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Abstract
Generative modeling for protein engineering is
key to solving fundamental problems in synthetic
biology, medicine, and material science. We pose
protein engineering as an unsupervised sequence
generation problem in order to leverage the expo-
nentially growing set of proteins that lack costly,
structural annotations. We train a 1.2B-parameter
language model, ProGen, on ∼280M protein se-
quences conditioned on taxonomic and keyword
tags such as molecular function and cellular com-
ponent. This provides ProGen with an unprece-
dented range of evolutionary sequence diversity
and allows it to generate with fine-grained control
as demonstrated by metrics based on primary se-
quence similarity, secondary structure accuracy,
and conformational energy.

1. Introduction
Generating proteins with desired properties is one of the
most complex yet impactful problems in biology. Protein
engineering research has grown over the past 50 years and
yielded remarkable outcomes including the development
of new enzymes, therapies, and sensors. However, leading
experimental techniques for protein engineering such as
directed evolution (Arnold, 1998) still rely on heuristics and
random mutations to select initial sequences for rounds of
evolution.

The raw amino acid sequence encodes a protein, and during
synthesis, this chain of amino acids folds in ways that exhibit
local (secondary) and global (tertiary) structure. These struc-
tural properties then directly determine a unique function,
which is of ultimate interest to protein engineers. Unfortu-
nately, obtaining three-dimensional structural information
for proteins is expensive and time consuming. Consequently,
there are three orders of magnitude more raw sequences than
there are sequences with structural annotations, and protein
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sequence data is growing at a near exponential rate.

Recent research (Alley et al., 2019; Rives et al., 2019; Rao
et al., 2019) has begun to capitalize on the much larger set
of raw protein sequences by adapting state-of-the-art rep-
resentation learning techniques (Devlin et al., 2018) from
natural language processing (NLP) to classification of pro-
tein properties. However, there has been no attempt to adapt
state-of-the-art methods for artificial text generation (Rad-
ford et al., 2019), and in particular the kind of controllable
generation (Keskar et al., 2019) that would be most useful
for protein engineering.

We introduce ProGen for controllable protein generation.
ProGen is a 1.2 billion parameter conditional language
model trained on a dataset of 280 million protein sequences
together with conditioning tags that encode a variety of
annotation such as taxonomic, functional, and locational in-
formation. By conditioning on these tags, ProGen provides
a new method for protein generation that can be tailored for
desired properties (Figure 1).

According to NLP metrics, ProGen is a powerful language
model, achieving comparable performance to similarly-
sized models for English. This performance improves in
settings with larger amino acid contexts and when ProGen
is provided a larger number of conditioning tags, which
highlights its potential for applications in providing viable,
starting sequences for directed evolution or de novo protein
design (Huang et al., 2016). ProGen also performs well
when used to model unseen protein families, but it is even
more effective when fine-tuned for those unseen families as
an alternative to training from random initialization. These
results inspire the use of ProGen to generate candidate se-
quences in challenging, low-homology applications.

Proteins generated by ProGen satisfy desired structural, and
by extension functional, properties when evaluated with
metrics for sequence similarity, secondary structure accu-
racy, and conformational energy– from lower level structure
to higher level structure. Generation performance is judged
higher quality by higher level metrics, which suggests that
ProGen has learned invariances to mutations at the sequence
level that conserve structure and inferred function. At the
highest level, conformational energy analysis reveals that
generated proteins exhibit energy levels near that of native
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Figure 1. a) Protein sequence data is growing exponentially as compared to structural data. b) We utilize protein sequence data along with
taxonomic and keyword tags to develop a conditional language model: ProGen.

proteins, providing our strongest evidence that these pro-
teins satisfy the desired structure and inferred function. In
our first case study, we examine completion of a VEGFR2
protein, which is held-out in training. ProGen generates
candidate completions that conserve the structural elements
most important for determining function and exhibit con-
formational energy near to native levels across a variety
of generation lengths. In our second case study, we ob-
serve that ProGen can select high fitness antibody-binding
GB1 proteins without supervised training or unsupervised
finetuning– indicating that ProGen has learned the underly-
ing distribution of functional proteins.

2. Related Work
Protein representation learning. Recent methods for con-
textualized representations (McCann et al., 2017; Peters
et al., 2018; Devlin et al., 2018) in natural language process-
ing have been demonstrated to work well for contextual pro-
tein representation learning. Structural information about
a protein can be extracted from such representations using
linear methods, and the representations themselves can be
adapted to improve performance on other tasks (Rives et al.,
2019). Similarly, UniRep (Alley et al., 2019) demonstrated
that such representations could be used to predict stability
of natural and de novo designed proteins as well as quanti-
tative function of molecularly diverse mutants. TAPE (Rao
et al., 2019) is a new benchmark consisting of five tasks for
assessing such protein embeddings. While this body of prior
work focuses on transferable representation learning using
bidirectional models, our work demonstrates controllable
protein engineering with generative, unidirectional models.

Generative models for protein engineering. Recent gen-
erative modeling work such as Ingraham et al. (2019) ex-
tends the transformer to condition it on a graph-structured
specification of a desired target. Anand & Huang (2018)
utilizes generative adversarial networks to produce 2D pair-
wise distance map for given protein structural fragments, es-
sentially in-painting missing residues. The aforementioned

work, along with O’Connell et al. (2018), Boomsma &
Frellsen (2017), and Greener et al. (2018), all utilize explicit
structural information for generative modeling, thereby are
unable to fully capture the number and diversity of sequence-
only data available. Meanwhile sequence-only generative
modeling have been attempted recently through residual
causal dilated convolutional neural networks (Riesselman
et al., 2019) and variational autoencoders (Costello & Mar-
tin, 2019). Unlike these prior works, our work on generative
modeling focuses on a high-capacity language models that
scale well with sequence data and can be used for control-
lable generation.

Language Models and Controllable Generation. Large
Transformer architectures (Vaswani et al., 2017) like GPT-
2 (Radford et al., 2019) represent the state-of-the-art in
unconditional language modeling and demonstrate impres-
sive text generation capabilities (Zellers et al., 2019) af-
ter training on vast amounts of unsupervised English text.
CTRL (Keskar et al., 2019) trained a similarly large Trans-
former architecture for language generation by conditioning
on properties of the text easily extracted at scale, e.g. do-
main, style, and even associated URL. We adapt this per-
spective to protein engineering by training a conditional
transformer language model on amino acid sequences con-
ditioned on a set of protein properties referred to as condi-
tioning tags. Notably different from Keskar et al. (2019),
protein engineering requires a finer-grained, much larger,
and more complex set of conditioning tags. Additionally,
a single protein can be paired with dozens of conditioning
tags.

3. Methods
Let a = (a1, . . . , ana) be a sequence of amino acids that
constitutes a protein. In the context of protein engineering,
there is typically also a set of desired protein properties
such as function or affiliation with a particular organism.
Following recent work on controllable, conditional language
modeling (Keskar et al., 2019), we refer to these properties
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generally as ‘conditioning tags’ through which we would
like to control generation of amino acid sequences. Let
c = (c1, . . . , cnc) be a sequence of such conditioning tags,
and let x = [c; a] the sequence formed by prepending a
conditioning tag sequence to an amino acid sequence. p(x)
is then the probability over such combined sequences of
length n = na+nc. We can factorize this distribution using
the chain rule of probability (Bengio et al., 2003):

p(x) =
n∏
i=1

p(xi|x<i)

This decomposes the problem of conditional protein gen-
eration into next-token prediction, where a token xi can
either be an amino acid or a conditioning tag. A neural net-
work with parameters θ can then be trained to minimize the
negative log-likelihood over a dataset D = {x1, . . . , x|D|}:

L(D) = −
|D|∑
k=1

log pθ(x
k
i |xk<i)

Note that p(a|c), the distribution over proteins condi-
tioned on their corresponding conditioning tags, is just
one of the many conditional distributions that can be re-
covered from a model that learns p(x). A new protein ã
of length ma with desired properties encoded by a con-
ditioning tag sequence c̃ of length mc can then be gen-
erated by sequentially sampling its constituent symbols:
pθ(a0|c̃), pθ(a1|ã0, c̃), . . . , pθ(ap|ã<p, c̃).

We train a variant of the Transformer (Vaswani et al., 2017)
to learn these conditional distributions over amino acids
and conditioning tags. A sequence containing n tokens is
embedded as a sequence of n corresponding vectors in Rd.
Each vector is the sum of a learned token embedding and
a sinusoidal positional embedding as in the original Trans-
former architecture. This sequence of vectors is stacked
into a matrix X0 ∈ Rn×d so that it can be processed by l
attention layers. The ith layer consists of two blocks, each
of which preserves the model dimension d.

The core of the first block is multi-head attention with k
heads that uses a causal mask to preclude attending to future
tokens:

Attention(X,Y, Z) = softmax
(

mask(XY >)√
d

)
Z

MultiHead(X, k) = [h1; · · · ;hk]Wo

where hj = Attention(XW 1
j , XW

2
j , XW

3
j )

The core of the second block is a feedforward network with
ReLU activation that projects inputs to an inner dimension
f , with parameters U ∈ Rd×f and V ∈ Rf×d:

FF (X) = max(0, XU)V

Each block precedes core functionality with layer normal-
ization (Ba et al., 2016; Child et al., 2019) and follows it
with a residual connection (He et al., 2016). Together, they
yield Xi+1:

Block 1 Block 2

X̄i = LayerNorm(Xi) H̄i = LayerNorm(Hi)

Hi = MultiHead(X̄i) + X̄i Xi+1 = FF(H̄i) + H̄i

Scores are then computed from the output of the last layer:

Scores(X0) = LayerNorm(Xl)Wvocab

During training, these scores are the inputs of a cross-
entropy loss function. During generation, the scores corre-
sponding to the final token are normalized with a softmax,
yielding a distribution for sampling a new token.

3.1. Data

We utilize all protein sequences and associated tags
available in Uniparc (Leinonen et al., 2004), Unipro-
tKB (Bairoch et al., 2005), SWISS-PROT (Bairoch et al.,
2004), TrEMBL (Boeckmann et al., 2003), Pfam (Bate-
man et al., 2004), and NCBI taxonomic information (Feder-
hen, 2012). The aggregated dataset contains over 281M
proteins—the most comprehensive, non-redundant, anno-
tated database of proteins used to train a machine learning
model. For the amino acid vocabulary, we use the standard
25 amino acids designations in IUPAC (Pettit & Powell,
2006). The conditioning tags are divided into 2 categories:
(1) keyword tags and (2) taxonomic tags. Following the
definitions laid out in the UniprotKB controlled, hierarchi-
cal vocabulary of keywords (many of which are derived
from Gene Ontology (GO) terms) (Ashburner et al., 2000),
the conditioning keyword tags included 1100 terms ranging
from cellular component, biological process, and molecular
function terms. The taxonomic tags include 100k terms from
the NCBI taxonomy across the eight standard taxonomic
ranks. The aggregated dataset was split into a training set of
size 280M, a held-out protein family1 test set (OOD-test) of
size 100k, and a randomly sampled test set (ID-test) of size
1M. OOD-test comprises of 20 protein families, as defined
in Pfam, that were excluded from the training data. Perfor-
mance on OOD-test measures ability to model samples from
unseen protein families, whereas performance on ID-test
measures ability to model samples from a wider range of
protein families that more closely match the distribution of
the training set as described in section A.1

1Protein families are groups of evolutionarily-related proteins
that have similar structure, function, and sequence similarity as
defined by Pfam (Bateman et al., 2004)
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3.2. Training Details

For training, we include each sequence and its reverse, as
proteins are invariant to the temporal notion of sequence
generation. We then prepend each sequence (and its re-
verse) with a corresponding subset of conditioning tags.
For a given sequence, there can be multiple versions across
databases, each with their own associated conditioning tags.
In training, we randomly sample which set of condition-
ing tags to utilize but bias toward SWISSPROT tags as
they are manually verified. We apply dropout to the con-
ditioning tags themselves at a rate of 0.4. We additionally
always include a sample with the sequence alone without
conditioning tags so that ProGen can be used to complete
proteins using only sequence data even when no protein
properties are known. We then truncate all sequences to
a maximum length of 512. Sequences of length less than
512 were padded, but no loss was backpropagated through
the network for padding tokens. The model has dimension
d = 1028, inner dimension f = 512, 36 layers, and 8 heads
per layer. Dropout with probability 0.1 follows the residual
connections in each layer. Token embeddings were tied with
the embeddings of the final output layer (Inan et al., 2016;
Press & Wolf, 2016).

Our model was implemented in TensorFlow (Abadi et al.,
2016) and trained with a global batch size of 64 distributed
across 256 cores of a Cloud TPU v3 Pod for 1M itera-
tions. Training took approximately two weeks using Ada-
grad (Duchi et al., 2011) with linear warmup from 0 to
1e−2 over 40k steps. Gradient norms were clipped to 0.25.
Training in early stages was improved and stabilized by ini-
tializing with the pretrained weights of Keskar et al. (2019).

3.3. Generation Details

ProGen generates proteins one amino acid at a time. For
one step of generation, ProGen takes a context sequence of
amino acids as input and outputs a probability distribution
over amino acids. We sample from that distribution and
then update the context sequence with the sampled amino
acid. This process repeats until a protein of desired length
has been generated. We compare different combinations
of top-k sampling (Radford et al., 2019) with a repetition
penalty designed for amino acid sequence generation. The
repetition penalty reduces the probability of amino acids
that have been generated within 4 tokens prior to the token
to be predicted. Top-k sampling draws the next token from
the k most probable tokens in the distribution output by
ProGen. We report results for top-k values of k = 1 and
k = 3 with repetition penalties of 0 and 1.2.

3.4. Evaluation Details

To assess how well ProGen models the training and test
distributions, we rely on perplexity as the standard metric
for language models, a mean hard accuracy over each token
to strictly assess each amino acid error, and a mean soft
accuracy defined by incorporating BLOSUM62 (Henikoff &
Henikoff, 1992), a standard amino acid substitution matrix.

Perplexity is the exponentiated cross-entropy loss computed
over each token in a dataset. Thus, high quality language
models are expected to have low perplexities. Mean per-
token hard accuracy over the tokens in a sequence judges
a prediction incorrect for any amino acid that is not the
ground truth. Mean per-token soft accuracy relies on BLO-
SUM62, a block substitution matrix that specifies which
amino acid substitutions are more or less acceptable ac-
cording to their frequency in known well-formed proteins.
BLOSUM62 is widely used across adopted alignment soft-
ware (e.g., BLAST2). Our mean per-token soft accuracy
uses BLOSUM62 to penalize incorrect amino acid predic-
tions according to the frequency of that substitution in the
matrix. In this way, if the substitution is likely in nature,
soft accuracy penalizes the model less.

To assess the quality of generation, we evaluate across three
levels of structure: (1) primary sequence similarity, (2) sec-
ondary structure accuracy, and (3) conformational energy
analysis.

Primary sequence similarity is defined by a global, pairwise
sequence alignment score computed with the Biopython
package3. This score is based on the Needleman-Wunsch
algorithm (Needleman & Wunsch, 1970) informed by the
BLOSUM62 substitution matrix. We use a gap open penalty
of −0.5 and gap continue penalty of −0.1. The resulting
score is then normalized by the length of the protein. Exper-
iments reporting sequence similarity are limited to test sam-
ples with a form of experimental evidence of X-ray/NMR
crystallography, mass spectrometry, or existence in cDNA
or RT-PCR to indicate transcript existence. We refer the
reader to UniprotKB existence scores with experimental
evidence4 for further details.

Secondary structure accuracy was computed per-residue for
predicted secondary structures by PSIPRED5 with greater
than 0.5 confidence. PSI-BLAST was performed on each
generated sample to extract the Multiple Sequence Align-
ments (MSAs) with respect to the UniRef90 database (Suzek
et al., 2015). These MSAs were provided to PSIPRED for
higher quality secondary structure prediction. Experiments
reporting secondary structure accuracy were limited to test

2https://blast.ncbi.nlm.nih.gov/Blast.cgi
3https://biopython.org/
4https://www.uniprot.org/help/protein existence
5http://bioinf.cs.ucl.ac.uk/psipred/
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Table 1. ProGen outperforms uniform random and empirical base-
lines on the full test set, which includes ID- and OOD-test. OOD-
test results reveal that ProGen also performs well on protein fam-
ilies unseen during training. Fine-tuning ProGen dramatically
improves performance over training from random initialization.

MODEL PPL HARD ACC.

UNIFORM BASELINE 25 4
EMPIRICAL BASELINE 18.14 6
PROGEN 8.56 45

ID-TEST 8.17 45
OOD-TEST 13.34 22

OOD-TEST-20 (RAND. INIT.) 17.78 9
OOD-TEST-20 (FINE-TUNED) 7.45 50

samples with high UniprotKB existence scores as described
in the previous paragraph.

Conformational energy uses the Rosetta-RelaxBB protocol6.
Rosetta-RelaxBB performs a Monte Carlo optimization of
the Rosetta energy function over the space of amino acid
types and rotamers. The Rosetta energy is based on biophysi-
cal laws and constraints. Between each design round, amino
acid side-chains are replaced, while the carbon backbone
torsions are kept fixed. Energy minimization/relaxation is
performed after threading the amino acid sequence through
the known structure. This allows the backbone to move,
possibly into a lower energy state. A lower resulting Rosetta
energy correlates to a more relaxed-state and viable confor-
mation for a given protein structure. Before applying the
procedure above, we relax the native template first. Experi-
ments that report conformational energy are limited to test
samples from SWISSPROT with associated 3D structures
in RCSB PDB 7.

To assess generative quality, we provide baselines for dif-
ferent levels of random mutation. For a given sequence, a
proportion (25− 100%) of amino acids in the sequence is
randomly substituted within one of the 20 standard amino
acids other than itself. For conformational energy, we also
include an all-alanine baseline (i.e. a sequence with only the
amino acid alanine), as it is a non-bulky, chemically inert
amino acid that mimics the existing secondary structure well
when substituted. These baselines provide a scale across
each of the above metrics. A particular random mutation
may or may not have constructive or destructive effects on
protein structure or function. But viewed in aggregate, the
performance of the 100% mutation baseline for any met-
ric indicates failed generation. As performance approaches
0%, generation statistically indicates a closer reflection to
desired structural and functional properties.

6https://www.rosettacommons.org/
7https://www.rcsb.org/

Figure 2. Large model capacity is warranted as ProGen has yet
to overfit. BLOSUM62-informed soft accuracy shows no gap
between train and test performance, suggesting hard accuracy hides
the possibility that ProGen errors often correspond to amino acid
substitutions found in nature. For metrics details see Section 3.4.

4. Results and Analysis
4.1. Evaluating ProGen as a language model

In this section, we demonstrate that ProGen is a high-quality
language model according to per-token metrics on the train-
ing and test sets.

ProGen generalizes to the full test set and achieves
perplexities representative of a high-quality language
model. Perplexities reported in Table 1 demonstrate that
ProGen dramatically improves over a Uniform Baseline, in
which amino acids are sampled according to a uniform dis-
tribution, and an Empirical Baseline, in which amino acids
are sampled according to the empirical frequencies in the
training set. As a point of reference, state-of-the-art unidi-
rectional language models for English Wikipedia achieve
perplexities that range from 10 to 17 depending on model
size (between 257M and 8.3B parameters) and whether
training data was constrained to English Wikipedia (Rae
et al., 2019) or not (Shoeybi et al., 2019).

ProGen generalizes to unseen protein families. The sec-
ond section of Table 1 breaks this result into perplexities
over the ID-test and OOD-test sets separately. Results on
ID-test confirm that ProGen generalizes well to sequences
that belonged to protein families randomly sampled. As
expected, performance is worse on the sequences in the
OOD-test set, but the model still outperforms the Empirical
Baseline for those held out protein families.

Fine-tuning ProGen on unseen protein families im-
proves over training from random initialization. We fur-
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Figure 3. Full test set performance is better for later segments of
sequences in keeping with intuition that additional context supports
better predictions. We examined intervals up to 500 tokens to
ensure a minimum of 30k samples per interval.

.

ther split OOD-test into OOD-test-80 and OOD-test-20,
fine-tuned ProGen on OOD-test-80 until convergence (5
epochs; Adam; linear learning rate warmup to 1k iterations),
and retested on OOD-test-20. The third section of Table 1
shows that fine-tuning from ProGen improves over training
the same architecture with randomly initialized weights.

ProGen performance improves with increased amino
acid and conditioning tag context. In Figure 3, we ex-
amine the mean perplexity and per-token hard accuracy over
different portions of proteins. Perplexity decreases and hard
accuracy increases for later portions of a protein, in keeping
with the intuition that additional amino acid context narrows
down the possibilities for future tokens. The same trends
hold when increasing the number of conditioning tags and
taking the mean over sequence lengths with the same of
tags (in Figure 4). This indicates that conditioning tags also
provide signal that improves model predictions.

Training curves suggest that protein generation would
benefit from even larger models and longer training.
With 1B parameters, ProGen is comparable in size to the
largest language models that have been publicly released
for any modality, and, to the best of our knowledge, it is the
largest model trained on amino acid sequences. Figure 2
shows that despite its size and the amount of compute used
to train, ProGen has yet to overfit the training data. This sug-
gests that models for protein generation could still benefit
from even larger models and additional compute.

BLOSUM62 soft accuracy reveals that ProGen predic-
tion errors often follow natural amino acid substitutions
that likely conserve higher level structure. Though Pro-
Gen models proteins as pure sequences, protein function
is more directly determined by the secondary and tertiary

Figure 4. Full test set performance also improves as the number of
conditioning tags associated with proteins increases. We examined
proteins with up to 14 conditioning tags to ensure a minimum of
3k samples per category.

structures that these sequences encode in three-dimensional
space. Model performance based on BLOSUM62 soft ac-
curacy (Section 3.4) is more than 20% higher than using
hard accuracy, which indicates that when ProGen errors
may often be substitutions that are acceptable in nature be-
cause they still reflect the proper higher-level properties.
This suggests that ProGen has learned how to work within
function-preserving mutational invariances—we continue
to validate this finding for primary, secondary, and confor-
mational structure in Section 4.2.

4.2. Generating with ProGen

In this section, we focus on assessing ProGen as a genera-
tive model. Generation quality is directly correlated with
evolutionary viability and functional qualities, which can be
inferred through protein structure. For this reason, we assess
generation quality by using metrics for primary sequence
similarity, secondary structure accuracy, and conformational
energy (Section 3.4).

We also include several mutation baselines (Section 3.4)
that allow us to compare the similarity of generated proteins
to a target, reference protein across all metrics. In reference
to these mutation baselines, ProGen quality improves as
we move from primary sequence to full conformational
structure metrics, thereby suggesting the model has learned
mutational invariances in structure which present as errors
in lower-level metrics.

ProGen achieves higher sequence similarity scores with
an amino acid repetition penalty. Figure 5 depicts the
results of experimenting with various combinations of top-
k sampling and repetition penalties (see Section 3.4 for
details). Over all context lengths, ProGen performs best
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Figure 5. Across all context lengths, greedily sampling with a rep-
etition penalty provides the best results according to sequence
similarity.

with k = 1 and the repetition penalty applied to recently
generated amino acids. Consequently, we use these settings
for all following generation experiments. With this nearly
greedy sampling, ProGen manages to generate proteins with
sequence similarity comparable to randomly mutating 50%
of the amino acids that are not seen in the given context.

Sequence similarity suggests that ProGen merely ap-
proaches the 25% mutation baseline, but secondary
structure accuracy suggests that ProGen surpasses it. In
Figure 6, we analyze this sequence similarity across differ-
ing numbers of conditioning tags. Sequences associated
with at least 3 conditioning tags begin to exceed the 50%
mutation baseline, and as amino acid context increases, se-
quences with at least 8 conditioning tags approach the 25%
mutation baseline. Notably, even in the best case, according
to sequence similarity, ProGen doesn’t surpass the 25% mu-
tation baseline. By contrast, according to secondary struc-
ture accuracy, sequences with at least 8 conditioning tags
surpass the 25% mutation baseline (Figure 7). This discrep-
ancy between sequence similarity and secondary structure
accuracy further corroborates our claim from Section 4: er-
rors registered by lower-level metrics often correspond to
acceptable substitutions according to higher-level metrics
that more directly correspond to functional viability.

After threading and relaxation, samples generated by
ProGen are likely to exhibit desired structure and func-
tion. As a measure of generation quality, we thread ProGen
sequences through known structures and examine if they
exhibit favorable, low energy states. Figure 8 shows the
differences between the energy levels of native proteins,
ProGen samples, the native proteins with 50% and 100% of
amino acids randomly mutated, as well as the all-alanine
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Figure 6. A greater number of conditioning tags enables higher
quality generation. With at least 8 conditioning tags, generation
quality approaches the 25% mutation baseline.
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Figure 7. ProGen generates sequences that conserve secondary
structure of the protein. Increasing the number of conditioning tags
yields better secondary structure accuracy than the 25% mutation
baseline.

baseline. Proteins completed by ProGen are much closer
to the energy levels of the native protein than all baselines.
Generated samples exhibit energy levels near or even below
their associated relaxed native templates.

4.3. Case Study: Completing VEGFR2 kinase domain

VEGFR2 is responsible for fundamental cell processes such
as cell proliferation, survival, migration, and differentiation.
VEGFR2 was excluded from training as a subsequence be-
longs to a held out protein family in OOD-test. We study
how well ProGen generates in the context of a protein com-
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Figure 8. Conformational energies for ProGen generated proteins
surpasses all baselines and adheres closely to the energy of the
native template.

Figure 9. ProGen completion quality for VEGFR2 remains steadily
near native conformational energy levels across generation lengths.

pletion task. We consider the amino acid sequence begin-
ning at residue 806 and ending at residue 1168 of VEGFR2
(PDB ID: 2XIR). For different generation lengths, we sam-
ple from ProGen to complete the sequence up to residue
1168 with the remainder of the sequence provided as context.
Figure 9 shows that the conformational energy calculated
after threading and relaxation of ProGen samples are lower
compared to all baselines, indicating better structural conser-
vation. Generation quality remains near the native relaxed
protein independent of generation length.

The generated samples across Figure 9 exhibit a mean se-
quence identity of 73.1% with the native sequence. This
correlates to a lower sequence identity than the 25% muta-
tion baseline (74% identity) but with better Rosetta energies.
This suggests meaningful deviation from the native protein
while achieving the ultimate goal of preserving low energy.

75% Mutation
Energy: -778.45

ProGen Generated
Energy: -900.98

25% Mutation
Energy: -857.10

Figure 10. ProGen makes fewer mistakes and prioritizes conserva-
tion of secondary structure as compared to baselines. Blue is low
energy (stable) and red high (unstable).

Figure 10 shows one sample from ProGen as well as one
from each of the 25% and 75% mutation baselines. The
ProGen sample exhibits lower energy overall, and energy is
highest for amino acids that do not have secondary structure.
This suggests that ProGen learned to prioritize the most
structurally important segments of the protein.

4.4. Case Study: Zero-shot fitness selection for protein
GB1

The ultimate goal of protein engineering is to engineer func-
tional proteins. One promising avenue is via directed evolu-
tion, which iterates through rounds of mutation and screen-
ing to converge on a high-fitness (i.e. functioning) protein.
Machine learning has shown initial promise to aid in the
subsequent rounds of directed evolution by in silico screen-
ing of proteins (Wu et al., 2019), but it still relies on random
mutation in an exponentially large search space. Ideally,
a generative model, such as ProGen, that has learned the
distribution of evolutionarily-relevant proteins can directly
generate high-fitness proteins.

We examine the empirical fitness landscape of protein G
domain B1 (GB1) binding to an antibody (Wu et al., 2016).
Protein G is important for the purification, immobilization,
and detection of immunoglobulins (antibodies), proteins
used by our immune system to neutralize pathogenic viruses
and bacteria. Ideally, we would want the ability to generate
GB1 proteins with high binding affinity and stability. The
data includes 149,361 of a total 160,000 possible variants
from NNK/NNS saturation mutagenesis at four positions
known to interact epistatically. Reported fitness values cor-
respond to a measure of both stability (i.e. the fraction
of folded proteins) and function (i.e. binding affinity to
IgG-Fc) by coupling mRNA display with next-generation
sequencing. Protein sequences with high fitness values are
desired.

Without supervised training of ProGen on the GB1 data
or unsupervised fine-tuning of ProGen on a subset of simi-
lar immunoglobulin-binding proteins, we pass each variant
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Figure 11. Without training on the Wu et al. (2016) dataset, Pro-
Gen can identify which protein variants exhibit high fitness. The
dataset reports fitness values for protein variants of GB1 binding
to an antibody. Each sample corresponds to mutating one of four
highlighted residues, in the above sequence, to a standard amino
acid. At the left, the crystallized structure of GB1 is shown. At
the right, the fitness value of samples selected through ProGen vs
random selection are shown.

through ProGen and select the top one hundred variants with
the lowest perplexity values. In Figure 11, we demonstrate
ProGen is effective in zero-shot selection of high-fitness
protein sequences. In comparison, random mutation, which
is the main technique used by directed evolution and ML-
assisted directed evolution, statistically generates samples
with low or zero fitness. With effective sampling techniques,
ProGen can be utilized to generate a spread of samples that
are statistically high fitness. These results imply that ProGen
has not only learned the distribution of structurally-relevant
proteins, but also functionally-relevant proteins.

5. Conclusion
We introduced ProGen, a controllable protein generation
language model trained on the full evolutionary diversity of
one of the largest sequence databases. The model generates
proteins that exhibit near native structure energies which
likely implies functional viability. ProGen has the potential
to play a new, complementary role alongside other state-
of-the-art methods in protein engineering. For example, in
directed evolution, initial sequences may be sampled from
ProGen according to desired conditioning tags. In later
rounds of evolution, protein completion with context for
particular residue spans, or hotspots, may provide higher
fitness samples. In de novo protein design, using ProGen
with conditioning tags may allow for designing new proteins
with existing folding motifs in new protein families or host
organisms. This same strategy may be used in conjunction
with threading and structure-based protein design. Because
conditioning tags orient ProGen in sequence space, ProGen
may even be used as a model to sample from the distribution
of evolutionarily viable proteins near one particular protein.
This may provide useful augmentations around data for non-

homologous domains where existing techniques, such as
MSAs, fall short.
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A. Appendix
A.1. Measuring out-of-distribution

The objective of our work is to enable high-quality protein
generation. To test the effectiveness of our trained model,
we had two test subsets: ID-Test and OOD-Test. ID-Test is
a random split of the non-redundant sample database and
can be viewed as a typical in-distribution test set of held-out
samples.

In contrast, OOD-Test represents an out-of-distribution set.
OOD-Test consists samples that contained a matching sub-
sequence residing in one of twenty Pfam protein families
that were held out of Train and ID-Test.

3-GRAM SAE 5-GRAM SAE

TRAIN AND ID-TEST 0.027 0.095
TRAIN AND OOD-TEST 0.399 1.112
ID-TEST AND OOD-TEST 0.387 1.104

Table 2. The training data and ID-Test data seem to be drawn from
a similar distribution, but OOD-Test is markedly different from the
others. SAE refers to the sum of absolute errors for normalized
3-gram and 5-gram histograms. If two histograms were entirely
divergent, the SAE would yield a value of 2.

To quantify the out-of-distribution nature of OOD-Test, we
computed a normalized histogram of 3-grams and 5-grams
across samples in the Train, ID-Test, and OOD-Test datasets.
The sum of absolute errors (SAE) was computed for a pair of
histograms as shown in Table 2. Two normalized histograms
that align perfectly would have an SAE of 0 and two normal-
ized histograms that are completely divergent would have
an SAE of 2. The results imply that the OOD-Test is drawn
from a significantly different distribution.

The held-out protein families included PF18369,
PF04680, PF17988, PF12325, PF03272,
PF03938, PF17724, PF10696, PF11968,
PF04153, PF06173, PF12378, PF04420,
PF10841, PF06917, PF03492, PF06905,
PF15340, PF17055, PF05318.

A.2. Generation with only conditioning tags

We observe that ProGen can be used to generate proteins
with only conditioning tags and no initial amino acid context.
For the following example, we prompt ProGen to greedily
generate a protein sequence with the tags Flavoprotein
and FMN. As defined by the UniprotKB keyword, the FMN
tag refers to “a protein involved in flavin adenine mononu-
cleotide (FMN) synthesis or protein which contains at least
one FMN as prosthetic group/cofactor (flavoproteins) or
cosubstrate, such as many oxidation-reduction enzymes”.

The generated sequence of length 400 is then passed to the
HHblits package by Zimmermann et al. (2018) to search
for a multiple sequence alignment (MSA). As shown in
Figure 13, there are multiple sequences that align well with
the ProGen sequence. Figures 14-16 demonstrate the align-
ments have high E-values and have related properties. The
lower the E-value, the lower the probability of a random
match and the higher the probability that the alignment
match is related to the searched sequence.

A.3. Model visualizations

ProGen was trained from a randomly initialized embedding
layer with no prior knowledge of residue biochemical prop-
erties. Through per-token training on millions of protein
sequences, ProGen seems to have inherently learned the
natural clustering of amino acids that align with our under-
standing of biophysicochemical properties. In Figure 12,
the trained embedding weights for the standard amino acids
tokens are reduced to three dimensions with principle com-
ponent analysis (PCA).

Figure 12. Principle component analysis (PCA) of the ProGen’s
amino acid embeddings aligns with our intuition of amino acid
properties.

Using Vig (2019), we visualize the attention head patterns
of ProGen. For both Figure 17 and Figure 18, we are visu-
alizing the attention weight patterns in each head of ProGen
for α-actinin protein (PDB: 4D1E) residues 510 to 528,
which exhibits an alpha helical structure. In Figure 17, we
visualize layers 1 to 3 and attention heads 1 to 12 of ProGen.
The attention mechanism exhibits well-differentiated local
and global patterns which may indicate specialization of
each head on different tasks.
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Figure 13. There are multiple sequences that align well with the ProGen generated FMN sequence from only conditioning tags. Many of
the matching alignments have properties reflective of FMN proteins (e.g. oxidoreductases). A red color corresponds to a significantly low
E-value, implying a matching homolog. The MSA was directly taken using HHblits.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.07.982272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.07.982272
http://creativecommons.org/licenses/by-nc-nd/4.0/


ProGen: Language Modeling for Protein Generation

Figure 14. First alignment (ranked by E-value) of a ProGen generated FMN protein. An E-value less than 1e−4 and identity greater than
40% is desired to consider the match as potentially homologous. The sequence labeled as Q is the ProGen protein and the sequence
labeled as T is the matched sequence.
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Figure 15. Second alignment (ranked by E-value) of a ProGen generated FMN protein. An E-value less than 1e−4 and identity greater
than 40% is desired to consider the match as potentially homologous. The sequence labeled as Q is the ProGen protein and the sequence
labeled as T is the matched sequence.
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Figure 16. Third alignment (ranked by E-value) of a ProGen generated FMN protein. An E-value less than 1e−4 and identity greater
than 40% is desired to consider the match as potentially homologous. The sequence labeled as Q is the ProGen protein and the sequence
labeled as T is the matched sequence.
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Figure 17. Attention patterns of ProGen for a given sequence. Layers 1-3 (rows) and attention heads 1-12 (columns) are displayed. The
attention mechanism exhibits well-differentiated local and global patterns which may indicate specialization of each head on different
tasks. Two corresponding attention heads from this visualization are shown in Figure 18.

Figure 18. Local attention pattern for two example attention heads. Lines indicate attention to previous tokens for a given predicted token.

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2020. ; https://doi.org/10.1101/2020.03.07.982272doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.07.982272
http://creativecommons.org/licenses/by-nc-nd/4.0/

