous report [38]. The noisy sensory evidence 
was described by: 

𝑋" = 𝜙" + 𝛿 +𝑁(0, 𝜎)     (1) 
where 𝑖 ∈ (1,2)  denotes the interval, 𝜙"  is the physical stimulus direction, 𝑁(0, 𝜎)  was zero mean 
Gaussian noise with variance 𝜎, 𝛿 and 𝜎 were each observer’s individual overall bias and sensory 
noise parameters taken from the psychometric function fit to the binary choice data (see STAR methods 
in [38]).  

Global Gain model 

We modelled a global, choice related reduction in sensitivity to evidence following an overt choice, by 
allowing the weights to vary separately in Choice trials and No-Choice trials. The estimations were 
modelled by: 

𝑦 = 𝑤34𝑋34 + 𝑤54𝑋54 + 𝑁(0, 𝜉4)    (2.1) 
𝑦 = 𝑤374𝑋374 + 𝑤574𝑋574 + 𝑁(0, 𝜉74)    (2.2)   

where 𝑦 was the vector of estimations, 𝑤34  (𝑤374 ) and 𝑤54  (𝑤574 ) were the weights for the noisy 
evidence encoded in intervals 1 and 2 in Choice (No-Choice) trials respectively. 𝑁(0, 𝜉) was zero-mean 
Gaussian estimation noise with variance 𝜉 that captured additional noise in the estimations, over and 
above the sensory noise corrupting binary choice. 

Fitting procedure 

We used maximum likelihood estimates to estimate parameters and the goodness of fit for different 
models. To obtain the best fitting parameters that maximize the likelihood function of each model, we 
used the Subplex algorithm [42,43], a generalization of the Nelder-Mead simplex method, which is well 
suited to optimize high dimensional noisy objective functions. Please refer to our earlier report for a 
detailed description of the fitting procedure [38]. 
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ROC analysis for differences in sensitivity to evidence in interval 2 

We assessed the impact of an overt choice on sensory evidence in interval 2 from participants’ 
estimations in a model-free fashion, using the so-called ROC analysis. This analysis was based on the 
receiver operating characteristic [44], similar to the one used in our earlier report (see “model-free 
analysis of estimation reports” in [38]). By computing ROC indices between sets of trials that differed 
in their input, we could assess the sensitivity of the observer in using that input to guide their estimation 
reports. 
 
 For the perceptual task, in each condition (Choice and No-Choice), we first sorted trials based on 
the directional evidence in interval 1 (𝜙3 ). For each 𝜙3 , we ran the ROC analysis on all pairs of 
estimation distributions, separated by 10° of directional evidence in interval 2 (𝜙5): -20° vs. -10°, -10° 
vs. 0°, 0° vs. 10°, and 10° vs. 20°. This gave us 4 ROC-indices per 𝜙3, one index for every pair of 

distributions compared. We then computed a weighted average ROC-index for each 𝜙3, weighting the 
individual ROC-indices by the number of trials that went into the ROC analysis. The resulting ROC 
indices, which are robust to changes in 𝜙3, are averaged to obtain one single ROC index per subject 
for each condition. 
 
 ROC indices for the numerical task were computed similar to the above procedure with the 
following exceptions: mean evidence in interval 1, and interval 2 were binarized (mean > 50 or mean < 
50) resulting in two bins for interval 1, and interval 2 respectively. These binarized values were treated 
equivalent to 𝜙3 and 𝜙5 in the perceptual task above. 

Statistical tests 

Non-parametric permutation tests [45] were used to test for group-level significance of individual 
measures for each task, unless otherwise specified. This was done by randomly switching the labels 

of individual observations either between two paired sets of values, or between one set of values and 
zero. After repeating this procedure 100,000 times, we computed the difference between the two group 
means on each permutation and obtained the p value as the fraction of permutations that exceeded 
the observed difference between the means. All p values reported were computed using two-sided 
tests, unless otherwise specified. 
 
 To obtain the correlation values for data pooled from both the tasks (Figure 4, 5), we first obtained 
Pearson’s correlation coefficient for dataset from each task (also reported in the figures). We then 
applied Fisher-transformation on the correlation values, calculated their weighted average to obtain the 
pooled Fisher-transformed correlation coefficient. This quantity is used to obtain the pooled Pearson’s 
correlation coefficient (using inverse Fisher transformation), and its corresponding p-value. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2020. ; https://doi.org/10.1101/2020.03.06.979690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.979690
http://creativecommons.org/licenses/by/4.0/


7 

RESULTS 

Participants reported a continuous estimate of the mean of fluctuating sensory (perceptual task, Figure 
1A) or symbolic (numerical task, Figure 1B) evidence across two successive intervals. This estimate 
needed to be based on accumulating some internal representation of the fluctuating evidence – motion 
direction or numerical value in the perceptual or numerical tasks, respectively – across the two stimulus 
intervals. On a subset of trials (so-called Choice trials), participants were also asked to report an 
intermediate categorical choice after the first stimulus: a fine direction discrimination judgment relative 
to a visually presented reference line (Perceptual Task) or comparison of the numerical mean with 50 
(Numerical Task). On the remaining set of trials (No-Choice trials), participants were asked to simply 
press a button for continuing the trial, without reporting a categorical judgment of the first evidence. 
The cue informing participants whether to report the discrimination judgment or to press a choice-
independent button press came after the first stimulus interval. This design enabled us to quantify the 
degree to which evidence in each interval contributed to the final estimation and whether this depended 
on the overt report of a categorical choice (Materials and Methods).  
 

 
Figure 2. Behavior in both tasks. 
A, B. Perceptual task. C. Numerical task. A. Top: Continuous estimations as a function of mean direction across 
both stimuli. Bottom: Distribution of mean directions across trials. Data points, group mean; error bars, SEM. 
Stimulus directions and estimations were always expressed as the angular distance from the reference, the 
position of which varied from trial to trial (0° equals reference). B. Time courses of average pupil diameter aligned 
to trial onset for Choice and No-Choice conditions in Perceptual task. Left, average time course across whole trial. 
Right, close-up of time course during second stimulus interval (following intermediate motor response). Dashed 
vertical lines, mean response times across participants; grey vertical lines, different events during the trial. C. Same 
as A but for Numerical task. Mean evidence across intervals 1& 2 in C split into discrete bins for illustration. All 
panels: solid lines, mean across participants; shaded region, SEM; black horizontal bars, p<0.05, cluster-based 
permutation test Choice vs. No-Choice. 
 

 Estimation responses in both tasks increased with mean directional evidence across the two 
intervals (Figure 2A, 2C), and did not differ between Choice and No-Choice trials, with negligible and 
statistically non-significant differences in the regression slopes for evidence against estimations 
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(perceptual task: 0.0256, p = 0.8449; numerical task: 0.0125, p = 0.9083). Participants’ pupils 
constricted after trial onset in the same way for Choice and No-Choice trials, an expected response to 
the onset of the random dot stimulus (pupil light reflex, Figure 2B; pupil diameter was only measured 
during the perceptual task). This constriction was followed by a dilation about 1 s after the intermittent 
response (see red/blue dashed vertical lines), indicating a phasic activation of central arousal systems 
[46–49]. Critically, this dilation was bigger for Choice than No-Choice trials (Figure 2B), reflecting the 
internal decision process associated with Choice [47,50]. Indeed, the bigger pupil dilation during Choice 
was not due to longer response times in that condition (and the associated longer accumulation of 
central inputs in the peripheral pupil apparatus; [47,50]): response times were, in fact, shorter in Choice 
than No-choice trials (see blue and red vertical lines in Figure 2B; permutation test, p = 0.0112).  
 

 
Figure 3. Sensitivity to second stimuli in Choice and No-Choice trials. 
(A) Model weights for sensitivity to second interval in Choice and No-Choice conditions in Perceptual task. Dashed 
line, identity of Choice and No-Choice; points above diagonal indicate larger weights to No-Choice. (B) As (A), but 
for ROC indices quantifying the sensitivity to second interval in a model-free way in Perceptual task. Dashed line, 
identity of Choice and No-Choice; points above diagonal indicate greater sensitivity to No-Choice. Data points, 
individual participants, with identical color scheme from (A, B). (C, D) As (A, B), but for Numerical task. Perceptual 
task, n = 10 participants; Numerical task, n = 20 participants; p values, permutation tests across participants 
(100,000 permutations). 
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Global down-weighting of subsequent evidence following intermittent choice 

 We first replicated our finding, previously reported for the Numerical Task [35], of lower sensitivity 
to subsequent evidence in the Choice condition, for the Perceptual Task (Figure 3). A statistical model-
based as well as a model-free approach (Materials & Methods) both showed a choice-dependent 
sensitivity reduction for subsequent evidence (Figure 3). Model weights for the second stimulus were 
significantly smaller in Choice trials compared to No-Choice trials (most individual participants, and the 
mean, above identity line in Figure 3A, 3C). Likewise, a model-free measure of sensitivity to subsequent 
evidence (area under the ROC curve) was smaller on Choice trials compared to No-choice trials (most 
individual participants, and the mean, above identity line in Figure 3B, 3D). In sum, overt choices reduce 
the sensitivity to subsequent evidence not only for numerical, but also for perceptual decisions. 

Intermittent choice alters temporal weighting of sensory evidence  

Having generalized the choice-induced sensitivity reduction across both domains of decision-making, 
we assessed if and how the intermittent choice affected the relative weighting of early vs. late evidence 
in the decision process underlying the final estimation judgments. For both tasks, the weights in Choice 
trials were higher for the first interval, and lower for the second interval compared to No-Choice trials, 
with a significant interaction between trial type (Choice vs. No-Choice) and interval (Figure 4A). In other 
words, the evidence weighting across the two intervals flipped from recency to primacy between No-
Choice and Choice conditions (Figure 4B). This choice-induced flip in temporal weighting was also 
evident in the individual data: The sums of weights from both intervals were highly similar for Choice 
and No-Choice trials in each subject (Figure 4C), but the difference in Choice and No-Choice weights 
was negatively correlated between intervals (Figure 4D). Please note that no such constraint was 
imposed in the statistical models used to estimate the weights for both intervals (Materials and 
Methods).  
  

 These results are in line with a ‘push-pull’ mechanism, in which a limited resource was distributed 
across sensitivity to evidence in both intervals: Reporting an intermittent choice after the initial evidence 
boosted sensitivity to that early evidence, but at the cost of reducing sensitivity to subsequent evidence. 
This effect could also explain the similarity in overall estimation accuracy between Choice and No-
Choice conditions (Figure 2A, 2C). 
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Figure 4. Choice-dependent alteration of temporal weighting profiles 
A. Mean model weights for both stimulus intervals in Choice and No-Choice conditions in Perceptual task (left, n 
= 10 participants) and Numerical task (right, n = 20 participants). Error bars, SEM; F-statistic, interaction between 
interval and condition (repeated measures 2-way ANOVA). B. Direction of temporal weighting quantified as 
difference in model weights between interval 2 and interval 1, separately for each task; * p < 0.05, ** p < 0.005, 
permutation tests across participants (100,000 permutations). C. Sum of weights across both intervals in Choice 
and No-Choice conditions, across participants from both tasks. D. Difference between weights in Choice condition 
and No-Choice condition, in both intervals across participants from both tasks. Data points, individual participants; 
solid lines, best fitting lines; r, Pearson’s correlation coefficients; * p < 0.05, ** p < 0.005, *** p < 0.0005. 

 

Choice-dependent non-selective, and selective sensitivity modulations are coupled 

 Finally, we found that the individual degree of the choice-dependent, overall (non-selective) 
reduction in sensitivity to subsequent evidence was closely related to the selective confirmation bias 
effect defined as a larger sensitivity to subsequent evidence consistent than inconsistent with the initial 
choice (Figure 5). We quantified the overall (‘global’) gain modulation as the difference in weights of 
interval 2 between Choice trials and No-Choice trials, and the selective choice-driven gain modulation 
as the difference in weights of interval 2 between trials with choice-consistent and -inconsistent 
evidence. Participants with a stronger global gain reduction also showed a stronger selective gain 
modulation (Figure 5A). The weights for interval 2 in the Choice condition in Figure 3A, 3C are indeed 
the weighted average of the corresponding weights in choice-consistent and -inconsistent evidence 
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(Figure 5B). Furthermore, we found that the weights for interval 2 in the No-Choice condition were 
comparable in magnitude, and correlated across participants with the weights for choice-consistent 
evidence (Figure 5C), but not for choice-inconsistent evidence (Figure 5D). Thus, the reduction in 
sensitivity following an overt choice observed in Figure 3 was primarily driven by the reduction in 
sensitivity to evidence inconsistent with the initial choice.  
 

 
Figure 5. Relationship between global and consistency-dependent sensitivity modulation. 
A. Relationship between global (quantified as the difference in weights to second interval between No-Choice and 
Choice conditions) and selective sensitivity modulation giving rise to Confirmation bias (quantified as the difference 
in weights to second interval between Consistent and Inconsistent conditions, from [38]), across participants from 
both tasks. B. Relationship between the weighted mean of Consistent and Inconsistent conditions (from [38], 
weighted by the number of trials in each condition) and weights for the Choice condition for the second interval 
across participants from both tasks. C, D. Relationship between No-Choice weights for the 2nd interval; and 
Consistent weights (C), and Inconsistent weights (D). Data points, individual participants; solid lines, best fitting 
lines; dashed lines, identity lines; p-values comparing the two conditions in B, C & D are obtained from 2-way 
ANOVA with the conditions and tasks as factors; * p < 0.05, ** p < 0.005, *** p < 0.0005. 
 

DISCUSSION 

Recent work has begun to expose the impact of choices on the accumulation of subsequent decision 
evidence, revealing an overall reduction in sensitivity to subsequent evidence [35] combined with a 

selective suppression of the gain of evidence inconsistent with the initial choice (confirmation bias) [38]. 
Here, we extend this nascent line of work, by showing that the report of an intermittent choice about a 
protracted stream of perceptual or symbolic (numerical) evidence alters the weights assigned to pre- 
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and post-choice evidence from recency to primacy. Further, we show that the above three effects are 
tightly related, consistent with generation by the same mechanism.  
 
 The overall reduction in sensitivity due to the initial choice observed here (Figure 3) corroborates 
earlier analyses of the Numerical Task data [35]. The correspondence between these and our current 
findings from the Perceptual Task indicate that choice-induced decreases in sensitivity generalizes 
across different formats of decision evidence (from symbolic to low-level perceptual). We used the 
same methods to analyze data from the perceptual task presented here (but different from those in 
[35], see Materials and Methods), and data from the numerical integration task using a similar task 
protocol [35], and found strong correspondence between the two.  
 
 One important implication of our findings is that the temporal weighting profiles in evidence 

accumulation are neither fixed traits of decision-makers nor fixed properties of certain tasks, but are 
flexibly altered on the fly in a given task, depending on the presence or absence of an intermittent 
choice. Previous studies investigating temporal biases in decision-making found conflicting results, 
ranging from recency to flat profiles, to primacy. Differences in the task protocols and idiosyncratic 
tendencies of decision-makers are important confounds that complicate the comparison between these 
studies. Our current results show that the temporal weighting profile, within a given individual and a 
given task, can be effectively flipped, simply by asking the participant for an intermittent choice half-
way through the evidence stream. 
 
 Importantly, the here-discovered, strong relationship between the individual strength of the choice-
induced, global sensitivity reduction and choice-induced, selective confirmation bias (Figure 5) is not a 
given, because both effects were operationalized in terms of two orthogonal comparisons: the 
sensitivity reduction by comparing sensitivity between trials with an intermittent choice and trials without 
such a choice; the confirmation bias by comparing trials with subsequent evidence that was consistent 
or inconsistent with the choice, within the trials that contain an intermittent choice. Thus, presence of a 
global sensitivity reduction effect does not imply presence of the confirmation bias, and vice versa. 
Even so, their correlations were tight, in line with a common underlying mechanism. In particular, the 
weights of new evidence in the No-Choice condition were comparable to, and correlated with the 
corresponding weights for the choice-consistent but not for choice-inconsistent evidence in the Choice-
condition. This observation suggests a distinct state of the decision-maker when faced with information 
inconsistent with previous decisions, possibly reflecting the suppression of post-decisional dissonance 
[51]. 
 It is tempting to interpret our findings as a signature of decision-related cortical evidence 
accumulation dynamics [52–54], combined with neuromodulatory input [5,47,55]. Once the decision 

circuits have settled in an attractor (choice commitment), this will reduce the decision-maker’s 
sensitivity to all subsequent evidence (see [35], Supplement) – an effect that may hold regardless of 
whether that evidence is consistent or inconsistent with the choice. Due to selective feedback from the 
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accumulator circuit to early sensory regions encoding the evidence, the attractor state in accumulator 
networks may additionally cause selective gain modulation of subsequent incoming evidence [54] that 
can translate into the consistency-dependent, selective confirmation bias effect we found earlier [38]. 
These effects may have been amplified by choice-induced, phasic neuromodulatory input to cortex. 
Our task entailed an interrogation protocol, in which a categorical choice was prompted by the 
experimenter, when cortical decision circuits might not yet have reached a stable decision commitment; 
the choice prompt might then trigger the release of certain neuromodulators that pushes the decision 
circuits into an attractor state [1,35]. Such a neuromodulatory signal might be reflected in pupil dilation 
[47,48,56], which we found to be larger during the choice, compared to the no-choice condition. In sum, 
by altering the dynamical properties of decision circuits in the brain, choices can have versatile and 
coupled effects on evidence accumulation. 
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