bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980227; this version posted March 8, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 ARTICLE

3 Deep learning-based adaptive detection of fetal nucleated red blood

4 cells

6 Chao Sun', Ruijie Wangz#, Lanbo Zhao', Lu Han', Sijia Ma', Dongxin Liangl, Lei
7 Wang', Xiaogian Tuo', Dexing Zhong™* & Qiling Li'*

9 'Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an
10 Jiaotong University, Xi’an 710061, China. *School of Electronic and Information
11 Engineering, Xi'an Jiaotong University, Xi'an 710049, China. *email:

12 liqiling@mail.xjtu.edu.cn; bell@xjtu.edu.cn
13

14 *Chao Sun and Ruijie Wang contributed equally to this work.


https://doi.org/10.1101/2020.03.06.980227

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.06.980227; this version posted March 8, 2020. The copyright holder for this preprint

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Abstract

Aim: this study, we established an artificial intelligence system for rapid
identification of fetal nucleated red blood cells (fNRBCs).

Method: Density gradient centrifugation and magnetic-activated cell sorting were
used for the separation of fNRBCs from umbilical cord blood. The cell block
technique was used for fixation. We proposed a novel preprocessing method based on
imaging characteristics of fNRBCs for region of interest (ROI) extraction, which
automatically segmented individual cells in peripheral blood cell smears. The
discriminant information from ROIs was encoded into a feature vector and
pathological diagnosis were provided by the prediction network.

Results: Four umbilical cord blood samples were collected and validated based on a
large dataset containing 260 samples. Finally, the dataset was classified into 3,720 and
1,040 slides for training and testing, respectively. In the test set, classifier obtained
98.5% accuracy and 96.5% sensitivity.

Conclusion: Therefore, this study offers an effective and accurate method for
fNRBCs preservation and identification.

Keywords: fetal nucleated red blood cells, cell-block, deep learning, non-invasive

prenatal diagnosis
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Introduction

The clinical application of fNRBCs during pregnancy could be classified into two
main categories'. One is the prognosis of possible diseases in pregnant women by
counting fNRBCs in umbilical cord blood. Chronic tissue hypoxia results in increased
levels of erythropoietin, which, in turn, leads to stimulation of erythropoiesis and
increased numbers of circulating nucleated red blood cells (NRBCs)'*~. Increased
umbilical cord levels of erythropoietin have been reported in pregnancies complicated
by intrauterine growth restriction, maternal hypertension, preeclampsia, maternal
smoking, Rh isoimmunization, and maternal diabetes™®. As expected, each of these
conditions has been associated with increased NRBCs in the newborn’. The other
objective is to screen and extract fNRBCs from maternal peripheral blood for
non-invasive prenatal diagnosis (NIPD)'*"?. The choice of fNRBCs as ideal target
cells is based on the following parameters'*'*: (1) presence of intact nuclei containing
the complete fetal genome in fNRBCs, which is a prerequisite for prenatal analysis; (2)
limited life span of fNRBCs in the maternal circulation, which can be differentiated
morphologically from maternal cells; and (3) presence of distinct cell markers, such
as epsilon hemoglobin transferrin receptor (CD71)"*, thrombospondin receptor
(CD36), and glycophorin A (GPA) in fNRBCs that enable isolation of these rare cells
from large volumes of maternal blood.

As aresult, great attention and research efforts have been devoted to the
development of NIPD methods based on circulating fNRBCs. However, the detection
of fNRBC:s is challenging due to their extremely low concentration against a
background predominance of maternal cells (<6 cells per mL; with 109 maternal
cells)'®!". Several fNRBC enrichment methods based on different principles have
been reported, such as density gradient centrifugation (DGC) "*''%,
fluorescence-activated cell sorting (FACS)lg, and magnetic-activated cell sorting
(MACS)®, dielectrophoresis, and microfluidics based technologies*'**. Nevertheless,
long-term preservation of samples and rapid identification of target cells (fNRBCs)
still present considerable challenges.

Since the identification of fNRBCs in large number of cell block slices represent a
huge manual burden on pathologists, this field could benefit greatly from an urgent
digital revolution®. In recent years, the development of computer-aided diagnosis and
medical image processing has resulted in emergence of the field of computational

pathology”*. Techniques based on the combination of deep learning and multi-medical
3
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67  specialties has rapidly gained popularity and led to substantial progress in fields such
68  as radiology, ophthalmology, and breast cancer”>’. DL-based algorithms have

69  demonstrated remarkable progress in image recognition tasks, in which convolution
70 neural network (CNN) models, as the most prevalent type of deep learning structure,
71 has been reported to surpass human performance®®, and has become a widely used

72 methodology for analysis in medical imaging®.

73 There are two purposes to the present study. The first is to explore methods suitable
74  for the long-term preservation of fNRBCs. The cell block technique for fixation of

75  fNRBC samples is first introduced. The other objective centers on the establishment
76 of a system based artificial intelligence (Al) to apply supervised learning for the

77  analysis of fNRBC image. Training and validating the CNN model on large-scale data
78  sets is crucial for enhancing the efficiency and accuracy of the model. The fNRBC

79  images were segmented before training, to correct for overestimations. Since it is

80  impossible to rely on expensive and time-consuming manual annotations, we propose
81 anovel adaptive automated region of interest (ROI) extraction algorithm that does not
82  require manual pixel-level annotations. We expect this method to be capable of rapid
83 identification of specific (target) cells in backgrounds cluttered with a large number of
84  maternal peripheral blood, and therefore, to confer simplicity and feasibility to NIPD

85  techniques.
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Materials and Methods

Ethics statement. This study was approval (XJTUIAF-CRS-2015-001) by the Ethics
Committee of the First Affiliated Hospital of Xi’an Jiaotong University. Related
informed consent was obtained from the subjects before the study, and all the
protocols used were in compliance with the ethical principles for research that
involves human subjects of the Helsinki Declaration for medical research™.

Cord blood samples. All umbilical cord blood samples were collected from normal
term deliveries (=36 weeks). Approximately 9 mL of cord blood from gravidas
chosen for this study was collected into anti-coagulant K2-EDTA tubes (BD
Vacutainer 366643) containing a proprietary preservative.

fNRBC enrichment. Blood samples were processed within 2 hours of collection and
mononuclear cells were isolated by density gradient centrifugation with
Histopaque-1077 (Sigma Chemical, St. Louis, MO, USA), magnetically labelled with
anti-CD71 monoclonal antibody (Miltenyi Biotec, Germany), and positively selected
by MACS (Miltenyi, Biotec, Germany) according to the protocol provided by the
manufacturer.

fNRBC fixation by cell-block technique. The fNRBC samples were centrifuged at
2000 rpm at normal temperature for 10 min, the supernatant was removed, and the
cell-rich layer was collected. Then, the temperature was increased to 40 °C, and the

cell-rich layer was absorbed. The samples were transferred to the bottom of the

removed after centrifugation at 2000 rpm for 10 min. The samples stood at room
temperature (or in a refrigerated room) for 10 min, and were taken out when
completely solid. The part without the cell-rich layer were cut off and stored in the
embedding box.

HE staining. Cells were stained with HE staining according to routine protocols®'.
Briefly, after deparaffinization and rehydration, 5 um longitudinal sections were
stained with hematoxylin solution for 3—5 min followed by 5 dips in 1% acid ethanol
(1% HCl in 70% ethanol) and rinsed in distilled water. Then, the sections were stained
with eosin solution for 5 min, followed by dehydration with graded alcohol and
cleaning in xylene. The mounted slides were then imaged using an Olympus BX53

fluorescence microscope (Olympus, Tokyo, Japan). NRBCs were identified by
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morphology and counted under a light microscope at 400x magnification. Cells were
considered as NRBCs if they met the following criteria: diameter was intermediate to
that of neutrophils and leukocytes; low nucleus-to-cytoplasm ratio; small, dense,
round nucleus; and orthochromatic non-granular cytoplasm.

Image acquisition and processing. After HE staining, the sections of maternal
umbilical cord blood were scanned by a Pathological Section Scanner (Leica SCN
400, Germany). fNRBCs were selected as positive targets, and lymphocytes and
neutrophils as negative control targets. The average initial slice size used for ROI
extraction was 1,651 x 1,209 pixels.

Cellular-level ROI extraction. A semi-automated ROI extraction algorithm based on
global threshold segmentation and watershed algorithm was proposed3 2,

First, a Gaussian low-pass filter was applied for image pre-processing. To reduce the
complexity of ROI extraction, adaptive thresholding methods and mathematical
morphology operations were used to segment fNRBCs. Since the HE staining of each
fNRBC image was uneven and could fade over time, the adaptive threshold T was
calculated by the following formula:

_ locs(x) + (256 — Jocs(x))
- 3. 06

T

where, the first extreme point on the histogram of the grayscale distribution is denoted
as locs, and locs(x) represents the corresponding abscissa.

Since the global threshold algorithm could not distinguish adjacent cells, we chose
the watershed algorithm to detect the single fNRBC. Considering the information in
the grayscale image, an improved watershed method based on adaptive thresholding
was proposed. First, information on the image gradient was used as prior knowledge,
and the watershed algorithm was rendered sensitive to the small extreme line
response33. Then, the mathematical morphology technique was used to remove cell
debris, and over-segmentation was eliminated by bottleneck detection. These steps
could reduce the classification burden of the neural network, thereby decreasing the
calculation workload. By using effective and robust cellular-level ROI extraction
methods, we acquired an accurate cell contour at different magnifications. The
experimental results were shown as Figure 1A.

Prediction network. We proposed a skillfully-designed network structure p-net to
perform classification tasks for fNRBC images. The core of building p-net was to

choose the appropriate CNN structure (Supplementary Figure 1) and loss function.
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VGG-16 had been proven to be successful in the field of medical imaging due to its
excellent image feature extraction capabilities. In VGG-16, each input in the layer
was linear with the output of the previous layer, resulting in a final output that was a
linear representation of the original input. Due to the limitations of linear expression,
many features of the original input couldnot be preserved. We needed to combine the
data of the input image to generate more features of the image, which would confer
greater stability and efficiency to the network. We chose the rectified linear unit
(ReLU) function as the activation function.

The p-net was composed of four blocks of convolutional layers, and the final fully
connected layers were replaced with a global average pooling layer**. Since the size
of the ROI patches, an important feature of fNRBCs, was different, we filled the
pixels around the ROI patches such that dimensions of 120 % 120 x 3 were achieved,
and used these as the input for the network.

The maximum pooling function was chosen as the pooling function to reduce the
amount of calculation. Through the training of 10,000 samples, a p-net was fine-tuned
on domain-specific dataset. The prediction network framework used in this study was
shown in Figure 1B.

System verification and immunocytochemistry for HbF. HbF was a specific
protein found in fNRBCs, which did not exist in maternal erythrocytes and other
nucleated cells®. Therefore, it could be used as a marker for INRBC detection. After
the establishment of the Al system, some HE sections were selected for system
verification, and all positive recognitions were subsequently confirmed by
immunocytochemical staining.

Immunocytochemistry studies were performed on 5-um sections of formalin-fixed,
paraffin-embedded tissues. Slides were first deparaffinized and rehydrated. Antigen
retrieval was carried out with 0.01 M citrate buffer at pH 6.0. Slides were heated in a
770-W microwave oven for 16 min, cooled to room temper ature, and rinsed in PBS
buffer (pH 7.4). The slides were incubated with a 3% hydrogen peroxide solution
(hydrogen peroxide: pure water = 1:9) at room temperature in dark for 25 min,
followed by washing with PBS buffer (pH 7.4). This step was to block endogenous
nonspecific proteins and peroxidase activity. The sections were incubated at 4 °C
overnight with HbF (BIOSS, bs-16469r) at a 1:100 ratio (mol). Following a PBS
buffer wash, sections were incubated with the HRP-conjugated goat anti-rabbit IgG
(G23303, Servicebio, China) at a 1:200 ratio (mol). The sections were then washed
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186  and treated with a solution of diaminobenzidine and hydrogen peroxide for 10 min to
187  produce the visible brown pigment. After rinsing, a toning solution (DAB Enhancer,
188  Dako) was used for 2 min to enrich the final color. The sections were counterstained

189  with hematoxylin, dehydrated, and mounted on cover slips with permanent media.
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Results

Baseline characteristics. This prospective case-control study was conducted at the
First Affiliated Hospital of Xi’an Jiaotong University. The study included 4 pregnant
women, who delivered a single mature neonate. Table 1 listed the demographic data

of these subjects.

Hematoxylin-eosin (HE) staining of fNRBCs. fNRBCs were detected in the
maternal umbilical cord blood. Most fNRBCs were observed to be polychromatic and
orthochromatic normoblasts, which was in accordance with the histological features
expected of normoblasts (Figure 2A). The single nucleated cell shown by the arrow in
Figure 2 A represented an fNRBC.

Hemoglobin F(HbF) immunocytochemical staining of fNRBCs. Blood samples
from all 4 patients contained HbF-positive cells. The nuclei were blue stained, while
the cytoplasm was not stained (Figure 2B). The single nucleated cell shown by the
arrow in Figure 2B represented an fNRBC.

HE and HbF immunocytochemical staining in serial sections. Eight serial sections
(4 um) were made from each specimen. HE and HbF immunocytochemical staining
were performed on odd and even numbered sections, respectively. fNRBCs in the
same field of vision were identified based on their distinct morphologies, as observed
by HE staining. This was further confirmed by the HbF immunocytochemical staining
(Figure 2C, 2D).

Intelligent identification. We validated the CNN model on a large dataset containing
260 samples, with average slide dimensions of 1,651 x 1,209 pixels (height x width).
The total number of positive and negative samples was similar. The training set and
test set was randomly split in a 7:3 ratio, based on the original data. Taking the small
sample size into account, through data augmentation technology, the original image
was flipped to obtain a mirror image, which was rotated by 90°, 180°, and 270°,
respectively, thereby expanding the original data set by 8 times. Then, the data set was
split into 3,720 and 1,040 slides for training and testing, respectively.

P-net was an end-to-end trainable network, where an image was the input and the
result of the threshold operation (a number) represents the output. When the output
was close to 1, the sample had a high probability of being positive. Conversely, an
output value close to 0 indicates that the sample may belong to the negative group.

Since we were more interested in the positive samples with respect to the
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223 classification imbalance problem, we chose the precision-recall curve to evaluate the
224 efficiency of the p-net and traditional CNN networks used in this study (Figure 3).

225  Here, Netl represented a traditional CNN network, while Net2 refered to the network
226 proposed here.

227 The details of the scheme optimization were shown in Table 2. Finally, on the

228  premise of 100% accuracy in the training set, the test set was observed to attain 96.5%

229  sensitivity, 100% specificity, and 98.5% accuracy.

10
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Discussion

Prenatal testing based on cell-free DNA (cfDNA) in the maternal plasma has been
defined as non-invasive prenatal testing (NIPT) to distinguish it from traditional
invasive diagnostic methods such as amniocentesis or chorionic villus sampling36. As
an excellent screening method deemed acceptable for aneuploidy detection, there are
a number of different NIPT platforms, such as massively parallel sequencing, single
nucleotide polymorphism, and chromosome-selective sequencing®’. However, NIPT
by itself cannot provide accuracy diagnostics for aneuploidy, and therefore, the
karyotyping must be confirmed before or after delivery. Some cfDNA-based
techniques called NIPD can provide accurate fetal diagnostic information (thereby
offsetting the requirement subsequent confirmation with invasive testing) including
fetal sex, rhesus D genotyping, and monogenic disorders’®. Innovative applications of
NIPD, such as digital polymerase chain reaction and next-generation sequencing,
have the capability to read more information from cfDNA. Even so, the information
cfDNA provides is not as extensive and detailed as that obtained by invasive
methods®®. Meanwhile, there are many challenges in developing NIPD/T services, the
most important of which is the content of cfDNA™. The latter depends on fetal
fraction, and is affected by a variety of factors like gestational age and maternal
Weight40.

Each fetal cell contains all the genetic information of the individual. Therefore,
recent studies on NIPD have focused on whole genome sequencing and short tandem
repeat identification of fNRBCs and circulating trophoblasts. On the contrary, the
rapid selection and separation of target cells still pose considerable challenges to this
application®'. In this study, we report a more effective method for the long-term
preservation of fNRBC:s. In addition, we have established an Al-based system for the
rapid identification of fNRBCs.

Cell block preparations have been used as a complementary technique for
increasing diagnostic accuracy in many fields*, such as endometrial cytology,

d** 1In this

malignant pleural effusion, and needle aspiration cytology of thyroid glan
study, we first proposed a cell block technique for fixation of fNRBC samples. This
technique could ensure a uniform distribution of the enriched fNRBCs in the wax
block, which is convenient for the identification and isolation of individual fetal cells
at a later stage. In addition, the cell slices generated by this technique have no

background interference to subsequent immunohistochemistry, fluorescent in situ
11
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hybridization, and other molecular pathology assays. fNRBCs are the best target cells
for NIPD based on cell block technique. Our method (Cell-Block technique) can not
only preserve fNRBCs for a long time, but also facilitate repeated tests using the same
sample.

fNRBCs exhibit unique cytological characteristics on HE staining. The nucleus is
dense and massive, with the ratio of nucleus to cytoplasm being less than 1/2. There
are no granules in the cytoplasm™®, which is positive stained. Therefore, we used the
traditional density gradient centrifugation and MACS (anti-CD71) method to separate
fNRBCs from maternal cord blood, and chose conventional HE staining slices for the
network-side input. To ensure accurate diagnosis, both HE staining and
immunocytochemistry of HbF were used for dual recognition in system verification.

Due to the small number of fNRBCs in maternal peripheral blood, it is not enough
for the initial stage of the Al system establishment. In this study, umbilical cord blood
of pregnant women was selected as the sample for both input and verification.

Moreover, we introduced artificial intelligence technologies and expect this system
to quickly and easily identify fNRBCs in the background predominance of maternal
cells. To reduce the complexity in the image classification algorithm, we proposed an
adaptive ROI extraction method for fNRBC images. In addition, we have
comprehensively utilized the visual information perceived by the network and
constructed a novel pathological recognition network, which would have significant
contributions in improving the means and methods of non-invasive medical
diagnostics.

In general, this report on an Al system of fNRBC identification lays the foundation
for subsequent cell collection, sequencing, and prenatal diagnosis. In future, we would
conduct further investigations on maternal peripheral blood, and continue to optimize

the system, such that it can be devoted to fNRBC detection in NIPD.

12
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411 Figure legends

412 Figure 1. Cellular-level ROI extraction and prediction network.

413 A. An accurate cell contour at different magnifications. B. Schematic representation
414  of the framework of the prediction network.

415

416  Figure 2. HE staining and HbF immunocytochemical staining of fNRBC:s.

417  Panels A and C represented HE staining, while B and D showed cells stained

418  immunocytochemically with HbF. Panels C and D corresponded to the same sample.
419  The single nucleated cells shown by the arrow in A and B represented fNRBCs.

420

421 Figure 3. Precision-recall curve of p-net and CNN networks.

422

423 Supplementary figure 1. Structure of the CNN model.
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Table 1 Demographic data of included women

Patients Maternal age .. Gestational age  Birth weight Sex of the
Complication ;
(years) (weeks) (g) infant
1 25 Gestational 37+1 3320 male
diabetes
2 32 no 40+4 3660 male
3 30 scar uterus 39 3050 female
4 28 no 38+6 3760 male
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Table 2 Comparison of results of different schemes

Scheme variables Recognition rate Sensitivity Specificity
Signmoid activation function 50% 100% 0%
The Batch_size parameter is 1 79% 93% 65%
The convolution operators is 5 67% 83% 51%
The output of each layer is pooled 63% 65% 62%
Without sample enhancement 80% 81% 79%

Our method 98.5% 96.5% 100%
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