
 1 

Title: Intergenerational transmission of the patterns of functional and structural brain 1 
networks 2 
 3 
Authors and addresses: 4 
Yu Takagi1,2*, Naohiro Okada1,3, Shuntaro Ando1,4, Noriaki Yahata1,5,6, Kentaro Morita1,7, 5 
Daisuke Koshiyama1, Shintaro Kawakami1, Kingo Sawada8, Shinsuke Koike1,9, Kaori Endo10, 6 
Syudo Yamasaki4, Atsushi Nishida4, Kiyoto Kasai1,3, Saori C Tanaka2 7 
 8 
1 Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, 9 
Japan 10 
2 ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan 11 
3 International Research Center for Neurointelligence (WPI-IRCN), University of Tokyo 12 
Institutes for Advanced Study (UTIAS), University of Tokyo, Tokyo, Japan 13 
4 Department of Psychiatry and Behavioral Science, Tokyo Metropolitan Institute of Medical 14 
Science, Tokyo, Japan 15 
5 Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science 16 
and Technology, Chiba, Japan 17 
6 Department of Molecular Imaging and Theranostics, National Institute of Radiological 18 
Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 19 
Japan 20 
7 Department of Rehabilitation, University of Tokyo Hospital, Tokyo, Japan 21 
8 Office for Mental Health Support, Mental Health Unit, Division for Practice Research, Center 22 
for Research on Counseling and Support Services, University of Tokyo, Tokyo, Japan 23 
9 University of Tokyo Institute for Diversity and Adaptation of Human Mind (UTIDAHM), 24 
University of Tokyo, Tokyo, Japan 25 
10 Unit for Mental Health Promotion, Research Center for Social Science & Medicine, Tokyo 26 
Metropolitan Institute of Medical Science, Tokyo, Japan 27 
 28 
*Corresponding author: yutakagi322@gmail.com (Yu Takagi, Ph.D.) 29 
Competing Interests: The authors declare no competing interests. 30 
  31 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.03.06.981068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 32 

There is clear evidence of intergenerational transmission of life values, cognitive traits, 33 
psychiatric disorders, and even aspects of daily decision making. To investigate biological 34 
substrates of this phenomenon, brain has received increasing attention as a measurable 35 
biomarker and potential target for intervention. However, no previous study has 36 
quantitatively and comprehensively investigated the effects of intergenerational transmission 37 
on functional and structural brain networks from parents to their children. Here, by employing 38 
an unusually large cohort dataset, we show that patterns of functional and structural brain 39 
networks are preserved over a generation. We also demonstrate that several demographic 40 
and behavioural phenotypes have effects on brain similarity. Collectively, our results provide 41 
a comprehensive picture of neurobiological substrates of parent-child similarity, and 42 
demonstrate the usability of our dataset for investigating the neurobiological substrates of 43 
intergenerational transmission.  44 
  45 
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 46 

Introduction 47 

There is clear evidence of intergenerational transmission of socio-economic status1, 48 
intelligence2, personality3, parenting style4, job-selection5, and psychiatric disorders6. This 49 
correspondence between parents and their children is not confined to the period in which 50 
children are young and live with their parents, but is found over the course of their lives7. 51 
Although genetic and non-genetic environmental effects are clearly transferred to children 52 
from their parents, the mechanisms of parent-child similarity are poorly understood8.  53 

 In recent years, brain has received increasing attention as a target for monitoring 54 
and intervention because genetic and epigenetic effects occur at the molecular level and are 55 
distal from complex behaviour9. Several previous studies have shown that functional 56 
connectivity (FC or edge) during wakeful rest obtained by functional magnetic resonance 57 
imaging (fMRI) is associated with individual differences in diverse cognitive traits10–19. In 58 
parallel to functional brain information, individual differences in brain structure have also 59 
been characterised and related to diverse cognitive traits20. Importantly, previous studies have 60 
reported that grey matter volume (GMV) at specific locations in the brain is associated with 61 
individual differences in cognitive traits20–24.  62 

 In addition to individual differences in cognitive traits, previous studies also showed 63 
that FC25–43 and GMV25,44–57 are heritable. These studies have typically used genome wide 64 
association study (GWAS) or family/twin study. Most studies have assessed the genetic effects 65 
on each edge- or region-level, i.e. univariate analysis, and typically considered demographic 66 
or behavioural information as covariates. Importantly, previous studies have not directly 67 
focused on the effects of intergenerational transmission from parents to their children. 68 

 More recent studies have started to directly examine the effects of 69 
intergenerational transmission on the brain using datasets of parent-child dyads8,59–62. For 70 
example, Lee et al. and Yamagata et al. investigated the similarity of parent-child dyads in FC 71 
and GMV, respectively59,62. However, these studies involved several limitations. First, no study 72 
has quantitatively compared the similarity of different brain networks in detail. Second, 73 
because none of these studies examined both functional and structural data together, it 74 
remains unclear how functional and structural information are interrelated. Third, no study 75 
has comprehensively investigated the effects of demographic and behavioural effects on 76 
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similarity. Overall, it is currently unclear whether, to what extent, and how the brains of 77 
parent-child dyads are similar. This situation has arisen, in part, because investigating the 78 
above questions requires a large number of parent-child dyads to provide neuroimaging 79 
datasets with rich behavioural phenotypes. Furthermore, such an approach requires a formal 80 
analytical framework with rigorous statistical analyses and rich computational resources.  81 

In the current study, we sought to understand the neurobiological substrates of 82 
parent-child similarity by combining a statistical framework that allowed us to investigate 83 
network-level similarities and a rich dataset from a subsample of a large population-based 84 
longitudinal cohort (N = 84 parent-child dyads) consisting of resting-state fMRI, structural MRI, 85 
and behavioural phenotypes of parents and their children63,64. We sought to answer several 86 
questions: Can a parent-child dyad be identified based on their brains? If so, which brain 87 
networks are more similar compared with other networks? Is the similarity solely driven by 88 
functional or structural information? How do demographic and behavioural factors affect 89 
brain similarity?  90 

Using a dataset consisting of parents and their children, we quantitatively 91 
investigated the brain similarity of parent-child dyads in detail. The present findings 92 
demonstrated that it is possible to reliably identify a parent-child dyad based on the similarity 93 
of their brains. This effect was not solely driven by either functional or structural brain 94 
similarity alone: although functional and structural information had comparable accuracy, 95 
they exhibited important differences, and played complementary roles. Children’s basic 96 
demographic factors, including age and sex, testosterone level, and questionnaire-based 97 
developmental scores affected parent-child brain similarity. Collectively, our results provide a 98 
detailed picture of how the brains of children and their parents are similar, and demonstrate 99 
the usability of our unique cohort dataset for investigating the neurobiological substrates of 100 
intergenerational transmission.  101 
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Results 102 

We tested 84 parent-child dyads who participated in the “population-neuroscience study of 103 
the Tokyo TEEN Cohort (pn-TTC),” a longitudinal study exploring the neurobiological 104 
substrates of development during adolescence63,64. In the pn-TTC study, neuroimaging and 105 
non-imaging behavioural phenotypes were collected from children every 2 years from the age 106 
of 11, and from their primary parents (Figure 1a; see Methods: Overview of the dataset). Here, 107 
we used three brain datasets from the pn-TTC study: children at the ages of 11 and 13 years, 108 
and their primary parents. Parents’ brains were scanned when their children were 11 years 109 
old. The basic demographic data are shown in Table 1. 110 

Table 1: Demographic data. a Ages of parents when their children were 11 years old are shown. 111 

 112 
We first defined the functional and structural whole-brain patterns for each 113 

individual (Figure 1a; see Methods: Information extraction). For fMRI, we used a functional 114 
atlas defining 268 regions of interest (ROIs) covering the entire brain12,65. The FC between 115 
these ROIs was estimated using Pearson’s correlation coefficient, resulting in a 268 × 268 FC 116 
matrix for each subject. As the FC matrix is symmetrical, only the strictly lower triangular part 117 
of each matrix was kept, resulting in 35,778 (= 268 × 267 / 2) unique entries. We regressed 118 
potential confounds including total GMV and head motion. To further avoid the effects of 119 
motion artefacts, we employed a “scrubbing” procedure to identify and exclude any frames 120 
exhibiting excessive head motion66. We also obtained GMV for each ROI using T1w images, 121 
then averaged within each region. We used the same 268 ROIs as in the fMRI, resulting in a 122 
vector with a size of 268 for each subject.  123 

To quantitatively evaluate the brain similarity of parent-child dyads, we proposed a 124 
framework to compare network-level similarity between parent-child dyads (Figure 1b; See 125 
Methods: Similarity analysis for details), inspired by a recently proposed approach for 126 
individual identification based on the brain12. To calculate the similarity of parent-child dyads, 127 

 N Agea 

(mean ± s.t.d) 

Sex 

(Male/Female) 

Child age at 11 

84 

11.59±0.66 
45/39 

Child age at 13 13.63±0.62 

Parent 43.35±3.95 3/81 
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we first calculated the correlations between a child’s FC and/or GMV vector to all parents’ 128 
vectors including the child’s own parent. We next assessed whether the similarity of the 129 
parent-child dyad (child and his/her own parent) was larger than that of a stranger-child dyad 130 
(child and another child’s parent). We then calculated the winning rate of the similarity 131 
between parent-child dyad, which was referred to as “accuracy”, because it can be considered 132 
as a “pairwise classification accuracy” when we randomly sampled a parent-child dyad and 133 
another parent, then conduct classification (See Methods: Similarity analysis for details). We 134 
repeated this procedure across all dyads and averaged these accuracies. Compared with 135 
conventional individual identification methods, our proposed framework has more statistical 136 
power, as described later. We performed 1,000-times bootstrapping to estimate 95% 137 
confidence intervals of accuracy by randomly subsampling 90% of the subjects in each 138 
iteration. To determine whether accuracy was achieved at above-chance levels, we used 139 
1,000-times permutation testing to generate a null distribution by randomly shuffling the 140 
parent-child mapping. 141 

 142 

 143 

Figure 1: Analysis procedure of parent-child brain similarity. (a) We employed a dataset obtained from the 144 
“population-neuroscience study of the Tokyo TEEN Cohort (pn-TTC)” study, which consists of resting-state fMRI 145 
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 7 

and T1w images of parents and their children. To obtain a functional connectivity (FC) matrix, signals were 146 
extracted from all subjects using resting-state fMRI data from 268 ROIs. The signals were then turned into an FC 147 
matrix via covariance estimation. To obtain grey matter volume (GMV) vectors, T1w images were first segmented 148 
into grey matter, white matter, and cerebrospinal fluid. Using the grey matter, GMV of each ROI was obtained by 149 
averaging values within the ROI. We used the same 268 ROIs as in the FC. (b) For each parent-child dyad, we first 150 
calculated the similarity of FC and/or GMV vectors based on their Pearson’s correlation. We next calculated 151 
similarities between the child and another child’s parent. We then calculated whether the similarity of the 152 
parent-child dyad is greater than that of stranger-child dyads. Finally, we calculated the winning rate of the 153 
parent-child dyad (“accuracy”), and repeated this procedure across all parent-child dyads. 154 

Whole-brain analysis  155 

We first assessed the similarity of parent-child dyads using whole-brain FC and GMV. When 156 
we used a dataset of children at age 11, accuracies were 64.6% for FC (estimated via 1,000-157 
times bootstrapping; 95% CI = [62.5, 66.8]; P < 0.001, 1,000-times permutation test) and 158 
70.3% for GMV (95% CI = [68.9, 71.8]; P < 0.001) (Figure 2a). When we used a dataset of 159 
children at age 13, the accuracies were 66.7% for FC (95% CI = [64.5, 68.9]; P < 0.001) and 160 
73.8% for GMV (95% CI = [72.1, 75.6]; P < 0.001) (Figure 2b). Thus, we provided the first strong 161 
evidence that it is possible to identify parent-child dyads based on their functional and 162 
structural brain information.  163 

We next assessed the importance of information for performance of specific edges 164 
for FC and regions for GMV, respectively (Figures 2c-2f). To quantify the extent to which 165 
different edges and regions contribute to similarity, we derived two measures: the differential 166 
power (DP) which calculates how characteristic edges and regions tend to be, and group 167 
consistency (φ) which quantifies edges and regions that are highly consistent across all parent-168 
child pairs in a dataset12 (see Methods: Similarity analysis). For visualisation purposes, we 169 
show the structural locations of DP and φ in the 99.75th and 90th percentile, for edges (FC) 170 
and regions (GMV) respectively. For both FC and GMV, significant edges or regions tended to 171 
be distributed across the entire brain. This pattern was stable across a range of thresholds 172 
(Supplementary Figure 1). Note that, for visualisation purposes, we excluded the brainstem 173 
from the figure for GMV because all regions in this area had extremely high φ values, possibly 174 
because of the much lower magnitudes of signals compared with the other regions 175 
(Supplementary Figure 2). 176 

Given that head motion confounds analyses of FC66, we confirmed that qualitatively 177 
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 8 

similar results were obtained when we excluded parent-child dyads whose children’s head 178 
movements were in the top 25%, either at age 11 or 13, resulting in the inclusion of 41.25% 179 
of the total sample (Supplementary Figure 3). We also confirmed that accuracy obtained by 180 
the distribution of their frame-to-frame motion during fMRI scans12 was not above chance 181 
level (51.0% for age 11, 95% CI = [48.9, 53.0]; 48.7% for age at 13, 95% CI = [47.1, 50.1]). Thus, 182 
it is unlikely that the identification power of FC was based on idiosyncratic patterns related to 183 
motion in the scanner. 184 

 185 
Figure 2: Successful identification of parent-child dyad based on their functional and structural brain 186 
information. Box plots of parent-child identification accuracy and factors affecting accuracy for (a) children at 187 
age 11 and (b) at age 13 using whole-brain (268-node) for functional connectivity (FC: red box) and grey matter 188 
volume (GMV: blue box). Directly to the right of these boxes (grey box) are the results of the 1,000-times 189 
permutation testing. The bottom and top edges of the box indicate the 25th and 75th percentiles obtained via 190 
bootstrapping, respectively. The crosses denote outliers, and the whiskers extend to the most extreme data 191 
points not considered outliers. (c–f) Factors affecting identification accuracy. For FC, the top 99.75th percentile 192 
of differential power (DP: highly discriminative; yellow) edges and group consistency (φ: highly similar, or least 193 
helpful; green) edges are shown (circle plot; in which nodes are grouped according to anatomic location). For 194 
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GMV, the top 90th percentile ROIs of DP and φ were calculated, then normalised by dividing the number of ROIs 195 
in each anatomical group (bar plot). A legend indicating the approximate anatomical “lobe” is shown. PFC, 196 
prefrontal; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic (including cingulate 197 
cortex, amygdala, and hippocampus); Cer, cerebellum; Sub, subcortical (including thalamus and striatum); Bsm, 198 
brainstem; L, left hemisphere; R, right hemisphere. 199 

Network-based similarity 200 

We further investigated the contributions of specific networks to this similarity. We grouped 201 
the whole regions into 10 sub-networks67 (Figure 3a), and subsequently performed the same 202 
analyses using only the edges and regions from a given network. Note that we calculated the 203 
null distribution for each network via permutation testing, thus taking differences of the 204 
number of edges/regions among networks into account. 205 

For FC, medial frontal and frontoparietal networks led to high accuracies (Figure 3b). 206 
In contrast, for GMV, default mode, subcortical, cerebellum and visual networks led to high 207 
accuracy. Compared with FC, GMV achieved modestly higher accuracy than FC at age 11 208 
(Figure 3c; paired sample t-test, t(10) = −2.16, P = 0.056, Hedge’s g = −0.72) and significantly 209 
higher accuracy at age 13 (Figure 3c; paired sample t-test, t(10) = −3.10, P = 0.011 , Hedge’s g 210 
= −0.89). To further assess the importance of each network, we next assessed performance 211 
using between-network pairs of edges. We observed that edges between the medial frontal–212 
frontoparietal networks and medial frontal–motor networks resulted in higher accuracies 213 
than the other between-network pairs (Supplementary Figure 4). 214 

The results confirmed that our proposed method had greater statistical power than 215 
conventional methods for individual identification (Supplementary Figure 5). Specifically, for 216 
FC, six and five of 11 networks were significant at age 11 and 13, respectively, using the 217 
conventional method, whereas nine and 10 networks, respectively, were significant in our 218 
proposed method. For GMV, six and nine of 11 networks were significant at age 11 and 13, 219 
respectively, using the conventional method, whereas all networks were significant using our 220 
proposed method. 221 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.03.06.981068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

 222 
Figure 3: Network-based analyses demonstrated that almost all brain networks were highly similar 223 
between parents and their children. (a) We utilised a 268-node functional atlas. Nodes were further 224 
grouped into the 10 functional networks. Network names are shown to the left. (b) Box plots of accuracies 225 
using within-network edges of FC analysis (top row; networks 1–10 and whole-brain (ALL); indicated below 226 
the x-axis of each graph) and within-network nodes of GMV (bottom row). The bottom and top edges of 227 
the box indicate the 25th and 75th percentiles, respectively. The crosses denote outliers, and the whiskers 228 
extend to the most extreme data points not considered outliers. (c) Comparison between accuracies of 229 
child age at 11 and 13 for FC (top row) and GMV (bottom row). Each scatter shows each network and line 230 
connected the same network. Bold lines indicate ALL. * paired sample t-test, P < 0.05, n.s. non-significant, 231 
uncorrected. 232 

Function and structure provide complementary information 233 

Although FC and GMV revealed comparable performance in the above analyses, it remained 234 
unclear whether they contained similar information. This raises the following question: if 235 
parents and their children exhibit similar patterns of structural brain information, do they also 236 
exhibit similar patterns of functional brain information? Indeed, although functional and 237 
structural brain information is interrelated, they contain exclusive information that putatively 238 
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characterises distinct properties of individual differences68. To test this question, we 239 
investigated the relationship between parent-child similarity defined by FC and that of GMV. 240 
We found that the Pearson’s correlation between the similarities defined by FC and GMV was 241 
low: only two of 22 networks were significant (Supplementary Figure 6; P = 0.026 for visual 242 
and P = 0.021 for whole-brain when we used data from children at age 13; the other networks 243 
were not significant, P > 0.05, 1,000-times permutation test, uncorrected). Thus, although 244 
both FC and GMV were similar between parent-child dyads, their characteristics were 245 
dissimilar. 246 

Given that FC and GMV appeared to contain independent information, we further 247 
investigated whether they contained complementary information. To test this question, we 248 
conducted the same analyses using both FC and GMV simultaneously by concatenating the 249 
two vectors (hereafter referred to as “COMB”). COMB achieved the highest accuracies in more 250 
than half of cases (15/22), compared with function (4/22) and structure (3/22) alone (Table 251 
2). This number is significantly greater than chance (Supplementary Figure 7; P < 0.001, 1,000-252 
times permutation test). Overall, these results suggest that patterns of functional and 253 
structural information contained complementary information in terms of parent-child brain 254 
similarity. 255 

 256 
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Table 2: COMB achieved higher accuracies compared with FC and GMV for many networks in children at age 257 
11 and at age 13. Means and 95% confidence intervals estimated via 1,000-times bootstrapping are shown. Bold 258 
underlined text indicates the best performance. MF, medial frontal; FP, frontoparietal; DMN, default mode 259 
network; Mot, motor; Vis I, visual I; Vis II, visual II; Vis A, visual association; Cing, cingulo-opercular; Sub, 260 
subcortical; Cer, cerebellum. 261 

 262 

Effects of demographic factors on the brain similarity 263 

Network Age FC GMV COMB 

ALL 
11 64.60 [62.54,66.83] 70.30 [68.86,71.75] 70.64 [69.21,72.16] 

13 66.69 [64.50,68.86] 73.82 [72.14,75.55] 73.57 [71.89,75.30] 

1. MF 
11 61.14 [58.83,63.66] 57.56 [56.02,58.94] 58.32 [56.77,59.66] 

13 64.26 [62.20,66.36] 59.02 [57.06,60.70] 59.14 [57.14,60.92] 

2. FP 
11 64.35 [62.40,66.52] 60.52 [59.01,62.20] 61.90 [60.38,63.55] 

13 60.57 [58.61,62.49] 60.94 [59.35,62.65] 61.79 [60.25,63.46] 

3. DMN 
11 62.77 [61.06,64.65] 63.49 [61.93,64.94] 63.66 [62.04,65.21] 

13 59.07 [57.03,61.03] 62.53 [60.77,64.23] 62.84 [61.05,64.50] 

4. Mot 
11 57.95 [55.60,60.29] 61.30 [59.80,62.85] 62.27 [60.70,63.82] 

13 59.78 [57.89,61.77] 63.56 [61.95,65.14] 64.27 [62.63,65.98] 

5. Vis I 
11 55.42 [53.19,57.59] 63.98 [62.40,65.59] 64.91 [63.23,66.58] 

13 54.60 [52.61,56.77] 65.37 [63.60,67.21] 65.98 [64.20,67.77] 

6. Vis II 
11 56.44 [54.41,58.61] 58.14 [56.20,60.04] 58.95 [57.14,60.81] 

13 56.20 [54.14,58.25] 59.07 [56.95,61.03] 60.33 [58.22,62.32] 

7. Vis A 
11 57.52 [55.35,59.86] 56.81 [55.51,58.02] 57.13 [55.84,58.31] 

13 52.78 [50.50,55.06] 59.05 [57.28,60.56] 58.92 [57.28,60.41] 

8. Cing 
11 53.28 [51.08,55.66] 61.54 [59.89,62.99] 61.53 [59.91,62.94] 

13 62.04 [59.93,64.34] 63.48 [61.51,65.17] 63.71 [61.68,65.46] 

9. Sub 
11 60.43 [58.52,62.59] 64.34 [62.67,65.95] 64.66 [62.97,66.23] 

13 55.45 [53.23,57.62] 63.08 [61.41,64.65] 63.61 [62.00,65.19] 

10. Cer 
11 53.32 [51.23,55.37] 62.13 [60.38,63.73] 62.86 [61.24,64.54] 

13 56.24 [53.87,58.68] 61.83 [59.91,63.71] 62.50 [60.67,64.34] 

# best 4 3 15 
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The results described above indicated strong intergenerational transmission effects 264 
on the brain from parents to their children. However, it was still unclear whether all parent-265 
child dyads were equally similar. Therefore, we then investigated which factors influence brain 266 
similarity. Here, we focused on fundamental demographic factors: age and sex. 267 

We found that accuracies at age 11 were significantly lower than those at age 13 for 268 
GMV (Figure 3c bottom; paired sample t-test, t(10) = −2.39, P = 0.038 , Hedge’s g = −0.25), 269 
whereas they were no different for FC (Figure 3c top; paired sample t-test, t(10) = −0.03, P = 270 
0.97, Hedge’s g = −0.01). 271 

We then divided children into males and females (Figure 4). The results confirmed 272 
that both male and female children exhibited significant accuracies for almost all networks, as 273 
in the previous analyses (Figure 4a). When we compared males and females (Figure 4b), the 274 
accuracies of female children were significantly higher than those of male children for FC, at 275 
both age 11 (paired sample t-test, t(10) = −2.34 , P = 0.04, Hedge’s g = −0.88) and age 13 276 
(paired sample t-test, t(10) = −3.80 , P = 0.003 , Hedge’s g = −1.21). Female children also 277 
exhibited higher accuracy than male children for GMV at age 13 (paired sample t-test, t(10) = 278 
−2.47 , P = 0.03, Hedge’s g = −0.83), but not at age 11 (paired sample t-test, t(10) = -0.25, P = 279 
0.81 , Hedge’s g = 0.07). 280 

When we compared accuracies at age 11 and age 13 for male and female children 281 
separately (Figure 4c), female children at age 13 had significantly greater accuracy than those 282 
at age 11 for GMV (paired sample t-test, t(10) = −3.75, P = 0.004, Hedge’s g = −0.76). All other 283 
comparisons were not significant: male, FC (paired sample t-test, t(10) = 0.37, P = 0.72, 284 
Hedge’s g = 0.13); male, GMV (paired sample t-test, t(10) = 2.05 , P = 0.068, Hedge’s g = 0.23); 285 
female, FC (paired sample t-test, t(10) = −0.73 , P = 0.48, Hedge’s g = −0.18) 286 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.03.06.981068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

 287 
Figure 4: Male and female children show different trends of brain similarity across development. (a) 288 
Accuracies split by children’s sex for FC and GMV. For each network, accuracies for males (left boxes) and 289 
females (right boxes) are shown. (b) Comparison between males and females. (c) Comparison between 290 
children age at 11 and 13. Each scatter shows each network and line connected the same network. Bold 291 
lines indicate ALL. M(11), males at age 11; F(11), females at age 11; M(13), males at age 13; M(13), males at age 292 
13; * Paired sample t-test, P < 0.05; ** P < 0.01. n.s. non-significant, uncorrected. 293 

Effects of behavioural phenotypes on brain similarity 294 

 Finally, we examined whether behavioural phenotypes have effects on the brain 295 
similarity of parent-child dyads. Here, we used two important behavioural phenotypes for 296 
adolescents: hormone level and questionnaire-based developmental score (Figure 5; see 297 
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Methods: Testosterone and Child Behavior Checklist). We used COMB for this analysis as brain 298 
information. 299 

We examined testosterone as a hormone level, because it is known that the 300 
pubertal period is a sensitive period for testosterone-dependent organisation of the brain69. 301 
We found that children with high testosterone exhibited significantly higher accuracy 302 
compared with children with low testosterone at age 11 (paired sample t-test, t(10) = −2.91, 303 
P = 0.016, Hedge’s g = −1.03) but not at age 13 (paired sample t-test, t(10) = −0.60, P = 0.56, 304 
Hedge’s g = −0.22). 305 

We next investigated the effects of a questionnaire-based development score (Child 306 
Behavior Checklist: CBCL)70. The CBCL is a parental-report assessment used to screen for 307 
emotional, behavioural, and social problems, and to predict psychiatric illnesses71. We found 308 
that children with high CBCL had significantly higher accuracy compared with children with 309 
low CBCL at age 11 (paired sample t-test, t(10) = −2.81, P = 0.018 , Hedge’s g = −1.05) but not 310 
at age 13 (paired sample t-test, t(10) = −0.99, P = 0.34, Hedge’s g =−0.33). 311 
 312 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.03.06.981068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

 313 
Figure 5: Behavioural phenotypes have effects on brain similarity. Accuracies split by testosterone and 314 
CBCL. Left panels: Boxplots of accuracies split by scores of behavioural phenotypes (left: upper-half 315 
children; right: lower-half children). Right panels: Comparisons between upper- (left) and lower-half (right) 316 
children. Each scatter shows each network and line connected the same network. Bold lines indicate ALL. * 317 
Paired sample t-test, P < 0.05. n.s. non-significant, uncorrected. 318 
 319 
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Discussion 321 

The present study revealed that patterns of functional and structural brain information are 322 
preserved over a generation. Although the effects of the intergenerational transmission have 323 
been investigated in various research fields, including developmental psychology, educational 324 
psychology, and economics, no study has comprehensively and quantitatively investigated the 325 
neurobiological substrates of intergenerational transmission. The current results revealed that, 326 
despite substantial differences between parents and their children, their brains are sufficiently 327 
similar that we can identify parent-child dyads based on information about their brains. We 328 
employed a rigorous statistical framework and an unusually large functional and structural 329 
neuroimaging dataset of parent-child dyads with rich behavioural phenotypes (N = 84 parent-330 
child dyads)63,64. Although both functional and structural brain information has comparable 331 
levels of accuracy, their characteristics were different but complementary. Demographic 332 
factors and behavioural phenotypes also have large effects on brain similarity. Taken together, 333 
our results provide a detailed picture of whether, to what extent, and how brains of parent-334 
child dyads are similar. 335 

 Previous studies have reported that brain information is heritable. Several genome-336 
wide association studies (GWAS) have been conducted to identify genetic risk variants for 337 
GMV25,44,50–56 and FC25,26. Although heritable regions or edges have been successfully 338 
identified, most studies have been insufficiently powered because GWAS require a large 339 
sample size (although some studies used multivariate approaches to increase statistical 340 
power26,58). In addition, these studies typically did not consider the effects of demographic 341 
and behavioural phenotypes. In addition to GWAS, both twin and family-based studies have 342 
reported that GMV45–49,57 and FC27–43 are heritable. These studies typically achieve larger 343 
effect sizes than GWAS studies with smaller sample sizes, although the possibility of inflated 344 
effect sizes due to shared environments is a concern. These studies also typically ignore 345 
demographic and behavioural phenotypes by treating them as covariates. Importantly, none 346 
of the previous studies described here directly investigated the effects of intergenerational 347 
transmission from parents to children. 348 

In recent years, some studies directly investigated intergenerational transmission of 349 
brain information using parent-child dyads. Although extended pedigree studies with 350 
sufficient sample sizes could answer such a question, it is logistically more difficult to recruit 351 
participants for pedigree studies than for studies with a parent-child design. Thus, parent-child 352 
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design studies play a complementary role in the investigation of intergenerational 353 
transmission. For example, some studies found that, during specific tasks, brain activity of 354 
parent-child dyads was synchronised60,61. Other, more relevant studies to the current studies 355 
reported that patterns of FC 59 and GMV 62 were similar between parent-child dyads. However, 356 
these studies did not quantitatively and comprehensively investigate the effects of different 357 
brain networks, and did not compare FC and GMV. It is also unclear which factors affect brain 358 
similarities, including age, sex, hormonal level, and behavioural traits (although Yamagata et 359 
al. investigated the effects of sex on GMV-based similarity using ROI-based analyses 62). This 360 
is partly because investigating such questions require a large neuroimaging dataset of parent-361 
child dyads with rich behavioural phenotypes. Overall, the present study is the first to 362 
investigate whether, to what extent, and how brains of parent-child dyads are similar. 363 

For both function and structure, the brain regions that contributed to similarity 364 
tended to be broadly distributed across the entire brain when we used whole-brain 365 
information (Figure 2c–2f), as in previous FC-based individual identification studies12,67. 366 
Although this tendency was retained when we only used the edges or regions within sub-367 
networks, we observed slightly different contrasts between functional and structural 368 
information (Figure 3b and Table 2). Specifically, for function, the medial frontal and 369 
frontoparietal areas, which are known to be involved in networks related to higher cognitive 370 
function, revealed higher accuracies than structural information. In contrast, for structure, 371 
visual, subcortical, and cerebellum networks exhibited higher accuracies than function. This 372 
contrast is interesting because the prefrontal cortex is one of the last regions of the brain to 373 
reach maturation, exhibiting development until approximately 25 years of age, whereas 374 
subcortical regions reach maturation earlier72. Note that, for structural brain information, only 375 
a small number of studies using GMV are comparable to the current study73,74, and none of 376 
them investigated each network’s contribution in detail. 377 

We confirmed that our results were not solely driven by structural or functional 378 
similarity alone. The neural similarity between FC and GMV exhibited a weak correlation 379 
(Supplementary Figure 6). In addition, combining FC and GMV led to the highest accuracy for 380 
many brain regions (Table 1). These results indicate that FC and GMV are distinct and contain 381 
complementary information. Previous studies reported that function and structure contain 382 
similar information, but also distinct information68. One study reported that information 383 
obtained from function and structure contain complementary information for the 384 
identification of siblings, but did not investigate the contributions of distinct anatomical brain 385 
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locations75. The current results are not only consistent with those of previous studies but also 386 
demonstrated qualitative differences between function and structure by exhaustively 387 
investigating the contributions of each distinct anatomical brain location. It is noteworthy that 388 
GMV was able to obtain similar accuracy, even with short scans that are routinely acquired as 389 
initial scans in MRI protocols. 390 

We also found that several demographic and behavioural factors had effects on the 391 
brain similarity of parent-child dyads. First, we found that age had an effect on accuracies of 392 
GMV, but not FC. It is known that both FC and GMV change through adolescence76,77; thus, 393 
this difference suggests that the functional and structural development of the brain are not 394 
qualitatively equal, at least from the perspective of parent-child similarity. Second, when we 395 
split children into males and females, we found age effects on the brains of female children, 396 
both for FC and GMV. This finding suggests that the developmental trajectory of the brain 397 
qualitatively differs between females and males. In addition, female children were more 398 
similar to their parents than male children, particularly at age 13. This finding is intriguing 399 
because previous studies also reported that female children are more similar to their mothers 400 
both behaviourally78 and neurally62. Third, testosterone affected brain similarity in parent-401 
child dyads. Interestingly, children with high levels of testosterone exhibited greater similarity 402 
than other children, despite female children having greater accuracy than male children. Note 403 
that there were no significant differences in levels of testosterone between males and females 404 
both at age 11 (two-sample t-test, t(49) = −0.64, P = 0.53, Hedge’s g = −0.19) and 13 (two-405 
sample t-test, t(44) = 0.81, P = 0.42, Hedge’s g = 0.25). It is known that levels of testosterone 406 
increase through adolescence, especially in male children79. Thus, different results may have 407 
been obtained if older children were tested. Fourth, questionnaire-based development scores 408 
had effects on similarity. Children with higher developmental problem scores were more 409 
similar to their parents than other children. Although this result is somewhat counterintuitive, 410 
it suggests that similarity of the brain does not merely represent behavioural maturity 411 
assessed by questionnaire. Overall, the current results provide the first detailed picture of the 412 
signature of intergenerational transmission in the brain.  413 

Recent developments in cognitive neuroscience have made it possible to investigate 414 
individual differences, an issue that has not been deeply investigated because of the absence 415 
of adequate datasets, analytical techniques, and computational resources. The current results 416 
shed light on the importance of investigating family-level differences, in addition to individual-417 
level differences. Families are not a neutral environment for identity development, but deeply 418 
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affect individuals from adolescence, strongly influencing the development of a person’s 419 
identity80. Given that the current results revealed that parental brains are similar to the brains 420 
of their children, we propose that future studies should investigate the relationships between 421 
family-level behavioural indices and family-level brain information to enable more reliable 422 
predictions of children’s behaviour and development. We believe our dataset will help to 423 
extend research in this direction64. 424 

The current findings indicate several potentially interesting questions for future 425 
research. The first and perhaps most important question is whether parent-child brain 426 
similarity changes across children’s development. Recent studies proposed a brain-based 427 
quantitative approach for investigating the trajectory of development81,82. Although the 428 
current study revealed that children at age 11 and age 13 are different, it may be valuable to 429 
investigate whether the trajectory of the parent-child brain similarity affects the various risks 430 
faced by adolescents, including psychiatric disorders and criminal behaviour, using much 431 
longer-term longitudinal datasets. Second, insights may be gained by using genetic 432 
information to confirm the extent to which genetic factors contribute to neural similarity. We 433 
examined biological parent-child relationships in the current study. Thus, it may be valuable 434 
to test whether non-biological parents and children show the same level of brain similarity. 435 
Third, we used GMV as a structural brain measurement because a number of previous studies 436 
investigated the relationship between GMV and various traits. However, the human brain also 437 
exhibits individual differences in white matter microstructure. Diffusion tensor imaging 438 
provides measures of white matter integrity in the brain, and can provide useful data, but, like 439 
GMV, produces different information to FC83. Indeed, previous studies have shown that 440 
thickness correlations partially reflect underlying fibre connections but contain exclusive 441 
information84. Future studies should use other types of structural information, such as 442 
structural connectivity obtained by diffusion tensor imaging. Fourth, because our dataset 443 
mostly consisted of mothers (81 mothers among 84 parents), it may be valuable to test 444 
whether we can also identify children’ brains from fathers. Although we confirmed that we 445 
were able to successfully conduct analyses both male and female children, future studies 446 
should investigate the effects of parents’ sex on performance. 447 

In the present study, we sought to address a critical question in social science: 448 
whether, to what extent, and how parents and children are similar. Our analytical framework 449 
and the richness of our dataset made it possible to ask the question from the neurobiological 450 
perspective. The results revealed that parents’ and their children’s brains exhibit a high degree 451 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 22, 2021. ; https://doi.org/10.1101/2020.03.06.981068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.06.981068
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

of similarity, and that various factors, including age, sex, hormones, and development score 452 
have effects on similarity. These results provide a comprehensive picture of the 453 
neurobiological substrates of parent-child similarity, and show the usability of our dataset for 454 
investigating the neurobiological substrates of intergenerational transmission. 455 
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Methods 478 

Overview of the dataset 479 

The Tokyo TEEN Cohort (TTC) study, which was launched in 2012, is a large-scale longitudinal 480 
general population-based survey to elucidate puberty development during adolescence, 481 
particularly the acquisition processes of self-regulation and willingness to face challenges, by 482 
focusing on the interaction between biological, psychological, and social factors63,64. This 483 
study was conducted as part of the population-neuroscience component of the TTC (pn-TTC) 484 
study, in which 301 early adolescents were recruited from the general population. Subjects of 485 
the pn-TTC study were subsampled from a larger subject group of the TTC study, and it was 486 
confirmed that the pn-TTC subsample was representative of the TTC study population. 487 
Written informed consent was obtained from each subject and the subject’s primary parent 488 
before participation. All protocols were approved by the research ethics committees of the 489 
Graduate School of Medicine and Faculty of Medicine at the University of Tokyo, Tokyo 490 
Metropolitan Institute of Medical Science, and the Graduate University for Advanced Studies. 491 
All research was performed in accordance with relevant guidelines/regulations. The detailed 492 
methods for subject recruitment are described elsewhere63,64. The dataset is publicly shared 493 
upon request (http://value.umin.jp/data-resource.html). 494 

We excluded subjects who exhibited anomalies in fMRI or T1w images. We also 495 
excluded parents who did not have either fMRI or T1w images, and children who did not have 496 
either fMRI or T1w images at age 11 and age 13. After this screening process, 84 dyads were 497 
included in the final analysis (39 female children; 81 mothers; age = 11.59 ± 0.66 for children 498 
at age 11, 13.63 ± 0.62 for children at age 13, and 43.35 ± 0.62 for parents, mean ± s.t.d). 499 

MRI parameters 500 

Subjects were instructed to lie supine on the bed of the MRI scanner. MRI scanning was 501 
performed on a Philips Achieva 3T system (Philips Medical Systems, Best, The Netherlands) 502 
using an eight-channel receiver head coil. Each subject underwent resting-state fMRI and T1-503 
weighted (T1w) three-dimensional magnetisation-prepared rapid gradient echo (3D-504 
MPRAGE) sequences. 505 

Sagittal T1w images were acquired using the 3D-MPRAGE sequence with the 506 
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following parameters: repetition time (TR) = 7.0 ms, echo time (TE) = 3.2 ms, minimum 507 
inversion time = 875.8 ms, flip angle = 9°, matrix = 256 × 256, field of view (FOV) = 256 mm × 508 
240 mm × 200 mm, voxel size = 1 mm × 1 mm × 1 mm, slice thickness = 1 mm, number of 509 
slices = 200. The acquisition time was approximately 10 min 42 sec. 510 

Resting-state fMRI images were acquired using a gradient-echo echo-planar imaging 511 
(EPI) sequence with the following parameters: TR / TE, 2500 ms / 30 ms; flip angle, 80°; matrix, 512 
64 × 64; FOV, 212 mm × 199 mm × 159 mm; voxel size, 3.31 mm × 3.31 mm; slice thickness, 513 
3.20 mm; slice gap, 0.8 mm. Each brain volume consisted of 40 axial slices and each functional 514 
run contained 250 image volumes preceded by four dummy volumes, resulting in a total scan 515 
time of 10 min 40 sec. Subjects were instructed to stay awake, to keep their minds as clear as 516 
possible, and to keep their eyes on a fixation point at the centre of the screen through a mirror 517 
during scanning. 518 

Information extraction 519 

We used Statistical Parametric Mapping 8 (SPM8: Wellcome Department of Cognitive 520 
Neurology, http:/ /www.fil.ion.ucl.ac.uk/spm/software/) in MATLAB (MathWorks, Natick, 521 
Massachusetts) for preprocessing and statistical analyses.  522 

Preprocessing of structural MRI: T1w images were segmented into three tissue 523 
classes (grey matter [GM], white matter [WM], and cerebrospinal fluid [CSF]) using a 524 
segmentation approach implemented in SPM8. The segmented images (only GM) were then 525 
normalised into standardised Montreal Neurological Institute (MNI) space by applying a 526 
deformation field in SPM8. The GMV of each ROI was extracted and averaged within that ROI. 527 
We used a functional atlas defining 268 ROIs that cover the entire brain (functional atlas from 528 
Finn et al.12, which used the method developed by Shen et al.65) (this atlas can be downloaded 529 
from https://www.nitrc.org/frs/?group_id=51), enabling us to obtain a vector with a size of 530 
268 for each subject. Note that, although an alternative method for inter-subject registration 531 
called Diffeomorphic Anatomical Registration Exponentiated Lie algebra (DARTEL) exists, we 532 
did not employ it because our goal was not to conduct comparisons at the group-level. Future 533 
studies should investigate whether employing another segmentation and normalisation 534 
method can improve accuracy. 535 

Preprocessing of resting-state fMRI: Preprocessing of resting-state fMRI included 536 
slice-timing correction, realignment, co-registration, normalisation to MNI space, and spatial 537 
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smoothing with an isotropic Gaussian kernel of 6 mm full-width at half-maximum. To avoid 538 
the effects of head motion artefacts, we calculated framewise displacement (FD). FD is 539 
defined as the mean relative displacement between two consecutive volumes for each of the 540 
six motion parameters. We conducted a “scrubbing” procedure by removing volumes with FD 541 
> 0.5 mm, along with the previous volume and two subsequent volumes, as proposed by 542 
Power et al.66 The average grey matter time-course for each ROI was calculated, then 543 
temporally filtered using a first-order Butterworth filter with a pass band between 0.01 Hz and 544 
0.08 Hz. The time-course of each ROI was linearly regressed by the temporal fluctuations in 545 
white matter, cerebrospinal fluid, and the entire brain, as well as six head motion parameters. 546 
The time-course of white matter and cerebrospinal fluid were filtered using a first-order 547 
Butterworth filter with a pass band between 0.01 Hz and 0.08 Hz, and a white matter mask 548 
was eroded by one voxel to consider a partial volume effect. All parameters were determined 549 
in accord with a previous study19. For each subject, an FC matrix between all ROIs was then 550 
calculated by evaluating pair-wise temporal Pearson’s correlations of blood-oxygenation level 551 
dependent time courses, based only on the remaining images after the scrubbing step above. 552 
We used the same 268 ROIs that were used for GMV. Because FC matrices are symmetrical, 553 
values on only one side of the diagonal were kept, resulting in 35,778 unique edges (268 × 554 
267/2). We then regressed the motion and total grey matter volume and mean FD out from 555 
data matrices. 556 

Motion index: In addition to resting-state fMRI and structural MRI information, we 557 
performed the same analyses using motion estimates during resting-state fMRI to investigate 558 
the effects of motion artefacts12. We first specified 20 bins to span {0:0.05:1} to calculate 559 
discrete motion distribution vectors for each parent and child based on FD over an entire scan. 560 
These motion distribution vectors were then used in the same way as the FC or GMV vectors.  561 

Similarity analysis 562 

We modified a connectome fingerprinting approach by Fin et al12. They used two datasets 563 
consisting of the same individual but different task sessions, called “source” and “target” 564 
dataset. They correlated the connectivity vector from one participant in the source dataset to 565 
the vectors of all participants in the target dataset and identified the maximum correlation. If 566 
the two vectors showing the strongest correlations came from the same individual, the 567 
resulting binary accuracy was 100%, whereas binary accuracy was 0% otherwise. Although 568 
these studies successfully identified brain networks that contributed to the individual 569 
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identification, their method treats second-ranked and worst-ranked cases as equally failed 570 
cases, thus discarding some information that might be useful for improving the statistical 571 
power. In addition, the chance rate depends on the number of samples, thus making the 572 
interpretation difficult, especially comparing different datasets with different sample sizes. To 573 
overcome these issues, we modified the method as follows. We confirmed that the proposed 574 
method is more sensitive than conventional methods (Supplementary Figure 5) and the 575 
chance rate was always 50%, irrespective of the sample size. 576 

 For each parent-child dyad, we first calculated the similarity of their FC and/or GMV 577 
patterns based on their Pearson’s correlation. We next assessed whether the similarity of the 578 
parent-child dyad (child and their own parent) was larger than a stranger-child dyad (child and 579 
another child’s parent). We then calculated the winning rate of the similarity between parent-580 
child dyad, denoted as “accuracy”. We repeated this procedure across all children and 581 
averaged accuracies.  582 

 Intuitively, the obtained statistics can be considered as a “pairwise classification 583 
accuracy” calculated by the following procedure: 584 
1. Select a child randomly from all children in the sample. 585 
2. Select two parents, including the child’s own parent and a randomly selected parent in the 586 
sample.  587 
3. If the Pearson’s correlation coefficient between parent-child dyad is higher than that of 588 
stranger-child dyad, the result is recorded as a correct parent-child identification. 589 
4. In contrast, if the Pearson’s correlation coefficient between parent-child dyad is smaller 590 
than that of stranger-child dyad, it is recorded as a failed identification. 591 
5. Repeat this procedure and calculate accuracy across repetition. 592 
 By increasing the number of repetitions, this approach converges to the accuracy 593 
obtained by the main analysis. The chance rate of this approach is always 50%.  594 

 We performed 1,000-times bootstrapping to estimate the 95% confidence interval 595 
of accuracy, by randomly subsampling 90% of the subjects in each iteration. To determine 596 
whether accuracy was achieved at above-chance levels, we used 1,000-times permutation 597 
testing to generate a null distribution by randomly shuffling the parent-child mapping.  598 

To determine the role of specific edges/regions in the performance, we quantified 599 
highly unique and highly consistent edges/regions using a differential power (DP) measure 600 
and a group consistency measure (φ ) described in detail elsewhere12. DP provides an 601 
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estimate, for each given edge/region, of the likelihood that within parent-child dyad similarity 602 
(between a parent and their parent) is higher than stranger-child similarity (between a parent 603 
and another parent’s child). Specifically, we computed the edge/region product vector (φ!) 604 
from two sets of FC/GMV vectors [𝑋!"#!$%], [𝑋!&'()*+], 605 

φ!(𝑓) = 𝑋!"#!$%(𝑓) ∗ 𝑋!&'()*+(𝑓), 𝑓 = 1, 2, … ,𝑀	609 
where i indexes dyad, f indexes edge/region, and M is the total number of edges/regions in 606 
the entire FC/GMV vector. We can calculate φ!  between vectors of a child and another child’s 607 
parent 608 

φ!,(𝑓) = 𝑋!"#!$%(𝑓) ∗ 𝑋,&'()*+(𝑓), 𝑖		 ≠ 	𝑗 610 

To compute the DP for all the dyads in a given dataset, we calculate an empirical 611 
probability 612 

𝑃!(𝑓) =
𝑃45𝜑,!(𝑓) > 	φ!!(𝑓)5 + 5𝜑!,(𝑓) > 	φ!!(𝑓)59

2(𝑁) , 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑦𝑎𝑑𝑠 613 

A low 𝑃!(𝑓) indicates a more discriminative edge/region. We can finally calculate 614 
DP of an edge/region across all children in a sample: 615 

𝐷𝑃(𝑒) =G{− ln4𝑃!(𝑒)9}
!

 616 

If the parent-child dyad product was higher than the stranger-child product across 617 
all children in a sample, this corresponds to a high DP value, and the edge/region is helpful.  618 

The group consistency measure, φ is simply the mean of φ!  for a given edge/region 619 
across all children. Edges/regions with high φ values are therefore high across all pairs of 620 
children and parents, and thus are not helpful. 621 

For the analyses in Figure 2, we used whole-brain FC or GMV. For the analyses of 622 
data shown in Figure 3, we split the whole brain into 10 sub-networks and conducted the 623 
same analyses using FC or GMV within each sub-network. The definition of sub-networks was 624 
obtained from Horien et al.67. 625 

Testosterone and Child Behavior Checklist 626 
We investigated the effects of testosterone and Child Behavior Checklist (CBCL) scores on the 627 
brain similarity of parent-child dyads. The detailed methods for data collection are described 628 
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elsewhere63,64. In the main analyses, we excluded dyads if either parent or child did not have 629 
a score. We also excluded children who had an extremely high testosterone measurement 630 
(more than mean + 1.5 s.t.d. Mean values of excluded children were 41.65 pg/mL [N=4] and 631 
92.63 pg/mL [N=7] for children at age 11 and 13, respectively). After exclusion, the number of 632 
dyads was 51 for testosterone at age 11 (4.01 ± 3.63 pg/mL, mean ± s.t.d), and 46 for 633 
testosterone at age 13 (15.96 ± 17.83 pg/mL, mean ± s.t.d), 82 for CBCL at age 13 (6.55 ± 6.16, 634 
mean ± s.t.d). There was no exclusion for CBCL age at 11 (10.48 ± 9.10, mean ± s.t.d). 635 

1. Testosterone: The adolescents collected their salivary samples at home early in the 636 
morning. In advance, both the adolescents and their primary parents were informed of 637 
how to collect the adolescents’ saliva using sample tubes. The adolescents tried it under 638 
the guidance of the survey staff for practice. They were instructed not to collect the saliva 639 
within a week after a tooth extraction or immediately after dental treatment to avoid 640 
contamination with blood. They were also asked not to eat food after brushing their teeth 641 
on the night before the saliva collection. They were instructed to rinse their mouth soon 642 
after getting up and to make sure they were at their normal body temperature, and not to 643 
have breakfast and not to brush teeth before the collection. Furthermore, they were asked 644 
to wait for 20 min after the rinse and then to collect 4.5 ml of their saliva by passive drool 645 
in sterilized tubes (1.5 ml/tube * 3 tubes) made of polypropylene (NalgeneTM General 646 
Long-Term Storage Cryogenic Tubes, Thermo Fisher SCIENTIFIC, U.S.A.) within 60 min. 647 
Salivary samples were collected in only one day, since high correlation among morning 648 
salivary testosterone levels across days in adolescents was reported85. Salivary samples 649 
were kept in household refrigerator freezers, delivered frozen to our laboratory, where the 650 
weights were measured and tubes stored at minus 80 degrees C until the testosterone 651 
levels were measured. The concentration of salivary testosterone was measured once by 652 
liquid chromatography- tandem mass spectrometry (LC–MS/MS), which has become the 653 
current standard86. All testosterone measurements were then square-eroot transformed 654 
to better approximate a normal distribution prior to quantitative analyses. 655 

2. CBCL: CBCL is a parental-report questionnaire used to screen children for behavioural 656 
problems: there are 20 competence items and 120 items on behavioural and emotional 657 
problems. The CBCL includes the following eight empirically-based syndrome scales: 1) 658 
Aggressive Behavior, 2) Anxious/Depressed, 3) Attention Problems, 4) Rule-Breaking 659 
Behavior, 5) Somatic Complaints, 6) Social Problems, 7) Thought Problems, and 8) 660 
Withdrawn/Depressed, as well as summary scores reflecting “Internalization” and 661 
“Externalization.” We used the average scores of “Internalization” and “Externalization” in 662 
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the main results. 663 
  664 
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 878 
Supplementary Figure 1: Overall patterns of edges/regions with high differential power (highly 879 
discriminative among subjects) and group consistency (highly similar among subjects) tended to be similar 880 
across different thresholds and across development ((a)–(d) child at age 11); (e)–(h) child at age 13). The 881 
figures show the results when the edges were thresholded at the 99.8th and 99.75th percentiles for FC, 882 
and regions were thresholded at the 85th, 80th percentiles for GMV. For each threshold, a circle plot (FC) 883 
and a bar graph (GMV) are shown, in which nodes are grouped according to anatomical location.   884 
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 885 
Supplementary Figure 2: Box plots of signal strength of each lobule for GMV. The red line indicates the 886 
median. The bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The 887 
crosses denote outliers, and the whiskers extend to the most extreme data points not considered outliers. 888 
The brainstem (the right-most boxes in each figure) exhibited much lower signal strength compared with 889 
the other lobules. Means ± s.e.m are shown.  890 
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 891 
Supplementary Figure 3: Accuracies using only low-movement subjects. We confirmed that qualitatively 892 
similar results were obtained when we excluded children whose head movements were in the top 25%, at 893 
both age 11 and age 13, resulting in the inclusion of 41.25% of the total sample. 894 
  895 
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 896 
Supplementary Figure 4: Between-network analyses using only the between-network edges. Statistical 897 
significance was assessed by comparing the distributions for each network obtained through bootstrapping, 898 
uncorrected.   899 
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 900 
Supplementary Figure 5: Accuracies obtained using conventional identification methods. Box plots of 901 
accuracies using FC (top row) and GMV (bottom row) for children at age 11 (left column) and 13 (right 902 
column) are shown. The bottom and top edges of the box indicate the 25th and 75th percentiles, 903 
respectively. The crosses denote outliers, and the whiskers extend to the most extreme data points not 904 
considered outliers. n.s. non-significant. 905 
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 907 
Supplementary Figure 6 For each sub-network (1–10: sub-networks shown in Figure 3a) and whole-brain 908 
(ALL), we calculated Pearson’s correlation coefficients between parent-child brain similarities defined by FC 909 
and those defined by GMV across all parent-child dyads (red box). We found that they exhibited relatively 910 
low correlations in general, suggesting that they contained independent information. Directly to the right 911 
of these red boxes (grey box) are the results of the 1,000-times permutation testing. 912 
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 914 
Supplementary Figure 7: The number of top ranked networks for COMB (red bar), GMV (green bar), and 915 
FC (blue bar) estimated via bootstrapping and null distribution (grey bar) estimated via permutation are 916 
shown. 917 
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