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Abstract 16 

Stool-based proteomics is capable of significantly augmenting our understanding of 17 

host-gut microbe interactions. However, in comparison to competing technologies such 18 

as metagenomics and 16S rRNA sequencing, it is under-utilized due to its low 19 

throughput and the negative impact sample contaminants can have on highly sensitive 20 

mass spectrometry equipment. Here, we present a new stool proteomic processing 21 

pipeline that addresses these shortcomings in a highly reproducible and quantitative 22 

manner. Using this method, 290 samples from a dietary intervention study were 23 

processed in approximately 1.5 weeks, largely done by a single researcher. These data 24 

indicated a subtle but distinct monotonic increase in the number of significantly altered 25 

proteins between study participants on fiber- or fermented food-enriched diets. Lastly, 26 
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we were able to classify study participants based on their diet-altered proteomic profiles, 27 

and demonstrated that classification accuracies of up to 89% could be achieved by 28 

increasing the number of subjects considered. Taken together, this study represents the 29 

first high throughout proteomic method for processing stool samples in a technically 30 

reproducible manner, and has the potential to elevate stool-based proteomics as an 31 

essential tool for profiling host-gut microbiome interactions in a clinical setting.  32 

Importance 33 

Widely available technologies based on DNA sequencing have been used to describe 34 

the kinds of microbes that might correlate with health and disease.  However, 35 

mechanistic insight might be best achieved through careful study of the dynamic 36 

proteins at the interface between the foods we eat, our microbes, and ourselves.  Mass-37 

spectrometry-based proteomics has the potential to revolutionize our understanding of 38 

this complex system but its application to clinical studies has been hampered by low-39 

throughput and laborious experimentation pipelines. In response, we developed SHT-40 

Pro, the first high-throughput pipeline designed to rapidly handle large stool sample 41 

sets. With it, a single researcher can process over one hundred stool samples per week 42 

for mass spectrometry analysis, roughly 10 times faster than previous methods.  Since 43 

SHT-Pro is fairly simple to implement using commercially available reagents, it should 44 

be easily adaptable to large-scale clinical studies. 45 

Introduction 46 

The gut microbiome is characterized by numerous complex interactions influencing 47 

human health and disease, and has been associated with disorders ranging from 48 

inflammatory bowel disease to autism1,2. Stool is a biologically rich biomaterial, 49 

containing host, microbe, and dietary proteins, among a rich array of biomolecules. The 50 

broad proteinaceous representation of relevant biological entities and interactions, in 51 

conjunction with non-invasive sample collection, makes stool ideal for studying the 52 

complex ecosystem at the host-gut microbe interface3. Microbiome composition can be 53 

readily determined using 16S rRNA gene sequencing from stool DNA, and due to its 54 

high-throughput nature, is well-suited for surveying a single individual over extended 55 

longitudinal time courses. Metagenomic and metatranscriptomic sequencing 56 
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technologies can elucidate microbes’ functional capacities and states4. However, 57 

additional measurements are needed to elucidate the microbiome-host interactions that 58 

can profoundly affect host health.  59 

 60 

Stool proteomics offers the ability to simultaneously measure both host- and microbe-61 

expressed proteins, their post-translational modifications, and the dietary components 62 

also present in the gut.  These components reflect interactions and physiological states 63 

that are otherwise difficult to survey through nucleic acid sequencing alone5. We 64 

previously showed that host proteins in stool reflect expression along the length of the 65 

gut and reveal signatures specific to type of inflammatory state, such as distinct levels 66 

of antimicrobial proteins. Importantly, these signatures can vary in a manner distinct 67 

from the gut microbiota5.  For example, we showed previously that fecal microbiota 68 

transplanted into an antibiotic-induced Clostridium difficile infection mouse model 69 

normalized the microbial composition but not the host stool proteomic profile.  Since 70 

proteins can be recovered from archived frozen stool samples, the approach offers a 71 

way to illuminate aspects of host mucosal biology non-invasively and longitudinally, long 72 

after stool collection.  73 

Despite its functional utility, stool-based metaproteomics remains under-utilized 74 

compared to the aforementioned next generation sequencing technologies. One major 75 

hindrance to broader implementation has been low sample processing throughput. 76 

Indeed, while we and others previously demonstrated the power and utility of stool 77 

proteomics, those studies relied on data generated at rates as low as 10-30 samples 78 

per week6–9. Additionally, workflows developed for processing for cell culture and tissue 79 

lysates are not optimized to eliminate contaminating molecules that are abundant in 80 

stool. Insufficient contaminant removal can lead to instrumentation down-time, 81 

decreases overall sample throughput, and introduces experimental noise that can dilute 82 

biologically relevant signals.  83 

Here, we describe a method, the Stool High Throughput Proteomics pipeline (SHT-Pro), 84 

that increases our ability to acquire high-quality metaproteomic stool analyses by as 85 

much as 100-fold when paired with multiplexing technologies such as tandem mass tag 86 
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(TMT) labeling. As a first demonstration of this method, we applied SHT-Pro to 145 87 

stool specimens longitudinally collected from 29 human participants as part of an 88 

ongoing dietary intervention study investigating the biological effects of diets enriched in 89 

fiber versus fermented foods (ClinicalTrials.gov Identifier: NCT03275662).  Processing 90 

them in duplicate (290 total samples) using SHT-Pro took approximately one week from 91 

stool to mass-spectrometry-ready peptides, an estimated time savings of over 2.5 92 

months compared to our previously published workflow5,6. The resulting data set 93 

identified over 5,600 unique host and microbial proteins, 45% which were shared 94 

between both study groups. We found that the number of proteins which significantly 95 

differed between the two groups increased over time, indicating that diet shapes the 96 

stool metaproteome of humans. We further demonstrate that the inclusion of more 97 

participants in metaproteomic analyses, in a fashion which this method enables, 98 

enhances the ability to classify study subjects compared to the smaller-scale datasets 99 

that were more feasible using prior methods. These data support SHT-Pro as 100 

overcoming a major hindrance for performing the kinds clinical-scale studies needed for 101 

statistically sound measurements of diet and its impact on the host and its gut 102 

microbiome. 103 

 104 

Results 105 

SHT-Pro increases sample processing speed with a high degree of reproducibility 106 

A major limitation to large-scale adoption of stool metaproteomics has been is its 107 

heavily reduced throughput compared to DNA-sequencing. Considering the labor-108 

intensive, multi-day nature of our previously published stool proteomics method, we 109 

found that one researcher could reasonably process 25 stool samples per week on 110 

average6,10. To narrow this gap, we developed our pipeline to rapidly process hundreds 111 

of stool samples (Fig. 1a) in a matter of days while maximizing liquid chromatography 112 

and mass spectrometry (LC-MS) instrumentation stability. 96-well protein traps columns 113 

(S-trap) for initial protein purification and digestion along with automation technologies 114 

for solid-phase extraction cleanup are two critical components of this added efficiency. 115 

To test time savings of the new method, we compared sample processing time of our 116 
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previously published workflow to SHT-Pro (Fig. 1b). While processing fewer than 10 117 

samples at a time does not result in substantial time savings (~2.5-3 days saved), larger 118 

sample sets benefit from dramatic time savings. For example, processing 96 samples (a 119 

single 96-well plate) takes as little as 1.5 days using SHT-Pro, compared to 120 

approximately 30 days using the previous protocol (approximately 20-fold decrease).  121 

Sample processing speed improvements would be of little value if the data quality of the 122 

resulting peptides were reduced due to poor contaminant removal.  We found that 123 

repeated LC-MS analysis of a single stool specimen processed using SHT-Pro resulted 124 

in no degradation of LC-MS performance (often caused by sample contamination) as 125 

measured by analysis of the same standard peptide mixture interspersed throughout 20 126 

SHT-Pro-prepared stool specimens (7,205 ± 60 unique peptides, n=4 replicates: one 127 

prior to stool LC-MS analysis, two spaced 10 stool analyses apart, one following 20 128 

stool analyses) versus LC-MS analyses of the standard mixture on a new analytical 129 

column (average 7,350 ±150 unique peptides).  130 

We next tested whether our preparation method also led to high reproducibility. To 131 

accomplish this, we aliquoted the stool specimen described above in varying amounts 132 

(50, 100, and 200 mg), and processed each aliquot by SHT-Pro in duplicate (SI. 1a). 133 

Starting material amounts were chosen based on our previous protocol as well as what 134 

we have found to be generally available from human clinical studies. We note, however, 135 

they do not test the lower limit of initial starting material needed for SHT-Pro. These 136 

analyses identified 11,373 unique peptides originating from 1,879 (1,152 microbial, 727 137 

host) proteins, averaging 1,791 proteins per sample. Over 85% of all proteins were 138 

identified from all preparative replicates and starting material amounts, suggesting a low 139 

degree of sample preparation bias (SI 2a). All input protein amounts produced strong 140 

linear correlations (R2 values for 50 mg = 0.85, 100 mg = 0.92, 200 mg = 0.91; Fig. 1e). 141 

Similarly, comparing the intensity of proteins found in a replicate of the 50 mg samples 142 

to those of the 200 mg samples yielded an R2 value of 0.86 (SI 2b). As expected, these 143 

preparative replication correlation values were less than correlations between technical 144 

replicate LC-MS sampling from the same SHT-Pro-prepared peptide mixture (R2 = 0.99 145 
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± 0.001, n=6 pairs). These data suggest a high degree of sample-to-sample processing 146 

fidelity. 147 

We next examined how new procedural components of SHT-Pro compared to the 148 

lower-throughput aspects of our previously published workflow – specifically bead 149 

beating versus vortexing; and S-trap protein isolation versus TCA precipitation 150 

combined with SDS-PAGE. We evaluated the number of overall identifications made 151 

with two variations of each method, using parallel aliquots of the same stool sample 152 

described in Fig. 1a (see Table 1 for sample configurations). Combined, the four 153 

measurements yielded 2,352 total proteins identifications. Both samples processed with 154 

S-trap protein isolation and digestion had similar numbers of protein identifications to 155 

the SHT-Pro pilot detailed above (average of 1,610, ± 66). Samples processed with 156 

TCA precipitation and SDS-PAGE purification yielded less protein identifications 157 

(average of 1,255 ± 65). Of note, samples processed with the complete SHT-Pro 158 

yielded the greatest number of identifications (1,657; Fig. 1d). Comparing proteins found 159 

in this SHT-Pro sample to those from the initial pilot yielded an R2 value of 0.67 ± 0.014, 160 

despite originating from two different preparative replicates thawed and processed 161 

months apart.  162 

The ratios of microbe-to-host protein identifications were slightly higher for SHT-Pro-163 

prepared samples (mean = 1.8) than our previous workflow (mean = 1.5). Despite this 164 

larger proportion of microbe protein identifications, we found that the numbers of host 165 

proteins identified only with SHT-Pro (595, config. A) were substantially greater than the 166 

number of host proteins identified with our previous workflow (467, config. B). As with 167 

the experiment described in Figure SI 2a, the largest subset of proteins (1,000, 43% of 168 

all proteins) were present in all samples, regardless of preparation pipeline (Fig. 1e). 169 

The next largest unique protein set (248) included those shared only by the two S-Trap 170 

prepared samples (config. A and C) and not identified in the SDS-PAGE preparations 171 

(config. B and D). Only 32 proteins were found solely in SDS-PAGE-prepared samples 172 

(B and D). We attribute the decreased overlap (43% versus 85%) of this data set 173 

compared to the dilution-series sample set (SI 2a) to the differing sample preparation 174 

conditions of each experiment. The two samples that included SDS-PAGE were more 175 
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alike in their proteomic profile when compared to the two samples that were processed 176 

with the S-Trap (A, C) (Fig. 1f). This is likely due to config. C’s use of TCA precipitation 177 

prior to S-trap processing, while config. A did not, which may cause an increase in 178 

specific protein subsets. 179 

Given the improved speed, reproducibility, and sensitivity we observed with SHT-Pro, 180 

we next tested whether this method tended to identify proteins with biological relevance 181 

to the gut environment. We subjected the 100 most abundant proteins to gene ontology 182 

enrichment analysis using ShinyGO11. This revealed that the source stool specimen 183 

was significantly (FDR < 0.05) enriched for antimicrobial activity, neutrophil activation 184 

markers, as well as increased protease activity (SI. 3). Given the specimen set 185 

originated from a patient with inflammatory bowel disease during a flare, this result 186 

agrees with observations we12 and others13 have previously made, and supports SHT-187 

Pro’s ability to produce biologically relevant information.  188 
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 189 

Figure 1. SHT-Pro is highly reproducible and reveals biologically relevant 190 

information. A) Simplified SHT-Pro processing pipeline. B) A comparison of estimated 191 
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time taken to process varying amounts of samples. Multi-colored bars in the first section 192 

represent general pipeline stages. C) A scatterplot comparison of two replicate SHT-Pro 193 

analyses of a single stool specimen collected from an IBD patient during flare, using 194 

differing amounts of starting material but the same amount of sample loaded onto our 195 

chromatography columns (0.5 ug). D) Comparison of identified proteins from four 196 

different conditions: SHT-Pro (config. A), bead beating, TCA precipitation, and SDS-197 

PAGE purification (config. B), vortex only, TCA precipitation, and SHT-Pro (config. C), 198 

or previous workflow (config. D). Each bar represents number of identified microbe or 199 

host proteins. See Table 1 for full experimental conditions. E) Shared subset plot of all 200 

four samples. F) PCA comparing the four SHT-Pro and previous workflow samples 201 

described in SI Figure 1C. Protein abundances were normalized and scaled (log2) prior 202 

to analysis.    203 

 204 

Sample Bead-beat Vortex TCA S-trap SDS-PAGE 

Config. A X   X  

Config. B X  X  X 

Config. C  X X X  

Config. D  X X  X 

Table 1. Configuration of samples used in comparison of SHT-Pro and previous 205 

workflow. Table outlining the preparation conditions for each sample. 206 

 207 

Application of SHT-Pro to a longitudinal human diet study.  208 

The advances in throughput, coupled with high reproducibility and ability to reveal 209 

biologically relevant GI response pathways make SHT-Pro amenable to large sample 210 

sets which were previously impractical to process. To demonstrate SHT-Pro’s utility on 211 

a large, longitudinal data set, we applied it to samples collected from an ongoing dietary 212 

intervention study (ClinicalTrials.gov Identifier: NCT03275662). The overarching goal of 213 
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this study is to elucidate how diets enriched in high fiber (e.g., whole grains, legumes, 214 

fruits) or in fermented (e.g., kombucha, kimchee, and yogurt) foods affect human health. 215 

Over the course of four months, study participants increased their intake of one of the 216 

two dietary intervention arms, and stool specimens were collected every two weeks 217 

over four phases: baseline, ramp-up (increasing intake), maintenance (peak intake), 218 

and choice (choose to eat respective diet, or not). We selected a subset of patients 219 

(n=29) for metaproteomic analysis based on sample availability during the baseline (two 220 

samples), ramp-up (single sample), and maintenance phases (two samples) for a total 221 

of five samples from each person over this period. The resulting 145 stool specimens 222 

were processed in duplicate, for a total number 290 stool measurements (Fig. 2a). 223 

Digested peptides resulting from initial processing with SHT-PRO were chemically 224 

labeled with tandem mass tag (TMT-11plex) multiplexing labels to increase throughput 225 

and quantifiability. Each TMT-11plex set contained one subject’s full time course in 226 

duplicate (5 timepoints * 2 replicates), plus one bridge channel representing a mixture of 227 

all 290 samples collected. 228 

Once all 290 stool samples were transferred to four 96-well plates, they were then 229 

processed over the course of <9 days, including approximately 2.5 days devoted to 230 

TMT labeling and the associated cleanup steps that follow labelling.  A single 231 

researcher carried out 80% of these steps (Fig. 2b). This sample set resulted in the 232 

identification of 83,061 high-confidence (q < 0.01) peptides (16,463 unique) assigned to 233 

5,679 protein families (Fig. 2c; SI Tables 1, 2). Of these, approximately 94% (5,372) of 234 

identified proteins originated from microbes, with a much smaller host protein set (307). 235 

We found a large group of proteins (2,611, 46%) were shared by participants in both 236 

groups, while 54% (3062) of proteins identified were uniquely identified within just one 237 

dietary subgroup (fermented = 1,361, fiber = 1,701) (Fig. 2d). Replicate stool 238 

preparations were highly correlated (average R2 > 0.995 for both groups) with only two 239 

of 145 replicate pairs receiving an R2 value of < 0.90 (0.81 and 0.57), confirming a high 240 

degree of overall preparative reproducibility (Fig. 2e). 241 

Having established the stability of SHT-Pro, we next focused on how microbial and host 242 

proteins compositionally contributed to the dataset at a high level. Despite comprising 243 
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just 8% of all proteins identified, host-expressed proteins claimed much larger 244 

proportions of overall protein abundances (fermented = 25%, fiber = 28%) with an 245 

average host protein intensity approximately 67% (fermented = 72%, fiber = 63%) 246 

greater than their microbial counterparts (Fig. 2f-g). At the level of individual study 247 

participants, the fermented group had an average of 805 proteins in each sample, while 248 

the fiber group had 870 proteins (SI 5). This difference was not significant (p = 0.19, 249 

unpaired t-test), suggesting that both groups identified similar numbers of proteins 250 

despite the differences in diet. Together, these data demonstrate SHT-Pro workflow 251 

yields quantitatively consistent metaproteomic measurements when used with TMT 252 

labels or label-free quantification. 253 

 254 

  255 

Figure 2. Diet study design and result overview.  A) Illustration of major diet study 256 

components. B) Illustration of time taken for each step of SHT-Pro during the fiber and 257 

fermented group test. Section one and part of section two were done by three 258 
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researchers, while 3 and four were done by a single researcher C) Bar graph of overall 259 

number of proteins identified as well as proteins identified within each diet group. D) 260 

Box plot of R2 values for fiber and fermented group (normalized and log2 transformed 261 

values). Average R2 value for fermented group was 0.997 while fiber group was 0.996. 262 

E) Venn diagram of shared and unique proteins identified in diet groups. F) Pie charts 263 

comparing protein identifications per group and organism (host or microbe) as well as 264 

percentage intensity of microbes and host proteins. G) Violin plot comparison of host 265 

protein intensity/microbial protein intensity using various scales. Blue bars use sum 266 

intensity for each protein (host or microbe) as input while the red bars use average 267 

intensity for each protein as input. The median and mean of those intensities are 268 

reported. 269 

 270 

SHT-Pro highlights presence of diet-responding proteomic subset 271 

Having shown the efficacy of SHT-Pro in generating large and reproducible 272 

metaproteomic surveys, we next sought to understand if these two diets had any 273 

discernable effects on the stool proteome. Comparing microbe and host-expressed 274 

proteins via Principle Component Analysis (PCA, SI 6) suggested several global trends. 275 

First, we found that microbial protein variation across all study participants was largely 276 

explained by the first principle component (37%).  Three participants within the fiber 277 

group were distinguished from the other participants by PC2. In contrast, host proteins 278 

exhibited less subject-specific clustering. Overall, neither microbial nor host protein 279 

measurements could clearly distinguish diet-induced effects at this high-dimensional 280 

level, whereas individual-specific microbial protein expression was much more 281 

substantial.  This observation aligns with previous reports of microbiome composition 282 

profiles measured via 16S rRNA amplicon sequencing14,15. 283 

Having observed minimal intergroup differences from high-level analysis, we next 284 

sought to determine whether biologically relevant temporal trends could be deduced at 285 

a more granular level. Comparing the proteomes of the two diet groups at each 286 

timepoint, we detected a trend suggesting diverging expression of both host and 287 

microbial proteomes subsequent to diet augmentation (SI 7b, Fig. 3a). More specifically, 288 
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we observed an increase in significantly altered host (ramp = 9, maintenance = 17) and 289 

microbial (ramp = 10, maintenance = 45) proteins subsequent to the start of diet 290 

augmentations, although the significance of these small-number observations did not 291 

always a surpass strict (FDR < 0.05) multiple hypothesis testing(SI 7a-b). Nevertheless, 292 

a majority of these host proteins (14/17) increased among fermented group participants, 293 

while exhibiting negligible overall change in the fiber group. The STRING protein-protein 294 

interaction and gene-ontology platform suggested these 15 proteins were enriched 295 

(FDR < 0.05) in GO terms including maintenance of intestinal epithelium, GPI anchor 296 

binding, and sphingolipid metabolism (Fig. 3b). It is notable that nine of these 17 host 297 

proteins were also among the subset of 33 proteins identified in all study participants, 298 

regardless of diet group (Fig. 3d), and could therefore be useful markers of a wide 299 

range of host responses. As expected, the protein set common to all participants was 300 

strongly enriched (FDR < 0.05) in GO terms commonly found in the gut (Fig. 3c, SI table 301 

4). These results suggest diet augmentation with fiber or fermented foods have a 302 

distinguishable impact on both host and microbial proteomes and highlights their ability 303 

to affect expression of highly prevalent gut-related proteins. 304 

These results indicate the stool proteome can be conceptually divided into several 305 

subset proteomes: an individual-specific proteome largely made of microbial proteins, a 306 

diet-impacted proteome, and a common ‘core’ proteome functionally associated with 307 

digestion and largely made up of host proteins common to most individuals. Given both 308 

common and unique proteome sets can be readily measured from all subjects, we next 309 

focused on whether these proteomes could be used to predict membership in either the 310 

fermented or fiber protein groups. 311 
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 312 

Figure 3. Diet intervention proteome reveals both unique and core proteome. A) 313 

Proteins that were significantly altered (p < 0.05) between fermented and fiber groups 314 

during the maintenance phase (timepoint 1 or 2). Proteins were also filtered for variation 315 

between participants (σ/σmax variation > 0.15). See SI table 3 for accompanying list of 316 

significantly altered proteins and their normalized abundances. B) StringDB-generated 317 
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functional network map using proteins significantly increased in the fermented group at 318 

the final maintenance timepoint. Nodes are colored according to the result of Markov-319 

Clustering algorithm employed by StringDB, with each color signifying unique functional 320 

subnetworks. C) StringDB-generated functional network map of the commonly shared 321 

proteome. Colors overlaid on each node are the result of Markov-Clustering algorithm 322 

employed by StringDB. D) Universally identified proteins significantly (p < 0.05) altered 323 

during final day of maintenance period between fermented and fiber group diets. 324 

Proteins were normalized, log2 transformed, and scaled to levels present on the first 325 

baseline day (log2day - log2baseline). Proteins were also filtered for variation between 326 

participants (σ/σmax variation > 0.15). 327 

 328 

SHT-Pro-derived protein abundance allow for classification based on diet group. 329 

As Figure 3 indicated, we observed modest diet-related differences between the 330 

fermented and fiber groups. However, we were curious as to whether more robust inter-331 

group differences were obscured by considerable biological variation among this human 332 

cohort. To test this, we employed a leave-one-out cross-validated (LOOCV) random 333 

forest machine learning model, designed to identify distinguishing data features from 334 

complex, high-dimensional data16.  The recursive feature selection approach we 335 

adopted chose differing combinations of study timepoints as model inputs, which were 336 

scaled to the first baseline timepoint (Fig. 4a).  337 

To gain insight into whether microbial or host protein abundance on specific days was of 338 

more predictive value in classifying these individuals based on their augmented diets, 339 

we ran the classifier only on host or on microbial proteins, considering either individual 340 

time points (e.g. only ramp, only maintenance day 1, etc.) or aggregated time points 341 

based on intervention status (e.g., all three post-diet intervention days) (Fig 4a).  342 

Overall, we found that the greatest classification accuracy was achieved by considering 343 

the abundance of solely host proteins from the final maintenance measurement (89%). 344 

In contrast, microbial proteins measured at this time point only yielded 78% accuracy.  345 

However, it is noteworthy that evaluating the ramp and both maintenance time points 346 

together improved this classification somewhat for microbial proteins (80%), but 347 
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decreased classification accuracy for host proteins (72%). These data suggest a more 348 

comprehensive microbial profile measured following diet induction captured both 349 

transient and sustained diet-specific signals, whereas host protein expression tended to 350 

evolve over the course of the intervention.  351 

Given that host proteins better predicted group membership (Fig. 4a), we next varied 352 

the number of participants included in the model (Fig. 4b) to test whether this 353 

observation depended on the underlying depth of the data set. As expected, we 354 

observed increased classification accuracy as more study participants were included in 355 

the model (averages of 51%, 65%, and 80% accuracy for 10, 20, and 28 participants, 356 

respectively) signifying the necessity of more extensive data sets for studies focused on 357 

disease prediction and explanatory power. Despite being less than 10% of each 358 

sample’s proteomic profile, these data support host proteins’ ability to generate a more 359 

accurate classifier than microbial proteins. 360 

 361 

Figure 4. SHT-PRO-generated metaproteomes classify diet study participants. A) 362 

Bar plot highlighting classification accuracy of the random forest model using either 363 

microbial or host proteins from various combination of points along the time course 364 

depicted in Fig. 2a. Data were normalized by sample intensity and scaled to protein 365 

intensities found on the first baseline day. B) Bar plot comparing the LOOCV random 366 
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forest model’s average maximum classification accuracy (e.g. average recorded 367 

maximum accuracy for each round of the ‘leave-one-out’ classification scheme) using 368 

only host proteins and varying the number of participants considered (n=10, 20, 28). 369 

Ramp and both maintenance phase days were used for each model while participant 370 

number was varied. 371 

 372 

Discussion 373 

Stool-based proteomics’ potential use as a basic science tool and a rich resource for 374 

clinical biomarker discovery has been touted for over a decade17–19. However, its broad 375 

adoption has been largely hindered by multiple difficulties. Chief among them is 376 

processing large sample numbers in an efficient manner, a necessity for studies with 377 

large heterogenous populations such as human trials. While some new protein 378 

extraction and digestion protocols have robust sample processing pipelines, they 379 

targeted processing 5-25 samples per week and thus far lack the ability to scale via 380 

automation. This limits their usefulness to large, longitudinal clinical studies. 381 

Furthermore, several such protocols we have tried in our lab fail to remove major 382 

contaminating molecules found in stool, which is evident from the continuous fouling of 383 

liquid chromatography columns and unstable mass spectrometer performance7. Both 384 

necessitate increased equipment maintenance, and associated down-time7. SHT-Pro 385 

resolves these deficiencies by leveraging a workflow specifically designed for large 386 

longitudinal stool collections, while maintaining the flexibility to accommodate smaller 387 

sample numbers for pilot studies, all with a high degree of experimental reproducibility. 388 

Our previously published methods required the processing large sample sets over 389 

multiple months, leading to a greater need to distinguish prominent preparation artifact 390 

from desired biological protein profiles. Here, we show that SHT-Pro can produce highly 391 

reproducible data sets spanning hundreds of samples in a matter of days. For example, 392 

in the current study SHT-Pro saved an estimated 3.5 months (approximately 80% less 393 

time) compared to our previous protocol. Since it is compatible with multiplexing 394 

technology, LC-MS data generation times can be further accelerated by an additional 395 

order of magnitude. Similar to the high-throughput DNA sequencing pipelines used to 396 
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characterized gut microbial communities on a massive scale, we envision SHT-Pro will 397 

modernize the stool proteomics field and allow the profiling of a variety of diseased 398 

conditions ranging from IBD to multiple sclerosis20. 399 

Nevertheless, we acknowledge that SHT-Pro as described here could be further 400 

improved in several simple ways. First, the aliquoting of initial stool samples is presently 401 

the most labor intensive and time-consuming step of the overall process. In our diet 402 

study, each sample was aliquoted by hand from the original specimen collection vessel 403 

to the 96-well bead beating plate (Fig. 1a). Given that this is a common obstacle for 404 

DNA and protein sample preparation pipelines alike, the microbiome field would benefit 405 

from an aliquoting technology targeted at this sample handling burden.  Next, while 406 

multichannel pipettes currently used in SHT-Pro were critical components, a 96-well 407 

pipettor (single head or as part of an automated system) could more uniformly and 408 

rapidly dispense buffers, thus increasing overall speed of the assay while decreasing 409 

the amount of hands-on time laboratory researchers must invest in an experiment, and 410 

decreasing preparative variation. . Lastly, we noted a large portion of time within SHT-411 

Pro was spent evaporating and concentrating samples via Cetrivap/Speedvac vacuum-412 

based concentrators (Fig 2b). Given the larger volumes 96-well plates produce using 413 

our method (100-300 uL/well), this can be a significant hindrance to overall throughput. 414 

As such, an alternative method to concentrate peptides would significantly increase the 415 

throughput of SHT-Pro, potentially bringing sample preparation time to less than a day.  416 

In the current study, we observed over 5,600 proteins that that could hold new biological 417 

insights into the impact of dietary fiber versus fermented foods. While this identification 418 

depth is greater than some of the first reported metaproteomic searches on stool, newer 419 

studies have reported substantially more host and microbial protein identifications 420 

(53,000 total proteins, various biological matrices )9,17,21. We attribute the decreased 421 

number of identifications in our current study to several factors. First, our use of the 422 

TMT multiplexing reagent creates a bias towards proteins that are found in multiple 423 

samples: signals found just one sample are diluted by the number of channels used22. 424 

Thus, we suspect many low-abundant, sample-specific host and microbial proteins were 425 

not identified.  To combat this, future iterations of SHT-Pro could incorporate peptide 426 
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fractionation and longer mass spectrometry runs per sample, which has been shown to 427 

significantly increase identification of low-abundant host and microbial proteins9. In this 428 

context, striking a balance between throughput and proteomic depth is crucial, as the 429 

biological and health-related significance of low-abundance proteins remains promising 430 

but unclear. Next, while the database used to search these samples (adapted from the 431 

Human Microbiome Project) is fairly extensive, the use of subject-specific metagenomes 432 

for the generation of protein databases would likely increase sample- and subject-433 

specific protein identifications. Lastly, in comparison to previously published work, we 434 

injected approximately 4x less material into the mass spectrometer (0.5 ug vs 2 ug)21. 435 

Given that on average, we collected approximately 60 ug of peptide from each sample 436 

(over 100 ug/sample was collected in the pilot study), injecting more peptide or 437 

fractionating samples would likely increase our protein identification rate. 438 

Despite these remaining challenges, SHT-Pro-generated metaproteome data which 439 

resulted in biologically meaningful insights, even in the context of a largely uncontrolled 440 

human diet study. Indeed, SHT-Pro revealed a subtle divergence in proteomes after the 441 

introduction of fiber and fermented diets, as evidenced by the increased number of 442 

significantly altered host and microbial proteins during the ramp and maintenance 443 

phases, while baseline measurements remained largely unchanged. These significantly 444 

increased proteins were enriched for several categories including intestinal epithelium 445 

maintenance and host sphingolipid metabolism. Interestingly, sphingolipids along with 446 

chemical variants (e.g. glycosphingolipids) and derivatives, have been previously shown 447 

to regulate invariant natural killer T-cells (iNKT)23. More recently, Bacteroides fragilis, a 448 

common gut-dwelling microbe, has been shown to produce sphingolipids, and their 449 

production protected mice from a oxazolone-induced colitis model, an effect largely 450 

mediated by their regulation of iNKT activation24. Here, the introduction of fermented 451 

foods may have increase the levels of B. fragilis, as has been previously noted in rats 452 

fed fermented tempeh, which in turn may increase levels of sphingolipid availability25. In 453 

the current study, we observed 20 proteins attributed to B. fragilis, however they 454 

showed no significant abundance differences between diet cohorts on the final day of 455 

maintenance. It is possible that the search algorithm used (TurboSequest, Proteome 456 

Discoverer 2.2) was not ideally suited to attribute peptides (and proteins) to the correct 457 
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species in such a large search space, a common problem in the metaproteomic field3. 458 

In this case, metaproteomic-centric search suites such as MetaLab may be of some 459 

benefit26. While the purpose of this manuscript is to showcase SHT-Pro as an integral 460 

facet necessary for understanding host-microbe interactions, this result suggests that 461 

future studies using SHT-Pro may also benefit from a multiomic approach that also 462 

leverages 16S rRNA amplicon sequencing and metabolomics profiling. Nevertheless, 463 

SHT-Pro-generated data is compelling when considering that, other than dictating 464 

increased intake of each experimental cohort’s respective diet, study participants had 465 

no other nutritional restrictions. As such, any changes in the microbial or host stool 466 

proteome could be expected to be subtle and subject specific, and likely hidden by data-467 

driven noise. This subtlety is highlighted by the classification success, which was only 468 

possible using machine learning techniques and not easily discernable by simply 469 

focusing on simple abundance changes. Importantly, the observed success of the 470 

LOOCV random forest model also suggests future microbial proteomic studies would 471 

likely benefit from normalization to a participants’ unique baseline signature as well as 472 

the inclusion of many participants, an inherent strength of SHT-Pro. 473 

These data likely harbor many more insights, including revealing components of diet.  474 

While we have not mapped dietary peptides in this study due to database limitations, 475 

plant peptides are evident in our dataset and suggest utility in helping inform the many 476 

challenging aspects of dietary assessment in free-living humans.  When paired with 477 

other ‘omic’ data (e.g. 16S rRNA, metabolomics, clinical measurements) these 478 

proteomic profiles are poised to significantly contribute to our understanding of the 479 

dietary impact on individuals over time. However, it must be noted that the focus of this 480 

article is largely the increase in quality and speed of SHT-Pro compared to the previous 481 

workflow and more in-depth analysis of multi-omic data associated with the dietary 482 

intervention will be completed as part of a larger publication.  483 

Nevertheless, taken together, SHT-Pro reveals itself as a robust pipeline for processing 484 

stool samples in an extremely timely manner, and we believe its widescale adoption and 485 

improvement will enable powerful discoveries in the field of host-gut microbiome 486 

interactions. 487 
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SI Figs 488 

 489 

SI 1. SHT-Pro experimental illustrations. A) Generalized experimental pipeline of our 490 

previous workflow. A more extensive description of the method is found in Gonzalez et 491 

al6.  B) Experimental outline designed to test SHT-Pro reproducibility. More extensive 492 

experimental details are available in the methods section. C) Experimental outline 493 

designed to allow the comparison of the previous workflow to SHT-Pro. More extensive 494 

experimental details are available in the methods section. 495 

 496 
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 497 

SI 2. Pilot study protein comparisons. A) Plot generated using binary protein counts 498 

from each sample in the pilot experiment and the R package UpSetR. Dots connected 499 

at bottom of graph represent sets containing the number of proteins in the 500 

corresponding bar above the dots. B) Scatter plot comparison of a 50 mg (starting 501 

material) replicate vs. 200 mg (starting material) replicate. 502 
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 503 

SI 3. ShinyGo enrichment map. The top 100 overall most intense proteins were 504 

submitted to the gene ontology (GO) tool ShinyGO and clustered by biological similarity. 505 

Size of blue circle by GO term is proportional to its statistical enrichment score (FDR). 506 

 507 
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 508 

SI 4. Protein sets by group and scatter plots of randomly chose fermented or fiber 509 

data sets. A) Plot generated using protein counts from each sample in the diet study 510 

and the R package UpSetR. Dots connected at bottom of graph represent samples 511 

corresponding to the containing protein count bar above it. B) Scatter plots of randomly 512 
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chosen samples from SHT-Pro-generated data sets (3 fermented, 3 fiber). Samples are 513 

compared using normalized intensity and arbitrary units generated by Proteome 514 

Discoverer (v2.2) normalization feature.  515 

 516 

 517 

 518 

SI 5. Proteins per individuals within each group. Boxplot of proteins identified in 519 

each individual broken out by diet group. No significant differences were found between 520 

the number of identified proteins in these two groups. 521 

 522 
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523 

SI 6. Proteins per individuals within each group PCA of all microbial (5,372; left) or 524 

host proteins (307; right). Data used to generate these plots were normalized and log2 525 

transformed. Ovals were automatically drawn to capture >85 % of data points within 526 

each diet study group. 527 

 528 

SI 7. Heatmap comparison of significantly altered proteins within each stage of 529 

the diet study A) One protein, an immunoglobulin heavy chain constant region, was 530 

significantly altered (p < 0.05) between fermented and fiber groups at baseline. No 531 

microbial proteins which significantly diverged between the two dietary cohorts were 532 

found at baseline. B) Proteins that were significantly altered (p < 0.05) between 533 

fermented and fiber groups during ramp phase. 534 

 535 
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 536 

SI Tables 537 

SI Table 1- Identified Peptides 538 

SI Table 2 – Identified Proteins 539 

SI Table 3 – Significantly altered proteins each day 540 

SI Table 4 – GO term enrichment terms of core proteome (SI_core_bio_process.csv)  541 

 542 

Methods 543 

Buffers:  544 

Lysis buffer: 6M urea, 5% sodium dodecyl sulfate (SDS), and 50 mM Tris were 545 

combined, with the pH adjusted to 8 using phosphoric acid. Roche cOmplete Mini 546 

protease inhibitor cocktail (04693159001 ROCHE) was added prior to adding buffer to 547 

samples. 548 

Protifi Binding buffer (PBB): 90% methanol and 10% Triethylammonium bicarbonate 549 

buffer (TEAB, Sigma-Aldrich, catalog number T7408), adjusted to pH 7.1 using 550 

phosphoric acid. 551 

Digestion buffer:100 mM TEAB and 5 ug trypsin (Promega V5113)  552 

Peptide elution buffers: The first elution was performed using digestion buffer, the 553 

second elution was performed using 0.2% formic acid (FA), and the third elution was 554 

performed using 50% acetonitrile and 0.2% FA. 555 

 556 

Isolation of stool proteins and peptides (96-well variant): 557 

Approximately 100-200 mg (when available) from each collected stool specimens was 558 

aliquoted into a 96 well plate along with approximately 600 mg of 0.1 mm ceramic 559 

beads (Omni International 27-6006). To each filled well, 750 uL of lysis buffer was 560 
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added and plates were sealed with the OMNI-provided sealing mats. In order to 561 

increase their seal, each plate was additionally sealed with parafilm, although we found 562 

this was not necessary. The sealed plates were subjected to 10 minutes of bead 563 

beating at 20 Hz using an (Qiagen Tissuelyser II). After bead beating, each plate was 564 

centrifuged at 300 RCF at 4ºC for 10 minutes. 500 uL of the resulting supernatant was 565 

transferred to a new 2 mL 96-well plate (Waters 186002482), sealed with a sealing mat 566 

and spun again at 300 RCF at 4ºC for 10 minutes, then transferred into a fresh 2 mL 567 

plate. Samples were then reduced with 10 uL of 50 mM dithiothreitol (Sigma-Aldrich) for 568 

30 minutes at 47ºC, and alkylated with 30 uL of 50 mM Iodoacetamide (Sigma-Aldrich) 569 

for 1 hour at room temperature in the dark. 50 uL of the reduced and alkylated 570 

supernatant was transferred to a new 2 mL 96 well plate for further processing while the 571 

remaining material was stored at -80 for potential future analysis. Supernatant-resident 572 

stool proteins were washed, digested and eluted as described in the Protifi S-trap 573 

protocol (See http://www.protifi.com/wp-content/uploads/2018/08/S-Trap-96-well-plate-574 

long-1.4.pdf for complete protocol). Briefly, the 50 uL of supernatant was acidified with 5 575 

uL of 12% phosphoric acid to which 300 uL of S-trap binding buffer was added. Each 576 

resulting mixture was loaded into a single well. Positive pressure was used to load the 577 

proteins into each well (Waters Positive Pressure-96 Processor) with pressure at 578 

approximately 6-9 PSI on “Low-Flow” setting. Note: if after 1 minute, volume still 579 

remains in well, take a pipette tip and move any debris to side of well and it will begin to 580 

flow again. Loaded proteins were washed with 300 uL PBB five times. After washing, 581 

125 uL of digestion buffer was added and proteins were digested for three hours at 582 

47ºC. Peptides were then eluted with 100 uL TEAB, followed by 100 uL of 0.2% formic 583 

acid, followed by 100 uL of 50% acetonitrile, 0.2% formic acid. These were captured in 584 

a 1 mL 96-well plate (Thermo Scientific AB-1127) and the volume was dried down in a 585 

Centrivap speedvac (Model 7810016). Plated samples were then desalted using RP-S 586 

tips on the Agilent Bravo AssayMap using built-in desalting protocol and eluted with 587 

50% ACN and dried down. Plated peptide concentration was normalized using readings 588 

from the Biotek Synergy microplate reader and the Take3 microvolume plate, (single 589 

samples were adjusted using a nanodrop ND-1000). Samples were then labeled with 590 

TMT-11 multiplexing kit using the manufacture’s recommended method (Thermo-Fisher 591 
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Scientific A34808). Channel-specific isobaric tag intensities were adjusted to 11(1:1) 592 

using recorded intensities from a 1-hour gradient mass spectrometry run and 593 

subsequently reinjected into the mass spectrometer after normalization.  594 

Isolation of stool proteins and peptides (individual tube variant): 595 

Approximately 100-200 mg (when available) from each collected stool specimens was 596 

aliquoted into a bead beating tube along with approximately 600 mg of 0.1 mm ceramic 597 

beads (Omni International 19-732). To each tube, 750 uL of lysis buffer was added. 598 

Samples were subjected to 10 minutes of bead beating at 3500 RPM (OMNI Beadruptor 599 

12 19-050). After bead beating, each sample was centrifuged at 300 RCF at 4ºC for 10 600 

minutes. 500 uL of the resulting supernatant was transferred to a fresh 2 mL tube, spun 601 

again at 300 RCF at 4ºC for 10 minutes, then again transferred to a fresh 2 mL plate. 602 

Samples were then reduced with 10 uL of 50 mM dithiothreitol (Sigma-Aldrich) for 30 603 

minutes at 47ºC and alkylated with 30 uL of 50 mM Iodoacetamide (Sigma-Aldrich) for 1 604 

hour at room temperature in the dark. 50 uL of the reduced and alkylated supernatant 605 

was transferred to a new 2 mL tube for further processing while the remaining material 606 

was stored at -80 for potential future analysis. Supernatant-resident stool proteins were 607 

washed, digested and eluted as described in the Protifi S-trap protocol (See 608 

http://www.protifi.com/wp-content/uploads/2018/08/S-Trap-mini-protocol-long.3.6.pdf for 609 

complete protocol). Briefly, the 50 uL of supernatant was acidified with 5 uL of 12% 610 

phosphoric acid to which 300 uL of S-trap binding buffer was added. Each resulting 611 

mixture was loaded into a single well. Vacuum manifold was used to load samples with 612 

pressure set at approximately 3-5 PSI. Note: if after 1 minute, volume still remains in 613 

well, take a pipette tip and move any debris to side of well and it will begin to flow again. 614 

Loaded proteins were washed with 300 uL PBB five times. After washing, 125 uL of 615 

digestion buffer was added and proteins were digested for three hours at 47ºC. 616 

Peptides were then eluted with 100 uL TEAB, followed by 100 uL of 0.2% formic acid, 617 

followed by 100 uL of 50% acetonitrile, 0.2% FA. Eluate was captured and the volume 618 

was dried down in a Centrivap speedvac (Model 7810016). Dried down samples were 619 

then resuspended 250 uL 0.2% FA. Resuspended samples were then desalted using 620 

Seppak tC18 cartridges and subsequently dried down (Waters WAT036820). Each 621 
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sample was then resuspended in 30 uL and the peptide concentration was normalized 622 

(Nanodrop ND-1000). 623 

Previous workflow protocol 624 

Samples were prepared as described in Gonzalez et al6.  Briefly, sample pellets were 625 

disrupted using 500 uL 8M urea lysis buffer supplemented with Roche cOmplete 626 

protease inhibitor (04693159001 ROCHE) by vortexing. After pellet resuspension, 627 

insoluble material was pelleted down at 2500 RCF for 10 minutes at 4C and the 628 

collected supernatant was subjected to ultracentrifugation (35000 RPM for 30 min. at 629 

4C, Beckman-Coulter Optima Ultracentrifuge) to remove bacteria. The ultracentrifuge 630 

supernatant was subsequently reduced, alkylated, and precipitated overnight in -20c 631 

freezer using trichloroacetic acid (15% total volume). Protein pellets were resuspended 632 

in 40 uL of loading buffer and briefly ran into a SDS-PAGE (approximately 5 mm., 633 

Invitrogen NuPAGE 4-12% Bis-Tris) for further purification, after which they were 634 

subjected to in-gel tryptic digestion using sequencing grade trypsin (Promega, V5113). 635 

After digestion, each sample was cleaned up using C18 columns and dried down. 636 

Peptides were then normalized using a nanodrop (ND-1000). 637 

 638 

Mass spectrometry 639 

Peptide samples were diluted to 0.5 ug/uL. Subsequently, 1 uL was loaded onto an in-640 

house laser-pulled 100 um ID nanospray column packed to ~220mm with 3um 2A C18 641 

beads (Reprosil). Peptides were separated by reversed-phase chromatography on a 642 

Dionex Ultimate 3000 HPLC. Buffer A of the mobile phase contained 0.1% formic acid 643 

(FA) in HPLC-grade water, while buffer B contained 0.1% FA in acetonitrile (ACN). An 644 

initial two-minute isocratic gradient flowing 3% B was followed by a linear increase up to 645 

25% B for 115 minutes, then increased to 45% B over 15 minutes, and a final increase 646 

to 95% B over 15 minutes whereupon B was held for 6 minutes and returned back to 647 

baseline (2 min) and held for 10 minutes, for a total of 183 minutes. The HPLC flow rate 648 

was 0.400 uL/minute. Samples were run on either a Thermo Fusion Lumos (large study) 649 

or Thermo Orbitrap Elite (pilot comparisons) mass spectrometers that collected MS data 650 

in positive ion mode within the 400-1500 m/z range.  651 
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For TMT labeled samples, a top-speed MS3 method was employed on the Fusion 652 

Lumos with an initial Orbitrap scan resolution of 120,000. This was followed by high-653 

energy collision-induced dissociation and analysis in the orbitrap using "Top Speed' 654 

dynamic identification with dynamic exclusion enabled (repeat count of 1, exclusion 655 

duration of 90 s). The automatic gain control for FT full MS was set to 4e5 and for 656 

ITMSn was set to 1e4. ITCID was used at MS2 method and the MS3 AGC was set to 657 

1e5. The mass spectrometry proteomics data have been deposited to the 658 

ProteomeXchange Consortium via the PRIDE partner repository with the dataset 659 

identifier PXD017450 using ID: reviewer49984@ebi.ac.uk and password: kNvCO5eX. 660 

 661 

Peptide/Protein searches 662 

Proteome Discoverer: The resulting mass spectra raw files were first searched using 663 

Proteome Discoverer 2.2. using the built-in SEQUEST search algorithm. Built-in TMT 664 

batch correction was enabled for all samples. Three FASTA databases were employed: 665 

Uniprot Swiss-Prot Homo sapiens (taxon ID 10090, downloaded January 2017), the 666 

Human Microbiome Project database (FASTA file downloaded from 667 

https://www.hmpdacc.org/hmp/HMRGD/ on January 2017), and a database containing 668 

common sample handling contaminants. Target-decoy searching at both the peptide 669 

and protein level was employed with a strict FDR cutoff of 0.05 using the Percolator 670 

algorithm built into Proteome Discoverer 2.2. Enzyme specificity was set to full-tryptic 671 

with static peptide modifications set to carmbamidomethylation (+57.0214 Da) and when 672 

appropriate, TMT (+229.1629 Da). Dynamic modifications were set to oxidation 673 

(+15.995 Da) and n-terminal protein acetylation (+42.011 Da). Only high-confidence 674 

proteins (q-val < 0.01) were used for analysis. 675 

 676 

Statistical analyses 677 

Statistics were calculated using R with statistics packages (FactoMinerR 1.36, 678 

factoextra 1.0.5, ggplot2 2.2.1, Hmisc 4.0-3, psych 1.7.8, Mfuzz 2.34.0, ggpubr 0.1.5, 679 

RColorBrewer 1.1-2, UpSetR, 1.3.3, limma 3.30.13, venneuler 1.1-0), and Qlucore 680 
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Omics Explorer 3.3. Protein abundance was normalized as a percentage of summed 681 

reporter intensity for all quantified proteins in a given sample (protein intensity / total 682 

sample intensity). Each TMT-11 run was filtered for. Where necessary for meeting 683 

statistical assumptions, abundances were log2 transformed. The appropriate multiple 684 

hypothesis tests (one-way ANOVA) were applied to abundance comparison data using 685 

Qlucore Omics Explorer or custom R scripts. Correlational p-values were corrected 686 

using false discovery rate (FDR) setting and the R package psych 1.7.8. Protein 687 

abundance heat maps were generated with Qlucore Omics Explorer 3.3 or R’s built-in 688 

heatmap function. FDRs and fold changes (where appropriate) were generated using 689 

Qlucore’s built-in FDR estimator, and the values are reported in supplementary tables.  690 
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