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Abstract

locStra is an R-package for the analysis of regional and global population stratification in
whole genome sequencing studies, where regional stratification refers to the substructure defined
by the loci in the region. Population substructure can be assessed based on the genetic covariance
matrix, the genomic relationship matrix, and the unweighted /weighted genetic Jaccard similarity
matrix. Using a sliding window approach, the regional similarity matrices are compared to the
global ones, based on user-defined window sizes and metrics, e.g. correlation between regional
and global eigenvectors. An algorithm for the specification of the window size is provided. As
the implementation fully exploits sparse matrix algebra and is written in C++, the analysis
is highly efficient. Even on single cores, for realistic study sizes (several thousand subjects,
several million RVs per subject), the runtime for the genome-wide computation of all regional
similarity matrices does typically not exceed one hour, enabling an unprecedented investigation
of regional stratification across the entire genome. The package is applied to three WGS studies,
illustrating the varying patterns of regional substructure across the genome and its effects on

association testing.

1 Introduction

Genetic association studies are a popular mapping tool; however, they can be vulnerable to con-
founding due to population substructure (Laird and Lange], [2010). Numerous methods have been
proposed to address this issue (Devlin and Roeder, [1999; |Pritchard et al., 2000). Popular approaches
rely on the genetic covariance matrix of the genotype data: EIGENSTRAT, STRATSCORE, multi-
dimensional scaling, etc. (Price et al., 2006; Patterson et al., [2006; [Lee et al., 2012), or on the
genomic relationship matrix (Yang et al., |2011)). For populations with recent admixture where each
subject contains different proportions of the ancestral genomes, local ancestry-approaches have
been suggested (Sankararaman et al., 2008)).

While there is strong evidence for regional stratification (Price et al. 2009; |Martin et al., | 2018}
Zhong et al., 2019)), the matrix-based approaches are typically computed only globally. Although,
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for the validity of the matrix-based approaches, it is only required that the selected loci are not in
linkage disequilibrium (LD) (Laird and Lange, 2010) and there are no theoretical constraints as to
whether the loci are selected genome-wide or from a specific region, the computational burden has
generally been prohibitive to use existing implementations for a genome-wide analysis of regional
stratification. As most matrix-based approaches are designed for common, uncorrelated variant
data, i.e. loci that are not LD, many genomic regions do not contain a sufficient number of such
loci for the regional computation of matrix-based approaches.

With the arrival of whole genome sequencing data, an abundance of data on densely spaced
rare variants (RVs) that are mostly not in LD became generally available. As RVs can be more
informative about recent admixture (Bodmer and Bonilla, 2008; Kryukov et al., 2009; Keinan and
Clark, |2012), approaches based on Jaccard similarity matrices that utilize RV/WGS data have been
developed (Prokopenko et al., 2016} |Schlauch et al., 2017)). However, the computational bottleneck
has remained.

We developed locStra, an R-package implementing four approaches to assess population strat-
ification in RVs at the regional and global level using (1) the genetic covariance matrix, (2) the
genomic relationship matrix, (3) the unweighted and (4) weighted Jaccard similarity matrices.
Written in C++4, all similarity matrices are algebraically transformed so that the computations
are executed on sparse data structures. The sparse matrix structure is maintained throughout all
computations to maximize computational efficiency. Using sliding windows (Morrison et al., 2013;
Yazdani et all [2015) of user-specified length, locStra enables the fast analysis of regional stratifi-
cation at the genome-wide level. An algorithm for the selection of the window sizes is proposed.

Applications of locStra to three WGS studies illustrate the importance of the ability to inves-
tigate regional substructure and to adjust for it in genetic association testing. We also evaluate
the differences between the four similarity matrices and the computational features of locStra in
terms of runtime. locStra makes substantive research into regional stratification generally feasible

in WGS studies at a computational cost that is not even prohibitive on a single CPU system.

2 Implementation

The core implementation of locStra is based on fully sparse matrix algebra in C++, using ReppFigen
of Bates and Eddelbuettel (2013)). The package is available on The Comprehensive R Archive
Network.

Four functions provide C++ implementations of standard approaches to population stratifica-
tion which are made available through wrapper functions in R: covMatriz computes the genetic
covariance matrix (Price et al., 2006)), grMatriz computes the genomic relationship (Yang et al.,
2011)), jaccardMatriz computes the Jaccard similarity matrix (Prokopenko et all 2016)), and sMa-
triz implements the weighted Jaccard matrix (Schlauch et al.;|2017). The unweighted and weighted
Jaccard indices, traditionally a similarity index for sets, are two recently proposed approaches for

the analysis of rare variant data which were shown to provide a higher resolution than the afore-
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mentioned approaches (Prokopenko et all [2016). The entries of the Jaccard matrix measure the
set-theoretic similarity of the genomic data of all pairs of subjects, and can be computed efficiently
using only binary operations. All functions have a boolean argument dense to switch between
C++ implementations for dense and sparse matrix algebra, depending on the type of the input
data (default is dense=False).

The main function is fullscan. It has five arguments, and allows for a flexible specification of

the regional population stratification scan:

e The first input is the matrix containing the genotype data. The input matrix contains the

data for one individual per column.

e The second argument is a two-column matrix (called windows) that contains the window
specification of the scan. The sliding windows can easily be generated by an auxiliary function

which is provided. The window size can be chosen arbitrarily.

e The third argument, matrizFunction, handles the processing of each window and takes one

input argument, e.g. covMatriz, grMatriz, etc.

e The third input is the specification of a summaryFunction for the processed data before
comparison. This can be any function that is compatible with the output of matrizFunction,

e.g. the function powerMethod computing the largest eigenvector which is provided.

e The fifth input argument is the function comparisonFunction that compares summaries, e.g.
the native R correlation function cor applied to the first regional and the first global eigen-

vector.

The supplementary material contains all details on the functions computing similarity matrices, on

the main and auxiliary functions, and an algorithm for the selection of the window size.

3 Usage and Data Analysis Examples

The supplementary material includes implementation details of locStra and an example using the
1,000 Genomes Project (The 1000 Genomes Project Consortiuml, 2015). Using LD-pruned RVs
(< 1%) in the European super population (503 subjects, ca. 5 million RVs) and a sliding window
approach of 120,000 RVs (as suggested by the window selection algorithm), we computed the corre-
lations between the first eigenvector of all regional similarity matrices with the corresponding first
eigenvector of the global similarity matrix. This was done for all four different types of similarity
matrices. For example, on chromosome 16 (Figure , for all four similarity matrices, the corre-
lations between the first regional and first global eigenvectors are very small, except for a small
genomic region where all correlations approach almost 1. This suggest that the substructure, as it
is captured by similarity matrices, is regionally very different form the global substructure in terms
of the eigenvectors. We also examine the varying patterns of regional substructure in a Child-

hood Asthma WGS study from Costa Rica and demonstrate the benefits of regional substructure
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Figure 1: Results for chromosome 16 of the EUR super population of the 1,000 Genome Project.
For sliding windows of size 128,000, correlations between global and regional first eigenvectors of
the covariance matrix, GRM matrix, s-matrix, and Jaccard similarity matrix.

adjustment in genetic association testing exemplarily using a WGS study for Chronic obstructive

pulmonary disease (COPD).

4 Conclusion

The R-package locStra is the first software packages that enables a comprehensive genome-wide
analysis of regional stratification based on similarity matrices in WGS studies. Given a runtime
of around 500 seconds for the genome-wide analysis of all sliding windows in the EUR super
population of the 1,000 Genome Project (one Intel QuadCore i5-7200 CPU with 2.5 GHz and
8 GiB of RAM), locStra provides the community with the general ability to investigate regional
stratification patterns at a genome-wide level in WGS studies and to adjust the association analysis

for such patterns.

Appendix

We start with a detailed description of the software functionality provided by the locStra package
(Section . We then present implementation details on the sparse calculations carried out in
our R package (Section , including their theoretical runtimes. In Section [C| we present a data
analysis demonstrating (1) regional and global population stratification for certain chromosomes
in populations of the 1,000 Genome Project (The 1000 Genomes Project Consortium, 2015)), (2)

a runtime analysis for all four similarity approaches (covariance matrix, GRM matrix, s-matrix,
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Jaccard matrix), (3) a runtime comparison of locStra to PLINK2 (Chang et al., [2015; [Purcell and
Chang, 2019)), and (4) an approach to select suitable window sizes for population stratification.
Section [D] highlights another regional analysis for the Costa Rica population isolate. Section
shows an application of regional stratification in which we demonstrate that it is beneficial to

correct a linear regression using both global and regional PCAs.

A Software description

The locStra package makes a total of seven functions available.

A.1 Dense and sparse matrix implementations

Four functions provide C++ implementations of standard approaches to population stratification,
both for dense and sparse matrix algebra. The code handles dense and sparse input matrices
separately since either version can be inefficient if used for matrices of the wrong type. All following
functions have a boolean argument dense to select which C4++ implementation is to be used. The

default is dense=Fulse.

1. The function covMatriz computes the genetic covariance matrix. The input is allowed to be

any real valued matrix.

2. The function grMatriz computes the genomic relationship matrix (GRM) as defined in [Yang
et al.[(2011). The input must be a binary matrix. Both the classic and robust versions (Wang
et al., [2017)) of the GRM are supported, and can be switched using the boolean flag robust.
The default is robust="True.

3. The function jaccardMatriz computes the Jaccard similarity matrix (Prokopenko et al.|2016).

The input must be a binary matrix.

4. The function sMatriz implements the weighted Jaccard matrix (Schlauch, [2016). In addition
to the boolean dense argument, the function sMatriz also has a boolean argument phased
to indicate if the input data is phased (default is phased=False). The last argument is the
integer min Variants which is a cutoff value for the minimal number of variants to consider

(default is minVariants=5).

A.2 Main function

The main function of the package is fullscan. It has five arguments and allows for a flexible

specification of the regional population stratification scan of the data through its generic structure.

e The first input is the (sparse) matrix containing the sequencing data. The input matrix is

assumed to be oriented to contain the data for each individual per column.
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e The second argument is a two-column matrix (called windows) that contains the window
specification of the scan. The two entries per row are the start and end positions of each
window. The matrix of sliding windows can easily be generated with the auxiliary function
make Windows (Section |A.3]).

e The third argument, matrizFunction, handles the processing of each sliding window. The
function takes one input argument (often a matrix). Any function can in principle be used.

Typical choices are covMatriz, grMatriz, jaccardMatriz, or sMatriz.

e Next, the modular structure of fullscan requires the specification of a summaryFunction for
the processed data before comparison. This can be any function of one input argument that
is compatible with the output of matrizFunction. The computation of the largest eigenvector
via function powerMethod (Section is an intuitive choice.

e fullscan uses its fifth input argument, the function comparisonFunction, to compare sum-
maries (e.g., first eigenvectors) on a regional and a global level. The comparisonFunction has
two arguments as input, both of which need to be compatible with the output of the function

summaryFunction. One example is the native R correlation function cor for two vectors.

The output of fullscan is a two column matrix with global and regional comparison values per
row, where each row corresponds to a row (and thus a window) in matrix windows in the same

order.

A.3 Auxiliary functions

Two functions provide additional functionality:

1. The function make Windows generates a two-column matrix of non-overlapping or overlapping
windows for the main function fullscan. The function takes as its arguments the length of
the data, the window size and an offset. If the offset is set equal to the window size, non-
overlapping windows are obtained. If the offset is less than the window size, sliding windows

of given window size and offset are obtained.

2. The function powerMethod provides a C++ implementation of the power method for fast
iterative computation of the largest eigenvector (von Mises and Pollaczek-Geiringer, 1929).

The function can be used as summaryFunction in the main function fullscan.

A.4 Other comparison measures

The modular structure of locStra allows to specify (1) the similarity measure on the genome (the
matrizFunction; for instance, the Jaccard matrix); (2) the summary statistic for the similarity ma-
trix as function summaryFunction; and (3) a comparison measure on either the similarity matrices

or the summary statistic (function comparisonFunction). In this work we always summarize the
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four similiarity matrices with the first eigenvector (as summaryFunction) and compare the corre-
lation between eigenvectors (as comparisonFunction). However, many more sensible choices exist

which include:

1. The similarity matrices can be compared directly using, for instance, the L, ,, Frobenius,
maximum or Schatten matrix norms as comparisonFunction. In this case the summaryFunc-

tion is the identity function.

2. Apart from eigenvectors, two similarity matrices can be summarized using other traditional
tools such as their eigenvalues, or the condition number of the difference between both which,

if large, indicates that the matrices are close in this specific sense.

3. Apart from the first eigenvector, the similarity matrices can be summarized with a linear
combination of higher order eigenvectors to capture more principal components. Moreover,

the eigenvectors can be weighted with their corresponding eigenvalues.

4. Apart from using vector correlation, eigenvectors and other vector-valued measures can be

compared using vector norms, the angle between them, etc.

However, some measures might be more meaningful than others depending on the context of the
comparison and application. We did experiment with different measures and found the correlation

between the first eigenvectors to capture best the variability within each chromosome.

B Details on the implementation

This section briefly describes two important implementation details (for computing the covariance
and Jaccard matrices) employed to enable fully sparse matrix algebra. The GRM matrix (Yang
et al., [2011) and the s-matrix (Schlauchl 2016) were computed as described in their respective
publications. Throughout the section, the input data X € R™*™ is assumed to contain (genomic)
data of length m in each of the n columns, one column per individual. The parameter m therefore
represends the number of loci included in the computation of the similarity matrix and n is the
number of study subjects. At the end of this section, theoretical runtimes of our implementations

are given.

B.1 Covariance matrix

To compute the covariance matrix in dense algebra, let v € R™ be the column means and let

Y € R™*™ be the matrix consisting of the rows of X with their mean substracted. Then

1
cov(X) = ——Y'Y.
m—1
In sparse algebra, the matrix X cannot be normalised as in the dense case by simply substracting

the column means, since this would result in a dense matrix which easily exceeds available memory.
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method H dense ‘ sparse
covariance matrix O(mn?) | O(smn? + n?)
unweighted Jaccard | O(mn?) | O(smn? + n?)
weighted Jaccard O(mn?) | O(smn? + mn)
GRM matrix O(mn?) | O(smn? + n?)

Table 1: Theoretical runtimes of the four matrix approaches to compute similarity measures for
both dense and sparse implementations. The runtimes are given in the parameters m € N and
n € N of the input data X € R™*" as well as the matrix sparsity parameter s € [0, 1].

To always stay within sparse algebra, the computation is split up suitably. To be precise, let v

denote the column means as above, and w € R™ be the column sums, then

1
cov(X) = o (XTX —wo' —ow' + mva> .
m p—

This formula has the advantage that the computation of X "X can be carried out using only one
sparse matrix multiplication involving the sparse input matrix, and the remaining three outer vector

products result in n X n matrices, thus never exceeding the size of the output covariance matrix.

B.2 Jaccard similarity matrix

The entry (i,7) of the Jaccard matrix jac(X) is given as

. HE: Xiw N Xji}
X ij — )
jac(X)ig (ks Xox V X0}

where the matrix X is binary.

A naive approach to compute the entries of the Jaccard matrix loops over all entries of the
Jaccard matrix and calculates the binary and as well as binary or operations on all combinations
of two columns of X. Though having the same theoretical runtime, this naive approach turned out
to be slower in practice than the following technique which uses only one (sparse) matrix-matrix
multiplication which is typically highly optimized in sparse matrix algebra packages.

Let w € R™ be the column sums of X as before. Compute Y = XX via sparse matrix
multiplication. The resulting matrix ¥ € R™*™ is dense. Compute a second matrix Z € R™*" by
adding w to all rows and all columns of —Y. Then, jac(X) = Y/Z, where the division operation
is performed componentwise. This approach is computationally very fast since it relies solely on
one sparse matrix multiplication, and a few more operations on the matrices Y and Z which are

already of the same size as the dense Jaccard output matrix.

B.3 Theoretical runtimes of dense and sparse implementations

Table [I] shows theoretical runtimes for both the dense and sparse matrix versions of the four

similarity matrix approaches. It turns out that the runtimes for the dense computations of all
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similarity matrices coincide, and that the sparse computations have slightly different runtimes.
The following highlights the effort of the main computation steps in each case as a function of the
parameters m € N and n € N of the input data X € R™*™, as well as the matrix sparsity parameter
s € ]0,1] (the proportion of non-zero matrix entries).

In the dense case, computing the covariance matrix involves subtracting the column means in
O(mn) and multiplying Y'Y in O(mn?). In the sparse case, the computation of X " X requires
O(smn?), and the computation of the three additional outer products requires another O(n?).

The Jaccard matrix involves computing Y = X " X in O(mn?) in the dense case, and O(smn?)
in the sparse case. Adding the column sums to the rows and columns of the resulting n x n matrix
takes effort O(n?) in both the dense and sparse case.

The effort for computing the weighted Jaccard matrix (or s-matrix) stems from the computation
of weights through row sums (O(mn) in dense algebra and O(smn) in sparse algebra), multiplying
the input matrix with the weights (likewise O(mn) in dense algebra and O(smn) in sparse algebra),
and one matrix-matrix multiplication (O(mn?) in dense algebra and O(smn?) in sparse algebra).

Computing the GRM matrix involves the calculation of population frequencies across rows
(O(mn) in dense algebra and O(smn) in sparse algebra), one matrix-matrix multiplication (O(mn?)
in dense algebra and O(smn?) in sparse algebra), multiplying the input matrix with the population
frequencies (O(mn) in dense algebra and O(smn) in sparse algebra), and one outer product of the

population frequencies in O(n?).

C Regional stratification analysis of the 1,000 Genome Project

To illustrate the practical relevance of locStra and the feasibility of regional substructure analysis at
the genome-wide level, we apply locStra to all chromosomes of the 1,000 Genome Project (The 1000
Genomes Project Consortium, [2015) and take a closer look at the results for four chromosomes,
precisely chromosomes 5, 7, 10, and 12. Moreover, we investigate runtimes across all chromosomes,
and present an approach to select suitable window sizes for population stratification.

Before applying locStra, the raw data from the 1,000 Genome Project is prepared using PLINK?2
with cutoff value 0.01 for option --maz-maf to select rare variants. We applied LD pruning with
parameters --indep-pairwise 2000 10 0.01. Analysis results are shown for the super population
EUR of the 1,000 Genome Project.

All timings presented in this and the following sections were measured on one Intel QuadCore
i5-7200 CPU with 2.5 GHz and 8 GiB of RAM.

C.1 Data analysis results for certain chromosomes of the 1,000 Genome Project

The analysis results for the four selected chromosomes of the EUR super population are shown
in Figure The regional substructure analysis reveals several notable features. Regardless of
which type of similarity matrix is used for the regional substructure analysis, there are only a few

genomic regions for which the regional and global substructures are similar in terms of the first
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window size locStra PLINK?2
global EV ‘ full scan | global EV ‘ full scan
1000 14 332.1 65.3 6343.6
10000 1.5 31.3 61.2 731.7
100000 1.5 4.9 66.7 189.1

Table 2: Runtimes in seconds between locStra and PLINK2 for the computation of the global
eigenvector (global EV) and for a complete stratification scan of chromosome 1 of the 1,000 Genome
Project as a function of the window size.

eigenvectors. Overall, there is substantial variability of the regional substructure across the genome,
when measured via the similarity matrices. This observation also has implications for association
mapping, as the association analysis is typically adjusted for the global eigenvectors to minimize
potential genetic confounding. It will be subject of future research to investigate the best ways to
incorporate regional substructure adjustments based on RVs in genetic association testing.

In the areas where the correlation between the regional and global first eigenvector is not high,
the standard Jaccard approach is able to maintain the highest correlation values compared to the
other similarity matrices. In the areas where the regional first eigenvectors of Cov, GRM and s-
matrix/weighted Jaccard are highly correlated with the corresponding global first eigenvectors, the
first eigenvector of the standard Jaccard approach is often almost uncorrelated with the global one.
Further methodological and substantive research is required to understand the reasons for these

performance differences. It is part of our ongoing research and beyond the scope of this manuscript.

C.2 Runtime of locStra for the 1,000 Genome Project Analysis

Figure [3| shows the runtime in seconds for the R function fullscan as a function of the window sizes.
Each plot depicts the minimal and maximal runtime observed among any of the chromosomes per
window size, as well as the mean runtime for a particular window size when averaged across all
chromosomes. The maximum number of RVs per chromosome is 13577 and the sample size is 503
study subjects.

One can see that the mean runtime never exceeds 500 seconds for a complete scan of any
chromosome. As expected, the runtime decreases for larger window sizes. For a realistic window
size of e.g. 10* or 10°, see Section the runtime for any method lies in the neighborhood of one
minute for a full scan. Repeating the runtime analysis for the AFR super population group of the

1,000 Genome Project shows qualitative similar results.

C.3 Comparison of locStra to PLINK2 on chromosome 1 of the 1,000 Genome
Project

We compare locStra to PLINK2. To this end, we first prepare the data of chromosome 1 using the

same parameters as given in Section [C] Since locStra and PLINK2 require different input files, we

10
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Figure 2: Super population EUR of the 1,000 Genomes Project. Correlation of regional to global
eigenvectors for chromosomes 5 (top left), 7 (top right), 10 (bottom left), and 12 (bottom right).
Covariance matrix, GRM matrix, s-matrix, and Jaccard matrix. Window size 128000 RVs.
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Figure 3: Super population EUR of the 1,000 Genomes Project. Runtime in seconds as a function
of the window sizes across all chromosomes for the computation of the covariance matrix (top left),
GRM matrix (top right), s-matrix (bottom left), and Jaccard matrix (bottom right). All plots
show the minimal and maximal runtimes for any of the chromosomes, as well as the mean runtime
averaged across all chromosomes. Logarithmic scale on the x- and y-axes.
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Figure 4: Super population EUR of the 1,000 Genomes Project. Left: Mean correlation across all
windows as a function of the window size. Right: Mean correlation across all windows divided by
the number of windows, again as a function of the window size. Input data are the correlations
between global and regional eigenvectors of the Jaccard matrices for differrent window sizes.

write the curated data for chromosome 1 once in the .bed format for PLINK2 to read, and once
convert it into a sparse matrix of class Matriz in R (saved as .Rdata file).

In PLINK2, the first eigenvector can be computed on the .bed file input with the option --
pca 1, and in order to do a regional scan, a variant range on the data can be specified with the
parameters --from and --to followed by the rs numbers. After computing the first global eigenvector
or one regional eigenvector, PLINK2 writes the vector data into a file .eigenvec, from which the
eigenvectors are read in order to compute correlations between them. In this way, a complete scan
of global to regional correlations can be carried out in PLINK2.

For locStra, we load the sparse matrix input data into R and employ the function fullscan from
the R package to carry out a complete scan.

Results for three different window sizes are given in Table 2| showing both the runtimes (in
seconds) for the computation of the single global eigenvector on the full data, as well as for a
complete scan (which includes the computation of the global eigenvector before starting the scan).
Since the times for PLINK2 necessarily include the read/write operations for file in- and outputs,
we likewise report times for locStra that include the reading time of the input data for a fair
comparison. As visible from the table, locStra is at least one order of magnitude faster than
PLINK2 for realistic studies (several thousand subjects, several million RVs per subject), where

the speed-up seems to be more pronounced for larger window sizes.
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Figure 5: Super population AFR of the 1,000 Genomes Project. Setting as in Figure[d] Left: Mean
correlation across all windows as a function of the window size. Right: Mean correlation across all
windows divided by the number of windows, again as a function of the window size.

C.4 Selecting suitable window sizes for population stratification

An interesting question pertains to the selection of an appropriate window size for population
stratification. Two quantities work against each other in the process of selecting a suitable window
size: As the window size becomes larger, less windows are used in the scan of the data, and thus
the correlation between regional and global eigenvectors increases as seen in Figure 4| (left). On the
other hand, larger window sizes imply the usage of fewer windows across the genomic data, thus
causing less data points to be calculated and results to be less meaningful.

A natural tradeoff is therefore to define a measure by multiplying the mean correlation among
all windows (for a particular window size) with the number of windows generated using that size.
The resulting measure is displayed in Figure |4| (right). It can be seen that for small and large
window sizes, the product of mean correlation and number of windows is close to zero. For the
1,000 Genomes Project, we observe a peak in this measure at around a window size of 100,000
RVs. Interestingly, the peak occurs at an almost identical position for all chromosomes. This is
attributed to the fact that the slope in Figure [4f (left) is very similar for all chromosomes. For the
analysis of data from the 1,000 Genomes Project, we thus recommend a window size of around
100,000 RVs. We propose to use this algorithm to select a window size as an heuristic guideline.

Repeating the above analysis for the super population AFR of the 1,000 Genome Project in

Figure [5| again shows qualitative similar results.
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D Data analysis of Childhood Asthma Study from Costa Rica

(population isolate)

We now analyze the global and the regional population substructure and their differences in terms
of clustering in a dataset of a Costa Rica population isolate, as one expects stronger degrees of
stratification in such a sample. The dataset includes children aged 6 to 14 and their parents (2736
subjects, 1824 of which are parents) from GACRS (Genetics of Asthma in Costa Rica Study)
family-based trios recruited from a genetically homogeneous Hispanic population isolate living in
the Central Valley of Costa Rica. This population has one of the highest prevalences of asthma
in the world. Please see [Hunninghake et al.| (2007) for a detailed description of the recruitment
process. The study has been sequenced as part of the TOPMED Project. The data is available
through dbGaP (NHLBI TOPMed, 2019)).

To avoid genetic correlations among study subjects due to family structure, we only select the
parents for the analysis, and prepare their genetic data using PLINK2 with cutoff value 0.01 for
option --maz-maf to select rare variants. We applied LD pruning with parameters --indep-pairwise
2000 10 0.01.

To evaluate the population substructure in the data, we compute the Jaccard similarity matrix
globally and regionally for one window on each chromosome. We selected here the Jaccard approach
for ease of presentation. None of the qualitative conclusions that we reach below would have been
different, if we had selected a different similarity matrix.

In Figure [6] we provide the plot for the first two "global” PCs of the Jaccard matrix that
was computed globally based on loci from the entire genome. The plot shows clear evidence
of population substructure among the parents in the Costa Rica sample. For each of the 22
autosomal chromosomes, Figure [7| contains the plot of the first two ”regional” PCs of a region on
the chromosome, where the Jaccard matrix was computed based on RVs from a region of 10° loci.

To generate Figure @ we randomly sampled 105 RVs from each chromosome, and combined
them into one matrix on which the Jaccard similarity measure was computed. To generate each
of the subplots in Figure @ we selected a window size of 10° for each chromosome (resulting in
around 20 windows per chromosome depending on the size of the chromosome data), and computed
the similarity matrix on the middle window. In both cases we display the first two PCs of the
corresponding Jaccard similarity matrix obtained in this fashion.

The two plots, Figures [0] and [7] clearly illustrate that the regional substructure can vary sub-
stantially. While it can be very similar to the global substructure for some of the regions, often
it is more extreme or fundamentally different, showing sub-clusters that are not detectable in the
global components. The corresponding results for the other similarity matrix approaches support
the same conclusion (data not shown).

The findings of the Costa Rica data analysis clearly demonstrate the importance of regional

substructure analysis and the utility of the proposed locStra package.
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Figure 6: Costa Rica population isolate. First two PCAs for the Jaccard similarity matrix. All
chromosomes combined.

E Correcting a linear regression with global and regional PCAs

To assess the effects of regional substructure on association testing, we consider an example in
the COPDGene study, a case-control study of Chronic Obstructive Pulmonary Disease (COPD)
in current and former smokers (Regan E.A.| [2010). The study has been sequenced as part of the
TOPMED Project. The data is available through dbGaP (NHLBI TOPMed, 2018)).

We examine the effect of the particular SNP rs16969968 (chromosome 15) on FEV; which
is a well-established risk locus for COPD and cigarette smoking (Pillai et al., |2009; Lutz, [2015).
It is unclear whether the regional substructure or the global substructure is more relevant for a
particular locus that is tested for association. It is important to note that the inclusion of additional
principal components will not have a major impact on the power of the association analysis, given
the current sample size of such studies. As a consequence, the analysis plan is to evaluate three

regression models:
e Model 1: Regress FEV; on 1516969968 adjusting for age, height, sex, and the first 5 global
PCs;

e Model 2: Regress FEV; on rs16969968 adjusting for age, height, sex, and the first 5 regional
PCs that are computed for the region that harbors rs16969968;

e Model 3: Regress FEV; on rs16969968 adjusting for age, height, sex, and the first 5 regional
PCs and on the first 5 global PCs.

We will assess the association p-values for rs16969968 on FEV; to evaluate whether the analysis

benefits from the inclusion of the regional PCs.
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Figure 7: All 22 chromosomes of the Costa Rica population isolate.

First two PCAs for the

Jaccard similarity matrix computed for the middle window of a stratification scan with window
size 10°. Separate plot for each chromosome (starting with chromosome 1 in the top left corner

and continuing in a row-wise fashion).
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similarity matrix | window size | global regional | global and regional
Cov 1600 1.81e-9 | 3.58e-9 | 1.44e-9
3200 1.81e-9 | 2.92e-9 | 1.08e-9
6400 1.81e-9 | 2.92e-9 | 1.08e-9
Jaccard 1600 1.82e-9 | 1.40e-9 | 9.90e-10
3200 1.82¢-9 | 1.53e-9 | 1.06e-9
6400 1.82e-9 | 1.53e-9 | 1.06e-9
s-matrix 1600 1.29¢-9 | 3.51e-9 | 8.61e-10
3200 1.29¢-9 | 3.76e-9 | 1.18e-9
6400 1.29e-9 | 3.76e-9 | 1.18e-9
GRM 1600 8.61e-10 | 2.90e-09 | 5.33e-10
3200 8.61e-10 | 2.82e-9 | 4.82e-10
6400 8.61e-10 | 2.82e-9 | 4.82e-10

Table 3: Regression on the FEV; for the Costa Rica population isolate. Columns show p-values
for Bg = 0. Five principal components each for both global and regional adjustments.

We conducted the analysis in the following way. We first prepared the genetic data from the
COPDGene study for chromosome 15 with PLINK2. We employed a maximal allele frequency
cutoff of --max-maf 0.01, LD pruning with parameters --indep-pairwise 2000 10 0.01, and filtered
out the snp of interest using the command --snp rs16969968. To specify regional windows around
1516969968, we employed --window W, where we chose the window size W € {1600, 3200, 6400}.
We made sure that due to its high allele frequency (maf=0.597), the snp rs16969968 was indeed
not included in any window. Since we compute our similarity matrices on rare variants having very
different allele frequencies than the common ones, they are virtually uncorrelated with the common
loci that are typically tested for association in single-locus analyses. After preparing the data with
PLINKZ2, we are left with 5,765 subjects and 94,497 RVs.

Using the genetic data above and additionally the covariates age, sex, an indicator of current
smoking status (smoker=1 for current smokers and 0 for former smokers), as well as the subject’s

height (in centimeters), we fit the regression models

5
E (FEV1) = By + PsSNP + Saage + Bgsex + fSsysmoker + Srrheight + Z B;PCA,;, (1)

i=1
where SNP is the allele count data for rs16969968, and PCA, for i € {1,...,5} are the first five
principal components for either the global or regional similarity matrices. We test the hypothesis
that Bg = 0 against the alternative that Sg # 0. The global PCAs are computed by applying any
similarity matrix approach to the full genomic data, and computing the first eigenvectors. The
regional PCAs are computed by extracting a region around rs16969968 (of window size given in
Table [3)), computing the similarity matrix on that region, and then calculating the first eigenvectors

of that similarity matrix.

In this way, we regress FEV] on the above covariates, where for global and regional adjustments

we each use the first five PCAs. For the combined global and regional adjustment, we add both
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the five global and the five regional eigenvectors to the model .

Results are given in Table The table shows that for any of the four similarity matrices
under investigation, and for any of the reported window sizes, the combined global and regional
adjustment yields a p-value for the hypothesis g = 0 that is more significant than the global or
regional adjustments alone. We therefore recommend to adjust for both ”global” and ”regional”
PCs in genetic association testing. As we discussed above, in order to run the local scans, we propose
here to compute the similarity matrices based on rare variants (RVs) which have very different allele
frequencies than the common variants and are therefore virtually uncorrelated with the common
loci that are typically tested for association in single-locus analyses. We believe therefore that the
"proximal contamination” effects (Salter-Townshend and Myers| 2019; |Gazal et all [2018] [2017}
Thornton and Bermejo, 2014; Baran et al., [2012; |Listgarten et al., 2012) can largely be avoided
here. If RVs are to be tested for association, they should be excluded from the computation of the
regional similarity matrices. Given the computational efficiency of locStra, this does not create a
bottleneck in terms of computation time.

Subsequent research here is also needed to evaluate the effects of other confounding variables, e.g.
sequencing depth, batch effects, etc., on the globally and regionally computed similarity matrices.
Approaches similar to the one developed for association testing (Sankararaman et al., 2008) could

be utilized here.
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