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Abstract: In healthy joints, synovial fibroblasts (SFs) provide the microenvironment required to mediate 

homeostasis but are recognized to adopt a pathological role in rheumatoid arthritis (RA), promoting the 

infiltration and activation of immune cells to perpetuate local inflammation, pain and joint destruction. 

Carbohydrates (glycans) attached to cell surface proteins are fundamental regulators of cellular 

interactions between stromal and immune cells, but very little is known about the glycome of SFs or 

how glycosylation regulates their biology. Here we fill these gaps in our understanding of stromal guided 

pathophysiology by systematically mapping glycosylation pathways in healthy and arthritic SFs. We 

used a combination of transcriptomic and glycomic analysis to show that transformation of fibroblasts 

into pro-inflammatory cells in RA is associated with profound glycan remodeling, a process that 

involves reduction of a2-6 terminal sialylation that is mostly mediated by TNFa-dependent inhibition 

of the glycosyltransferase ST6Gal1. We also show that sialylation of SFs correlates with distinct disease 

stages and SFs functional subsets in both human RA and models of mouse arthritis. We propose that 

pro-inflammatory cytokines in the joint remodel the SF-glycome, transforming a regulatory tissue 

intended to preserve local homeostasis, into an under-sialylated and highly pro-inflammatory 

microenvironment that contributes to an amplificatory inflammatory network that perpetuates chronic 

inflammation. These results highlight the importance of cell glycosylation in stromal immunology.  

 

Introduction. Rheumatoid Arthritis (RA) is a chronic inflammatory condition of the joints affecting 

0.3%-1% of the world’s population. RA has been historically described as an autoimmune condition, 

where the central component of disease pathogenesis relies on aberrant responses of immune cells 

leading to destruction of bone and cartilage in the joint. Recent findings have now shown that the 

pathophysiology of RA merges autoreactive immunity with genetic, epigenetic and environmental 

factors that are responsible for disease initiation. RA starts with a pre-clinical phase involving activation 

of immune mechanisms in the absence of  clinical symptoms1, followed by auto-amplificatory loops 

attracting macrophages, T cells and other immune cells to the joint to perpetuate local inflammation 

through cytokine networks dominated by TNFa, IL-6, IL-1b and chemokines such as Ccl2 or CXCL52,3. 
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Not surprisingly, biologic Disease Modifying Anti-Rheumatic Drugs (bDMARS) inhibiting these 

cytokines are the treatments of choice in the clinic. Even though such gold standard treatments  lead to 

a substantial improvement in life quality of thousands of patients1,4, as they are immunosuppressive 

agents they have been linked with serious adverse effects. Also 30-40% of RA patients still do not 

respond completely to them, suggesting that key events underpinning pathogenesis remain elusive. In 

fact, the cellular and molecular basis of why inflammation does not resolve in RA remains unanswered. 

  

Synovial fibroblasts (SFs). are major components of the synovial membrane, a highly specialized 

mesenchymal tissue lining the joint cavity. In the synovium, two main micro domains can be described; 

the lining layer (directly exposed to the synovial space) and sublining layers. Due to their anatomical 

location, SFs provide the required nutritional and structural support. Initially SFs were considered as 

cells lacking any substantial impact on immune function. However  SFs are known to adopt a 

immunopathological role in RA, responding to inflammatory cytokines and promoting bone and 

cartilage destruction2,3,5,6. Despite being cells of non-immune origin, SFs play a central role to perpetuate 

local immune responses in the synovial joint, delivering region-specific signals to infiltrating immune 

cells and contributing to bone and cartilage destruction7,8. Interestingly, it has been recently 

demonstrated by Single Cell Transcriptomics that SFs comprise distinct functional subsets that correlate 

with their anatomical location and activation of pathological pathways9,10, suggesting  that SF-dependent 

immunity may be far more complex than anticipated. Because of their non-immune origin and their 

highly-specialized function in health and disease, interventions targeting SFs -or specific SFs subsets- 

may modify disease progression without significant immunosuppression.  

 

Functional glycomics, an emerging discipline focused on defining the structures and functional roles of 

carbohydrates (glycans) in biological systems, could offer such fibroblast specific  molecular targets11,12. 

Some elegant studies have shown the potential impact of glycan regulation in multiple aspects of RA 

pathophysiology, for example reduced sialylation of N-glycans is a feature of pathogenic 

immunoglobulins in RA patients and their glycosylation profile shows predictive potential for disease 
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progression 13-17. Besides, galectins, a family of proteins that bind to galactose-containing glycans, are 

key modulators of synovial inflammation18-20. However, little is known about the glycosylation profile 

of SFs, and whether this varies in health and disease, despite the glycome is being critical for dictating 

interactions with galectins and other carbohydrate binding proteins, and the fact that altered 

glycosylation is a hallmark of chronic inflammatory conditions. To illustrate this, cytokines induce 

aberrant glycome changes in cancer that perpetuate local inflammation via control of cell adhesion, 

migration and signal transduction21-23; mechanisms that are also associated to the pathogenicity of SFs 

in RA and are responsible of migration to cartilage-containing areas prior to tissue damage. Furthermore, 

the carbohydrate binding protein galectin-3 is up-regulated in RA24 and galectin-3-/- mice show reduced 

pathology in experimental arthritis20. Moreover, exogenous galectin-3 significantly up-regulates CCL2, 

CCL3 and CCL5 in synovial but not in dermal fibroblasts19, suggesting that the synovium 

microenvironment can induce tissue-specific glycosylation in the stromal compartment.  

 

We hypothesised that the cytokine milieu found in the inflamed joint determines distinct SF-

glycosylation, that in turn, regulates cell recruitment and inflammatory responses. Our aim in this study 

was to investigate changes of SF glycome that could be related to their inflammatory activity. By 

combining transcriptomics and glycomics analysis, we report that transformation of SFs into pro-

inflammatory cells in RA is associated with glycan remodeling, involving reduction of terminal 

sialylation in Thy1(CD90)+ sublining SFs upon TNFa stimulation. We also show that low sialylation of 

SFs is associated with disease remission, supporting the idea that the stromal glycome could be used for 

development of novel disease biomarkers or therapeutic agents.  

 

Results. 

 

Distinct anatomical locations and inflammatory conditions shape the glycosylation profile of 

human fibroblasts. To test our initial hypothesis, we isolated and expanded fibroblasts from the 

synovium and matched samples from skin from RA patients, as a reflection of inflammatory and non-
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inflammatory environments. We also isolated SFs from osteoarthritis (OA) patients, as an example of a 

less inflammatory, more destructive joint disease. General glycosylation was evaluated using lectin-

binding assays by immunofluorescence (Fig. 1a) and flow cytometry (Fig. 1b). Based on the 

carbohydrate binding specificity for each lectin, our results provided an initial indication of differential 

fibroblast glycosylation under inflammatory conditions. All fibroblasts bound most of the tested lectins, 

confirming the presence of a rich and diverse glycocalix. These data indicate the SF-glycome was rich 

in galactose-containing glycans (RCA+, ECA+) containing PolyLacNAc extensions (LEL+) and α1-6 

core fucosylated N-glycans (AAL+), in contrast to the lack of α1,2 fucosylation on glycan antennae 

(UEA-). Interestingly, we observed significant differences in glycosylation in fibroblasts taken from 

distinct anatomical locations (dermal vs synovium: PNA, Jacaline and ECA binding) and in distinct 

inflammatory conditions (RA vs OA, LEL and ECA binding) (Fig. 1a-b), supporting the link between 

local inflammatory mediators and glycan remodeling.  To evaluate whether changes in glycosylation 

were due to cytokine stimulation, we checked the expression of glycan building enzymes, 

glycosyltransferases, in human SFs in response to pro-inflammatory TNFα [dataset generated by 

Slowikowski et al.25]. TNFα significantly modulated glycosyltransferase genes involved in the synthesis 

of branched glycans such as A4GALT, GCNT1 and GCNT2, along with up-regulation of α2-3 

sialyltransferases like ST3Gal1, ST3Gal2 and ST3Gal4 (Supp. Fig. 1a). No effect was observed when 

cells were stimulated with IL-17 (Suppl. Fig. 1b), indicating that changes in glycosylation are linked to 

individual cytokine signaling. To further explore these findings, naive SFs expanded from mouse 

synovium were stimulated with a panel of regulatory and pro-inflammatory factors and subsequently 

stained with PHA, lectin that binds complex branched N-glycans. 

 

The cytokine IL-22 was chosen because it exerts both inflammatory and resolving actions in RA, 

depending on the local microenvironment26. Differential effects of IL-22 over cell glycome would 

therefore provide further support to the original hypothesis linking distinct glycosylation and effector 

responses. The combination of inflammatory factors with IL-22 exerted diverse effects on expression of 

branched glycans (Suppl. Fig. 1c), perhaps related to the dual effect described by IL-22 in joint 
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inflammation. Changes in PHA-binding in response to immunomodulators might be reflective of SFs 

activation as glycans recognized by PHA were detected in joint areas with a strong SF-mediated 

inflammation (Suppl. Fig. 1d). Overall, results shown in Fig. 1 and Suppl. Fig. 1 supported the 

hypothesis that immune mediators found in local microenvironments control SF glycosylation. 

  

Comparative RNA-Seq analysis reveals that transformation of SFs into pathogenic mediators is 

associated with changes glycosylation pathways. To complement the lectin-based experiments we 

additionally undertook transcriptome sequencing (RNA-Seq) to fully dissect SFs glycosylation 

pathways at mRNA level. We also chose to work initially with the murine model of Collagen-Induced 

Arthritis (CIA), because human clinical samples have usually been exposed to long-term 

immunomodulatory treatments, which add high levels of variability and might affect the cytokine-

glycosylation axis. The CIA model shares hallmarks of human disease of high relevance to this study, 

such as the hyperplasia of synovial membrane, inflammatory infiltration of the synovium and pannus 

formation. SFs from healthy and CIA mice (Clinical scores >8) were sorted by flow cytometry [CD45-

CD31-Podoplanin+] (Fig. 2a) and RNA was immediately purified for RNA-Seq analysis upon polyA 

selection.  We recovered a higher number of SFs from CIA joints compared to healthy joints with 

elevated expression of podoplanin (Fig. 2a), reflecting their hyperplasia and activation reminiscent of 

human RA. Consistently, Principal Component Analysis of transcriptomic data confirmed the distinction 

between both groups (Fig. 2b). A list of differentially expressed (DE) genes in CIA SFs was generated 

including 298 up-regulated genes and 88 down-regulated [>2 fold, adjp <0.05, (Fig. 2b, suppl. Fig. 2a)]. 

KEGG pathway enrichment analysis showed that ‘Rheumatoid Arthritis’ as disease pathway was 

significantly up-regulated in CIA SFs (Suppl. Fig. 2b), validating the model to study SF-dependent 

inflammation. String Protein-Protein Interaction Networks Functional Enrichment Analysis27 was 

applied to DE genes in CIA compared to healthy SFs, identifying 2 main functional networks: i) cell 

cycle and cell division and ii) inflammatory response (Fig. 2c), further demonstrating SF immune 

activation and hyperproliferation. Interestingly, GO-term analysis revealed that most proteins identified 

in the inflammatory network were glycoproteins and/or regulators of cell communication (Fig. 2c), 
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suggesting the potential role of glycosylation in SF activation. To further study this, we specifically 

searched for expression of genes involved at different steps of glycosylation biosynthesis, such as 

glycosyltransferases and glycosidases responsible of mannosylation, glycan chain branching and 

elongation, fucosylation, sialylation and glycan degradation (Fig. 2d). Unsupervised clustering based on 

these glycan biosynthetic pathways separated naïve and arthritic SFs (Fig. 2e), suggesting that pro-

inflammatory SFs present an altered glycome in inflammatory conditions. The observed down-

regulation of enzymes of medial Golgi-branching N-acetylglucosaminyltransferases II, IV and V 

(encoded by Mgat2, Mgat4 and Mgat5) in CIA SFs, along with the up-regulation of β-1,4-

Galactosyltransferase genes (B4GALT) and GCNT2 (Fig. 2e) suggested that these differences might 

lead to changes in the extension and branching of antennae of N-glycans or in the number of poly N-

acetyllactosamine (linear repeats of Galb1,4GlcNAcb1,3) by b1,3N-acetylglucosaminyl-transferases. 

Likewise, terminal modifications of such structures may have reduced fucosylation or sialylation, given 

that gene expression of the fucosyltransferases Fut10, Fut11 and the sialyltransferases ST6Gal1, 

ST3Gal2 and ST3Gal6 are significantly down-regulated in CIA SFs (Fig. 2e). 

 

Glycomic studies reveal reduced levels of sialylation in pro-inflammatory SFs. Transcriptomic 

analysis provided a powerful tool to delineate potential changes in cell glycosylation. However, unlike 

proteins or nucleic acids complex, glycans are not assembled in a template-driven process. Rather, 

glycosylation in the endoplasmic reticulum and Golgi is the result of combined actions of 

glycosyltransferases and glycosidases (Fig. 2d,e). Consequently, prediction of structures based on 

transcriptomic data does not necessarily correlate with the final glycosylation profile and further 

structural information is needed to generate reliable information. We therefore used mass spectrometry 

(MS) based glycomics to define the N-glycome of murine SFs (Suppl. Fig. 3). N-glycans were isolated 

from cultured SFs, permethylated and subjected to MS analysis. Following annotation of peaks with 

most likely glycan structures based on molecular ion composition, knowledge of biosynthetic pathways 

and with the assistance of the bioinformatic tool glycoworkbench 28, most structures were annotated as 

high mannose glycans or complex glycans, either core-fucosylated or non-fucosylated. Sequential 
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addition of N-acetyllactosamines (LacNAcs) defined the larger structures, suggesting the presence of 

extended antennae and multi-branched structures. Sialylation was the most abundant capping 

modification of terminal galactoses. As expected in murine cells, two sialic acids were detected, N-

acetylneuraminic and N-glycolylneuraminic acid. A similar structural profile was observed in human 

SFs taken from RA joint replacements (Suppl. Fig. 4), further validating the animal model. Still, some 

differences between mouse and human cells were found, like the absence of terminal Gal-α-gal and N-

glycolylneuraminic acid, as these structures cannot be synthesized by the human glycosylation 

machinery. Nevertheless, human and mouse SF N-glycomes seemed to be well conserved.  

 

Next, in order to identify specific glycan changes that could contribute to SF activation, the relative 

expression of individual N-glycans structures in healthy and CIA SFs were compared. Structures whose 

relative expression was below 2% of total were ruled out, since the low expressed forms could easily 

add artefactual results, leaving 43 glycans to analyze. This dataset was then used to perform 

unsupervised hierarchical clustering to uncover expression patterns characteristic of inflammatory CIA 

SFs (Fig. 3). Interestingly, N-glycans were clustered into 6 discrete groups containing similar structural 

features: i) cluster 1987: high mannose, ii) cluster 2285: LacNAc extended, iii) cluster 3026: sialylated-

fucosylated, iv) cluster 3271: sialylated-LacNAc v) cluster 3258: sialylated-LacNAc-fucosylated, and 

vi) cluster 2069: simple non-sialylated. Three of these clusters contained glycans that were significantly 

down-regulated in CIA SFs: clusters 3026, 3271 and 3258, which had one characteristic in common: a 

significant high proportion of sialic acid containing glycans. In fact, 96% of all the sialylated glycans 

analyzed were found within these three clusters, strongly suggesting that reduced sialylation is 

associated with activated CIA SFs.   

 

SFs from arthritic mice exhibit down-regulated a2-6-linked sialic acid. Comparative glycomic 

analysis (Fig. 3) indicated that experimental arthritis was strongly associated with a down-regulation in 

sialic-acid-containing N-glycans in SFs. Retrospective examination of the data related to transcriptomic 

regulation reveals a significant down-regulation of ST3Gal6, ST3Gal2 and ST6Gal1 [fold-increase 0.73, 
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0.64 and 0.60 respectively] (Fig. 2e), supporting the reduced presence of sialylated glycans observed by 

MS (Fig. 3). However, it also showed a significant up-regulation of ST3Gal4 mRNA [1.49 fold-increase 

(Fig. 2e)]. These apparently conflicting results could be explained by differential regulation of sialic 

acid linkages, differences that would not be detected in our initial MS-based studies. In the structures 

depicted in Fig.ure 3, two major types of glycosidic bonds can be formed between sialic acid and 

terminal galactose, namely, sialic acid-α2-3Gal and sialic acid-α2-6Gal, synthesized by six ST3 beta-

galactoside alpha-2,3-sialyltransferases (ST3Gal1-6) and two ST6 beta-galactoside alpha-2,6-

sialyltransferases (ST6Gal1-2). To evaluate the type of sialylation present in arthritic SFs, we used SNA 

and MAAII, lectins that specifically recognize sialic acid in a2-6 and a2-3-linkages. Results showed 

that SNA binding was reduced in CIA SFs compared to naïve SFs, whereas MAAII binding was not 

affected (Fig. 4a). These results indicate that the differential sialylation profile observed in CIA SFs is 

due to specific reduction in a2-6 sialylation, presumably because of lower ST6-sialyltransferases 

expression. Furthermore, binding of galactose-recognizing lectins such as PNA and SBA was up-

regulated in arthritic SFs (Fig. 4a), probably reflecting increased terminal galactose in the under-

sialylated glycome. Since inflammation does not change a2-3-sialylation of SFs, a reduced ratio of 

a2,6/a2,3-linked sialic acid might constitute a hallmark of inflammatory SFs. Supporting these findings, 

synovial membranes of healthy mouse joints had a a2-6 > a2-3 sialylation profile, as observed by 

immunofluorescence with SNA and MAAII, whilst inflamed joints in CIA joints show comparable 

levels of both sialic acid linkages (Fig. 4b).  

 

Down-regulation of a2-6 sialylation in SFs is a consequence of TNFa-dependent inhibition of the 

sialyltransferase ST6Gal1.  The results from transcriptomics, MS-based glycomics and lectin-binding 

experiments all concluded that reduced a2-6-sialylation is associated with inflammatory SFs. We 

therefore next sought to identify the molecular mechanisms underlying this shift in the SF-glycome. 

Several sialytransferases (Sia-Ts) are expressed in SFs (Fig. 5a), including ST3Gal enzymes 

[ST3Gal1>>ST3Gal2>ST3Gal4>ST3Gal3] and only one involved in a2-6-Sialylation, ST6Gal1, with 
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some significant gene regulation during CIA as explained before. ST8Sia-T involved in polysialic 

synthesis were only marginally expressed, in agreement with MS glycomics data (Suppl. Fig. 3).  In 

addition to Sia-Ts, we studied expression of enzymes synthesizing their substrate, CMP-Neu5Ac (Fig. 

5a), since a reduction in its intracellular concentration would also lead to hyposialylated glycomes, even 

if the expression of Sia-Ts remained at normal levels. As expected, given the abundant sialic acid content 

of SFs glycoproteins, these enzymes were highly expressed in both healthy and CIA SFs (Fig. 5a), 

suggesting that intracellular availability of Sialic acid donors might not restrain glycan biosynthesis. 

However, and rather unexpectedly, neither RNA-Seq analysis nor qPCR approaches detected expression 

of N-Acetylneuraminic Acid Phosphatase (NANP), an enzyme that dephosphorylates sialic acid 9-

phosphate to free sialic acid as part of the required intermediate biosynthetic metabolites. As sialylated 

glycans are undeniably present in SFs, alternative biosynthesis pathways might be operating in these 

cells, perhaps as in recent observations in CHO cells29. To identify possible mechanisms behind changes 

in sialylation, we used qPCR to evaluate expression of selected genes (as in Fig. 5a) in response to IL-

1b, IL-17 and TNFa, key cytokines known to initiate inflammatory pathways in RA. IL-6 mRNA, 

included as a positive control, was significantly up-regulated in response to all cytokines tested (Fig. 

5b), confirming cell activation. No difference was observed in GNE, NANS, CMAS or SLC35A1 

expression, corroborating our findings that sialic acid biosynthesis is not the cause for the reduced 

sialylation observed in CIA SFs. Regarding SiaTs expression, no effect was seen in response to IL-17, 

in line with the human observations in Suppl. Fig. 2b. IL-1b increased expression of ST6Gal1 (in Naïve 

SFs) and ST3Gal4 (in CIA SFs), with an approximately 2-fold increase. However, these changes were 

only mild compared with the significant down-regulation of ST6Gal1 in response to TNFa, that induced 

a strong down-regulation of ST6Gal1 (8-fold) in both naïve and CIA SFs (Fig. 5b). Since ST6Gal2 was 

not detected in SFs, TNFa-mediated down-regulation of ST6Gal1 seems to a key mechanism 

responsible for reduced SF sialylation in CIA arthritic mice. To confirm the functional effect over the 

SF-glycome, we repeated the experiment evaluating in parallel the expression of a2-6-sialic acid (SNA+ 

binding). Again, only TNFa decreased ST6Gal1 mRNA and such effect was accompanied by reduction 
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of a2-6-Sialic acid on the cell surface (Fig. 5c). Finally, cells were stimulated with TNFa for 48 hours 

to allow glycan turnover, and N-glycans were then isolated to conduct MS-based glycomic analysis. 12 

out of 16 sialylated N-glycans showed a reduced expression upon TNFa stimulation, providing further 

support to our findings (Fig. 5d).  

 

Fibroblast populations are differentially sialylated in homeostatic and inflammatory conditions. 

The discovery of distinct subsets of SFs in different microdomains of the synovium has revolutionized 

our understanding of fibroblast biology in RA. Single cell transcriptomic experiments have shown that 

fibroblast subsets localize to specific regions in the synovium contributing to different aspects of disease 

pathogenesis9,10. For example, CD90+FAPα+ fibroblasts located in the synovial sub-lining are essential 

for perpetuation of the inflammatory response, whereas CD90-FAPα+ in the lining membrane are 

responsible for bone and cartilage damage9. Understanding which functional SF subset(s) lose sialic acid 

during inflammation would allow us to infer the dominant functional relevance of this glycan 

modification in SF-mediated pathogenesis. Therefore, we evaluated expression of ST6Gal1 and α2-6-

Sialylation in CD90- and CD90+ SFs, representative of lining and sublining SFs respectively. As 

described previously, SNA and MAAII lectins were used to detect α2-6 and α2-3 sialic acid in SFs 

directly isolated from digested mouse synovium. PNA was used as a control, because sialic acid prevents 

its binding. SFs from healthy joints showed higher affinity for SNA than MAAII, supporting the 

homeostatic role of α2-6 sialylation. Interestingly, naïve, unstimulated CD90+ SFs had a higher basal 

α2-6 sialylation than CD90- SFs (Fig. 6a), perhaps suggesting that sialic acid content is related to 

functional SF specialization dependent on their anatomical location. We therefore FACS sorted CD90+ 

and CD90- SFs from naïve and CIA joints and levels of ST6Gal1, IL-6 and MMP3 mRNA were 

evaluated in both subsets (Fig. 6b). As expected, and further corroborating our results, ST6Gal1 was 

down-regulated in CIA SFs, but interestingly, ST6Gal1 was differentially down-regulated only in 

CD90+ SFs (Fig. 6b). MMP3 and IL-6 were also differentially expressed in both subsets (Fig. 6b), up-

regulated during arthritis and preferentially expressed by CD90- SFs, consistent with findings from Croft 

et al 9and further demonstrating that CD90 discriminates functional subsets of SFs.  
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ST6Gal1 mediated sialylation of the SFs glycome is associated with disease remission. CD90+ SFs 

are differentially found in the sublining layer synovium, and are expanded in RA synovia immune 

responses9,10,30. As we observed that CD90+ SFs downregulate ST6Gal1 in inflammatory conditions, 

we postulated that a low sialylated SF-glycome would be a characteristic signature of environments 

undergoing strong immune reactions, as a consequence of high TNFα concentration in the synovial 

space.  To test this hypothesis, we compared the N-glycome of SFs expanded from CIA animals, 

separating them into cells from non-affected paws (low scores, LS-SFs) and very inflamed paws (high 

scores, HS-SFs), taking advantage of the CIA model being asymmetrical, where not all limbs develop 

the same degree of inflammation. In addition, we included SFs from naïve non-arthritic mice. 

Unsupervised clustering of N-glycan relative expression, assessed by MS as before, revealed that one 

group of N-glycans that was strongly overexpressed in LS-SFs (cluster 3619, Fig. 7a). Strikingly, sialic 

acid was present in 11 out of 13 structures found within this cluster, consistent with idea that highly 

sialylated SFs is linked to a non-inflammatory phenotype. By contrast, cluster 2080 including almost 

exclusively non-sialylated glycans was down-regulated (Fig. 7a). Because α2-6-linked sialic acid is a 

blocker for galectin binding and function 31,32, these findings suggested that a hypo-sialylated glycome, 

present in CD90+ SFs would be more sensitive to interactions with galectins by virtue of a higher 

exposure of galactosides, their natural ligand, being. Thus, we decided to stimulate naïve, LS- and HS-

SFs (as in Fig. 7a) with recombinant galectin-3, described as a pro-inflammatory factor in RA 33, and 

IL-17 and TNFα as inflammatory mediators that do not bind glycans. Expression of IL-6 was used as a 

positive control  to confirm SF activation, since it is a cytokine produced by SFs in response to the 

inflammatory cytokines used19. Indeed, all SF groups show some ability to respond to IL-17 and TNFα, 

being their response in direct correlation to their inflammatory status (Fig. 7b-c). However, LS-SFs did 

not respond to galectin-3, in clear contrast to HS-SFs (Fig. 7c) which were easily activated.  This might 

be explained by the protective coating of sialic acid in the LS-SFs-glycome compared to HS-SFs, 

preventing galectin-3 binding and consequent inflammatory response. Nevertheless, LS-SFs still 

expressed elevated IL-6 expression compared with naïve SFs, and their glycome was significantly 
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different to the naïve cells indicating that we cannot rule out that highly sialylated LS-SFs are in 

transition to become more inflammatory.  

 

Hence, to assess whether high content of sialic acid is a protective marker, we used SFs expanded from 

either untreated early RA patients (<12 months from joint symptoms beginning), or RA patients in 

sustained remission under c-DMARDs+TNF-inhibitor combination therapy (Fig. 8). These samples 

were obtained from US-guided minimally invasive synovial tissue biopsies, which limited the amount 

of biological material and conditioned the coverage of MS-based studies. Nevertheless, we could still 

detect the most abundant structures, including high mannose and core fucosylated and non-fucosylated 

biantennary N-glycans.  The ratio of mono and bi-sialylated versus their corresponding non-sialylated 

core provided us with the degree of sialylation in both clinical groups. Results showed that RA patients 

in sustained remission had a higher ratio of sialic-acid containing N-glycans, differences that were not 

seen when other non-sialylated structures were compared, such as ratios of fucosylated versus non-

fucosylated or different mannose-containing glycans, suggesting that high sialic acid content is a 

distinctive feature of SF-glycome in RA patients in sustained remission (Fig. 8a). In line with this, SNA 

binding revealed a higher expression of a2-6 sialic acid in the synovium of RA patients in remission 

after c-DMARDs + TNF-inhibitor treatment (Fig. 8b) and in less inflammatory OA, supporting our 

conclusion of sialylation being an anti-inflammatory factor not only in the mouse model, but also in 

human RA. 

 

Discussion. Glycans are involved in fundamental biological processes associated with SF-mediated 

pathophysiology, such as cell adhesion and migration, cell signaling and communication or immune 

modulation. One well described example of proteins recognizing glycans to initiate SF-dependent 

inflammatory responses is galectin-3, a carbohydrate binding protein that binds to galactoside-

containing carbohydrates. Galectin-3 is a positive regulator of TLR-induced responses in human SFs34, 

it activates dermal and synovial fibroblasts to secrete pro-inflammatory IL-6, CXCL8 and MMP3, but 

it promotes a significantly higher secretion of TNFa, CCL2, CCL3, and CCL5 in SFs19, reflecting 
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distinct stromal glycosylation and immunity of the synovial space. However, little attention has been 

given to the SFs glycome, the code read by carbohydrate binding proteins, such as galectin-3. Yang et 

al in 2004 aimed to characterize changes of surface glycoconjugates in bovine SFs upon TNFa and 

TGFb stimulation35, being one of the first studies to evaluate SF glycosylation showing a link between 

cytokine(s) activity and changes in SFs-glycosylation. However, the structural information generated 

was very limited due to the nature of the lectin-based assays employed. More recent studies have focused 

on specific glycosyltransferases expressed in SFs, like fucosyltransferase 1 (Fut1) and 

galactosyltransferase-I (β1,4-GalT-I).  Fut1 is involved in terminal a1-2 fucosylation and is up-regulated 

in RA synovial tissue36 regulating leukocyte-SF adhesion, whilst β1,4-GalT-I is induced by TNFa37 to 

promote binding to glycosylated extracellular matrix. Furthermore, aberrant glycosylation of fibronectin 

in RA has also been reported38. Nonetheless, the nature of the SF-glycome as a whole is unknown, and 

the role of glycosylation in SFs during joint inflammation is not understood. Therefore, we aimed to 

conduct a broader systematic study to bridge the gap between glycomics and other omics approaches in 

the field of SF-dependent immunology. Our results here provide an extensive description of the SF 

glycome in heath and disease that will help to further understand the interactions of SFs with other 

immune cells and matrix components in the joint tissue.  

 

The success of glycosciences in the field of cancer is an exemplar model that integrates glycomics into 

stromal immunology. Distinct modifications in tumors include truncated N- and O-glycans, increased 

N-glycan branching and changes in sialylation. Ultimately, these changes affect fundamental processes 

of cancer biology like cell adhesion, signaling, tumor progression and metastasis23, making glycans 

attractive targets for therapeutic intervention. Recent technological advances and the prospective use of 

glycan-based biomarkers for patient stratification have led it to be estimated that the global glycobiology 

market size to grow 14.7% in the next years, with an estimated market value of USD 822.5 million in 

2018. In RA, SFs undergo important epigenetic changes to adopt a tumor-like invasive phenotype that 

are also heavily determined by glycosylation including hyperproliferation, secretion of MMPs 

responsible of tissue damage and migration, and perpetuation of local proinflammatory responses.  
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Therefore, it is likely that a better understanding of SF-glycobiology aids the identification of novel 

glycan-based therapeutics to target SFs, mirroring recent advances in cancer and opening new 

therapeutic opportunities for patients that are refractory to immunosuppressive drugs.  

 

We combined transcriptomic and MS-based glycomic analysis to define changes in SF-glycome with 

unprecedented detail in synovial inflammation. Our results show that N-glycome from healthy SFs 

comprises LacNAc-containing structures with high levels of core fucosylation and terminal sialylation. 

However, arthritis renders the sublining CD90+ SF population hyposialylated, specifically in α2,6-

linkage, which would increase the accessibility of LacNAc repeats, allowing galectin-3 binding to SF 

surface glycoconjugates. In fact, sialylation can act as a ‘switch off’ for galectin-3 function. For example, 

ST6Gal1 up-regulates α 2-6 sialylation to block binding of galectin-3 to b1 integrin, inhibiting cell 

apoptosis39. Sialylation also inhibits galectin-3 binding to squamous epithelia and tumour cells 40-42. 

Thus, because of a desialylated glycome, galectin-3 could induce secretion of inflammatory mediators 

such as IL-6 or Ccl2 in SFs, increasing local concentrations of TNFα that would further reduce ST6Gal-

1 and α2-6 sialylation, establishing an autocrine pro-inflammatory loop that could explain perpetuation 

of disease in a similar fashion shown by members of the IL6 family43. By contrast, healthy synovium 

shows higher levels of α2-6-Sialylation in SFs, perhaps masking LacNAc repeats and preventing 

inflammatory actions of galectins. Thus, we propose that sialylation might be a homeostatic mechanism 

that is lost during RA progression because of TNFα overexposure. 

 

To understand the physiological role of sialic acid in SFs, the role of carbohydrate binding proteins 

(CBPs) requires consideration. CBPs are expressed either in SFs, or in other immune cells, promoting 

trans or cis interactions. Siglecs (sialic acid-binding immunoglobulin-type lectins) are a family of 

immune regulatory proteins primarily found on hematopoietic cells. Consistent with our proposed 

homeostatic role for sialic acid in the synovium, Siglec-9 protected mice against experimental arthritis, 

although authors reported that it had no effect on SFs44. Instead, Siglec-9 inhibited NF-kB activation in 

human RA macrophages. However, effects on SFs cannot be ruled out, as following cytokine stimulation 
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during disease, RASFs might already have a reduced sialylation profile which would make them 

unresponsive to Siglec-mediated actions. It might therefore be possible that siglecs mediate regulatory 

effects in synovial self-tolerance under healthy conditions, or at very early disease stages. The 

mechanism could involve Siglec-sialic acid trans interactions between SF and immune cells. In line with 

this, B cells lacking Siglec-2 (CD22) and Siglec-G develop spontaneous autoimmunity45 and Siglec-G-

/- lupus-prone MRL/lpr mice exhibit increased severity and early onset of arthritis46. Besides, most 

siglecs (2,3,5,6-11) show inhibitory effects on TLR-dependent activation and mediate 

immunosuppression in the tumor microenvironment because of local hypersialylation47. By contrast, 

Siglec-1 (sialoadhesin) shows pro-inflammatory actions, it is up-regulated in activated macrophages in 

RA48 and suppresses Tregs49. Interestingly, the anti-inflammatory Siglec-2 has predilection for α2-6 

sialic acid, but the pro-inflammatory Siglec-1 binds preferentially to α2-350, thereby supporting our 

conclusion that pro-inflammatory SFs diminish α2-6 sialylation but not α2-3. Thus, homeostatic α2-

6>>>α2-3 sialylation on SFs could induce Siglec-2-mediated signals to prevent B cell activation, 

whereas inflammatory α2-6<α2-3 sialylation would support SFs interactions with pathogenic 

macrophages via Siglec-1, cells that also secrete high levels of pro-inflammatory galectin-3 and TNFα, 

thereby perpetuating disease. Although this is an oversimplification of a complex scenario, it provides 

a good example of how the axis cytokines-sialylation-siglecs/galectins could regulate interactions 

between immune cells and SFs. Moreover, other sialic acid-binding proteins could be relevant, like 

selectins. Selectins are expressed in lymphoid, myeloid and endothelial cells, and mice deficient in 

Selectin-P and selectin-E show an enhanced arthritis progression51,52. Conversely, ficolins, innate 

immune receptors recognizing sialic acid too, show opposite effects, as ficolin B deficient mice are 

protected against arthritis53,54. These glycan-dependent networks and associated signaling for each sialic 

acid binding protein could explain the SF-mediated actions to establish chronic inflammation and 

interactions with immune cells in the arthritic synovium. Thus, further work is necessary to determine 

expression of these sialic acid-binding proteins in different cell types in the synovium to complement 

the findings presented in this work.  
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These cellular networks will be further defined by inclusion of additional immune cells in the equation, 

but also by the SFs anatomical and functional heterogeneity that has been recently revealed10,30. Distinct 

CD90+ SFs subsets found in the sublining synovial areas are expanded in RA synovium and are indeed 

the main contributors to inflammatory responses, results that have been confirmed in animal models 9. 

Our results in the mouse model indicate that only sublining CD90+ SFs reduce ST6-Gal1 expression, 

compared to the lining CD90- SF suggesting that sialic acid would exert different effects on the SFs 

subsets interacting with other immune cells, which could offer potential pathways to modulate specific 

immune networks in the synovium. We can also hypothesize that these glycan-dependent interactions 

could explain the observed disease tissue heterogeneity described in RA patients, including lymphoid, 

myeloid and fibrotic phenotypes55,56. Because synovial phenotypes observed in RA have been associated 

to distinct pathways (myeloid-IL-1β/TNF, lymphoid-IL-1755, it would be relevant to study ST6Gal1 

expression to assess whether pro-inflammatory sialylation correlate with synovium RA phenotypes. 

Interestingly, TNFα induces a similar shift of α-2,6/α-2,3-sialylation in chondrocytes downregulating 

ST6Gal157, in agreement with the pro-inflammatory role of α2,3-sialylation in synovial joints.  

 

In conclusion, in the present report, we revealed that the reduction of α2,6-linked terminal sialylation 

constitutes a signature of the inflammatory, vs damage status of synovial fibroblasts. This altered 

phenotype seems to be induced by TNFα, in contrast with IL-1 or IL-17 that had no effect. This might 

open a possibility to segregate disease phenotypes by virtue of their glycosylation status.  Future studies 

clarifying the functional consequences of shifting sialylation patterns in SFs are now required, as well 

as expression of sialic acid receptors in other cells, like B cells or monocytes. The vast, and yet 

unexploited amount of information contained in the SF glycome could offer novel therapeutic targets, 

and further work is anticipated before this goal can be achieved. Nevertheless, this study strengths the 

foundations for future clinic intervention of glycan-dependent pathological networks in RA, and other 

autoimmune diseases where stromal fibroblasts control local inflammation.    
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Figure legends. 

 

Figure 1: Lectin staining shows that glycosylation of human fibroblasts varies in distinct 

anatomical locations or in inflammatory environments. a) Immunofluorescence staining (lectin, 

green) and nuclei (DAPI, blue) of synovial and dermal fibroblasts isolated from RA patients following 

joint replacement surgery, and synovial fibroblasts isolated from OA patients. Lectins and their 

carbohydrate binding specify are shown. Scale bars = 100 µm. b) Flow-cytometric analysis of indicated 

lectin staining on non-permeabilised synovial fibroblasts (RA) and dermal fibroblasts (Dermal) from 

RA patients, and synovial fibroblasts from osteoarthritis patients (OA). Data show the Mean 

Fluorescence Intensity (MFI) of the whole population. Statistics: all results are presented as mean ± 

SEM and each symbol represents one individual patient (RA, n=6-7, OA, n=4-7, Dermal, n=5-6). 

Statistical significance was determined using Brown-Forsythe and Welch ANOVA test for multiple 

comparisons and significance indicated by asterisks, * p < 0.05 and ** p < 0.01. 

 

Supplemental Figure 1: Cytokines regulate glycosylation in synovial fibroblasts. a-b) Gene 

expression of human SFs was analyzed following stimulation with TNFa, 1 ng/ml, 6h (a) and IL-17, 10 

ng/ml, 6h (b), data from Slowikowski et al 25. Expression of glycosyltransferase genes was analyzed in 

https://immunogenomics.io/fibrotime, *p < 0.05 and **p < 0.01 c) Murine SFs were isolated and 

expanded from mouse synovium and incubated with the indicated inflammatory mediators (10ng/ml for 

IL-22, IL-17, IL-6, and IFNb and 0.2 µg/ml for LPS) for 24 hours, when binding of PHA was evaluated 

by Flow Cytometry.  Statistical significance was determined using ordinary one-way ANOVA with 

Bonferroni’s multiple comparisons test, *p < 0.05. d) Joints of CIA mice show an association of PHA 

binding (multi-branched glycans) and stromal cells in inflamed areas. Bone is shown with dotted yellow 

lines, (*) immune cell infiltration, (&) stromal-mediated inflammation. Stromal marker vimentin (red), 

PHA binding (orange) and DAPI staining (blue) are shown.   
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Figure 2: RNA-Seq studies confirm the unique transcriptomic profile of glycosylation pathways 

in inflammatory synovial fibroblasts. Paws from healthy and arthritic mice were dissected and soft 

tissue was digested. a) Live synovial fibroblasts (Zombie Violet-, Podoplanin+, CD45-, CD31-) were 

sorted by flow cytometry as shown in dot plots. Number of isolated cells, PDPN+ and expression of 

PDPN is show. Naïve n=5, arthritic n=4. Statistical significance was calculated using a one-tail unpaired 

t test, *p < 0.05 and **p < 0.01. b) RNA was isolated (RIN>9) from healthy (n=3) and arthritic CIA 

(n=3, scores of 9,10 and 11) mice and subjected to bulk RNA-Seq (75bp paired-end, 30M reads). 

Principal component analysis (PCA) and differential expression (DE) of genes are shown. All detected 

genes are plotted as a scatter plot where x=gene expression healthy, y=gene expression arthritic. Genes 

that pass a threshold of padj < 0.01 and |log2foldChange| > 2 in DE analysis are colored in blue when 

they are down regulated and red when they are upregulated in the arthritic (CIA) mice. Heatmap shows 

up and down-regulated genes; [unsupervised clustering in rows and columns based on Euclidean 

distances] c) Function enrichment and network analysis regulated by synovial inflammation. STRING 

protein-protein interaction network (https://string-db.org) was performed on DE genes from (b). 

Significantly modulated pathways and cellular components associated to DE genes in arthritic mice are 

shown in tables. [PPI enrichment p-value: < 1.0e-16]. K-Means method gave two main functionally 

related clusters of genes, designated as ‘cell proliferation’ and ‘inflammatory’ cluster. Color code for 

nodes are: red: cell cycle, purple: cytoskeleton, yellow: glycoprotein, green: regulation of cell 

communication.  d) Analysis of glycogenes and glycan biosynthesis pathways. Illustration shows N-

glycan synthesis pathway. Scatter blot: as in (b) but with genes annotated in the glycan biosynthesis 

pathways highlighted in green. e) Heatmaps of scaled and centered Log10 transformed normalized read 

counts showing only differentially expressed genes involved in glycosylation pathways.  

 

 

Supplemental Figure 2: Rheumatoid Arthritis disease pathway as defined by KEGG database. DE 

genes in CIA SFs compared to healthy controls are shown in red (up-regulated) or green (down-

regulated). 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.970046doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.970046
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Supplemental Figure 3: MALDI-TOF MS profiles of the permethylated N-linked glycans derived 

from expanded murine SFs. Data were obtained from the 50% MeCN fraction, and all molecular ions 

are present in sodiated form ([M + Na]+). 

 

Supplemental Figure 4: MALDI-TOF MS profiles of the permethylated N-linked glycans derived 

from expanded human SFs. Data were obtained from the 50% MeCN fraction, and all molecular ions 

are present in sodiated form ([M + Na]+). 

 

Figure 3: Glycomic studies in experimental Collagen-Induced Arthritis show a reduction in 

sialylated N-glycans in synovial fibroblasts associated to inflamed joints. N-glycans from synovial 

fibroblasts expanded from healthy or arthritic synovial fibroblasts were isolated and permethylated prior 

to MALDI-TOF MS analysis. 43 structures were selected (relative expression >2%) and MS peak area 

were quantified and normalized against total measured intensities. Unsupervised hierarchical clustering 

with Euclidean distance grouped structures into six main clusters as shown. Structures present in each 

cluster are shown. In all graphs, blue dots represent healthy synovial fibroblasts and red dots are cells 

from CIA animals. Data show the results from 4 independent experiments, where healthy and arthritic 

fibroblasts samples were processed in parallel.  Before-after graphs show all structures present in the 

indicated clusters, where individual dots are the mean of relative expression from 4 experiments and 

similar structures in healthy and CIA cells are connected with lines. Statistical significance between 

healthy and CIA was assessed by one tail paired t-test, *p < 0.05 and **p < 0.01. Relative expression 

for each glycan structure (shown with their m/z value) is also shown in scatter plots showing mean and 

SD, where each dot represents the relative expression of one independent experiment, n=4, *p < 0.05 

and **p < 0.01 using unpaired one tail t-test.  

 

Figure 4: Synovial fibroblasts from arthritic mice show reduced levels of a2-6 but not a2-3 

sialylation. a) SNA, MAAII, PNA and SBA lectins were used in Enzyme-linked lectin assay (ELLA) 

to evaluate the presence of a2-6 Sialic acid, a2-3 sialic acid, non-sialylated T antigen and terminal N-
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acetylgalactosamine/galactose respectively.  Statistics: unpaired t-test, n=10. *p < 0.05, **p < 0.01, ***p 

< 0.001. b) Mouse joint sections were stained with biotinylated SNA and MAAII and fluorescently 

labelled streptavidin. Magnification 20x, scale bars: 200 µm. Lectin binding is shown in red, nuclei 

counterstain with DAPI in blue. Superimposed white elements indicate as follows; [dotted lines]: bone 

limits, [arrows]: synovial membrane, [asterisks]:  local inflammation and infiltrating cells.  

 

Figure 5: Down-regulation of a2-6 sialylation in arthritic synovial fibroblasts is mediated by 

TNFa-dependent inhibition of the sialyltransferase ST6Gal1. a) Synovial fibroblasts expanded from 

healthy or arthritic mouse joints were stimulated in vitro for 6 hours with recombinant IL-1b, TNFa or 

IL-17A [10 ng/ml]. Expression levels of genes involved in sialylation (as shown in diagram) in response 

to cytokine stimulation were evaluated by RT-qPCR. IL-6 was included as a positive control to confirm 

cell activation. Volcano plots show log2 fold difference in stimulated cells (x axis) and p value (y axis). 

Each dot represents the mean of 3 independent experiments analyzed in triplicate, healthy cells in blue 

and arthritic cells in red. The pink lines indicate 2-fold-change in gene expression threshold and the blue 

line indicates the 0.05 threshold for the p value of the t-test used to evaluate statistical significance. b) 

TNFa, but not IL-1b or IL-17A reduces a2-6 sialylation of synovial fibroblasts both at RNA (ST6Gal1 

expression) and protein (SNA binding) levels. Expression of ST6Gal1 (left panel) was evaluated by RT-

qPCR as in (a). Results show the mean of 3 independent experiments analyzed in triplicate, error bars 

represent SEM. Statistical significance was determined using two tail unpaired t tests where *p < 0.05 

and **p < 0.01. Expression of a2-6 sialylated glycoconjugates was determined by SNA binding as in 

Fig. 4a. Results show the merged results of 3 independent experiments, n=10-14. Statistical significance 

was determined using ordinary one-way ANOVA test, where **p < 0.01 and ***p < 0.001. c) Relative 

expression of individual sialylated glycan structures was evaluated by MALDI-TOF MS analysis as in 

Fig. 3. Ratios of sialylated vs non-sialylated twin structures were evaluated for non-stimulated cells 

(blue) and TNFa stimulated (red) cells (48 hours, 10ng/ml).  
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Figure 6: Reduction of a2-6 sialylation and ST6Gal1 levels is observed only in sublining CD90+ 

synovial fibroblasts. a) Synovial fibroblasts from healthy mice were isolated from mouse joints and 

identified by flow cytometry as in Fig. 1 (Zombie Violet-, CD45-, CD31-, Podoplanin+), separated into 

CD90+ and CD90- populations and stained with the biotinylated lectins SNA, MAAII and PNA and 

streptevadin-PE-Cy7. Graphs show the Mean Fluorescence Intensity for each cytokine and each dot 

represent cells from one individual mouse (n=3). b) Synovial fibroblasts from healthy and arthritic mice 

(n=4) were isolated from mouse joints as in (a) and RNA was purified using the RNeasy Mini Kit 

(Qiagen) according to manufacturer’s instructions. Expression of IL-6, MMP3 and ST6Gal1 mRNA was 

quantified by RT-qPCR. Statistics: one tail unpaired t-test was used for statistics, **p < 0.01, # p < 0.05 

compared to the same population in control healthy mice.  

    

 

Figure 7: Synovial fibroblasts from arthritic mice show lower sialylation in non-inflamed joints 

than in highly inflamed joints. Synovial fibroblasts were isolated from healthy mice (naïve) and from 

CIA arthritic mice, where joints were separated into non-inflamed (Low scores, LS) and very inflamed 

(High scores, HS)  prior to cell isolation and expansion. a) N-glycans were isolated and permethylated 

for to MALDI-TOF MS analysis and relative glycan expression was quantified as in Fig. 3. Two clusters 

were identified as distinctive of severe inflammation, for which glycan structures are shown. Percentage 

of sialylated and non-sialylated glycans are represented.  Same cells from (a) were stimulated with TNFa 

(a), IL-17 (b) [both at 10 ng/ml, 12 hours] or galectin-3 [1 ng/ml, 12 hours], when supernatants were 

collected and IL-6 levels were quantified by ELISA. Each dot represents an independent experiment 

analysed in triplicate, statistical significance was evaluated by ordinary one-way ANOVA and Tukey’s 

test for multiple comparations. 

 

Figure 8: Levels of sialylation correlate with disease stages and pathotypes of human RA. a) 

Synovial fibroblasts were expanded from human biopsies from naïve RA patients (not exposed to any 

Disease Modifying Anti-Rheumatic Drug, n=2) and RA patients in sustained clinical and imaging 
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remission achieved with c-DMARDs+TNFa-inhibitor combination therapy (n=3). N-glycans were 

isolated and subjected to MALDI-TOF MS analysis. Relative intensity was calculated, ratios of 

expression of the indicated paired glycans is shown. Glycan structures are designated by their m/z value. 

b) Synovium from naïve and remission RA patients was stained with biotinylated SNA and Alexa-647-

conjugated streptavidin (magenta). DAPI (Cyan) was used to stain cell nuclei. Images were acquired 

with a confocal microscope Zeiss LSM 880. Each image is from one individual patient. Scale bars: 200 

µm. 

 

Methods 

 

Patient recruitment and isolation of human fibroblasts lines. Tissue samples were collected from 

patients who fulfilled the American College of Rheumatology (formerly, the American Rheumatism 

Association) 1987 revised criteria for RA 58. Tissue samples were also acquired from patients with 

radiographically confirmed OA. Synovium samples and overlying skin were obtained from the knee 

joint of each patient at the time of joint replacement surgery. This study was reviewed and approved by 

the South Birmingham Local Ethics Committee (LREC 5735), all patients gave written informed 

consent. Tissue samples were minced into 1 mm3 sections under sterile conditions, washed, and then 

resuspended in 10 ml 5 mM EDTA in phosphate buffered saline (PBS) and incubated for 2 hours at 4°C 

with vigorous shaking. The resulting cell–tissue mixture was washed 3 times in RPMI medium and then 

cultured in complete RPMI 10% FCS until adherent fibroblast colonies became confluent. Non-adherent 

cells and tissue fragments were discarded once adherent cells had appeared. Fibroblasts were expanded 

until reaching confluence and then reseeded into tissue culture flasks of twice the surface area after 

trypsin treatment.  All experiments using expanded fibroblast lines used cells between passages 3 and 4. 

For active naïve and remission RA patients59, biopsies were collected using a standard operating 

procedure with sampling of at least 6-8 different tissue pieces as required by the international 

recommendations for synovial tissue analysis60,61. 
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Immunofluorescence analysis. 10,000 cells were grown in chamber slides, wash 3 times with PBS and 

fixed with 4% PFA for 20 minutes at room temperature. Cells were permeabilized with PBS 0.5% Triton 

and rinsed with PBS-Tween 20. Endogenous biotin was blocked with the Streptavidin/Biotin blocking 

kit according to manufacturer’s instructions (Vector Laboratories, SP-2002). Carbo-Free Blocking 

Solution (Vector laboratories, SP-5040) was used as blocking solution. Samples were incubated 

overnight with biotinylated lectins at 2 µg/ml in PBS purchased from Vector laboratories [Concanavalin 

A (ConA), B-1005; Ricinus Communis Agglutinin I (RCA), B-1085; Peanut Agglutinin (PNA), B-1075; 

Jacaline, B-1155; Wheat Germ Agglutinin (WGA), B-1025; Sambucus Nigra Lectin (SNA), B-1305; 

Lycopersicon Esculentum Lectin (LEL), B-1175; Erythrina Cristagalli Lectin (ECA), B-1145; Aleuria 

Aurantia Lectin (AAL), B-1395; Ulex Europaeus Agglutinin I (UEA), B-1065]. Lectins were finally 

detected with FITC-conjugated streptavidin (Biolegend, 405201). Mouse joint sections (7 µm) and 

human synovium sections were deparaffinized in xylene and dehydrated in ethanol, and antigen was 

retrieved by incubation at 60°C for 40 minutes in sodium citrate buffer (10mM Sodium Citrate, 0.05% 

Tween 20, pH 6.0). Blocking was performed as explained before. Samples were staining with 

biotinylated Phaseolus Vulgaris Leucoagglutinin (PHA-L) from Vector laboratories, catalog number B-

1115 and Alexa-555-cojugated streptavidin (Thermofisher, S21381). Vimentin was detected with anti-

vimentin goat IgG (Sigma, V4613) and Alexa-647 conjugated anti goat IgG (Thermofisher, A21245). 

All samples were counterstained with DAPI. Images were obtained using an LSM 510 META confocal 

laser coupled to an Axiovert 200 microscope (Zeiss) and analyzed with Zeiss LSM Image Browser 

software. 

 

Flow cytometry. Cultured cells were detached from the plates using Accutase cell detachment solution 

(Stemcell Technologies) according to manufacturer’s instructions. For lectin staining (listed before), 

cells were blocked with Carbo-Free Blocking Solution (Vector laboratories, SP-5040) and stained with 

biotinylated lectins and FITC-conjugated streptavidin in PBS for 20 minutes at 4C. Data were acquired 

using a BD LSRII flow cytometer and analysed with FlowJo software.  
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Mice and Collagen-Induced Arthritis (CIA) model. CIA was induced in 8–10-week-old male DBA/1 

mice (Envigo) on day 0 by intradermal immunization with bovine type II collagen (MD Biosciences) in 

Freund’s complete adjuvant (CFA). At day 21, mice received 100 mg of collagen in PBS 

intraperitoneally. Disease scores were measured every 24 hours in a scale from 0-4 for each paw. 

Animals reaching an overall score of 10 or more were immediately euthanized. Animals were 

maintained in the University of Glasgow Biological Services Units in accordance with the Home Office 

UK Licenses P8C60C865, I675F0C46 and ID5D5F18C and the Ethics Review Board of the University 

of Glasgow.  

 

Isolation of murine synovial fibroblasts and explant cell culture. For mouse synovial tissue digestion, 

skin and soft tissues were removed from mouse limbs and bones with intact joints were dissected and 

transferred into DMEM (+5% FCS) containing 1% L-Glutamine, 1% Penicillin Streptavidin, nystatin 

and 1 mg/ml type IV collagenase (Sigma) and 5 mg/ml DNase I.  Samples were incubated in the shaking 

oven at 37 °C for 1:20 h, when EDTA was added, final concentration 0.5 mM for 5 minutes at 37 °C. 

Samples were vortexed to release cells. Cells were centrifuged and washed with DMEM 10% FCS twice. 

For cell expansion, cells were plated and expanded until adherent fibroblast colonies became confluent. 

Non-adherent cells and tissue fragments were discarded once adherent cells had appeared, usually after 

48 hours. Fibroblasts were expanded until reaching confluence and then reseeded into tissue culture 

flasks after trypsin treatment. Expanded synovial fibroblasts were used at passage 3 or 4 only, when 

culture purity was assessed by flow cytometry and expression of CD106 (Biolegend, 105722), CD54 

(Biolegend, 116107), and CD90 (Biolegend, 105316). Expression of CD11b was also evaluated 

(Invitrogen, 11-0112-85), where cells were <1% positive.    

 

Mouse synovial fibroblasts sorting. Single cell suspensions from mouse synovium were obtained as 

described before. Cells were stained at 4 °C with Zombie Violet staining (BioLegend, 423113) to 

exclude dead cells. Antibodies used were anti-CD45 (Biolegend, 103106), anti-CD90 (Biolegend, 

103106), anti-podoplanin (Biolegend, 105316), anti-CD31 (Invitrogen, 12-0311-81), Cell sorting was 
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performed immediately after staining using a FACS Aria Ilu machine. For sorted populations, purity 

was determined by reanalysis for the target population based on cell surface markers immediately post 

sorting. Purity was >99% for the synovial fibroblasts target population (CD31-, CD45-, podoplanin+).     

 

RNA-Seq preparation, sequencing and data analysis. Total RNA from sorted synovial fibroblasts was 

isolated immediately post sorting using RNeasy Micro kit (Qiagen, Germany). RNA integrity was 

checked with the Agilent 2100 Bioanalyzer System. All purified RNA had a RIN value >9.  Libraries 

were prepared using the TruSeq mRNA stranded library preparation method. Samples were sequenced 

2x75bp to an average of more than 30 million reads. Kallisto was used to quantify the transcript 

abundance of RNA-seq reads. All RNAseq reads were then aligned to mouse reference genome 

(GRCM38) using Hisat2 version 2.1.0. Featurecounts version 1.4.6 was used to quantify reads counts. 

Data quality control, non-expressed gene filtering, median ratio normalization (MRN) implemented in 

DESeq2 package and identification of differentially expressed (DE) genes were done using the R 

bioconductor project DEbrowser 62. Genes that passed a threshold of padj < 0.01 and log2foldChange > 

2 in DE analysis were considered for further analysis. Gene Ontology (GO) enrichment, KEGG pathway 

enrichment and UniProt Keywords enrichment were performed in String (https://string-db.org) based on 

statistically significantly DE genes. 

 

Mass spectrometric analysis of synovial fibroblasts N-glycans and unsupervised hierarchical clustering. 

Synovial fibroblasts cells were scraped off tissue culture plates and suspended in iced-cold ultrapure 

water before homogenization and sonication were performed. Cells protein extract was precipitated in a 

methanol/chloroform extraction, Cell extracts were reduced and carboxymethylated, using Dithiothreitol 

and Iodoacetic acid, and then treated with trypsin. The treated samples were purified using a C18 

cartridge (Oasis HLB Plus Waters) prior to the release of N-glycans by PNGase F (recombinant from 

Escherichia coli, Roche) digestion. Released N-glycans were permethylated and then purified using a 

Sep-Pak C18 cartridge (Waters) prior to MS analysis. The resulting enzyme-treated samples were 

lyophilized and permethylated prior to MS analysis. Purified permethylated glycans were dissolved in 
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10 µl methanol and 1 µl of the sample was mixed with 1 µl of matrix, 20 mg/ml 2,5-dihydroxybenzoic 

acid (DHB) in 70% (v/v) aqueous methanol and loaded on to a metal target plate. 4800 MALDI-

TOF/TOF mass spectrometer (AB SCIEX) was run in the reflectron positive ion mode to acquire data. 

MS spectra were annotated manually with the assistance of the glycobioinformatics tool 

GlycoWorkBench (GWB). All N-glycans were assumed to have a Manα1–6(Manα1–3)Manβ1– 

4GlcNAcβ1–4GlcNAc core structure based on knowledge of the N-glycan biosynthetic pathway in 

mammalian cells and PNGase F specificity. The composition of the glycans derived from MALDI-TOF 

MS in positive ion mode were manually interpreted. Relative expression of individual glycan structures 

was evaluated by calculating areas under the curve of annotated peaks using GWB. For comparative 

studies, MS peak areas were quantified and normalized against total measured intensities. Unsupervised 

hierarchical clustering with Euclidean distance was performed on the relative glycan expression samples 

using the heatmap.2 function of the gplots package in R. The symbolic nomenclature used in the all the 

spectra annotations is the same as the one used by the Consortium for Functional Glycomics (CFG) 

(http://www.functionalglycomics.org/). 

 

Enzyme-linked lectin assays (ELLA) and ELISA. Synovial fibroblasts at 10.000 cells/well were grown 

on 96-well plates. Cells were washed three times with cold PBS. Cells were then fixed with 4% 

paraformaldehyde for 20 min. Fixed cells were washed three times with PBS containing 0.05% Tween. 

CarboFree solution (Vector Laboratories) was used to block non-specific interactions, following 

incubation with 1 µg/mL of biotinylated lectin (Vector Laboratories, Burlingame), for 30 min. Cells 

were washed with PBS and incubated with HRP conjugated streptavidin for 20 minutes, and washed 

again with PBS-Tween. A reaction was induced in the cells with developing solution, consisting of 1 

mg/mL p-nitrophenyl phosphate in 0.5 mmol/L. The reaction was allowed to proceed in the dark and 

plates were read at 405 nm using a microplate spectrophotometer. Interleukin-6 (IL-6) expression was 

measured by ELISA in SF-supernatants according to the manufacturer’s instructions (BD Biosciences, 

Oxford, UK). 
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qRT-PCR. Cells were lysed in RLT lysis buffer prior to mRNA extraction using RNeasy Plus Mini kit 

(Qiagen, Germany) according to the manufacturer’s instructions. The High Capacity cDNA Reverse 

Transcriptase kit (Applied Bio- systems, Life Technology, UK) was used to generate cDNA for use with 

StepOne PlusTM real-time PCR system (Applied Biosystems, UK) and predesigned KiCqStart® qPCR 

Ready Mix (Sigma-Aldrich) or TaqMan gene expression assays (Applied Biosystems). Pre-designed 

KiCqStartTM primers (Sigma-Aldrich) were purchased to evaluate b-Actin, Cmas, Gne, Nanp, Nans, 

Slc35a1, ST3Gal2, ST3Gal3, ST3Gal4, ST3Gal5, ST3Gal6, ST8Sia1, ST8Sia2, ST8Sia3, ST8Sia4, 

ST8Sia5, ST8Sia6, ST6GalNAc2, ST6GalNAc4, ST6GalNAc2, ST6GalNAc4, ST6GalNAc5 and 

ST6GalNAc6. TaqMan predesigned probes (Thermofisher Scientific) were used to evaluate Actin, IL-

6, ST6Gal1, ST6Gal2, ST3Gal1, ST6GalNAc1, ST6GalNAc1, ST6GalNAc3 and MMP3. Data were 

normalised to the reference gene β-actin to obtain the ΔCT values that were used to calculate the fold 

change from the ΔΔCT values following normalisation to biological control group. 
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