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Molecular tagging is an approach to labeling physical objects using DNA or
other molecules that can be used in cases where methods like RFID tags and
QR codes are not suitable. No molecular tagging method exists that is inex-
pensive, fast and reliable to decode, and usable outside a lab setting to create
or read tags. To address this, we present Porcupine, an end-user molecular
tagging system that features DNA-based tags readable within seconds using a
portable nanopore device. Porcupine’s digital bits are represented by the pres-
ence or absence of distinct, nanopore-orthogonal DNA strands, which we call
molecular bits (molbits). We classify molbits directly from the raw nanopore
signal, avoiding basecalling. To extend the tag’s shelf life, decrease readout
time, and make tags robust to environmental contamination, molbits are pre-
pared for readout during tag assembly and can be stabilized by dehydration.
The result is an extensible, real time, high accuracy tagging system that in-
cludes a novel approach to developing nanopore-orthogonal barcodes.

One sentence summary
Porcupine lets end-users label physical objects with custom DNA tags, without requiring a lab
to create or read tags, and offers rapid readout using nanopore sequencing.
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Figure 1: Creating a molecular tag using the Porcupine molecular tagging system. (a)
Porcupine’s encoding scheme. A digital tag is converted into a codeword to add additional bits
for error correction. Each codeword bit is assigned to a unique molbit, where 1s and 0s are
represented by the presence or absence of individual molbits in the molecular tag mixture. (b)
A user first defines a digital tag as a binary 96-bit number, and pipettes 1-bits into the molecular
tag. The tag is applied to an object, which is then shipped or stored. To read the tag, it is
rehydrated and loaded directly onto Oxford Nanopore Technologies’ MinION device. Software
then identifies the tag, either with or without knowledge of the original tag.
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Introduction
DNA-based information storage continues to gain momentum with the emergence of high-
throughput DNA sequencing (sequencing-by-synthesis) and synthesis (array-based synthesis);
these technologies enable vast amounts of text and visual (1–3) information to be encoded,
stored, and decoded. DNA data storage offers unique advantages over mainstream storage
methods like magnetic tape and hard disk drives, including higher physical density and longer
retention lifetimes (4). This is particularly useful for archival storage, where current access
speeds and read/write costs are not an issue. The development of portable, real-time sequencing
(nanopore) (5), together with new methods that simplify the modular assembly of pre-defined
DNA sequences (6), creates additional opportunities for rapid writing and on-demand readout.
This compelled us to revisit an early application of DNA-based information storage: molecular
tagging (7).

Molecular tagging uses physical molecules to encode an identifier for a physical object,
analogous to a radio-frequency identification (RFID) tag or Quick Response (QR) code in the
digital world. An ideal molecular tagging system should be inexpensive and reliable, with fast
readout and user-controlled encoding and decoding from end-to-end. Molecular tags can be
easily used in situations where RFID tags and QR codes are not suitable; for example, labeling
and tracking commodities that are too small, flexible, or numerous to attach a sticker or elec-
tronic tag, especially to detect counterfeits. Other promising applications include tracking and
establishing provenance for higher value items, or covertly exchanging private information like
encryption keys and digital wallets. Although several molecular tagging solutions exist, none
is fully usable – from creation to readout – outside of a laboratory setting, or without involving
a third party. These constraints significantly increase tag read and write latency, decrease tag
confidentiality, and ultimately limit custom application development.

To address these issues, we designed and built Porcupine, a molecular tagging system that
uses synthetic DNA-based tags. Although DNA is typically considered expensive for read-
ing and writing, Porcupine lowers the cost by providing a fixed library of 96 pre-synthesized,
nanopore-orthogonal DNA fragments, which we call molecular bits (molbits). Molbits repre-
sent digital bits through presence or absence instead of 1s and 0s (Fig. 1a); allowing new, arbi-
trary tags that end-users can create for custom applications by simply mixing molbits to produce
a molecular tag. Molecular tags are then read out quickly using a portable, low-cost sequencing
device (Oxford Nanopore Technologies MinION; Fig. 1b). Typically, raw nanopore signal must
first be converted back to a DNA sequence in a computationally expensive process called base-
calling, but we classify molecular tags directly from raw nanopore signal, forgoing basecalling.
Raw signal classification is often used for DNA and RNA sample demultiplexing, which also
uses DNA barcodes (8, 9); Porcupine drastically increases the number of barcodes by custom
designing them to produce unique ionic current signatures. Error correction is also added to the
tag to resolve decoding errors, similar to electronic message transmissions systems. Molbits are
prepared for readout (sequencing) prior to tag application and can be stabilized by dehydration,
a new approach that extends tag shelf life, decreases decoding time, and reduces contamina-
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Figure 2: Molbit design scheme. (a) Molecular bit (molbit) structure. The molbit sequence is
attached to a spacer sequence via Golden Gate assembly to achieve a minimum length for se-
quencing and provide an additional encoding channel. Since the sequencing adapter is attached
to both ends, the strand can be sensed from either direction. (b) The letters “UW” depicted
visually in nanopore raw data (as opposed to encoded in the sequence contents). From top to
bottom, the shown sequence was simulated using Scrappie and sequenced on the ONT Min-
ION, demonstrating the viability of using simulations for designing intentional, arbitrary raw
signal shapes. (c) Evolutionary model workflow. Each round of evolution begins with a set of
sequences, their simulated squiggles, and pairwise Dynamic Time Warping (DTW) distances.
The sequence order is randomized, and sequences are mutated one at a time, verifying DTW im-
provement (minimum and mean) after each attempt. (d) Dynamic time warping (DTW) scores
before (left) and after (right) 31 iterations of the evolutionary model. After initialization, the
minimum DTW similarity was 2.9 (mean 4.2 +/- 0.4), and after evolution the minimum was 4.2
(mean 5.8 +/- 0.8). 4
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tion from environmental DNA. The result is a highly accurate real time tagging system that
includes a novel approach to developing nanopore-orthogonal barcodes. These barcodes, and
the methods we use to develop them, are extensible; they can be used both within Porcupine to
tag physical objects and beyond this system for other molecule-level tagging needs like sample
multiplexing for nanopore sequencing

Results
To develop Porcupine, we first defined an individual molbit as a DNA strand that combines a
unique barcode sequence (40 nt) with a longer DNA fragment selected from a set of sequence
lengths that we pre-determined (Fig. 2a). To make assembly of molbits simple and modu-
lar, we designed them to be compatible with Golden Gate Assembly by incorporating a short
single-stranded overhang. To increase classification accuracy and decrease computation time,
we further optimized them to avoid basecalling. Thus, for the barcode region, the objective
was to produce a large set of sequences that could generate unique ionic current signatures
(“squiggles”) to promote unambiguous classification.

To model the predicted ionic current signature for arbitrary DNA sequences, we used Scrap-
pie squiggler, a tool that converts sequences of bases to ionic current via a convolutional model.
For example, to demonstrate Scrappie’s ability to accurately model real nanopore squiggles,
we designed a DNA sequence that appears as the letters UW in squiggle space (Fig. 2b), with
high visual similarity to the simulated squiggle (except for noise). Scrappie’s output also let
us compute the signal similarity of two sequences quantitatively using dynamic time warping
(DTW) as the distance measure. We used this approach inside an evolutionary model designed
to make barcodes as separable as possible (Fig. 2c).

To produce a set of 96 orthogonal molbit barcode sequences, we initialized the evolutionary
model using 96 random or pre-seeded starting sequences (see Methods). We perturbed each
sequence independently in random order by mutating two adjacent nucleotides simultaneously
at a random location. If the mutated sequence failed to improve the minimum and average DTW
similarities between itself and all other sequences, we reversed the mutation and attempted
again for the same sequence. We also restricted sequence similarity and free energy of the
sequences to avoid labeling ambiguities and secondary structure (see Methods). Using this
method, we began with a set of starting sequence that had a minimum DTW similarity of 2.9
and mean 4.2 +/- 0.4 and achieved a final minimum of 4.2 and mean 5.8 +/- 0.8 after 31 rounds
of evolution (Fig. 2d), representing a 44.8% and 38.1% improvement in the minimum and
mean, respectively.

Given the set of 96 designed molbit barcodes, we wanted to increase the number of available
molbits without requiring additional barcode design or synthesis. To do this, we inserted a DNA
fragment between the barcode regions as a spacer sequence, which can be set to different lengths
as an additional encoding channel. Thus, since each molbit consists of the unique combination
of a molbit barcode plus a specific spacer sequence length, adding another length effectively
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Figure 3: Molbit classification and tag decoding results. (a) Distribution of raw nanopore
signal lengths for two different length DNA sequences (400 and 1600 nt), using kernel density
estimation. (b) Correlation of read counts for each molbit, demonstrating consistency in molbit
occurrences between training and testing runs (Pearson correlation, p = 3.1×10−26, r = 0.84).
Counts were first normalized within each run and normalized again after combining runs for
either training or testing. (c) Tag decoding workflow, with error correcting codes (ECC). After
acquiring nanopore current traces from a standard sequencing run, the molbit in each trace is
identified using the CNN (confidence ≥ 0.9). Successfully identified molbits are accumulated
and converted into binary using a threshold for presence. This threshold is varied as error
correction is carried out multiple times, accepting the binary digital tag with the most likely
correct decoding. (d) Chance of incorrect tag decoding as a function of the bit corruption
rate and number of data bits. This chance increases exponentially as the corruption rate and
number of data bits increase linearly. The dashed line represents the goal of “1 in 1 billion tags
incorrect,” and the “+” marks Porcupine’s chance of incorrect decoding.
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adds an additional 96 molbits. Length works as an additional encoding channel because even
without basecalling, the length of nanopore signals can be easily distinguished; the signal length
is roughly proportional to the DNA fragment length. We tested this concept using two spacer
lengths (400 and 1600 nucleotides) and found that simple signal length binning was sufficient
for decoding. The median signal length for the 400 and 1600 nt strands was 5768 and 16968,
respectively, and a cutoff at 9800 gave 91.0% accuracy, where most errors were caused by long
strands misidentified as short strands (Fig. 3a). For remaining experiments, we focused on a
single spacer length.

After designing the molbits and acquiring a theoretical understanding of their separability,
we developed a convolutional neural network (CNN) model to accurately classify them directly
from real raw nanopore data ( see Supplementary Figure 1). Note that molbits do not need
to be segmented or otherwise isolated from the raw data, rather, the CNN uses only the first
portion of the each molbit since the molbit barcode is located at the beginning of the strand.
We gathered training data by dividing the 96 molbit barcodes into 6 sequencing sets, with each
molbit appearing once; optimizing the sets for maximum sequence separability to improve la-
beling (see Methods); and running each set on the MinION. We assigned labels to each molbit
read using traditional basecalling methods and a modified semilocal Smith-Waterman sequence
alignment (10), using only high-confidence alignments (see Methods). For test data, we divided
the 96 molbits into 2 sequencing sets, with each molbit appearing once, and gathered the data
as described for training. The model was trained for 108 iterations, with a final training, vali-
dation, and test accuracy of 99.93%, 97.70% and 96.96%, respectively, compared to sequence-
derived labels. However, in real world decoding, all reads are classified, not just those that pass
basecalling and sequence alignment. We found that the CNN was consistently able to confi-
dently classify a larger portion of the reads (97% of reads in the test set) than basecalling plus
alignment (75.1% of reads in the test set), revealing a large portion of reads that we could not
easily validate. We reasoned that if the occurrence of each molbit was proportional between
basecalling and the CNN, that the CNN was likely not making spurious calls, but was perhaps
performing better on the raw signal data. This seems to be the case as read counts correlate
extremely well between the two methods (see Supplementary Figure 2). As a result, “accuracy”
only reflects the model accuracy and does not necessarily measure each molbit’s error rate or
the overall chance of decoding the tag incorrectly.

We next composed actual molecular tags. We assigned each molbit a unique position in a
binary tag, allowing each 1 or 0 to represent the presence or absence of a specific molbit over
the course of a single tag sequencing (decoding) run. To determine presence or absence, we
used CNN-classified read counts for each molbit. Ideally, 0 bits would have zero reads, and 1
bits would have nonzero reads. However: two factors complicated our setting this threshold to
determine bit presence: (1) nonzero read counts for molbits not present in an experiment, and
(2) significant variations in counts for molbits present in an experiment, which we found to be
up to 20-30x in our training and test sets (see Supplementary Text). Fortunately, these variations
were consistent when we compared the ratios of molbit counts in the training and test data (Fig.
3b). We accounted for this variation by scaling all read counts by a fixed vector based on these
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ratios. Thresholding and scaling read counts reduced our per-bit error rate from 2.96 +/- 1.83%
to 1.70 +/- 1.68%, a 42.6% reduction.

Since a reliable tagging system should have a very low chance of incorrect decoding (e.g., 1
in 1 billion), we decided to further reduce our overall tag decoding error rate by including error
correcting codes (ECCs) as part of our tag design (Fig. 3c). The simplest non-ECC method
for encoding information in these tags is a naive 1:1 mapping between digital bits and molbits;
however, with this method, even a single bit error makes the tag unrecoverable (i.e., produces an
incorrect decoding). In our system, bits are set to 1 or 0 using a threshold for presence or absence
on the read counts, meaning that any 0-bits above this threshold are instead flipped to 1, and
vice versa. ECCs reduce the possibility of unrecoverable tags despite the relatively high per-bit
error rate by reserving a smaller number of bits for the digital message and creating a codeword
by projecting this message into a larger space with greater separability. This allows more bits to
be flipped before the message is decoded incorrectly. To encode the digital message, we simply
multiply the message by a binary matrix of random numbers, known as a random generator
matrix (See Supplementary Text). The number of bits reserved for the ECC depends on the
application’s error tolerance and the per-bit error rate (Fig. 3d). As the error rate increases, the
chance of incorrect decoding increases exponentially. Thus, the number of bits for the message
must be chosen carefully. We chose a message size of 32 bits, which at an error rate of 1.70%
produces a 1.6× 10−11 chance of incorrect decoding and permits ∼4.2 billion total unique tags.

Next, as a proof-of-principle for our tagging system, we demonstrated end-to-end tag en-
coding and decoding of the acronym MISL, short for Molecular Information Systems Lab (Fig.
4a). We began by encoding MISL into binary using ASCII, which uses 8 bits for each character,
for a total of 32 bits, and we multiplied this bit vector by the generator matrix to produce a 96-bit
codeword. The molecular tag was then prepared as explained previously, with one modification
for lab efficiency (see Methods). Once the molecular tag was assembled, it was prepared for
sequencing and read out using an ONT MinION. We then identified the molbits from the raw
data using our trained CNN classifier, accumulated a count for each molbit, and rescaled these
counts (as explained above) to accommodate systematic read count variances. We then decoded
the tag by binarizing the counts with varying thresholds and finding the nearest valid codeword.
The earliest correct decoding occurred less than 7 seconds after sample loading (109 molbit
strands observed), demonstrating reliable encoding and decoding of a 32 bit message in only a
few seconds using a portable sequencing instrument.

Finally, to robustly estimate correct decoding time under these conditions, we simulated
tags using our original two test runs and one additional random tag. To generate a sufficient
amount of simulation data, we composed synthetic datasets representing new codewords that
were generated with the same number of 1-bits as the original tag datasets. The original ob-
served molbits were then randomly assigned to the new bit ordering: 1-molbits in the original
tag were assigned new 1-molbit labels in the synthetic tag. To do this, we sampled reads without
replacement, accumulated a count for each molbit, and decoded as above, with 10 repetitions
per simulated run time. This simulation impacts the error rate both positively and negatively
due to the distribution of distances between codewords in the ECC. We found that some tags
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Figure 4: End-to-end data flow for the acronym “MISL”. (a) Encoding began by converting
“MISL” to ASCII (32 bits). The digital tag was then multiplied by the 32x96-bit generator
matrix, producing a 96-bit codeword. The codeword was converted to a molecular tag, stored,
and sequenced for 35 minutes. When sequenced, molbits were identified and accumulated into
a single count for each molbit. Bit errors are calculated with respect to the closest codeword,
not necessarily the correct codeword. The dashed line represents the optimal threshold for
binarizing these counts, which produced three incorrect bits. Rescaling the counts according
to known read count variation reduced these errors, in this case eliminating errors entirely.
(b) Minimum tag decoding distance as a function of sequencing runtime. Decoding occurred
without a priori knowledge of the correct tag. Bit errors are capped by the distance between
tags, which is at least 18 in the chosen ECC. Incorrect decodings are marked with an X. At each
time point, reads were sampled 10x at an average of 10k reads per minute.
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could be successfully decoded with only a few seconds of sequencing data, and all tags after
just 10-15 seconds (Fig. 4b).

In summary, Porcupine offers a new method for molecular tagging based on the presence
or absence of synthetic DNA sequences that generate explicitly unique nanopore raw current
traces. By directly manipulating segments of nanopore raw current and keeping unique se-
quences short, we reduce synthesis costs for the end user and produce visually unique nanopore
current traces, enabling high accuracy decoding. The speedy decoding time means our system
can decode using newer technologies such as the Flongle, a cheaper, single-use flowcell pro-
duced by ONT with a quarter of the pores of the MinION in as little as 1-3 minutes. In addition,
tags can be prepared for sequencing at the time of tag creation and then shelf-stabilized by de-
hydration. This further reduces readout time while maintaining tag quality (see Supplementary
Figure 3). In the future, more bits can be acquired by adding more insert lengths, by extending
the length of the unique region to allow more variation between molbits, or by combining bar-
code regions serially. Furthermore, a generative model for molbit design may be a natural next
step, especially if a dramatically larger number of molbits is desired, because the evolutionary
model computations scale exponentially with the number of desired bits.

One limitation of Porcupine is the variation in molbit counts. Although decoding remains
robust to bit errors, more stability in read counts would increase the amount of information we
could encode by reducing the number of bits required for error correction. Without resolving
this variation, the number of bits can still be substantially expanded by adding more insert
lengths to take advantage of the modular system design.

From a computational perspective, we note that basecalling is getting faster and more re-
liable; however, raw signal classification is fundamentally a simpler problem than basecalling.
Such classifiers can be trained with comparatively minimal data and expanded to non-traditional
sensing; for example, our molbit approach could be easily extended to include non-standard
bases for additional security, but standard basecalling would not be possible without extensive
amounts of training data.
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Materials and Methods

Molbit barcode design algorithm
To produce nanopore-orthogonal squiggles, we used an evolutionary model. First, we initial-
ized the model using a set of starting sequences. Fully random sequence initialization works
fairly well; however, we chose to initialize using a previous iteration of molbit barcodes, which
produced slightly better results than random initialization after the molbits were further per-
turbed. Starting sequences and their corresponding simulated nanopore squiggles are shown in
Supplementary Figure 4.

During mutation, we placed constraints on the sequences to ensure that they can be easily
synthesized, assembled, and measured using the ONT MinION. If a mutated sequence does
not fulfill these constraints, the mutation is reversed and attempted again. There are two types
of constraints: (1) those that affect only a single sequence (independent constraints), and (2)
those that impact the relationship between one sequence and all others (dependent constraints).
Independent constraints require each sequence to be within a range of allowed GC content (30-
70% GC), have a maximum folding potential (-8 kcal/mol) as calculated using NUPACK’s MFE
utility (11), exclude the BsaI cut site sequence (GGTCTC), and have a maximum homopolymer
length of five for A/T and four for C/G. Dependent constraints require a minimum sequence
dissimilarity, calculated using a local variant of the Smith-Waterman (SW) algorithm (10) (≤ 15
SW score; cost function +1 match, -1 mismatch, -8 gap); and a minimum squiggle dissimilarity,
calculated by simulating the sequence’s nanopore squiggle using the Scrappie squiggler and
computing the dynamic time warping similarity (12) for all squiggles vs. the new squiggle.

At the start of each round of sequence evolution, sequence order is randomized. Each se-
quence is mutated sequentially in this random order. The mutation is introduced by simultane-
ously modifying two adjacent nucleotides, in a random location. If the new sequence fails to
fulfill the preceding constraints, we undo the mutation and try again until a maximum number
of tries (100, arbitrarily), at which point we proceed to the next sequence. Next, we recalcu-
late sequence similarities with respect to the new candidate sequence. If any sequences are too
close to the new sequence, we undo the mutation and try again. Next, the nanopore squiggle
is simulated for the new sequence using Scrappie squiggler We recalculate the dynamic time
warping similarity for all squiggles vs the new squiggle, and, if any squiggles are now too
close, we undo the mutation and try again. If the new mutation improves both the minimum
and the average DTW dissimilarity between all squiggles, it is accepted; if not, the mutation
is reversed and reattempted. Evolution ends when the optimization begins bouncing between
just two sequences. At this point, the process has produced a local minimum as the result of a
series of random incremental improvements, so further improvements may be gained only by
significantly perturbing these final sequences. We show final sequences and their corresponding
simulated nanopore squiggles in Supplementary Figure 5.
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Molbit classification model
We identify individual molbits using a classification model, which takes raw nanopore signals
as input and outputs the molbit ID with an associated confidence. The model consists of a
5-layer CNN, followed by two fully connected layers with 50% dropout, and a final fully con-
nected layer with softmax as the output layer. Each of the 5 CNN layers is identically structured,
including a 1D convolutional layer with Relu activation, average pooling, and then batch nor-
malization. We show a diagram of the model with exact parameters for each layer (e.g., kernel
size) in Supplementary Figure 1a.

Ideally, we we would build a training dataset by sequencing each of the 96 molbits sepa-
rately. However, due to cost, we instead divided the 96 molbits into 6 runs of 16 molbits each.
We constructed these sets to have a high predicted distance between the molbits within a set,
meaning the most similar and easily confused molbits were not sequenced together for training
data acquisition.

We assigned training labels using basecalling (Guppy version 3.2.2 with GPU acceleration)
followed by Smith-Waterman sequence alignment (cost function: +1 match, -1 mismatch, -8
gap) against the full set of 96 molbits. We considered any SW score ≥ 15 to be a well-aligned
match. As a quality measure, we also examined how many of these reads were labeled with one
of the 16 possible molbits. An average of 98.7% +/- 2.1% of well-aligned reads belonged to the
true set of molbits across all training runs, indicating high quality labels.

After labeling the training data, we balanced the dataset by allowing a maximum of 6000
reads occurrences for each molbit, with a total of 274,667 reads used for training. To pre-process
the raw signal, we rescaled the signal using a Median Absolute Deviation method modified
from Oxford Nanopore Technologies’ Mako classification tool, trimmed the signal to remove
the variable-length stalled signal characteristic to the beginning of sequencing reads, and finally
truncated the signal to the first 3000 data points.

We split the training data 85%/15% to produce training and validation sets and trained the
model for 109 iterations, with a final maximum training accuracy of 99.94% and validation
accuracy of 97.78%. Confusion matrices for testing and validating the final model are shown in
Supplementary Figure 6a.

We acquired and labeled testing data in the same manner as the training data, using 2 new
sequencing runs, each containing a unique half of the molbits. Performance on these test sets
was 98.1% and 95.7% for labeled data. (See Supplementary Figure 6b for confusion matrices.)
We washed and reused the flowcell from test set 1 for test set 2, which potentially contributed
to a small portion of the errors present due to DNA carryover between the runs. We show read
counts for these two test runs in Supplementary Figure 7, noting when a molbit was possibly
present from the previous run.
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Experimental methods
We purchased forward and reverse strands of the 40 nt unique barcode sequences from In-
tegrated DNA Technologies (IDT). Reverse strands contained a 5’ GATG overhang and a 3’
dA-tail. We annealed forward and reverse strands by mixing them equimolar in 0.5M PBS,
boiling them at 94C for two minutes and then allowing them to cool at room temperature.
To generate the insert spacer, we amplified an arbitrary 400 nt portion of plasmid pCDB180
(https://www.addgene.org/80677/) by PCR, using primers we designed to add BsaI cut sites to
the ends of the amplified product.

To assemble the molbits, 600 ng of the desired annealed barcodes (at equimolar concentra-
tions) and 600 ng of the spacer were ligated together using NEB’s Golden Gate Assembly Kit.
We prepared molbits for sequencing using ONT’s Ligation Sequencing Kit (SQK-LSK109) fol-
lowing the kit protocol (we skipped the “DNA repair and end-prep” step because molbits were
already dA-tailed) and ONT’s Flow Cell Priming Kit (EXP-FLP001). Molbits were sequenced
on a R9.4.1 MinION flow cell with bulk FAST5 raw data collection enabled on MinKNOW.

We dehydrated tags after nanopore adapter ligation by mixing the molbits with 1% trehalose
dihydrate solution and lyophilizing the sample. To sequence, we rehydrated the lyophilized
sample in nuclease-free water and carried out sequencing prep described above.
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Supplementary Text

Evaluating read count variation
As described in the main text, the largest source of bit errors in Porcupine can be attributed to
the unusually large but seemingly consistent read count variance. Since each molecular tag is
composed of equal proportions of each present molbit, the resulting read counts for each molbit
after sequencing should be approximately equal; but instead, we measured significant variation
in read counts. We first checked for obvious sequence-related issues by correlating quantifiable
sequence characteristics, including GC content, minimum free energy (MFE), and homopoly-
mer length, against read counts normalized as described in the main text. Evidence shows
GC bias in genomic bacterial nanopore sequencing data on the MinION (13), based on non-
stochastic bias introduced by the basecaller, not the sequencing device. With respect to MFE,
we reasoned that although we controlled for MFE in the design phase, correlation between fold-
ing energy and read counts could still explain some variation. Additionally, we considered that
the inclusion of long homopolymers could also have been associated with a reduction in read
counts since imprecise calls of homopolymer length can potentially cause poor sequence align-
ment and therefore artificially low read counts (14). As shown in Supplementary Figure 8a,
correlations between these various measures and normalized read counts were quite low (Pear-
son correlation for GC: p = 0.31, r=-0.10; MFE: p=0.33, r=0.09; homopolymer length: p=0.82,
r=0.02). Thus, these rough measures could not explain the source of read count variance.

Moving beyond these initial sequence bias analyses, we reasoned that read count variation
errors can be introduced at four different points in our system: (1) DNA synthesis, (2) strand
assembly and tag combination, (3) sequencing, or (4) analysis/labeling.

(1) To check whether there was a problem with our original DNA order, we re-ordered 15
molbits representing the five lowest, average, and highest read count molbits. When sequenced,
the read counts of the re-ordered sequences were similar in proportion to their previous counts
(Supplementary Figure 8b). Thus, if the source of variability is caused by a synthesis error,
which we believe is unlikely, it is at least reproducible or possibly dependent on an unexplored
aspect of sequence content.

(2) To evaluate the strand assembly and tag combination step, we examined potential sec-
ondary structure in individual molbits, specifically the same molbits from the re-synthesized
tests. During the Golden Gate strand assembly step, double stranded DNA is separated into sin-
gle strands, potentially enabling secondary structure formation. Sequences were screened for
minimum free energy during the evolutionary modeling phase, but the screening did not cover
all forms of secondary structure, particularly stem-loop structures with short stems and large
loops. Some secondary structure can be seen across all three categories (see Supplementary
Figure 9a). It is possible that secondary structure could have lowered read counts, but we do
not believe that it could have caused excessive read counts.

Additionally, we reasoned about potential experimental variation due to human error. When
combining tags, some variation can be explained by pipetting. Here, we reasoned that up to 2-3x
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variation could be explained by this factor (bubbles, calibration, improperly depressed pipette,
etc.). Also, if a bit were omitted, it would cause a near-zero or very low read count, but if a
bit were accidentally added, it alone would not cause such a dramatic overabundance of read
counts. Thus, human error of this type could cause a low read count but likely not an overly
high one.

(3) It is possible the systematic sequencing errors contribute to molbit read differences,
however, the strong correlation between basecalling and CNN-based molbit classification makes
this less likely. Future experiments using a different sequencing platform (e.g. Illumina or
Sanger), could help to resolve this question.

(4) We do not believe basecalling or labeling is a significant contributor to the problem. With
respect to basecalling, an average of 93.3% of reads could be basecalled with high confidence
(Q-score ≥ 9) throughout all runs, leaving just ∼7% room for variation (compared to 200-300%
variation overall).

Also note that the molbit counts for labels assigned via basecalling and alignment have
high correlation with those assigned by the CNN (Pearson p < 10−5, r=0.9998, Supplementary
Figure 8c). Although there is certainly bias in that figure since basecalled labels are used to train
the CNN, this high correlation does reduce the possibility that either method is introducing a
significant number of spurious calls.

Ultimately, our method was designed to be robust to these types of errors; however, we still
sought to reduce them since any reduction in bit errors can exponentially reduce the overall
decoding error rate.

Error correction
To improve the system’s resilience we overlay an error correcting code. The error correcting
code maps the original messages into a higher dimensional space that provides a greater distance
between any two messages. In this higher dimensional space a message must accumulate many
errors before it is decoded incorrectly, allowing us to reduce the chance of incorrect decoding
for a given fixed error rate.

The error correcting code protocol has two stages: encoding and decoding. We use a random
linear code, which consists of a fixed, randomly chosen n×96 generator matrix that encodes an
n-bit message via a simple and efficient matrix multiplication. The resulting 96-molbit code-
word may accumulate errors during creation, storage, or retrieval. However, we can decode the
96-molbit codeword back to the n-bit message with high probability using brute-force nearest
neighbor decoding.

Supplementary Figures
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Supplementary Figure 1: Molbit classification model and data flow. Input data includes raw
nanopore signal, which was rescaled using a Median Absolute Deviation method modified from
Mako, trimmed to remove stalled signal characteristic to the beginning of sequencing reads,
and truncated to the first 3000 data points in the signal time series. Rescaled training data then
passes through a 5-layer CNN followed by 2 fully connected layers with dropout and a final
fully connected layer with softmax as the output layer. In the CNN layers, k is the kernel size
and pool is the average pooling kernel size.
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Supplementary Figure 2: Comparison of molbit counts from sequence data (labeled using base-
calling plus alignment) vs. signal data (labeled using CNN).
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Supplementary Figure 3: Quality of fresh versus dehydrated tags. (a) Cumulative sequencing
read output over time. (b) Distribution of PHRED quality scores for all reads after basecalling
using Guppy 3.2.2 (GPU version). (c) Distribution of sequence lengths after basecalling.
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Supplementary Figure 4: All 96 molbit sequences initialized before beginning the design phase
using the evolutionary model.
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Supplementary Figure 5: All 96 molbit sequences after 31 iterations of the evolutionary model.
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Supplementary Figure 6: Confusion matrices for training, validating, and testing the molbit
classification model. (a) Training and validation. Since counts vary drastically for each molbit,
values are normalized by the total number of actual (i.e., labeled via basecalling plus alignment)
molbits. Due to high overall accuracy, the visualization is capped at 1% to make error patterns
more visible. In the validation plot, some batching bias is visible, demonstrated by six squares
surrounding the diagonal identity line. The 16 molbits within each of these six boxes were
sequenced together in the same run. (b) Testing. As in (a), values are normalized by the total
number of actual molbits. Each test set consists of a mutually exclusive set of half of the molbits,
in this case arranged arbitrarily in groups of 8, causing the horizontal banding in the matrices.
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Supplementary Figure 7: Read counts per molbit for test runs.
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Supplementary Figure 8: Read count variation analysis. (a) Correlation of normalized read
counts against various sequence-related metrics: GC content, folding energy (δG minimum
free energy), and maximum homopolymer length). Normalized read counts were drawn from
the two datasets used to test the model, and normalized training read counts showed similar
trends. (b) Normalized read counts for molbit sequences that were reordered from IDT (solid
bars), compared to the same molbits in the original test datasets (hashed bars). The reordered
molbits were chosen randomly out of the lowest (blue), near-median (black), and highest (red)
represented molbits. Generally, molbits were detected at similar levels in both datasets.
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Supplementary Figure 9: NUPACK predicted folding and minimum free energy for re-ordered
sequences. Top row contains low read count sequences, middle row contains average read count
sequences, and bottom row contains high read count sequences.
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