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Abstract 

 Substance use peaks during the developmental period known as emerging adulthood 

(roughly ages 18–25), but not every individual who uses substances during this period engages in 

frequent or problematic use. Previous studies have suggested that individual differences in 

neurocognition may prospectively predict problematic substance use, but mechanistic 

neurocognitive risk factors with clear links to both behavior and neural circuitry have not yet 

been identified. Here we take an approach rooted in computational psychiatry, an emerging field 

in which formal models of neurocognition are used to identify candidate biobehavioral 

dimensions that confer risk for psychopathology. Specifically, we test whether lower efficiency 

of evidence accumulation (EEA), a computationally tractable process that drives neurocognitive 

performance across many tasks, is a risk factor for substance use in emerging adults. In an fMRI 

substudy within a sociobehavioral longitudinal study (n=106), we find that lower EEA and 

reductions in a robust neural-level correlate of EEA (error-related activations in salience network 

and parietal structures) measured at ages 18–21 are both prospectively related to higher levels of 

substance use during ages 22–26, even after adjusting for other well-known risk factors. Results 

from Bayesian model comparisons corroborated inferences from conventional hypothesis testing 

and provided evidence that both EEA and its neural correlates contain unique predictive 

information about substance use involvement. Overall, these findings suggest that EEA is a 

mechanistic, computationally tractable neurocognitive risk factor for substance use at a critical 

developmental period, with clear links to both neural correlates and well-established formal 

theories of brain function.  

 Keywords: computational psychiatry, diffusion model, drift rate, salience network, 

addiction 
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Introduction 

Problematic substance use, which affects tens of millions of Americans, can have 

devastating consequences, including substantial physical, emotional, and financial burden. Drug 

overdose deaths topped 70,000 in the US in 2017 alone1, and the annual economic cost of 

substance abuse has been estimated at over $740 billion2–5. However, not everyone who tries 

alcohol, tobacco, or other drugs goes on to develop a substance use disorder (SUD; see Table 1 

for abbreviations used in this article). A better understanding of the mechanisms that underlie 

problematic substance use risk is essential for improving prevention and treatment efforts. 

 Substance use increases throughout adolescence and peaks during a period characterized 

as “emerging adulthood” (ages 18–25)6. According to an ongoing national survey on US 

substance use, rates of past-month marijuana use were highest at ages 21–22 (27.5%), and past-

month alcohol use was highest at ages 23–24 (75.1%)7. Although substance use is relatively 

common in this developmental period, frequent use confers both short- and long-term risks to 

mental and physical health8. In addition to changing social roles and contexts that increase 

exposure to drugs and alcohol during adolescence and emerging adulthood, neurodevelopmental 

changes during this time may relate to use patterns. The brain continues to mature throughout 

youth into the mid-20s, specifically in circuitry involved in cognitive control, and immaturity in 

this circuitry is theorized to contribute to substance use and other risk-taking behaviors9.  

Indeed, researchers have found evidence that behavioral and neural measures of 

controlled cognitive processes predict substance use behaviors during this developmental period. 

For instance, poor behavioral performance and abnormalities in neural responses during working 

memory tasks have been associated with increased substance use risk in adolescence10–13. 

Inhibitory control deficits, typically probed with the go/no-go or stop signal paradigms, are also 
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thought to contribute to risk. Meta-analytic studies have found poorer behavioral performance on 

these tasks across a variety of substance use disorders14. Prospective neuroimaging work has 

found that reduced activation in the prefrontal cortex during inhibitory errors predicts problem 

use in early adolescence15, suggesting that neural responses associated with error monitoring 

may be particularly relevant to links between cognitive processes and risk for use. 

 Although these studies suggest that individual differences in neurocognition predict 

problematic substance use at critical developmental periods, they have exclusively focused on 

neurocognitive constructs derived from earlier factor analytic work (e.g., working memory, 

inhibition16). Such a focus is problematic because these cognitive ontologies have recently been 

found to display questionable replicability17,18, and because constructs defined mainly based on 

behavioral test score covariation, rather than on an understanding of the mechanistic processes 

involved in cognition, are likely to display ambiguous links to neural circuitry19. Computational 

psychiatry, an emerging field in which biologically plausible formal models are used to describe 

performance on clinically relevant tasks19, offers a promising alternative framework. This 

approach aims to identify candidate biobehavioral dimensions that confer risk for 

psychopathology by focusing on formal model parameters that index mechanistic processes 

underlying task behavior and their neural correlates.   

Sequential sampling models20 suggest at least one such dimension that may predict 

substance use risk. These models explain behavior on choice response time (RT) tasks (a 

category that subsumes most current “cognitive control” tasks) as the result of a process in which 

individuals gradually gather noisy evidence from the environment for each possible choice until 

a critical evidence threshold for one choice is reached. Crucially, the mechanistic processes 

posited by these models align remarkably well with neurophysiological data20,21. The diffusion 
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decision model (DDM)22, one of the most commonly used sequential sampling models, frames 

the choice process as a decision variable that drifts over time, in a pattern influenced by 

stochastic evidence accumulated from the stimulus, between two boundaries representing each 

possible choice (Figure 1). When the process terminates at one of these boundaries (e.g., the 

“go” boundary in a go/no-go task), the corresponding response occurs. Although the DDM 

features several main parameters (detailed in Figure 1), the “drift rate” (v) parameter, which 

determines the rate at which the decision variable drifts toward the boundary for the correct 

choice, is often of key interest. In experimental work, drift rates are typically used to index the 

quality of evidence that can be extracted from a stimulus22. For example, stimuli that provide 

more ambiguous information about which choice is correct, or other conditions that make 

decisions more difficult, lead to relatively slower drift rates (reflecting poorer evidence quality). 

When considered as an individual differences dimension, drift rate from the DDM 

indexes the efficiency with which individuals can gather relevant evidence to make an accurate 

choice in the context of background noise (efficiency of evidence accumulation: EEA). Measures 

of EEA display clear trait-like properties23, and lower levels of EEA have been repeatedly linked 

to externalizing psychopathologies comorbid with substance use24,25. Furthermore, EEA may 

underlie individual differences in performance of working memory and response inhibition 

tasks26–28, suggesting EEA could explain previously identified prospective links between features 

of both types of tasks and substance use.  

We recently found29 that EEA on a go/no-go task (measured across both “go” and “no-

go” trials) was strongly related to the inhibitory performance (false alarm rate) of young adults 

(18–21) and was robustly positively correlated with error-related activation in the anterior 

cingulate cortex (ACC) and anterior insula. Both regions are considered key hubs of the salience 
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network30, a brain network involved in triggering cognitive control in response to errors and 

other salient events. Hence, when considered with earlier evidence that reduced neural responses 

to errors are prospectively linked to substance use in youth15, this work suggests that EEA could 

provide a computationally informed explanation of how salience network functioning relates to 

both performance on current probes of cognitive control and associated clinical outcomes. 

Taken together, these prior findings suggest EEA could index a mechanistic 

biobehavioral dimension with clear links to both neural-level correlates and well-established 

mathematical theories of brain function, and that lower levels on this dimension could confer risk 

for substance use. In the current study, we build on our prior work29 to explicitly test whether 

EEA and its neural correlates (error-related activations) prospectively relate to individuals’ 

degree of substance use in emerging adulthood. We use an approach that leverages both 

traditional frequentist hypothesis testing and Bayesian model comparison to quantify the strength 

and robustness of evidence for these prospective relationships. As recent findings have indicated 

that neural activity related to cognitive states and behavioral covariates is typically distributed 

across large brain networks, rather than being exclusively associated with discrete regions31,32, 

we also leverage a multivariate network-based measure of error-related activation. 

We tested two main hypotheses: 1) on the basis of our previous work29, we expected that 

EEA measured on a behavioral task would display a robust, positive relationship with a summary 

neural measure of error-related activation, and 2) we predicted that both EEA and this error-

related activation measure would display negative relationships with prospective substance use. 

In addition to these specific hypotheses, we also sought to evaluate whether EEA and its neural-

level correlates provide unique (versus redundant) predictive information about use. Although 

we did not have a strong a priori expectation about whether this would be the case, we presumed 
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that, as EEA and its neural correlates are likely subject to method-specific variance from their 

respective measurement domains, it is plausible that both may contribute unique information. 

Methods 

Participants 

 Participants were volunteers for a functional magnetic resonance imaging (fMRI) 

substudy that was part of the Michigan Longitudinal Study (MLS)33,34, a prospective study that 

has followed a sample of youth from families with history of alcohol use disorder (AUD) and 

youth from low-risk families who lived in the same neighborhoods. MLS assessments began at 

ages 3–5 and were continued through participants’ late 20s and early 30s. Participants were 

excluded from the larger MLS if they displayed evidence of fetal alcohol syndrome and from the 

neuroimaging substudy if they: 1) had contraindications to MRI, 2) were left-handed, 3) had a 

neurological, acute, or chronic medical illness, 4) had a history of psychosis or first-degree 

relative with psychosis, or 5) were prescribed psychoactive medications, except 

psychostimulants prescribed for attention difficulties. Participants taking psychostimulants were 

asked to abstain from taking their medication for at least 48 hours prior to MRI scanning. Study 

procedures were carried out in accordance with the Declaration of Helsinki, and informed 

consent was obtained from all participants. MLS data are not currently publicly available, but 

can be accessed upon request. 

 For the current study, we examined a subset of participants who were included in our 

previous investigation of DDM parameters’ neural correlates from common go/no-go 

neuroimaging contrasts (N=143)29. Individuals in this sample met all inclusion criteria outlined 

above and also had go/no-go behavioral and neuroimaging data available from their baseline 

scanning session (conducted at ages 18–21) that met quality control criteria for DDM fitting and 
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fMRI analysis (described in more detail in:29). Of this sample, a subset of individuals (n=106; 

74%) had substance use outcome data from at least one time point between ages 22 and 26. To 

optimize our ability to identify reliable metrics of error-related activation and link them to EEA, 

we used data from the full sample (N=143) for dimension reduction of fMRI data and assessment 

of whether our summary measure of error-related activation was related to drift rate. We then 

used data from the longitudinal subsample (n=106) to evaluate prospective relationships with 

substance use. Demographics and summary statistics of relevant variables for the full sample and 

longitudinal subsample are displayed in Table 2.  

Descriptions of the go/no-go task completed by participants, fMRI scanning parameters, 

and the fMRI pre-processing and single-subject analysis steps used in this and the previous 

study29 are provided in Supplemental Materials.  

EEA Measure 

 As detailed in our prior study29, DDM parameters were estimated following methods 

established in a previous extension of the DDM to the go/no-go task26,35 using functions from the 

R package rtdists36. To enhance parameter recovery, we fit a simplified version of the DDM that 

included only the following parameters (which are described in more detail in Figure 1): drift 

rates for go (respond) and no-go (inhibit) trials (v.go, v.nogo), starting point (z), boundary 

separation (a), and non-decision time (Ter). For the current study, we used parameter estimates 

obtained in this previous model fit, with the average of drift rates across go and no-go trials 

(v.avg) as the primary index of EEA. 

Error-related Neural Activity Measure 

We included regions of interest (ROIs) from our previous study29, obtained by 

conducting a term-based meta-analysis in Neurosynth37 with the term “error”. We downloaded 
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the “association test” statistical map from this meta-analysis, which indicates whether activation 

in each voxel occurs more consistently in studies that mention the term “error” than in those that 

do not (see: neurosynth.org/faq). We excluded clusters with <10 voxels from this map (n=14 

clusters between 2 and 6 voxels; n=32 individual/isolated voxels) and then, for the 8 clusters that 

remained (minimum size = 28 voxels), centered 8mm radius spheres about their peak coordinates 

(Table 3; Figure 2a). Regions included ACC and two clusters spanning bilateral insula and 

nearby inferior frontal gyrus (IFG).  

We next extracted average parameter estimates from the primary “error monitoring” 

contrast of interest (failed inhibitions on “no-go” trials > “go” responses) within each ROI, and 

entered these estimates into a principal component analysis (PCA) using the R package 

FactoMineR38. We used scores of the first component (PC1) from this PCA as our primary 

measure of error-related activation, in order to harness the aforementioned advantages of a 

network-based approach, and anticipated that this component would display strong loadings from 

the ROIs closely associated with the salience network in previous literature (ACC and bilateral 

insula/IFG)30. However, for comprehensiveness, we also report prospective relationships 

between neural activations from discrete brain regions and substance use in Supplemental 

Materials. Furthermore, as results of the PCA also revealed a second component (PC2) that was 

of potential interest because of its links to striatal activation (see below), associations between 

this component and substance use were also assessed in our primary analyses. 

Substance Use Measures and Covariates 

Substance use was assessed annually in the MLS sample with the Drinking and Drug 

History Form39. We aimed to create an outcome measure that indexed the degree to which 

individuals used the three most common substances of abuse — alcohol, marijuana and tobacco 
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— during emerging adulthood, and therefore focused on three measures from this questionnaire: 

drink volume (number of alcoholic drinks in the past year), marijuana frequency (number of days 

in the past year when marijuana was used), and cigarette frequency (number of days in the past 

year when cigarettes were used). To obtain a stable measure of how frequently individuals used 

these substances during ages 22–26, participants’ responses for all ages with available data 

during this period were averaged for each substance (mean number of time points per measure 

are reported in Table 2). These three measures of average annual use during ages 22–26, which 

were moderately correlated with one another (Supplemental Table 1), were converted to Z-scores 

and averaged to form a substance use composite measure (SC) that was the main outcome 

measure of interest. 

 Several covariates were used in predictive analyses to adjust for effects of other well-

known risk factors for problematic substance use, including participants’ sex (0 = male, 1 = 

female), family history of AUD (given the enrichment of this sample with individuals who had 

this risk factor; 0 = no family history, 1 = AUD history for one or both parents), and participants’ 

level of substance use prior to the time of the scan (described in detail below). As a subset of 

individuals were diagnosed with Attention-Deficit/Hyperactivity Disorder (ADHD; Table 2), and 

as individuals taking medications for ADHD were asked to cease taking their medication >48 

hours prior to scanning, we also included ADHD diagnosis (0 = negative, 1 = positive) as a 

covariate to account for possible confounds related to the disorder or to medication withdrawala. 

                                                           

a ADHD diagnosis was assessed with both the Diagnostic Interview Schedule (DIS40) and screening questions about 
previous ADHD diagnosis and medication use. We used diagnostic information from the DIS for all participants 
except for three who did not complete this measure. We therefore used information from the screening questions to 
assess diagnostic status for these three participants, all of whom reported no previous ADHD diagnosis or 
medication use. We also note that, given the small number of participants with ADHD in the longitudinal sample 
(n=7), it was not feasible to account for diagnosis and medication use with separate covariates.  
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Prior substance use covariates were cumulative sums of the same three common 

substance use measures (drink volume, marijuana frequency, and cigarette frequency) from 

annual assessments up to and including individuals’ assessment at age 17. Similar to our 

outcome measure, we converted these covariates to Z-scores and averaged them to form a prior 

substance use composite measure (preSC), which was used as a single covariate in regression 

models. However, we also conducted a sensitivity analysis (Supplemental Materials) in which 

raw scores of individual prior substance use covariates were used in place of preSC. 

Inferential Analyses 

 We conducted all inferential analyses using JASP41, a software package allowing users to 

implement frequentist and Bayesian statistical tests. We conducted analyses from both statistical 

frameworks in order to evaluate whether our results were sensitive to the chosen framework and 

to leverage Bayesian model comparison methods to obtain continuous estimates of the 

probability that our two variables of interest, drift rate (v.avg) and error-related activation (PC1), 

provided unique predictive information.  

 First, we used Pearson correlation (r) tests to assess whether our measure of EEA from 

the behavioral task (v.avg) displayed a positive relationship with error-related activation (PC1). 

These inferences were evaluated with both frequentist p-values, which test whether the null 

hypothesis (r=0) can be rejected, and Bayes factors (BF), which are continuous measures of 

evidence that the data provide for an alternative model/hypothesis (H1) relative to the null 

model/hypothesis (H0). The BF10 is intuitively interpreted as an odds ratio; a BF10 of 6.00 in 

favor of H1 indicates that the data are 6 times more likely under H1 than H0, while a BF10 of 0.33 

would indicate that the data are instead BF01=3 (=1/0.33) times more likely under H0 than H1. In 
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Bayesian correlation tests, H1 and H0 correspond to the hypotheses that r≠0 and r=0, 

respectivelyb. 

Second, three separate frequentist regression analyses were conducted in which v.avg, 

PC1, and PC2, respectively, were entered along with covariates as prospective predictors of the 

SC measure. These analyses tested whether the null hypothesis (i.e., our predictor variables of 

interest are not prospectively related to SC when accounting for other previously established risk 

factors) could be rejected in each case. As we expected v.avg and PC1 to index similar individual 

difference dimensions, we also conducted a fourth regression analysis in which these two 

predictors of interest were entered simultaneously to test whether the null hypothesis could be 

rejected for each predictor even after accounting for effects of the other. We used false discovery 

rate (FDR: q<.05), where each separate regression was considered its own family of tests, to 

assess whether p-values from this analysis were robust to correction for multiple comparisons.  

Finally, we conducted Bayesian linear regression analyses42. To study the relationships 

between the predictors of interest (v.avg, PC1, PC2) and the outcome SC after accounting for 

effects of covariates, we first added all nuisance covariates (e.g., preSC) to a “null” model. We 

then estimated alternative models of interest, which included these nuisance covariates as well as 

all possible combinations of the predictors of interestc. Models were then compared using BF10, 

which quantifies the evidence in favor of each alternative model relative to the “null” model, and 

BFM, which quantifies evidence for each model compared to all other models. To summarize the 

importance of v.avg, PC1 and PC2 across all models, we also performed model averaging, which 

provides us with evidence for inclusion, relative to non-inclusion of each variable (BFinc)
43,44. 

Importantly, models that are averaged in this way provide evidence that is corrected for multiple 

                                                           

b All correlation tests used JASP’s default r prior: a uniform distribution spanning the values between -1 and 1.  
c All Bayesian regression analyses used a JZS prior, which is the default prior in JASP, as well as the default prior 
scale (r scale = 0.354). 
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testing45,46. These Bayesian analyses allowed us to directly test whether v.avg and PC1 contain 

unique versus redundant predictive information by quantifying evidence for a model that 

contains both variables relative to simpler models that contain only one of each.  

Results 

Summary of Error-related Activation 

 Results from the PCA of error-related activation in our 8 ROIs are displayed in Table 3. 

Five components were necessary to explain more than 90% of the variance, although the first 

component explained the majority (51.22%). As expected, the first component was highly 

correlated with error-related activation in all ROIs, and salience network structures displayed 

particularly strong loadings on this component, including ACC (.81), right IFG/insula (.78), and 

left IFG/insula (.81). Notably, striatal ROIs displayed the lowest loadings on the first component 

(.45 and .55), and these ROIs were, instead, selectively related to the second component (PC2). 

This pattern may reflect the fact that, although bilateral striatum was identified in our term-based 

meta-analysis as being related to the term “error,” these structures are not typically associated 

with error monitoring or the salience network. Their identification in the meta-analysis may have 

been an artifact of the inclusion of the word “error” in other constructs associated with striatum 

(e.g., “reward prediction error”47). As error-related activations in ROIs previously associated 

with error monitoring and the salience network were strongly related to PC1, we concluded that 

this component would operate as an effective general summary measure of error-related 

activation. However, as the striatum-specific component (PC2) may be of interest as well, we 

also assessed this component’s associations with EEA and substance use in subsequent analyses.  

Neural Correlates of EEA 
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Consistent with findings from our previous study29, there was evidence for a positive 

correlation between PC1 and v.avg, both in the full sample (N=143), r=.32, p<.001, 

BF10=204.43, and when the longitudinal subsample (n=106) was considered separately, r=.25, 

p=.011, BF10=2.87 (Figure 2b). In contrast, there was mostly evidence against the presence of a 

correlational relationship between PC2 and v.avg, both in the full sample, r=-.15, p=.084, 

BF10=0.46, and longitudinal subsample, r=-.15, p=.137, BF10=0.36. Hence, error-related 

activation from the salience network component (PC1) displayed consistent evidence of a 

positive relationship with EEA, as expected, but activation specific to the striatum (PC2) did not.  

Frequentist Regression Analyses 

 In frequentist regression analyses considering each predictor of interest along with 

covariates (Table 4; scatterplots in Figure 2c), both v.avg, β=-0.21, p=.010, and PC1, β=-0.25, 

p=.002, were found to have statistically significant negative associations with the SC from ages 

22–26, but PC2 was not, β=0.10, p=.226. In the regression that included both primary predictors 

of interest simultaneously, v.avg, β=-0.17, p=.040, and PC1, β=-0.22, p=.009, were again found 

to have significant relationships with the outcome, but the relationship involving v.avg was not 

robust to our correction for multiple comparisons. Although this result suggests the possibility 

that v.avg provides information that is redundant with that provided by PC1, Bayesian analyses, 

reported below, are needed to precisely quantify evidence for this possibility. Male sex and 

higher prior levels of substance use also appeared to be predictors of the SC across regressions. 

Together, these analyses suggest that lower levels of both individuals’ drift rate (v.avg) and 

degree of error-related activation in salience network regions during the task (PC1) are 

prospective predictors of substance use in emerging adulthood. 

Bayesian Model Comparison 
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 Results from Bayesian regression analyses predicting the SC (Table 5) indicated that 

there was moderate to strong evidence for models that included v.avg, PC1, and both predictors 

simultaneously; BF10 indicated the observed data were 5.64, 18.21, and 34.22 times more likely 

under each of these models, respectively, than under the “null” (nuisance covariate only) model. 

In contrast, the data were less likely under the model that included PC2 only than under the 

“null” model, BF10=0.52, and the addition of PC2 to models that included the other predictors of 

interest always made these models less likely, suggesting that PC2 is not predictive of the SC. 

BF10 values also indicated that the data were roughly 6.07 (34.22/5.64) times more likely under 

the model that simultaneously included v.avg and PC1 than under the model that included v.avg 

only, and 1.88 (34.22/18.21) times more likely under the two-predictor model than under the 

model that included PC1 only. Furthermore, BFM values, which quantify evidence for each 

model compared to all other models, indicated that the data provided moderate support for the 

model with both predictors of interest (BFM=4.97), comparatively modest support for the PC1 

only model (BFM=1.98), and evidence against the v.avg only model (BFM=0.51). In other words, 

BF10 and BFM indicate that, although all models involving v.avg and PC1 are well-supported, 

there is some evidence that simultaneous inclusion of both predictors leads to a better description 

of the data than when only one is included.  

Inclusion Bayes factors (BFinc) obtained via model averaging indicated positive evidence 

for inclusion of v.avg, BFinc=1.93, and PC1, BFinc=7.96, although evidence for the former was 

weaker. Finally, consideration of models’ explanatory power (r²) indicated that the model 

containing both v.avg and PC1 explained a substantially greater proportion of the variance than 

the “null” (covariate only) model (roughly 8% more). In sum, Bayesian analyses provide 

evidence that both v.avg and PC1 are meaningful predictors of substance use in emerging 
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adulthood and that each may provide unique predictive information, even when included in the 

same model. 

Discussion 

 This study aimed to test whether lower efficiency of evidence accumulation (EEA), as 

indexed by the DDM’s “drift rate” parameter22,35, is a computationally tractable neurocognitive 

risk factor for frequent substance use in emerging adulthood. In a longitudinal sample, we found 

evidence that both lower levels of EEA and reductions in EEA’s neural correlates — error-

related activation in brain regions linked to salience and performance monitoring — were 

prospectively related to greater use of the major substances of abuse (alcohol, marijuana, 

cigarettes) during ages 22–26.  

 Our finding that EEA facilitates meaningful predictions about substance use in an age 

range critical for SUD development has at least two major implications. First, although other 

cognitive constructs have been posited as risk factors for substance use problems (e.g., inhibitory 

control), these constructs have recently been criticized for lacking coherence as individual 

difference dimensions17,18 and for lacking links to specific computational and neural mechanisms 

that can explain (rather than simply describe) cognitive performance19. In contrast, EEA is a 

dimension derived from well-validated mathematical models that explain cognitive performance 

using formally specified and biologically plausible mechanisms20,21, and EEA shows clear trait-

like qualities when measured across a variety of tasks with different cognitive demands23,27. 

Crucially, the latter implies that the relationships identified in the current study are likely not 

limited to the go/no-go or other “inhibition” tasks. If low EEA proves to be a key mechanism 

that underlies relationships between poorer performance on a variety of neurocognitive measures 

and later substance use problems, researchers could leverage these well-developed computational 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.06.981035doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981035
http://creativecommons.org/licenses/by-nc/4.0/


17 
 

models and knowledge of their links to neural processes (e.g., salience network activity) to 

identify circuits related to addiction risk and novel pharmacological targets.  

Second, our findings indicate that EEA and its neural-level correlates may each provide 

unique information for substance use prediction, suggesting that inclusion of both measures in 

cross-validated models may ultimately enhance prediction of individual-level substance use 

outcomes in an applied context. Our Bayesian model comparison analyses provided moderate 

evidence that there is added value in including neural-level correlates of EEA in prediction 

models, even in addition to estimates of EEA itself. Hence, future work that seeks to utilize EEA 

or other computationally derived risk factors to make real-world predictions about individuals’ 

substance use problems should consider identifying neural correlates of these risk factors that 

can be feasibly measured in applied settings (e.g., electrophysiological measures of error-

monitoring). Additionally, as recent work suggests that self-report measures have greater 

predictive power than task-based measures18, identification of self-report measures that index 

similar mechanistic dimensions to EEA may aid prediction. Future work establishing the place of 

EEA in a larger nomological network of task and survey measures is therefore needed. 

The neural processes involved in evidence accumulation on choice task trials are 

understood at the computational level as well as at the neurophysiological level20,21. However, 

investigations of systems-level correlates of EEA, as well as individual differences in EEA, are 

only getting started. Although EEA is likely to display multiple circuit- and systems-level neural 

correlates in different imaging modalities, the current study focused on error-related brain 

activation patterns because these were identified as the most robust neural correlates of EEA in 

our previous fMRI study of the go/no-go task29. Our finding that a summary measure of error-

related activation was associated with EEA, and similarly predicted substance use outcomes, is 
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significant in the context of accounts linking EEA to catecholamine systems thought to regulate 

arousal and optimize task performance in response to feedback48. Brain regions involved in 

performance monitoring are thought to provide input to these systems48, and connectivity of the 

salience network, comprised of regions that were major contributors to our summary error-

related activation measure, has been specifically linked to norepinephrine action49. Therefore, 

individual differences in EEA may, in part, reflect individual differences in the integrity of 

catecholamine systems and associated neural networks that optimize task performance in 

response to external feedback or environmental demands. 

 This study has several limitations. First, our sample was not large enough to use cross-

validation methods to assess out-of-sample accuracy of our predictive models, which is 

necessary to provide accurate estimates of a model’s ability to predict new data in the real world. 

Larger samples, such as that of the Adolescent Brain Cognitive Development (ABCD) study50, 

could be utilized to assess whether measures of EEA, and its neuroimaging correlates, can 

predict substance use in unseen data. However, ABCD is still in the early years of data 

collection, and substantial rates of substance initiation will not be seen for many years. A second, 

related, limitation is that we were unable to quantify whether our model-based EEA measure 

displayed greater explanatory power than standard performance-based measures from the go/no-

go (e.g., mean RT, false alarm rate); the collinearity between EEA and these measures would 

make their simultaneous inclusion in regression models problematic at this sample size. As we 

note in our previous study29, future work in larger data sets is necessary to provide precise 

estimates of these measures’ relative predictive power. Third, although we attempted to account 

for possible confounds related to ADHD diagnosis and medication use in our regression 

analyses, the small number of individuals with the diagnosis (n=7) likely prevented us from 
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disentangling unique contributions of these factors from those of EEA. Fourth, we did not assess 

whether EEA shows a selective association with individual substances. We opted to predict a 

composite measure of common substance use because our sample was not large enough to 

identify predictors of rarer substances (e.g., opioids), or to identify distinctive predictors of the 

use of commonly used individual substances, measures of which were moderately correlated 

(Supplemental Materials). Finally, although this study indicates that EEA and its neural 

correlates prospectively relate to substance use, the behavioral mediators by which low EEA 

confers risk are not currently known. 

 In sum, the current study provides evidence that lower levels of EEA, a biobehavioral 

dimension that is derived from well-established computational models of brain function and has 

clear neural correlates, shows promise as a mechanistic risk factor for frequent substance use in 

emerging adulthood, a critical developmental period in the emergence of SUDs. These findings 

could inform predictive models of the emergence of substance use problems and take a crucial 

initial step in bringing the benefits of computational psychiatry to the developmental 

neuroscience of addiction. 
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Figures 

Figure 1. Simplified schematic of the diffusion decision model (DDM) in cases with relatively 
high (red arrow) and relatively low (blue arrow) efficiency of evidence accumulation (EEA). The 
DDM assumes that responses on two-choice response time (RT) tasks and go/no-go tasks are the 
result of a decision variable that drifts over time, on the basis of noisy evidence gathered from 
the stimulus, until it reaches one of two boundaries which each represent a possible choice (e.g., 
the correct vs. incorrect response for a given stimulus). When decision processes on individual 
trials, which are represented by the light red and light blue traces, terminate at one of the 
boundaries, the corresponding response occurs. The boundaries are set at 0 and parameter a, and 
the decision variable begins at a starting value, set at parameter z. A non-decision time (Ter) 
parameter accounts for time taken up by processes peripheral to the decision (e.g., early sensory 
process, motor processes). The drift rate parameter (v) determines the average rate at which the 
decision variable drifts towards the boundary for the correct response, and can be used as a 
measure of EEA in individual differences analyses. Relative to the case with high v/EEA (red 
arrow), the case with low v/EEA (blue arrow) exhibits more variable RTs (a greater proportion of 
long RTs in the skewed right tail) and more incorrect responses. The go/no-go version of the 
DDM assumes the same core processes as the two-choice version, but accounts for non-
responses (omissions on “go” trials and inhibitions on “no go” trials) with an implicit boundary. 
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Figure 2. (a) Spheres (8mm radius) centered about the coordinates of our 8 regions of interest 
(ROIs; white numbers in lower right indicate z-coordinates). (b) Scatterplots of the association 
between our summary measure of error-related activation in these ROIs (PC1) and individuals’ 
average drift rates (v.avg) from the go/no-go task for both the full sample (N=143) and the 
subsample of individuals with substance use outcome data (n=106) who were included in later 
prediction analyses. (c) Scatterplots of associations in which average drift rate (v.avg; left) and 
our summary measure of error-related activation (PC1; right) predict individuals’ values of the 
age 22–26 substance use composite (SC). Simple regression lines are displayed in black.  
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Tables 

Table 1. Abbreviations used in this study. 

Abbreviations Full form 
ABCD Adolescent Brain Cognitive Development study 
ACC Anterior cingulate cortex 
ADHD Attention-Deficit/Hyperactivity Disorder  
AUD Alcohol use disorder 
BF Bayes factor 
DDM Diffusion decision model 
EEA Efficiency of evidence accumulation 
fMRI functional magnetic resonance imaging 
IFG Inferior frontal gyrus 
MLS Michigan Longitudinal Study 
PC1 First principal component (salience network) 
PC2 Second principal component (striatum) 
PCA Principal component analysis 
preSC Previous substance use composite measure (covariate) 
ROI Region of interest 
RT Response time 
SC Substance use composite measure (outcome) 
SUD Substance use disorder 
v.avg Average drift rate 
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Table 2. Demographic information and summary statistics (means with standard deviations in 
parentheses) of all DDM parameters and variables included in prediction analyses. 
Demographics and statistics are reported separately for both the full sample included in the PCA 
of neural activation (N=143) and the subsample with available substance use outcome data 
(n=106), which was the focus of predictive analyses. “Annual” substance use measures were 
averaged over all available assessments from ages 22–26, and the “# of Measurements” rows 
report the mean number of measurement time points available per person for each substance use 
variable. AUD FHx = family history of alcohol use disorder (either parent); ADHD Dx = 
Attention-Deficit/Hyperactivity Disorder diagnosis; Cu. = cumulative sum of each substance use 
measure up to and including participants’ assessment at age 17 
 
 

Demographics/Measures Full Sample 
(N=143) 

Longitudinal 
Subsample (n=106) 

Sex (Male/Female) 87/56 63/43 
Age at scan 19.66 (1.22) 19.89 (1.20) 
Race/Ethnicity   
      Caucasian 128 102 
      Hispanic/Latino 5 2 
      African American 6 2 
      Other/bi-racial 4 0 
AUD FHx (Positive/Negative/Unknown) 108/34/1 78/28/0 
ADHD Dx 15 7 
Drift rate for “go” stimuli (v.go) 2.77 (1.03) 2.95 (1.03) 
Drift rate for “no-go” stimuli (v.nogo)* 1.90 (0.88) 2.04 (0.80) 
Average drift rate for all stimuli (v.avg) 2.34 (0.88) 2.50 (0.86) 
Boundary separation (a) 1.00 (0.21) 1.00 (0.21) 
Non-decision time (Ter) .317 (.032) .314 (.031) 
Response bias (z) 0.62 (0.07) 0.62 (0.07) 
Annual Drink Volume (ages 22–26) --- 429.91 (451.68) 
Annual Marijuana Frequency (ages 22–26) --- 38.98 (83.70) 
Annual Cigarette Frequency (ages 22–26) --- 89.14 (136.08) 
# of Drink Volume Measurements --- 4.00 (1.32) 
# of Marijuana Frequency Measurements --- 4.01 (1.33) 
# of Cigarette Frequency Measurements --- 4.03 (1.33) 
Cu. Drink Volume (at age 17) 312.86 (781.19) 381.70 (764.87) 
Cu. Marijuana Frequency (at age 17) 60.99 (178.93) 48.38 (130.87) 
Cu. Cigarette Frequency (at age 17) 145.55 (356.51) 147.26 (351.81) 
*=Multiplied by -1 for comparability to v.go 
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Table 3. Variance explained by, and loadings of each region of interest (ROI) on, the five 
principal components (PCs) that together explain over 90% of between-subject variation in error-
related ROI activations. MNI coordinates of ROIs are displayed in parentheses. L. = left; R. = 
right; IFG = inferior frontal gyrus; SMA = supplementary motor area 
 

Variance Explained PC1 PC2 PC3 PC4 PC5 
%  explained by component 51.22 18.79 9.34 7.66 4.86 
cumulative % explained 51.22 70.01 79.35 87.02 91.87 

 ROI (x, y, z) Loadings PC1 PC2 PC3 PC4 PC5 
Anterior Cingulate (0,22,38) 0.81 -0.05 0.05 -0.24 -0.52 
L. Insula/IFG (-38,20,-6) 0.81 -0.21 -0.43 0.08 0.15 
L. Parietal (-62,-44,34) 0.77 -0.25 0.35 0.29 -0.03 
L. Striatum (-12,10,-10) 0.45 0.83 -0.01 0.08 -0.04 
R. Insula/IFG (42,18,-6) 0.78 -0.26 -0.49 0.06 0.01 
R. Parietal (58,-44,30) 0.75 -0.26 0.40 0.24 0.13 
R. Striatum  (14,10,-10) 0.55 0.75 -0.02 0.14 0.07 
R. pre-SMA (4,30,54) 0.71 0.03 0.19 -0.61 0.27 
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Table 4. Results from frequentist regression analyses predicting values of the age 22–26 
substance use composite (SC) with models that included 1) v.avg, 2) PC1, 3) PC2 and 4) both 
EEA-related predictors of interest (v.avg and PC1) simultaneously, along with covariates. 
Bolded p-values survive false discovery rate correction for multiple comparisons within families 
defined by the individual regression models. Overall variance explained by each model (r2) is 
displayed in parentheses. AUD FHx = family history of alcohol use disorder (either parent); 
ADHD Dx = Attention-Deficit/Hyperactivity Disorder diagnosis; preSC = prior substance use 
composite (cumulative use through age 17) 
 
Model 

(r2)   Unstandardized 
Standard 

Error Standardized T p 

v.avg (Intercept) 0.513 0.201 
   

(.378) Sex -0.281 0.117 -0.191 -2.407 0.018 

 
AUD FHx  0.041 0.132 0.025 0.310 0.757 

 ADHD Dx 0.320 0.234 0.110 1.368 0.174 

 
preSC 0.410 0.065 0.501 6.312 < .001 

 
v.avg -0.180 0.069 -0.214 -2.625 0.010 

PC1 (Intercept) 0.060 0.126 
   

(.393) Sex -0.244 0.116 -0.166 -2.101 0.038 

 
AUD FHx 0.054 0.131 0.033 0.413 0.680 

 ADHD Dx 0.314 0.231 0.108 1.358 0.177 

 
preSC 0.439 0.064 0.538 6.858 < .001 

 
PC1 -0.086 0.028 -0.251 -3.106 0.002 

PC2 (Intercept) 0.149 0.135    

(.345) Sex -0.323 0.123 -0.219 -2.631 0.010 

 AUD FHx -0.052 0.137 -0.032 -0.380 0.704 

 ADHD Dx 0.371 0.240 0.128 1.548 0.125 

 preSC 0.427 0.066 0.522 6.427 < .001 

 PC2 0.057 0.047 0.103 1.219 0.226 

v.avg (Intercept) 0.388 0.201 
   

and Sex -0.243 0.114 -0.165 -2.126 0.036 
PC1 AUD FHx 0.091 0.130 0.055 0.698 0.487 

(.419) ADHD Dx 0.259 0.229 0.089 1.134 0.259 

 
preSC 0.426 0.063 0.521 6.721 < .001 

 
v.avg -0.142 0.068 -0.169 -2.086 0.040 

 
PC1 -0.074 0.028 -0.215 -2.648 0.009 
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Table 5. Results of the Bayesian regression analyses in which all possible models involving the 
predictors of interest, drift rate (v.avg), general error-related activation (PC1), and activation 
specific to the striatum (PC2), were compared to a “null” model that included only the covariates 
of sex, family history of alcohol use disorder (AUD FHx), Attention-Deficit/Hyperactivity 
Disorder diagnosis (ADHD Dx), and the prior substance use composite (preSC). Note that all 
models contain these covariates in addition to any predictors of interest. In the “Model 
Comparison” section, P(M) is prior probability of the model, P(M|data) is the posterior 
probability of the model after seeing the data, BF10 is the Bayes factor comparing the model to 
the “null” model, and BFM is a Bayes factor comparing the model to all other models from the 
analysis. The “Posterior Summaries” section reports the model-averaged mean, standard 
deviation (SD) and 95% credible intervals of posterior samples for coefficients of each predictor 
of interest, as well as inclusion probabilities obtained from model averaging; P(inc) is the prior 
probability of including each predictor, P(inc|data) is the posterior probability of including each 
predictor, and BFinc is a Bayes factor for the change from prior to posterior inclusion odds for the 
predictor after seeing the data. 
 
Model Comparison  

Models  P(M) P(M|data) BFM  BF10  r²  
“Null” (Sex, AUD FHx, ADHD Dx, preSC)  

 
0.125 

 
0.012 

 
0.086 

 
1.000 

 
0.335 

 
v.avg + PC1  

 
0.125 

 
0.415 

 
4.968 

 
34.222 

 
0.419 

 
PC1  

 
0.125 

 
0.221 

 
1.984 

 
18.208 

 
0.393 

 
v.avg + PC1 + PC2 

 
0.125 

 
0.150 

 
1.238 

 
12.389 

 
0.422 

 
PC1 + PC2  0.125  0.102  0.797  8.427  0.401  
v.avg   0.125  0.068  0.514  5.637  0.378  
v.avg + PC2   0.125  0.025  0.177  2.039  0.382  
PC2  0.125  0.006  0.045  0.522  0.345  

 

 
 
Posterior Summaries of Coefficients  

 95% Credible Interval  
Coefficient Mean SD P(inc) P(inc|data) BFinc Lower Upper 
v.avg  

 
-0.087 

 
0.083 

 
0.500 

 
0.658 

 
1.928 

 
-0.251 

 
0.000 

 
PC1  

 
-0.063 

 
0.034 

 
0.500 

 
0.888 

 
7.963 

 
-0.117 

 
0.000 

 
PC2  0.010  0.028  0.500  0.284  0.396  -0.026  0.088  
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Go/No-Go Task 

 Participants completed an event-related go/no-go task1–3 during fMRI data collection in 

which they were presented with a string of letters (white on black background) that indicated 

whether they should respond (any letter other than “X”; 75% of trials) or inhibit their response 

(“X”; 25% of trials). Letters were presented for 500ms (3500ms interstimulus fixation interval) 

during 5 imaging runs of 49 trials each (245 trials total; 60 “X” trials).  

MRI Data Acquisition Parameters 

 A high-resolution T1-weighted anatomical image was obtained using the following 

parameters: three-dimensional spoiled gradient-recalled echo, TR=25ms, minimum TE, 

FOV=25cm, 256x256 matrix, slice thickness=1.4mm. During runs of the go/no-go task, whole 

brain T2*-weighted functional images were acquired using a single-shot spiral in-out sequence4 

with the following parameters: TR=2000ms, TE=30ms, flip angle=90°, FOV=200mm, 29 axial 

slices, 64×64 matrix, in-plane resolution=3.12mm×3.12mm, and slice thickness=4mm. All scans 

were conducted with the same 3.0 T GE Signa scanner. 

Pre-Processing and Single-Subject fMRI Analyses 

 Functional images were reconstructed using an iterative algorithm5 and entered into the 

following pre-processing steps: 1) motion correction with realignment using FSL 5.0.2.2 tools 

(FMRIB, Oxford, United Kingdom), 2) spatial normalization to standard space as defined by the 

Montreal Neurological Institute template using Statistical Parametric Mapping 8 (SPM8: 

Wellcome Institute of Cognitive Neurology, London, United Kingdom) and using normalization 

of the T1-weighted anatomical image for guidance, 3) resampling to 2x2x2mm voxels in SPM8, 

and 4) spatial smoothing with a 6mm full-width half-maximum Gaussian kernel. Functional runs 
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were excluded from further analysis if they exceeded 3�mm translation or 3° rotation in any 

direction during the run. 

A general linear model was fit in SPM8 to individual subjects’ fMRI time series data 

with three regressors convolved with the hemodynamic response function: 1) “go” responses, 2) 

successful inhibition (SI) trials, in which participants withheld their response to a “no-go” 

stimuli, and 3) failed inhibition (FI) trials, in which participants made a response following “no-

go” stimuli. Motion parameters from earlier realignment and average white matter signal 

intensity for each volume were also included as nuisance regressors. Individual statistical maps 

for the primary “error monitoring” contrast of interest (FI > correct “go”) were generated for 

later analyses. 

Correlations Between Raw and Composite Substance Use Measures 

We investigated simple correlations between all individual and composite substance use 

outcome measures of interest from ages 22–26 in order to 1) evaluate whether they were 

moderately correlated with each other, as would be expected given prior research, and 2) ensure 

that our substance use composite (SC) measure was well-representative of the use of all three 

substances. We also did the same with measures of prior cumulative use of all three substances 

from age 17 and the prior substance use composite (preSC) that was utilized as a covariate in the 

primary analyses. Supplemental Table 1 displays Bayesian estimates of correlation coefficients 

between all of these variables. Inspection of these values indicates that, as expected, measures of 

average use of all three substances from ages 22–26 are moderately correlated with one another, 

and measures of cumulative use by age 17 also show strong interrelationships. Furthermore, both 

the SC and preSC show strong, and roughly equal, correlations with the three substance use 

measures that each composite measure was derived from, suggesting that these composites 
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provide representative indices of the use of common substances for specific developmental 

periods.  

Sensitivity Analyses 

 To assess whether our findings were robust to the inclusion of prior substance use and 

other covariates in our prediction models, we conducted two sensitivity analyses using the same 

frequentist and Bayesian methods that were utilized in the primary analyses. First, we conducted 

prediction analyses which used measures of cumulative use of individual substances by age 17 

(alcohol, marijuana, cigarettes) as covariates, in place of the preSC, in order to evaluate whether 

our findings would hold when prior use of these substances was accounted for individually 

(Supplemental Tables 2–4). Next, we conducted prediction analyses without any of our previous 

covariates to evaluate whether our results were still robust even when models did not account for 

other relevant risk factors (Supplemental Tables 5 and 6).  

Results of the first sensitivity analysis are highly similar to the results of our primary 

analyses reported in the manuscript; both predictors of interest, v.avg and PC1, show statistically 

significant relationships with the SC outcome in frequentist tests, and Bayesian model 

comparison indicates substantial evidence for the inclusion of both predictors of interest in the 

model. Results of our second sensitivity analysis, without any covariates, were also similar, 

although there was slightly less evidence for the inclusion of the neural-level measure (PC1). 

However, the best-fitting model was still one which contained both predictors of interest, rather 

than v.avg only. Taken together, results from these sensitivity analyses suggest that our primary 

results are generally robust to the inclusion, vs. exclusion, of covariates in our regression models, 

and to alterations in the measurement of the prior substance use covariates, specifically.  

Individual Regions of Interest as Predictors of Substance Use 
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 We opted to use a network-based approach, in which a latent component score that was 

informed by activation across multiple regions of interest (ROIs) linked to error monitoring 

provided our primary measure of error-related activation, for our main analyses due to its 

advantages relative to traditional univariate approaches. Nonetheless, we also appreciate that 

readers may be interested in whether activation estimates from individual ROIs display more 

selective prospective relationships with substance use behaviors. We did not attempt Bayesian 

model comparison analyses to investigate this possibility because we were concerned that the 

high degree of collinearity between many pairs of ROIs (r>.50) would render models that 

included these ROIs uninformative. However, to provide preliminary indications of which ROIs 

may display more selective relationships with substance use, we conducted eight separate 

frequentist regression analyses involving each individual ROI along with covariates 

(Supplemental Tables 7–8). These analyses indicated that only the bilateral insula/IFG ROIs 

demonstrated prospective relationships with substance use that survived correction for multiple 

comparisons, although the anterior cingulate and bilateral parietal ROIs also displayed 

indications of weaker prospective relationships.  
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Supplemental Tables 

Supplemental Table 1. Correlations between measures of the use of individual substances, both 
averaged over ages 22–26 and cumulative use (Cu.) by age 17, as well as with the age 22–26 
average substance use composite (SC) and age 17 prior substance use composite (preSC). Large-
font numbers indicate the median of the Bayesian posterior distribution of the correlation 
coefficient, representing the most likely correlation value, while smaller-font numbers in italics 
indicate the 95% credible intervals of the posterior distribution, which represent the upper and 
lower bounds of the range in which there is a .95 probability that the correlation coefficient falls. 
DV = annual volume of alcoholic drinks (standard beverages); MF = annual marijuana use 
frequency (days of use); CF = annual cigarette use frequency (days of use) 
 
 

  
DV 

(22–26) 
MF 

(22–26) 
CF  

(22–26) 
SC (22–

26) 
Cu. DV 

(17)  
Cu. MF 

(17)  
Cu. CF 

(17) 
DV (22–26) — 

      
— 

      
— 

      
MF (22–26) 0.24 — 

     
0.41 — 

     
0.05 — 

     
CF (22–26) 0.34 0.29 — 

    
0.49 0.45 — 

    
0.16 0.10 — 

    
SC (22–26) 0.73 0.70 0.75 — 

   
0.80 0.78 0.82 — 

   
0.62 0.59 0.64 — 

   
Cu. DV (17)  0.60 0.28 0.26 0.53 — 

  
0.71 0.45 0.43 0.65 — 

  
0.46 0.10 0.08 0.37 — 

  
Cu. MF (17)  0.40 0.39 0.24 0.47 0.71 — 

 
0.55 0.53 0.41 0.60 0.79 — 

 
0.23 0.21 0.05 0.30 0.60 — 

 
Cu. CF (17) 0.29 0.24 0.33 0.39 0.70 0.64 — 

0.45 0.40 0.49 0.54 0.79 0.73 — 
0.11 0.05 0.15 0.22 0.59 0.50 — 

preSC (17) 0.49 0.34 0.31 0.52 0.91 0.88 0.88 
0.61 0.49 0.47 0.64 0.94 0.92 0.91 

0.32 0.16 0.13 0.36 0.86 0.83 0.82 
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Supplemental Table 2. Results from our first sensitivity analysis, which included measures of 
prior use of individual substances as covariates rather than a prior use composite, involving 
frequentist regressions that predicted values of the age 22–26 substance use composite (SC) with 
models that included 1) v.avg and 2) PC1, along with covariates. Bolded p-values survive false 
discovery rate correction for multiple comparisons within families defined by the individual 
regression models. Overall variance explained by each model (R2) is displayed in parentheses. 
AUD FHx = family history of alcohol use disorder (either parent); ADHD Dx = Attention-
Deficit/Hyperactivity Disorder diagnosis; Cu. DV = cumulative drink volume at age 17; Cu. MJ 
= cumulative marijuana use at age 17; Cu. CF = cumulative cigarette use at age 17 
 
Model 

(r2) 
  Unstandardized Standard 

Error 
Standardized t p 

v.avg (Intercept) 0.492 0.200 
   

(.397) Sex -0.243 0.118 -0.165 -2.055 0.043 

 
AUD FHx  0.073 0.134 0.045 0.546 0.586 

 ADHD Dx 0.334 0.236 0.115 1.416 0.160 

 
Cu. DV (17) 0.273 0.093 0.376 2.935 0.004 

 Cu. MJ (17) 0.128 0.086 0.176 1.484 0.141 

 Cu. CF (17) 0.003 0.086 0.004 0.034 0.973 

 
v.avg -0.188 0.069 -0.223 -2.737 0.007 

PC1 (Intercept) 0.017 0.127 
   

(.416) Sex -0.201 0.118 -0.137 -1.71 0.090 

 
AUD FHx  0.088 0.132 0.054 0.670 0.505 

 ADHD Dx 0.331 0.231 0.114 1.43 0.156 

 
Cu. DV (17) 0.300 0.092 0.413 3.268 0.001 

 Cu. MJ (17) 0.127 0.085 0.175 1.497 0.138 

 Cu. CF (17) 0.007 0.085 0.010 0.082 0.934 

 
PC1 -0.091 0.028 -0.266 -3.299 0.001 
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Supplemental Table 3. Results from our first sensitivity analysis, which included measures of 
prior use of individual substances as covariates rather than a prior use composite, involving 
frequentist regressions that predicted values of the age 22–26 substance use composite (SC) with 
models that included 1) PC2, 2) both main predictors of interest (v.avg and PC1) simultaneously, 
along with covariates. Bolded p-values survive false discovery rate correction for multiple 
comparisons within families defined by the individual regression models. Overall variance 
explained by each model (R2) is displayed in parentheses. AUD FHx = family history of alcohol 
use disorder (either parent); ADHD Dx = Attention-Deficit/Hyperactivity Disorder diagnosis; 
Cu. DV = cumulative drink volume at age 17; Cu. MJ = cumulative marijuana use at age 17; Cu. 
CF = cumulative cigarette use at age 17 
 
Model 

(r2)   Unstandardized Standard 
Error Standardized t p 

PC2 (Intercept) 0.121 0.135 
   

(.368) Sex -0.291 0.123 -0.198 -2.375 0.020 

 
AUD FHx  -0.031 0.137 -0.019 -0.224 0.823 

 ADHD Dx 0.377 0.241 0.129 1.564 0.121 

 
Cu. DV (17) 0.295 0.096 0.407 3.077 0.003 

 Cu. MJ (17) 0.135 0.089 0.186 1.519 0.132 

 Cu. CF (17) -0.009 0.091 -0.012 -0.098 0.922 

 
PC2 0.078 0.048 0.141 1.621 0.108 

v.avg (Intercept) 0.356 0.199 
   

and Sex -0.197 0.115 -0.134 -1.710 0.091 

PC1 AUD FHx  0.131 0.131 0.080 1.001 0.319 

(.443) ADHD Dx 0.269 0.229 0.093 1.177 0.242 

 
Cu. DV (17) 0.295 0.090 0.406 3.273 0.001 

 Cu. MJ (17) 0.135 0.083 0.186 1.629 0.107 

 Cu. CF (17) -0.011 0.083 -0.015 -0.128 0.899 

 
v.avg -0.149 0.068 -0.176 -2.196 0.030 

 
PC1 -0.079 0.028 -0.230 -2.845 0.005 
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Supplemental Table 4. Results from our first sensitivity analysis, which included measures of 
prior use of individual substances as covariates rather than a prior use composite, where 
Bayesian regression models that involved all combinations of predictors of interest, drift rate 
(v.avg), error-related activation (PC1), and activation specific to the striatum (PC2), were 
compared to a “null” model that included only the covariates of sex, family history of alcohol 
use disorder (AUD FHx), Attention-Deficit/Hyperactivity Disorder diagnosis (ADHD Dx), and 
separate measures of prior alcohol (DV), marijuana (MJ) and cigarette use (CF). In the “Model 
Comparison” section, P(M) is prior probability of the model, P(M|data) is the posterior 
probability of the model after seeing the data, BF10 is the Bayes factor comparing the model to 
the “null” model, and BFM is a Bayes factor comparing the model to all other models from the 
analysis. The “Posterior Summaries” section reports the model-averaged mean, standard 
deviation (SD) and 95% credible intervals of posterior samples for coefficients of each predictor 
of interest, as well as inclusion probabilities obtained from model averaging; P(inc) is the prior 
probability of including each predictor, P(inc|data) is the posterior probability of including each 
predictor, and BFinc is a Bayes factor for the change from prior to posterior inclusion odds for the 
predictor after seeing the data. 
 
Model Comparison  

Models  P(M) P(M|data) BFM  BF10  r²  
“Null” (Sex, AUD FHx, ADHD Dx, DV, MJ, CF)  

 
0.125 

 
0.005 

 
0.033 

 
1.000 

 
0.351 

 
v.avg + PC1  

 
0.125 

 
0.385 

 
4.381 

 
81.225 

 
0.443 

 
PC1  

 
0.125 

 
0.247 

 
2.302 

 
52.221 

 
0.453 

 
v.avg + PC1 + PC2 

 
0.125 

 
0.153 

 
1.266 

 
32.308 

 
0.416 

 
PC1 + PC2  0.125  0.145  1.183  30.506  0.431  
v.avg   0.125  0.038  0.273  7.931  0.397  
v.avg + PC2   0.125  0.023  0.164  4.823  0.406  
PC2  0.125  0.005  0.033  0.990  0.368  

 

 
 
Posterior Summaries of Coefficients  

 
95% Credible Interval  

Coefficient  Mean SD P(inc) P(inc|data) BFinc Lower Upper 
v.avg  

 
-0.091 

 
0.082 

 
0.500 

 
0.693 

 
2.256 

 
-0.240 

 
0.000 

 
PC1  

 
-0.069 

 
0.032 

 
0.500 

 
0.930 

 
13.311 

 
-0.114 

 
0.000 

 
PC2  0.024  0.040  0.500  0.420  0.723  -0.006  0.138  
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Supplemental Table 5. Results from our second sensitivity analysis, which included no 
covariates for other substance use risk factors, involving frequentist regressions that predicted 
values of the age 22–26 substance use composite (SC) with models that included 1) v.avg, 2) 
PC1, 3) PC2, and 4) both main predictors of interest. Bolded p-values survive false discovery 
rate correction for multiple comparisons within families defined by the individual regression 
models. Overall variance explained by each model (R2) is displayed in parentheses.  
 
Model 

(r2)   Unstandardized 
Standard 

Error Standardized t p 

v.avg (Intercept) 0.582 0.210 
   

(.076) v.avg -0.233 0.080 -0.276 -2.931 0.004 

PC1 (Intercept) 0.020 0.069 
   

(.059) PC1 -0.083 0.033 -0.243 -2.554  0.012 

PC2 (Intercept) 0.002 0.071    

(.004) PC2 0.034 0.054 0.061 0.620 0.536 

v.avg (Intercept) 0.501 0.211 
   

+ PC1 v.avg -0.195 0.081 -0.230 -2.403 0.018 

(.109) PC1 -0.064 0.033 -0.186 -1.944 0.055 
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Supplemental Table 6. Results from our second sensitivity analysis, which included no 
covariates for other substance use risk factors, involving Bayesian regression analyses in which 
all possible models involving predictors of interest, drift rate (v.avg), error-related activation 
(PC1), and activation specific to the striatum (PC2), were compared to a “null” model that 
included only the regression intercept parameter. In the “Model Comparison” section, P(M) is 
prior probability of the model, P(M|data) is the posterior probability of the model after seeing the 
data, BF10 is the Bayes factor comparing the model to the “null” model, and BFM is a Bayes 
factor comparing the model to all other models from the analysis. The “Posterior Summaries” 
section reports the model-averaged mean, standard deviation (SD) and 95% credible intervals of 
posterior samples for coefficients of each predictor of interest, as well as inclusion probabilities 
obtained from model averaging; P(inc) is the prior probability of including each predictor, 
P(inc|data) is the posterior probability of including each predictor, and BFinc is a Bayes factor for 
the change from prior to posterior inclusion odds for the predictor after seeing the data. 
 
Model Comparison  

Models  P(M) P(M|data) BFM  BF10  r²  
“Null” (intercept only)  

 
0.125 

 
0.031 

 
0.221 

 
1.000 

 
0.000 

 
v.avg + PC1  

 
0.125 

 
0.365 

 
4.020 

 
11.903 

 
0.109 

 
v.avg   

 
0.125 

 
0.267 

 
2.552 

 
8.717 

 
0.076 

 
v.avg + PC1 + PC2 

 
0.125 

 
0.114 

 
0.898 

 
3.712 

 
0.110 

 
PC1   0.125  0.110  0.869  3.605  0.059  
v.avg + PC2   0.125  0.071  0.532  2.305  0.077  
PC1 + PC2  0.125  0.035  0.254  1.144  0.062  
PC2  0.125  0.007  0.053  0.244  0.004  

 

 
 
Posterior Summaries of Coefficients  

 
95% Credible Interval  

Coefficient  Mean SD P(inc) P(inc|data) BFinc Lower Upper 
v.avg  

 
-0.154 

 
0.102 

 
0.500 

 
0.816 

 
4.444 

 
-0.324 

 
0.000 

 
PC1  

 
-0.038 

 
0.039 

 
0.500 

 
0.624 

 
1.660 

 
-0.116 

 
0.000 

 
PC2  0.003  0.024  0.500  0.227  0.294  -0.041  0.079  
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Supplemental Table 7. Results from frequentist regression analyses predicting values of the age 
22–26 substance use composite (SC) with models that included activation estimates from 1) 
anterior cingulate cortex (ACC), 2) left insula / inferior frontal gyrus (LI/IFG), 3) right insula / 
inferior frontal gyrus (RI/IFG), and 4) the pre-supplementary motor area (PSMA), along with 
covariates. Bolded p-values survive false discovery rate correction for multiple comparisons 
within families defined by the individual regression models. Overall variance explained by each 
model (r2) is displayed in parentheses. AUD FHx = family history of alcohol use disorder (either 
parent); ADHD Dx = Attention-Deficit/Hyperactivity Disorder diagnosis; preSC = prior 
substance use composite (cumulative use through age 17) 
 
Model 

(r2) 
  Unstandardized Standard 

Error 
Standardized T p 

ACC (Intercept) 0.215 0.135 
   

(.374) Sex -0.241 0.119 -0.164 -2.030 0.045 

 
AUD FHx  0.022 0.132 0.013 0.165 0.869 

 ADHD Dx 0.371 0.233 0.128 1.593 0.114 

 
preSC 0.436 0.065 0.534 6.709 < .001 

 
ACC -0.054 0.022 -0.203 -2.505 0.014 

 LI/IFG (Intercept) 0.287 0.131 
   

(.422) Sex -0.324 0.113 -0.220 -2.872 0.005 

 
AUD FHx 0.063 0.127 0.038 0.493 0.623 

 ADHD Dx 0.217 0.229 0.074 0.946 0.346 

 
preSC 0.437 0.062 0.535 6.999 < .001 

 
LI/IFG -0.089 0.023 -0.308 -3.876 < .001 

RI/IFG (Intercept) 0.330 0.142    

(.401) Sex -0.318 0.115 -0.216 -2.767 0.007 

 AUD FHx 0.02 0.128 0.012 0.153 0.878 

 ADHD Dx 0.253 0.232 0.087 1.090 0.278 

 preSC 0.431 0.063 0.527 6.790 < .001 

 RI/IFG -0.078 0.023 -0.265 -3.332 0.001 

PSMA (Intercept) 0.127 0.133 
   

(.340) Sex -0.288 0.120 -0.196 -2.391 0.019 

 
AUD FHx 0.006 0.138 0.004 0.047 0.963 

 ADHD Dx 0.399 0.239 0.137 1.669 0.098 

 
preSC 0.434 0.068 0.532 6.412 < .001 

 
PSMA -0.020 0.024 -0.071 -0.834 0.406 
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Supplemental Table 8. Results from frequentist regression analyses predicting values of the age 
22–26 substance use composite (SC) with models that included activation estimates from 1) left 
parietal lobe (LPar), 2) right parietal lobe (RPar), 3) left striatum (LStri), and 4) right striatum 
(RStri), along with covariates. Bolded p-values survive false discovery rate correction for 
multiple comparisons within families defined by the individual regression models. Overall 
variance explained by each model (r2) is displayed in parentheses. AUD FHx = family history of 
alcohol use disorder (either parent); ADHD Dx. = Attention-Deficit/Hyperactivity Disorder 
diagnosis; preSC = prior substance use composite (cumulative use through age 17) 
 
Model 

(r2)   Unstandardized 
Standard 

Error Standardized T p 

LPar (Intercept) 0.213 0.136 
   

(.370) Sex -0.238 0.120 -0.162 -1.986 0.050 

 
AUD FHx  -0.006 0.131 -0.004 -0.046 0.964 

 ADHD Dx 0.349 0.235 0.120 1.486 0.140 

 
preSC 0.433 0.065 0.530 6.644 < .001 

 
LPar -0.076 0.032 -0.192 -2.357 0.020 

 RPar (Intercept) 0.221 0.138 
   

(.368) Sex -0.256 0.119 -0.174 -2.156 0.033 

 
AUD FHx -0.016 0.131 -0.010 -0.119 0.906 

 ADHD Dx 0.365 0.234 0.125 1.556 0.123 

 
preSC 0.428 0.065 0.523 6.554 < .001 

 
RPar -0.075 0.033 -0.183 -2.276 0.025 

LStri (Intercept) 0.061 0.147    

(.338) Sex -0.268 0.125 -0.182 -2.139 0.035 

 AUD FHx 0.006 0.139 0.003 0.041 0.967 

 ADHD Dx 0.413 0.240 0.142 1.724 0.088 

 preSC 0.426 0.067 0.521 6.377 < .001 

 LStri -0.035 0.054 -0.057 -0.655 0.514 

RStri (Intercept) 0.069 0.142 
   

(.338) Sex -0.275 0.123 -0.187 -2.24 0.027 

 
AUD FHx <.001 0.138 <.001 0.004 0.997 

 ADHD Dx 0.405 0.239 0.139 1.694 0.093 

 
preSC 0.422 0.067 0.516 6.314 < .001 

 
RStri -0.035 0.054 -0.055 -0.648 0.518 
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