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Abstract

In the evolutionary biology literature, it is generally assumed that in deterministic

haploid selection models, in the absence of variation-generating mechanisms such as

mutation, no polymorphic equilibrium can be stable. However, results corroborating

this claim are scarce and almost always depend upon additional assumptions. Using

ideas from game theory, we establish a condition on the fitness parameters of haplotypes

formed by two loci such that a monomorphism is a global attractor. Further, we show

that no isolated equilibrium exists, at which an unequal number of alleles from two loci

is present. Under the assumption of convergence of trajectories to equilirium points,

we settle the two-locus three-allele case for a fitness scheme formally equivalent to the

classical symmetric viability model.

Key words: selection, recombination, haploid population, unstable equilibria, ge-

netic variation, global stability

Introduction

A recent paper by Novak and Barton (2017) raises one of the main questions of popu-

lation genetics right in the title: ”When does frequency-independent selection maintain

genetic variation?” They note that, while the answer is generally assumed to be ”never”

for constant selection acting on an idealized haploid population, basically only the cases

of no recombination and of no selection have been solved and corroborate this claim.

Well known results from perturbation theory, of course, expand these results to small

parameter values of the respective force. In fact, Novak and Barton (2017) give a new,

more standard, proof for the case of weak selection. The other extreme, tight linkage

(low recombination rate), was solved by Kirzhner and Lyubich (1997), who also arrive

at the same conclusion for additive fitnesses and arbitrary linkage. These three results

hold for any number of loci and any number of alleles. They all incorporate conver-

gence of the solutions to equilibrium points, via the powerful method of identifying a

Lyapunov function.

Besides the general additive case and the trivial one-locus case, only the two-locus

two-allele case has recieved attention for intermediate values of recombination and se-

lection. Feldman (1971) was one of the first to rigorously analyze existence and stability

of polymorphic equilibria in a two-locus two-allele haploid system with a simple fitness
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scheme. He showed that whenever a polymorphism exists, it is unique and unstable. A

general fitness scheme was considered by Rutschman (1994). He showed convergence of

the trajectories to equilibrium points in most parameter regimes. However, parameter

combinations in which an internal (polymorphic) equilibrium was possible, couldn’t be

treated in the same way. The final answer to the question of loss of genetic variation

in the two-locus two-allele case is the paper by Bank, Bürger and Hermisson (2012).

They showed that for the fitness parameter combinations not covered by Rutschman,

an equilibrium exists, but it is always unstable.

We consider a well mixed haploid population with constant selection on two loci, each

with an arbitrary number of alleles. Our fitness scheme is general without any restriction

on the epistatic interaction between alleles. For convenience, the dynamics are stated

in continuous time. First, we apply a method used on a game theoretic problem by

Hofbauer and Su (2016). With its help we can show that if one allele dominates all

the others from the same locus, then this allele becomes fixed. An allele dominating

another here means that the fitness of an haplotype containing the dominating allele is

greater than the fitness of an haplotype containing the other, dominated, allele for every

choice of background allele. Further, we state and prove that no isolated equilibrium

exists if the numbers of alleles at the two loci are unequal. This is done by finding a

system of linear equations, whose solution corresponds to an internal equilibrium. For

unequal numbers of alleles at the two loci, this system is overdetermined and thus, by

basic linear algebra has, in general, no solution.

We also use the above-mentioned system of linear equations to give a different proof

of the result by Bank, Bürger and Hermisson (2012). Finally, we show that there is

a unique unstable polymorphic equilibrium in the two-locus three-alleles model with

centrosymmetric fitnesses.

Model

In the two-locus haploid model considered here, we assume that at one locus the alleles

are A1, ..., Am, while at the other locus the alleles are B1, ..., Bn. Let pij and sij be

the frequency and the fitness, respectively, of haplotype AiBj and define the matrices

S = (sij)m×n an P = (pij)m×n. In the following, we will mainly use the vector p, which

is defined as the vector of all rows of P , i.e., p = (p11, . . . , p1n, p21, . . . , pm1, . . . , pmn)T .

Following Nagylaki (1992, pp. 189–195) and Novak and Barton (2017), we can write
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the change in frequency over time, ṗij =
dpij
dt

, as

ṗij = r(piqj − pij) + pij(sij − s̄), (1)

where s̄ =
∑

ij sijpij is the mean fitness, pi =
∑n

j=1 pij and qj =
∑m

i=1 pij are the

marginal frequencies of the alleles. As always, the sum of all haplotype frequencies is

one,
∑

ij pij = 1. The quantities pipj − pij are measures of linkage disequilibrium (LD),

and r > 0 denotes the recombination rate.

We investigate stability properties of the monomorphic equilibria and existence and

stability properties of polymorphic equilibria. At equilibrium, the coordinates are de-

noted by aˆand satisfy

0 = r(p̂iq̂j − p̂ij) + p̂ij(sij − ˆ̄s) for 1 ≤ i ≤ m and 1 ≤ j ≤ n. (2)

These are mn quadratic equations in mn variables.

The state space of (1) is the mn−dimensional simplex ∆mn as defined by

∆mn = {x ∈ Rmn : xij ≥ 0,
∑
ij

xij = 1}. (3)

Remark 1. We note that system (1) is invariant with respect to adding a constant

c to S. If s′ij = sij + c, then s̄′ = c + s̄ and thus s′ij − s̄′ = sij − s̄ for every pair

(i, j). It will be especially useful to take c = −ˆ̄sE, where ˆ̄sE denotes mean fitness at

an equilibrium E. At the same equilibrium in the scaled fitness scheme the scaled mean

fitness is ˆ̄s′E = ˆ̄sE − ˆ̄sE = 0.

Results

Stability of monomorphic equilibria

First, we determine the conditions under which monomorphism are stable, which is in

turn used to give an upper bound for the number of stable hyperbolic monomorphic

equilibria.

It is easy to see that each monomorphism is an equilibrium for (1).

To determine the local stability of equilibria, we compute the Jacobian J of ṗ, given
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by (1). For every pair (i, j) the following holds:

∂ṗij
∂pij

= r(pi + qj − 1) + sij(1− pij)− s̄, (4a)

∂ṗij
∂pil

= rqj − pijsil if l 6= j, (4b)

∂ṗij
∂pkj

= rpi − pijskj if k 6= i, (4c)

∂ṗij
∂pkl

= −pijskl if l 6= j and k 6= i. (4d)

If we fix (u, v) and sum over the corresponding column of J , we get:∑
i,j

∂ṗij
∂puv

=
∂ṗuv
∂puv

+
∑
i6=u

∂ṗiv
∂puv

+
∑
j 6=v

∂ṗuj
∂puv

+
∑

i6=u, j 6=v

∂ṗij
∂puv

=r(pu + qv − 1) + suv(1− puv)− s̄+
∑
i6=u

(rpi − pivsuv)

+
∑
j 6=v

(rqj − pulsuv)−
∑

i6=u, j 6=v

pijsuv

=r(
∑
i

pi +
∑
j

qj − 1) + suv(1−
∑
ij

pij)− s̄

=r − s̄.

Since this holds for every column of the Jacobian, (1, . . . , 1) is a left eigenvector

with the eigenvalue r − s̄. Because this eigenvector is normal to the simplex, the

corresponding eigenvalue carries no information about the stability of an equilibrium.

Keeping this in mind, we can compute the Jacobian at the monomorphism with

p11 = 1. At this equilibrium, ˆ̄s = s11. Applying this to (4a) yields ∂ṗ11
∂p11

= r − ˆ̄s.

The other diagonal entries are given by

∂ṗ1j
∂p1j

=s1j − s11 if j 6= 1,
∂ṗi1
∂pi1

= si1 − s11 if i 6= 1, (5a)

and

∂ṗij
∂pij

= −r + sij − s11 if i 6= 1 and j 6= 1. (5b)

The remaining non-zero entries are given by:

∂ṗ1j
∂pij

= r if i 6= 1 and j 6= 1,
∂ṗi1
∂pij

= r if i 6= 1 and j 6= 1, (6a)

∂ṗ11
∂p1j

= r − s1j if j 6= 1,
∂ṗ11
∂pi1

= r − si1 if i 6= 1, (6b)
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and

∂ṗ11
∂pij

= −sij if i 6= 1 and j 6= 1. (6c)

All other entries are zero.

After recalling the lexicographical order of the double indices in the vector p, inspec-

tion of the non-zero entries shows that J |p11=1 is an upper right triangular matrix and

therefore, the eigenvalues are the diagonal entries given by (5).

We can, in general, relabel alleles and loci, such that the Jacobian of any monorphism

is an upper right triangular matrix. This means that for the monomorphism Ai0Bj0 ,

the mn− 1 eigenvalues that determine stability are given by

si0j − si0j0 if j 6= j0, sij0 − si0j0 if i 6= i0, (7a)

and

− r + sij − si0j0 if i 6= i0 and j 6= j0. (7b)

However, for certain choices of the fitness values, some of the monomorphisms are

not isolated and have an eigenvalue equal to zero as the following result shows.

Lemma 1. Every point on the edge connecting Ai0Bk1 with Ai0Bk2, given by pi0k1 +

pi0k2 = 1, is an equilibrium if and only if si0k1 = si0k2.

Proof. On the edge connecting Ai0Bk1 with Ai0Bk2 pi0k1 + pi0k2 = 1 and pij = 0 for all

i and j that do not form the pairs (i0k1) or (i0k2). Hence, piqj = 0 and thus, after

plugging this into (1), ṗij = 0 if i 6= i0 and j 6= k1, k2. Therefore, the only equations of

(1) with non-zero right-hand side are

ṗi0k1 = r((pi0k1 + pi0k2)pi0k1 − pi0k1)− pi0k1(si0k1 − si0k1pi0k1 − si0k2pi0k2)

= −pi0k1(si0k1 − si0k2)(1− pi0k1) = −ṗi0k2 .

This is zero for all 0 ≤ pi0k1 ≤ 1 if and only if si0k1 = si0k2 .

Remark 2. An analoguos result holds for the edge connecting Ak1Bj0 with Ak2Bj0

To avoid the complications of degenerate cases, we assume for this and the next

section that

All monomorphisms of (1) are hyperbolic equilibria. (H)

This means that no eigenvalue of a monomorphic equilibrium is zero. In particular,

this implies that no two fitness values of haplotypes that share an allele are the same.
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Proposition 1. The monomorphism Ai0Bj0 is asymptotically stable if and only if r >

maxi,j(sij)− si0j0. In this case (i0, j0) is the unique pair such that maxj(si0j) = si0j0 =

maxi(sij0).

Proof. The eigenvalues of the monomorphism Ai0Bj0 given by (7) are negative if and

only if (i0j0) is the unique pair such that maxj(si0j) = si0j0 = maxi(sij0) and r >

maxi,j(sij)− si0j0 holds.

The number of asymptotically stable monomorphisms is bounded by the following

Corollary 1. In a system with n alleles present at one locus and m at the other, there

are between one and min(m,n) asymptotically stable monomorphisms.

Proof. By Proposition 1, the monomorphism corresponding to the largest entry of the

fitness matrix is always locally asymptotically stable because r > 0.

Let m < n and let m be the number of rows of the fitness matrix. Assumption

(H) implies that each row has a unique maximum. There are exactly m such maxima.

If each of those is also the maximum in its respective column then the corresponding

monomorphisms are locally asymptotically stable for sufficiently large r by Theorem 1.

There cannot be more.

Corollary 2. Let si0j0 = maxi,j(sij), then for every r > 0 the monomorphism Ai0Bj0

is the only locally asymptotically stable monomorphism if and only if for all pairs (k, l)

skl ≤ max (maxi(sil),maxj(skj)) with equality only if (k, l) = (i0, j0), i.e., si0j0 is the

only value that is maximal in both its row and column.

Proof. For each pair (k, l) 6= (i0, j0) assume that skl < max (maxi(sil),maxj(skj)). Then

by Proposition 1 and Corollary 1 it is clear that for every r > 0, Ai0Bj0 is the only

locally asymptotically stable monomorphism.

Conversely, suppose there is a monomorphism AkBl with k 6= i0 and l 6= j0 such

that maxj skj = skl = maxi sil. There exists r0 > 0 such that r0 = si0j0 − skl. Then (7)

implies that AkBl is stable for r > r0. This contradicts the assumption that for every

r > 0, Ai0Bj0 is the only stable monomorphism.

If we assume that genetic variation is never maintained in a haploid population under

selection and recombination, then the monomorphism described in Corollary 2 would

be the natural candidate for a global attractor. However, no proof could be found to

verify this.
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Dominating alleles

In the following, we apply ideas from game theory, in particular from a paper by Hof-

bauer and Su (2016) about dominating strategies, to alleles. For a special class of fitness

schemes, this allows us to prove global stability of a monomorphism.

Theorem 1. If there exist alleles Ai0 and Ai1 such that si0j > si1j holds for every j,

then pi1 → 0.

Proof. Without loss of generality, suppose that s1j > s2j holds for all j. We show that

the minimal quotient Q(t) = p1l(t)
p2l(t)

= minj(
p1j(t)

p2j(t)
) is increasing along trajectories in t.

First, note that l = l(t) can assume different values in {1, . . . , m} at different times.

Further, if p1, p2 > 0, then for every given t

p1l
p2l

=
p1lp2
p2lp2

=
1

p2

∑
j

p1lp2j
p2l

≤ 1

p2

∑
j

p1jp2j
p2j

=
1

p2

∑
j

p1j =
p1
p2

(8)

holds, which is equivalent to

p1p2l − p2p1l ≥ 0. (9)

Then,

Q̇ =
1

p22l
(p2l [r(p1ql − p1l) + p1l(s1l − s̄)]− p1l [r(p2ql − p2l) + p2l(s2l − s̄)]) (10a)

=
1

p22l
(rql(p1p2l − p2p1l) + p1lp2l(s1l − s2l)) ≥ Q(s1l − s2l) > 0. (10b)

Define δ = minl(s1l − s2l) > 0. Then (10) implies

Q̇ ≥ Qδ (11)

and subsequently

Q(t) ≥ Q(0)eδt →∞ (12)

as t→∞.

This implies that
p1j
p2j

goes to infinity as t → ∞ for all j. Since the numerator is

bounded, p2j → 0 for all j and thus p2 → 0 as t→∞.

Remark 3. A similar theorem holds for the other locus.

This can be interpreted such that allele Ai0 dominates Ai1 , since for every background

allele BJ the haplotype containing allele Ai0 is fitter than that containing Ai1 . Almost

intuitively, this leads to the loss of Ai1 . Ultimately, if Ai0 dominates all other alleles at

the same locus, these should all go extinct. This is formalized in the following
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Theorem 2. If there is an allele Ai0 with si0j > sij for all i 6= i0 and all j, then the

monomorphism Ai0Bj0 with si0j0 > si0j for all j 6= j0 is globally asymptotically stable.

Proof. For each i 6= i0 we apply Theorem 1. Then allele Ai0 becomes fixed in the

population. Because of (H), there exists a unique j0 such that si0j0 > si0j for all j 6= j0.

By (7) the monomorphism Ai0j0 is the only asymptotically stable monomorphism

Polymorphic equilibria

Monomorphisms are equilibria where exactly one allele at each locus is present. Next,

we look at equilibria where at least three alleles are involved.

While system (1) with state space ∆mn, with m < n, can always be imbedded in the

system with state space ∆nn where both loci have the same number of alleles, it simpli-

fies derivations if we think of the equilibria in subsystems as being fully polymorphic.

From now on, we are thus mainly interested in the existence of fully polymorphic

equilibria, i.e., states, where all haplotypes are present. Therefore, the inequalities

0 < p̂ij < 1 ∀i, j (13)

hold, which is equivalent to p ∈ ∆0
mn. Here, 0 denotes the interior of the simplex.

Our main result is

Theorem 3. If m 6= n, then (2) has either no or infinitely many solutions for which

(13) holds. Thus, there are no isolated equilibria with all mn haplotypes present.

In order to prove the theorem, we first need

Lemma 2. Define the matrix S̃(σ) by

s̃ij(σ) =
sij − σ

r + σ − sij
, (14)

where σ ∈ R. For a given fitness matrix S and r > 0, a solution of (2) that fulfills (13)

exists if and only if ∃ σ̂ ∈ R, x ∈ ∆m and y ∈ ∆n such that

r + σ̂ − sij > 0 ∀i, j, (15a)

S̃(σ̂)y = 0, (15b)

xT S̃(σ̂) = 0. (15c)

If a solution exists, it is given by

p̂ij =
rxiyj

r + σ̂ − sij
∀i, j, (16)
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and then

p̂i = xi, q̂j = yj, and ˆ̄s = σ̂ (17)

holds.

Here, ∆m denotes the m−dimensional simplex.

Proof. (⇒) From (2), we can compute the following identities:

p̂ij =
rp̂iq̂j

r + ˆ̄s− sij
∀i, j, (18a)

ṗi =
∑
j

ṗij =
∑
j

p̂ij(sij − ˆ̄s) = 0 ∀i, (18b)

q̇j =
∑
i

ṗij =
∑
i

p̂ij(sij − ˆ̄s) = 0 ∀j. (18c)

We plug (18a) into (18b) and (18c) to get:

ṗi = rp̂i
∑
j

sij − ˆ̄s

r + ˆ̄s− sij
q̂j = 0 ∀i, (19a)

q̇j = rq̂j
∑
i

sij − ˆ̄s

r + ˆ̄s− sij
p̂i = 0 ∀j. (19b)

Then (13) entails p̂i, q̂j > 0 ∀i, j. Thus, we can write (19) as∑
j

sij − ˆ̄s

r + ˆ̄s− sij
q̂j = 0 ∀i, (20a)

∑
i

sij − ˆ̄s

r + ˆ̄s− sij
p̂i = 0 ∀j, (20b)

or in matrix terms, after we set p̂i = xi and q̂j = yj:

S̃(σ̂)x = 0, (20c)

yT S̃(σ̂) = 0. (20d)

The remaining condition (15a) is implicit in (18a) because of (13).

(⇐) We define

p̂ij =
rxiyj

r + σ̂ − sij
. (21)

We have to show that

xi =
∑
j

p̂ij = p̂i, (22a)

yj =
∑
i

p̂ij = q̂j (22b)
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and

σ̂ =
∑
ij

sij p̂ij = ˆ̄s. (22c)

We can write

q̂j =
∑
i

p̂ij =
∑
i

rxiyj
r + σ̂ − sij

= yj
∑
i

(r + σ̂ − sij)xi
r + σ̂ − sij

+ yj
∑
i

(sij − σ̂)xi
r + σ̂ − sij

= yj,

since x ∈ ∆m and
∑

i
(sij−σ̂)xi
r+σ̂−sij = 0 by (15c).

An analogous computation shows that p̂i =
∑

j p̂ij = xi. This implies∑
ij

p̂ij = 1, (23)

because x ∈ ∆m.

We can rewrite (21) as

rxiyj − p̂ij(r + σ̂ − sij) = 0. (24)

Summing (24) over all i and j, yields

r

(
1−

∑
ij

p̂ij

)
+
∑
ij

p̂ijsij − σ̂
∑
ij

p̂ij = 0, (25a)

which implies ∑
ij

p̂ijsij = σ̂ = ˆ̄s. (25b)

Now, we can write (24) as

rp̂iq̂j − p̂ij(r + ˆ̄s− sij) = 0, (26)

which is (2).

With this characterization of the polymorphism at hand, we can prove Theorem 3.

Proof of Theorem 3. If S̃ is such that there exist no vectors x, y and values r and σ̂

such that all conditions in (15) are fulfilled, then no equilibrium exists. The following

argument shows that if there is a solution that satisfies (15), then there are infinitely

many provided m 6= n.

Assume m < n and suppose there exists x ∈ ∆m, y ∈ ∆n and σ̂ ∈ R such that

(15) holds. Then rank(S̃) ≤ m− 1 which, because of the rank-nullity theorem, implies
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that dim(ker(S̃)) ≥ n− (m− 1) ≥ 2. This means that at least one additional linearly

independent vector y′ exists in the kernel of S̃. This solution vector does not necessarily

lie in the simplex. However, y+εy′

1+ε
∑

j y
′
j

defines a one dimensional manifold that lies in

the simplex for 0 < ε < ε∗ with ε∗ > 0 sufficiently small and is a solution of (15b).

Therefore, p̂ij is at least one-dimensional.

The characterization of internal equilibria given by Lemma 2 yields necessary con-

ditions for the existence of equilibria with an equal number of alleles present.

Proposition 2. If n = m and an isolated equilibrium (p̂ij) of (2) satisfying (13) exists,

then the following holds:

(a) No row or column of S̃(ˆ̄s) consists only of entries of the same sign.

(b) rank(S̃(ˆ̄s)) = n− 1.

(c) det(S̃(ˆ̄s)) = 0.

(d) There is no other equilibrium with the same ˆ̄s.

Proof. Let y be the vector for which (15b) holds. First, assume that there exists a row i

of S̃ with all entries positive. This implies
∑

j s̃ijyj > 0, a contradiction, because (15b)

holds for y. An analogous argument works for column j and x. This yields statement

(a).

The rank of S̃ has to be smaller than n, because (15b) can only have a nontrivial

solution if S̃ is singular.

Now, assume that rank(S̃) < n−1. Then by the rank-nullity theorem, dim(ker(S̃)) >

n− (n− 1) = 1. Therefore, at least one additional linearly independent vector y′ exists

in the kernel of S̃. This solution vector does not necessarily lie in the simplex. However,
y+εy′

1+ε
∑

j y
′
j

defines a one dimensional manifold that lies in the simplex for 0 < ε < ε∗ with

ε∗ > 0 sufficiently small and is a solution of (15b). This contradicts the assumption of

an isolated equilibrium. Thus statement (b) is true. Statement (c) immediately follows.

If rank(S̃) = n − 1, then y spans the kernel of S̃. Hence no other equilibrium with

the same ˆ̄s is possible. Hence, statement (d) follows.

Note, that statements (a)-(d) are not sufficient conditions for the existence of an

internal equilibrium. In particular, statement (a) of Proposition 2 does not imply that

a positive solution vector exists. It is also not clear if there always exists a σ̂ that

simultaneously fulfills (15a) and statements (a) and (c) of Proposition 2.
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In simple situations Lemma 2 and Proposition 2 allow us to get further results.

Statements (c) and (d) combined yield an upper bound for the number of internal

equilibria, since each zero of det(S̃(σ)) gives rise to at most one equilibrium. Since

det(S̃(σ)) is a rational function of σ, the degree of the numerator polynomial determines

the maximal possible number of internal equilibria. For small numbers of alleles this

argument gives rise to a feasible method to determine all admissible internal equilibria.

In fact, for two alleles we show in the following that there is at most one internal

equilibrium, which is also true for three alleles with a centrosymmetric fitness scheme

(see SI).

If S ′ is the scaled fitness scheme with respect to the equilibrium E, then

S̃(ˆ̄sE) = S̃ ′(0) (27)

holds, by Remark 1. Therefore, statement (c) of Proposition 2 implies det S̃ ′(0) = 0.

This yields an additional identity that the scaled fitnesses s′ij have to satisfy. For small

numbers of alleles, this can be solved explicitly and implicit coordinates for E can be

obtained.

Two explicit cases with an equal number of alleles at both loci

Two alleles

In the two allele case the following Theorem is already known from Bank, Bürger and

Hermisson (2012), but we present a different proof.

Theorem 4. System (1) restricted to two alleles at each locus has a unique internal

equilibrium if and only if there exists ˆ̄s ∈ R such that r > si0j0 −max(i,j) 6=(i0,j0) sij and

min(s11, s22) > ˆ̄s > max(s12, s21) or the reverse order holds. Here, si0j0 = maxij sij.

If the equilibrium exists, it is unstable.

Proof. (⇒) Without loss of generality, we assume s11 = si0j0 = maxij sij. Since the

equilibrium is unique, statement (a) of Proposition 2 yields

0 < sign(s11 − ˆ̄s) = − sign(s12 − ˆ̄s) = sign(s22 − ˆ̄s) = − sign(s21 − ˆ̄s)

This implies

s11 > s22 > ˆ̄s > max(s12, s21). (28)

Additionaly, Lemma 2 tells us that (15a) has to hold, which we combine with (27) to

conclude

r > s11 − ˆ̄s > s11 − s22. (29)
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(⇐) Without loss of generality, we assume s11 > s22 > ˆ̄s > s12 > s21. By applying

Proposition 1, we know that the monomorphism A1B1 is asymptotically stable for all r,

while the monomorphisms A1B2 and A2B1 are unstable for all r. The monomorphism

A2B2 is asymptotically stable if r > s11 − s22. This is exactly the condition r >

si0j0 − max(i,j) 6=(i0,j0) sij with (i0, j0) = (1, 1). There are no other boundary equilibria,

since by Theorem 3 there is no equilibrium on the edges where one allele is fixed. Thus,

the sum of all indices on the boundary is 2. Since the index theorem by Hofbauer

(1990) implies that the sum over the indices of all saturated equilibria is 1, the sum

of all indices of internal equilibria has to equal −1 (they are saturated by definition).

This entails an odd number of internal equilibria, because the index of a hyperbolic

equilibrium is either +1 or −1.

However, the degree of the numerator polynomial (in σ) of the determinant of the

corresponding matrix S̃(σ) is two (see SI for the exact expression). Hence, there are

at most two values of σ such that S̃ is singular and this is a necessary condition by

statement (b) of Proposition 2. Thus there are up to two internal equilibria. By

the index argument above, only an odd number of internal equilibria is possible and

therefore, there is exactly one internal equilibrium. It has index −1, which implies an

odd number of positive eigenvalues and subsequently its instability.

With an additive scaling of the fitness matrix, detailed in Remark 1, we can easily

express the equilibrium coordinates of the internal equilibrium.

Corollary 3. Let S be the scaled fitness scheme such that ˆ̄s = 0 at the internal equi-

librium and s22 = š22 holds, with

š22 =
s12s21(r − s11)

s12(s21 − s11) + s11(r − s21)
, (30)

then the equilibrium is given by

p11 =
s12s21(r − s11)

r(s11 − s12)(s11 − s21)
, p12 = − s11s21(r − s11)

r(s11 − s12)(s11 − s21)
(31a)

p21 = − s11s12(r − s11)
r(s11 − s12)(s11 − s21)

, p22 = 1− p11 − p12 − p21. (31b)

It is admissible if sign(s11s12) = sign(s21š22) = − sign(s11š22) = −1 and

r >

s11 if s11 > 0

s12 + s21 −
s12s21
s11

if s11 < 0
(32)
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Proof. According to Remark 1, we can formally set ˆ̄s = 0 in S̃, restricted to two

alleles per locus, which simplifies further analysis. S̃ is a singular matrix if s22 = š22.

Subsequently we solve (15b) and (15c) and use formula (16) to derive (30). Admissibility

conditions follow from Theorem 4, after one resolves the dependence of š22 on r with

repect to sign(š22) and r > š22. See also SI.

Three alleles

We now investigate the case of three alleles at each locus. Additionally, we assume a

centrosymmetric fitness scheme:

Sc =

B1 B2 B3( )s11 s12 s13 A1

s21 s22 s21 A2

s13 s12 s11 A3

(33)

In the sense that the matrix is the same but the entries correspond to haplotypes formed

by single alleles rather than by diploid genotypes, Sc is formally equivalent to the well-

studied symmetric viability model. Similarly, it implies that the fitnesses stay the same

under a simultaneous exchange of alleles A1 with A3 and B1 with B3. Unfortunately,

it violates assumption (H), since s32 = s12 and s23 = s21 and thus every point on

the edges connecting the monomorphisms A1B2 with A3B2 and A2B1 with A2B3 is an

equilibrium by Lemma 1.

Since we are mainly interested in the stability of a potential internal equilibrium,

from now on, we assume that an internal equilibrium exists with mean fitness at this

equilibrium given by ˆ̄s = 0 (see Remark 1).

This simplifies (14) considerably, because

S̃c =

 s11
r−s11

s12
r−s12

s13
r−s13

s21
r−s21

s22
r−s22

s21
r−s21

s13
r−s13

s12
r−s12

s11
r−s11

 . (34)

The coordinates of the equilibrium for which S is scaled, are described by the fol-

lowing

Proposition 3. Let S̃c be as in (33) and s11 6= s13. In addition, define

š22 =
2s12s21(r − s11)(r − s13)

(r − s12)E − s21(E + s12F )
, (35)

with E = s11(r − s13) + s13(r − s11) and F = s11 + s13 − 2r.

15

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.07.981852doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.07.981852
http://creativecommons.org/licenses/by-nc/4.0/


Then, an equilibrium, given by (16) satisfying (13), exists if and only if

s22 =š22, (36a)

r >max
ij

sij, (36b)

sign(s22s12) = sign(s22s21) = −1 (36c)

and

sign(s22s11) = + 1 or sign(s22s13) = +1. (36d)

Its coordinates are

p̂1 = p̂3 = −(r − s11)(r − s13)s21
r(E + s21F )

, (37a)

p̂2 = 1− 2p̂1 =
(r − s21)E
r(E + s21F )

(37b)

and

q̂1 = q̂3 = −(r − s11)(r − s13)s12
r(E + s12F )

, (37c)

q̂2 = 1− 2q̂1 =
(r − s12)E
r(E + s12F )

. (37d)

Proof. (⇒) If the equilibrium exists, we can scale S such that S̃ is given by (33) and

ˆ̄s = 0. Then, condition (15a) simplifies to

r − sij > 0 ∀i, j, (38)

which implies (35b). The equation in statement (c) of Proposition 2 for (33) is linear

in s22 and thus has the unique solution š22. Statemant (a) implies (35c) and (35d),

because otherwise, at least one row or column of (33) consists only of entries of the

same sign.

(⇐) The determinant of (33) is linear in s22 and is zero if s22 = š22. Thus, S̃c is a

singular matrix and (15b) can have a admissible solution. Equating the first and third

row of (15b) yields

s̃11y1 + s̃12y2 + s̃13y3 = s̃13y1 + s̃12y2 + s̃11y3 (39a)

which simplifies to

(s̃11 − s̃13)(y1 − y3) = 0, (39b)
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where s̃ij denote the entries of S̃c. Since s11 6= s13, (38b) holds if and only if y1 = y3. By

applying
∑

j yj = 1, we can express (15b) in terms of y1 and solve for it. An analogous

argument yields x1 and we get (36) (at equilibrium p̂i = xi and q̂j = yj).

By Lemma 2 these coordinates determine an equilibrium for (1). However, it remains

to show that p̂i and q̂j given by (36) are positive, given the conditions (35). Without

loss of generality, s22 = š22 > 0. This implies that s12, s21 < 0. Let h1 denote the

numerator and h2 the denominator of š22 given in (34). Since h1 is clearly positive, the

same has to hold for h2. Condition (37) also holds for š22 and simplifies to

0 < r − š22 =
(r − s12)(r − s21)E

h2
. (40)

Therefore, we conclude that sign(E) = sign(h2) = sign(s22) = 1, since the first two

factors of the numerator are positive because of (37). This is possible only if (35d) is

true, since otherwise, s11, s13 < 0 imply E < 0, provided (37) holds. Because of (37),

F < 0 and thus the denominators of (36) are all positive. A simple check reveals that

this also holds for each numerator of (36).

For any fitness scheme that can be achieved by adding a constant to sij, an equi-

librium exists and its coordinates are given by (36) where a constant is added to each

sij.

If s11 = s13, then it is clear that S̃c given by (33) is singular. However, if rank(S̃c) = 2,

then one can easily check that the equilibrium is not admissible. If rank(S̃c) = 1, then

the equilibrium is not isolated by Proposition 2.

Corollary 4. The equilibrium given by (36) is centrosymmetric, i.e.,

p̂11 = p̂33, p̂12 = p̂32, (41a)

p̂13 = p̂31, p̂21 = p̂23. (41b)

Proof. Using (16) one can derive the exact expressions for p̂ij given (36), they are

rather lengthy and thus only shown in the SI. Then it is easy to check that they satisfy

(40).

Before we prove the instability of an internal poylmorphism, if it exists, we note that

Corollary 4 gives rise to the coordinate transformation (U) inspired by Feldman and

Karlin (1970), which provides the starting point for the proof.
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We define:

u1 = p11 − p33, u2 = p12 − p32, u3 = p13 − p31, u4 = p21 − p23,

u5 = p11 + p33 − p12 − p32, u6 = p13 + p31 − p21 − p23, (U)

u7 = p11 + p12 + p32 + p33 − p13 − p21 − p23 − p31, u8 = p22.

From (U) and the simplex condition
∑

ij pij = 1, we derive the reverse transformation:

p11 =
1

8
(1 + 4u1 + 2u5 + u7 − u8), p12 =

1

8
(1 + 4u2 − 2u5 + u7 − u8),

p13 =
1

8
(1 + 4u3 + 2u6 − u7 − u8), p21 =

1

8
(1 + 4u4 − 2u6 − u7 − u8),

p22 = u8,

p23 =
1

8
(1− 4u4 − 2u6 − u7 − u8), p31 =

1

8
(1− 4u3 + 2u6 − u7 − u8),

p32 =
1

8
(1− 4u2 − 2u5 + u7 − u8), p33 =

1

8
(1− 4u1 + 2u5 + u7 − u8).

With this, we now derive the transformed system of equations from (1). However,

this rather lengthy system of ODEs is only shown in the SI. The equilibrium coordinates

p̂ij are also transformed into the equilibrium ûi (see SI). Because of Corollary 4 and

(U), ûi = 0 for i = 1, 2, 3 and 4.

With these prerequisites, we can prove the main theorem of this section.

Theorem 5. If the polymorphic equilibrium (36) of (1) under the fitness scheme Sc

(eq. 32) exists, then it is unstable.

Proof. For the new system in (ui), we compute the Jacobian Ju (see SI for the deriva-

tion). We evaluate it at the hyperplane H given by σ̂ = 0 and ûi = 0 for i = 1, 2, 3 and

4. Clearly, H contains the equilibrium.

The resulting 8× 8 matrix is then in block diagonal form

Ju|H =

(
C1 0
0 C2

)
, (42)

where each block is a square matrix of dimension 4. As the determinant of the full matrix

is the product of the determinants of C1 and C2, we can analyze them separately.

The resulting expression for det(C1) (see SI for the expression) is then evaluated at

the coordinates ûi, i = 5, 6, 7 and 8. After some simplification, it can be written as:

det(C1) =
−s12s21(s11 − s13)2(r − s11)(r − s12)(r − s13)(r − s21)

(E + s12F ) (E + s21F )
(43a)

= −r
2(r − s12)(s11 − s13)2(r − s21)

(r − s11)(r − s13)
p̂1q̂1 < 0. (43b)
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This inequality holds, because condition (37) ensures that the ratio in inequality (42b)

is positive and −p̂1q̂1 < 0, since (36) is an admissible equilibrium.

The determinant of C1 is the product of the four eigenvalues and we can thus conclude

that at least one of them has to be positive. This implies that the equilibrium is

unstable.

Remark 4. Neither Proposition 3 nor Theorem 5 states that the equilibrium it concerns

is the only internal equilibrium. If there were two isolated equilibria E1 and E2 with

ˆ̄sE1 and ˆ̄sE2 respectively then both Proposition 3 and Theorem 5 would remain valid if

we set once ˆ̄sE1 = 0 and once ˆ̄sE2 = 0. However, in the SI we prove uniqueness of the

internal equilibrium, if conditions (35c) and (35d) of Proposition 3 hold.

Discussion

We have conducted a rather general mathematical analysis of haploid two-locus mul-

tiallele dynamics with constant selection and recombination. The model we use is the

standard continuous-time model for selection on haploids with recombination, see eq.

(1).

In the first section, we provide conditions for stability of hyperbolic monomorphisms

and show that at least one of them is always stable. If both loci exhibit the same

number of alleles, then there are at most n stable monomorphisms. If the number

of alleles is unequal, then the smaller of them is the upper bound for the number of

stable monomorphism. We also characterize the fitness matrices such that the only

stable monomorphism is the same for every r > 0 and claim that it is also globally

asymptotically stable for all r. But this remains unproven.

However, we use ideas about dominating strategies from game theory to prove global

stability in section 2. If for a fixed background allele the haplotype formed with one

allele is greater than with another allele and this holds for every background allele,

than the fitter allele is the dominating allele. The dominated allele goes extinct. Sub-

sequently, if one allele dominates all other alleles on the same locus, then they all

go extinct and the dominating allele is fixed. Thus the two-locus multi-allele prob-

lem is reduced to a one-locus multi-allele problem. There, it is known that the allele

with the highest fitness gets fixed. Similar to the game theoretic problem, we apply

a quasi-concave Lyapunov function to prove global convergence. Speaking informally,

this approach helps to get control over the terms of linkage disequilibria. These terms

are introduced when we consider population genetic dynamics with more than one locus
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and they are the reason why the usual Lyapunov methods that work for one-locus mod-

els break down. Potentially, other multi-locus convergence problems could be treated

by means of quasi-concave Lyapunov functions.

Lemma 2 represents a very useful and intuitive characterization of polymorphisms

in terms of two linear homogeneous systems of equations. Solvability of both systems

in (15) is necessary and sufficient for the existence of internal equilibria. If the numbers

of alleles at the two loci are different, then one of the systems is overdetermined and

has, in general, no solution. However, in the degenerate case, where a solution exists,

we showed that there is a manifold of solutions. This means for an unequal number of

alleles at the loci, there is either no internal equilibrium or there are infinitely many.

This immediate consequence is formalized in Theorem 3. If the two loci have the same

number of alleles, we state necessary conditions for the existence of an isolated internal

equilibrium in Proposition 2.

If there are either two or three alleles (with centrosymmetric fitnesses) at both loci,

these general results on the existence of internal equilibria are used to establish unique-

ness of the polymorphism and its instability if it exists.

With two alleles at each locus it is rather straightforward to prove uniqueness of the

internal equilibrium by combining an index theorem by Hofbauer (1990) with Propo-

sition 1, Theorem 3 and Proposition 2. The index theorem also entails that the equi-

librium is a saddle point. This approach shows the uniqueness and instability of the

polymorphism simultaeously and is not as technical and computationally difficult as

that of Bank, Bürger and Hermisson (2012).

For three alleles at both loci, we need additional assumptions to establish an anal-

ogous result. We assume a centrosymmetric fitness scheme, generalizing that of the

classical symmetric viability two-locus two-allele diploid model.

After scaling Sc such that ˆ̄s = 0, we determine the exact equilibrium coordinates,

which also exhibit centrosymmetry. This allows us to apply a coordinate transformation

that exploits this symmetry. With its help, instability of the internal equilibrium is

shown. Note that in this proof we do not need the uniqueness of the equilibrium.

However, in the SI, we show that the internal equilibrium for this centrosymmetric

three-allele model is in fact unique.

Conditions (35) together with Proposition 1 imply that three monomorphisms are

locally asymptotically stable. This in turn implies, by Theorem 4, that in each of the

three two-allele subsystems spanned by these three monomorphisms a unique biallelic

unstable polymorphism exists. Generalizing this argument in a rather speculative fash-
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ion, we claim that n2 +
∑n

k≥2
(
n
k

)
= n2 + 2n − (n + 1) is the maximum number of

isolated equilibria for system (1) with n alleles at both loci. There, we assume that for

k > 1 alleles at both loci
(
n
k

)
isolated equilibria exist. This is only proven for n = 2,

because the centrosymmetry assumption in our treatment of n = 3 entails that four

monomorphisms are not isolated, since Lemma 1 ensures the existence of edges where

every point is an equilibrium. However, if we set s23 = s21 + ε and s32 = s12 + ε,

then local perturbation theory implies that there are 32 +
(
3
2

)
+
(
3
3

)
= 9 + 3 + 1 = 13

isolated equilibria for ε sufficiently small. According to the claim we made above, this

should hold for the general three allele case. The claim also implies uniqueness of the

equilibrium with all n alleles present.

With the results presented here and the assumption that the trajectories converge

to equilibrium points, it is clear that genetic variation, if it is maintained at two loci

through haploid selection and recombination, only occurs with the same number (larger

or equal 3) of alleles at both loci. If at one locus exactly two alleles occur or exactly

three, which in addition are centrosymmetric, then genetic variation is always lost

regardless of the number of alleles at the other locus. Ultimately, the population is

fixed for one allele at each locus. Additionally, variation vanishes if the fitness scheme

is of the form given in Theorem 2. The genotype with the maximal fitness becomes

fixed.
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