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Abstract 17 

There has been increasing interest in using neuroimaging measures to predict psychiatric 18 

disorders. However, predictions usually rely on large numbers of brain connections and large 19 

disorder heterogeneity, thus lacking both anatomical and behavioural specificity, preventing 20 

the advancement of targeted interventions. Here, we address both challenges. First, using 21 

resting-state functional MRI, we parcellated the amygdala, a region implicated in mood 22 

disorders but difficult to image with high fidelity, into seven nuclei. Next, a questionnaire 23 

factor analysis provided four sub-clinical latent behaviours frequently found in anxious-24 

depressive individuals, such as negative emotions and sleep problems. Finally, for each latent 25 

behaviour, we identified the most predictive connections between individual amygdala nuclei 26 

and highly specific regions of interest e.g. dorsal raphe nucleus in the brainstem or medial 27 

prefrontal cortical regions. A small number of distinct connections predicted behaviours, 28 

providing unprecedented levels of specificity, in humans, for relating mental well-being to 29 

precise anatomical connections. 30 
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Introduction 31 

It has become increasingly popular, in recent years, to use measures derived in vivo from 32 

human magnetic resonance imaging (MRI) to predict health outcomes, including measures of 33 

mental well-being. For example, resting-state functional MRI (rs-fMRI) connectivity measures 34 

can predict whether a person suffers from, or will respond to treatment for, Generalized 35 

Anxiety Disorder (GAD), Major Depressive Disorder (MDD), and obsessive-compulsive 36 

disorders (OCD) 1–5. The prediction accuracies achieved in these types of studies are often 37 

impressive and typically reach values between 60-80%. Yet, in the large majority of cases, 38 

predictions rely on a large number of brain regions, networks or connections. Hence the 39 

impressive prediction accuracies come at the significant cost of reduced anatomical 40 

specificity. 41 

Despite the critical importance of such studies for diagnosis and prognosis, a lack of 42 

anatomical specificity may be problematic when the aim is a mechanistic understanding of 43 

the disease to support targeted treatment interventions. Identification and characterization 44 

of specific circuits may be necessary for establishing the nature and variants of the illness and 45 

it may be critical for developing new treatments that involve manipulation of brain activity in 46 

specific circuits. 47 

A second problem is that unsupervised decoding methods, although powerful, are 48 

often agnostic to anatomical priors. Yet a large body of evidence has established the roles of 49 

specific neurotransmitter systems and particular brain regions in mediating important 50 

functions implicated in mental health. Limbic structures that mediate emotional processing 51 

and their connections with prefrontal regions are consistently reported to play an important 52 

role and one key hub within this network is the amygdala 6–11. Removal or disruption of this 53 

region reduces fear and anxiety responses 10,12–14. Positron-emission tomography in 54 

depressed patients shows abnormal metabolism in amygdala and connected subgenual 55 

prefrontal cortex 7,10,15. And the amygdala is one of the key regions for regulating and 56 

expressing emotions 6,10,12,16–18. An aim in the current study was, therefore, to examine the 57 

degree to which it is possible to explain variance in mental well-being across humans, 58 

including social and emotional behaviour, in relation to the functional connectivity of 59 

identifiable neural circuits – those centred on the amygdala. The monosynaptic connections 60 

of the amygdala to specific cortical and subcortical regions have been established for some 61 
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time in animal models including primates 19 and there is increasing knowledge of the 62 

behaviours mediated by amygdala interactions 11,13,20,21.  63 

If, however, a decision is taken to focus on a brain region such as the amygdala then 64 

a third problem arises. Many of the key brain areas with which it interacts are in the brainstem 65 

where it has been difficult to image activity. Moreover, such regions have very specific 66 

connections to particular sub-nuclei within the amygdala. Therefore, our first step was to 67 

parcellate the human amygdala into constituent functional sub-units. We took advantage of 68 

the high-quality data acquired as part of the human connectome project (HCP; 22). Using 69 

resting-state measures from 200 healthy participants, we reliably identified seven amygdala 70 

nuclei within each hemisphere. We also invested considerable effort in developing a refined 71 

data pre-processing pathway that focused on the removal of breathing related artefacts that 72 

allowed us to examine activity even in brainstem regions, several of which exhibit very specific 73 

interactions with particular amygdala subnuclei. 74 

In tandem with improving anatomical specificity we also aimed to tackle another 75 

major problem in relating baseline neural measures to mental well-being. Namely, the 76 

disorders themselves are ill-defined and span a broad range of impairments which are not 77 

consistently present in all patients diagnosed with the same disorder 23 and which are partly 78 

overlapping between disorders. This may be another reason why a classifier trained to 79 

distinguish a depressed from a non-depressed person is likely to reveal a broad network of 80 

regions instead of mapping onto well-defined and anatomically interpretable brain circuits. If 81 

we are able to focus on specific rather than broad symptom categories, we may better be 82 

able to relate them to specific brain circuits. Because of the sample we examined, mental 83 

health varied on a sub-clinical scale. Nevertheless, we were able to define latent behaviours 84 

by applying a factor analysis to a large number of questionnaire scores which captured four 85 

aspects of mental well-being. In our final and most critical step, we selected the best 86 

predictors in terms of connections between amygdala nuclei and other brain regions for each 87 

latent measure of mental well-being. We showed that a few specific connections predicted a 88 

reliable portion of the variance in each latent behaviour. Our study provides the first evidence 89 

in a large pool of healthy participants that using an anatomically informed approach and a 90 

more sensitive characterization of the behavioural phenotypes related to mental well-being, 91 
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we can identify a small set of brain connections that can be used to predict latent aspects of 92 

mental well-being.  93 
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Results 94 

In vivo parcellation of the human amygdala into seven anatomically plausible nuclei 95 

Post-mortem histological examination in humans and other species has established that the 96 

amygdala is composed of anatomically distinct nuclei. Our first aim, therefore, was to use rs-97 

fMRI to provide the best possible in vivo parcellation of human amygdala into its nuclei. 98 

Previous work in humans in vivo has delineated two or three subdivisions within the amygdala 99 

(e.g. basolateral versus centromedial) 24–27. However, given the quality of the HCP data (e.g., 100 

improved sequences, 2mm isotropic resolution, 0.7s temporal resolution, ~1h rs-fMRI per 101 

person 28), and as a result of the enhanced processing steps we took to remove physiological 102 

confound signals, we reasoned that we might reliably identify a more detailed pattern of 103 

anatomical organization within the amygdala. 104 

We generated a group connectome using carefully pre-processed rs-fMRI data from a 105 

subset of 200 HCP participants. Additional pre-processing focussed on removal of 106 

physiological artefacts and led to gains in temporal signal-to-noise (tSNR) in amygdala and 107 

many of its projection targets and sources, e.g., medial temporal lobe areas, subgenual 108 

prefrontal cortex, and most prominently subcortical and brainstem structures (see Methods 109 

and Supplementary Fig 1, A-B). We did not include all 1206 HCP participants because these 110 

additional pre-processing steps required good quality physiological recordings of respiration 111 

and cardiac activity which were not available in the remaining participants. The resulting 112 

group connectome, containing the average functional connectivity between each pair of 113 

brain-ordinates, therefore provided high-fidelity connectivity estimates of otherwise difficult 114 

to image regions. This is, for example, illustrated by the average amygdalae to whole brain 115 

connectivity (Fig 1A), which, in line with previous work 19, highlights overall strong functional 116 

coupling between the amygdala and lateral temporal and temporal pole regions, ventral 117 

caudal medial frontal cortex (BA32 and BA25), thalamus, hypothalamus, and ventral striatum.  118 

To identify subdivisions within the amygdala, hierarchical clustering was performed 119 

on the similarity of the whole-brain connectivity pattern between amygdala voxels. This 120 

resulted in parcellations of the amygdalae into increasing numbers of clusters. By carefully 121 

comparing the location and size of the obtained clusters to known anatomical subdivisions of 122 

the amygdala and using heuristics such as symmetry across hemispheres (see Methods), we 123 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.980995doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.980995
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

chose a parsimonious and anatomically plausible parcellation for further analyses. This 124 

parcellation contained seven subdivisions in each hemisphere (Fig 1B; see Supplementary Fig 125 

1D for other depths of clustering). 126 

 127 

Figure 1, Average amygdala connectivity and definition of amygdala clusters, 128 
A, A group connectome was generated from resting-state fMRI (rs-fMRI) data of 200 129 
HCP participants using an improved pre-processing pipeline to correct for 130 

physiological noise (Fig S1). The average functional coupling of all amygdala voxels 131 
to the rest of the brain, corrected for global absolute coupling strength, shows 132 
patterns that would be expected from tracer studies, for example strong connectivity 133 
of the amygdalae with subgenual ACC, hypothalamus, and ventral striatum. B, 134 
Hierarchical clustering was performed on the similarities between the whole-brain 135 

functional connectivity patterns of different amygdala voxels to identify amygdala 136 

subdivisions sharing connectivity profiles. Seven sub-divisions were identified (left: 137 
horizontal; middle: coronal; right: saggital view), showing strong symmetry across 138 
hemispheres and strong resemblance with subdivisions identified from histology and 139 
high-resolution post-mortem structural neuroimaging.  140 
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Several interesting features naturally emerged in this parcellation. First, clusters were 141 

nearly symmetrical across left and right hemispheres (Fig 1B). Importantly, this was not the 142 

consequence of constraints enforced by the clustering algorithm, and yet matched 143 

expectations from anatomical work because neurons with similar projection patterns tend to 144 

cluster in space, and inter-hemispheric similarities in the connection patterns of a given 145 

nucleus in each hemisphere outweigh their differences. Second, another naturally emerging 146 

feature of the data, again consistent with expectations from histological analysis, was that 147 

clusters were spatially cohesive but differed in size. For instance, a putative central nucleus 148 

contained 30 voxels per hemisphere, but the ventrolateral nucleus contained 50 voxels. 149 

Finally, the clusters were located in such a way that a clear progression from ventro-lateral to 150 

dorso-medial and from ventral-anterior to dorsal-posterior could be observed, thus 151 

corresponding to organizational principles reported previously (Figure 1B; 29). 152 

To facilitate links to other studies, we assigned each cluster a putative label, 153 

corresponding to nuclei that have previously been identified (see Methods). As a guide, we 154 

used the best match in size and position when comparing our clusters with several atlases of 155 

the human amygdala 29–31 (Fig 2A). The seven nuclei were labelled central nucleus (Ce), 156 

cortical nuclei (CoN), auxiliary basal nucleus (AB), basal nucleus (B), and lateral nuclei (ventral 157 

portion: LaV, intermediate portion: LaI, dorsal portion: LaD). 158 

One of the main aims of this study was to identify specific connections between 159 

amygdala nuclei and other brain regions that help regulate functions implicated in mental 160 

health variation (e.g. sleep and emotion variation). To identify regions of interest (ROIs) with 161 

which the amygdala interconnects, we therefore focussed on regions central to these 162 

processes (Fig 2C) and with known mono- or di-synaptic connectivity with the amygdala. In 163 

the brainstem, we defined ROIs in locus coeruleus (LC), dorsal and median raphe nuclei (DRN, 164 

MRN), dorsal and ventrolateral periaqueductal grey (dPAG, vlPAG), and substantia nigra (SN). 165 

Subcortically in the forebrain, we included the bed nucleus of the stria terminalis (BNST) and 166 

the nucleus accumbens (NAc). In cortex, we focussed on medial areas 24, 25, 32, 9m, 167 

posterior OFC, and frontal operculum (FOP) which, on the basis of their similarities with areas 168 

in the monkey brain are most likely to be connected with amygdala 32. We also considered 169 

the prefrontal areas 46 and 9/46 on the lateral surface because stimulating them both affects 170 

amygdala threat-related reactivity 33. We used ROIs from the recent parcellation by 34 which 171 
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further subdivides area 24 into a24, p24, and a24pr (the most posterior mid-cingulate region 172 

p24pr was not included), area 32 into s32, p32, d32, a32pr, and p32pr, frontal operculum into 173 

FOP1-5, and area 9/46 into 9-46d, a9-46v, and p9-46v, and which identifies a pOFC region (for 174 

more details, see Methods and Fig 2C). For subcortical ROIs, we used established ROIs from 175 

published atlases (see Methods) because contrast-based delineation of brainstem nuclei was 176 

not available as part of the HCP data. 177 

Fig 2B shows the average functional connectivity from each of the seven amygdala 178 

nuclei, merged across hemispheres, to the above-defined 28 cortical, subcortical and 179 

brainstem ROIs. While functional connectivity is strongly influenced by the presence of a 180 

monosynaptic connection between areas and plastic changes in those pathways, it also 181 

reflects multi-synaptic interactions between regions 35. Nevertheless, the pattern of 182 

functional connectivity observed from the amygdala nuclei exhibited several features 183 

reminiscent of animal tracer studies: all amygdala nuclei had strong coupling with areas in 184 

ventral, caudal medial frontal cortex and caudal orbitofrontal cortex, including areas 25, 185 

pOFC, and s32 as might be expected from non-human primate studies 19,36,37. Coupling to 186 

these regions was strongest for the basal (B, AB) and cortical nuclei (CoN). The same amygdala 187 

nuclei had strong coupling with lateral prefrontal regions (46 and 9/46), but the sign was 188 

inverted, suggesting negatively correlated BOLD fluctuations. Given the limited connections 189 

between the homologue of this region and the amygdala in macaques, it is likely that the 190 

negative coupling found between them reflects an indirect interaction mediated by another 191 

brain region. In stark contrast, the central (Ce) nucleus had the strongest connectivity to the 192 

majority of subcortical and brainstem regions such as NAc or dPAG. 193 
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Figure 2, Amygdala nuclei and their profile of connectivity to regions of 195 
interest, A, Labels assigned to the seven amygdala subdivisions obtained from 196 
hierarchical clustering: Ce = central nucleus, CoN = cortical nuclei, B = basal, AB = 197 

auxiliary basal, LaV = lateral (ventral part), LaI = lateral (intermediate part), LaD = 198 
lateral (dorsal part). B, Average resting-state connectivity from the seven nuclei to 28 199 
regions of interest (ROIs) defined a priori based on their potential role in regulating 200 
emotions and mental well-being. This highlights strong coupling of subgenual cortex 201 
(area 25) to the entire amygdala, but particularly to basal subdivisions, in line with 202 

tracer work. Similar profiles are observed for posterior OFC (pOFC) and the 203 
subgenual portion of area 32 (s32). By contrast, subcortical and brainstem regions 204 

most strongly connect with the central nucleus as expected. C, Masks of all ROIs 205 
used in this study. For details on their definition, please refer to the Methods. 206 
NAc=Nucleus Accumbens; BNST=bed nucleus of the stria terminalis; 207 

vl/dPAG=ventrolateral/dorsal periaqueductal grey; SN=substantia nigra; 208 
RN_DR/RN_MR=dorsal and median raphe nuclei; LC=locus coeruleus. Definitions of 209 
cortical regions were taken from Glasser et al., 2016. 210 

 211 

Behaviour: latent factors capturing mental well-being  212 

Having established and validated the network of connections between amygdala nuclei and 213 

our ROIs, we sought a robust characterization of participants’ mental well-being. While the 214 

HCP data set is not intended to include patients with clinical diagnoses relating to mental 215 

health and is therefore unlikely to include the extremes of the distribution, we reasoned that 216 

it might be possible to examine sub-clinical variance in the central range in mental health.  217 

We thus selected all behavioural scores available in the HCP data that captured aspects of 218 

emotional and psychological well-being, sleep quality, and personality type (see Methods). A 219 

total of 33 markers were included which involved measures from the NIH Toolbox ‘Emotion’ 220 

(subscales: Psychological well-being; Social relationships; negative affect; stress & self-221 

efficacy), The Pittsburgh Sleep Questionnaire, the Big Five, and the UPenn Emotion 222 

Recognition Test. We reasoned that some scores were capturing similar behavioural 223 

phenotypes which might have an underlying common cause. To capture such common 224 

‘latent’ factors that produce these mental well-being scores, we performed a factor analysis 225 

which resulted in four main factors (see Methods; Fig 3A).   226 
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 227 

Figure 3, Latent behaviours capture distinct aspects of mental well-being, A, A 228 

factor analysis conducted based on 33 behavioural scores (Table 1) available as 229 
part of HCP revealed four factors. The loadings for each factor are shown in different 230 

colors, corresponding to the four rows. The highest five contributing behavioural 231 
scores are shown in order of their contribution (absolute loading) on the right. This 232 

shows that the four factors capture quite distinct aspects of participants’ mental well-233 
being (‘latent behaviours’) which we summarized as ‘Social and life satisfaction’, 234 
‘Negative emotions’, ‘Sleep’ (problems), ‘Anger and rejection’. Importantly, the four 235 

factors replicated when the factor analysis was performed on all 1206 HCP 236 
participants (see Methods). B, Correlations between factors. 237 

 238 
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The first factor emphasized the impact of social support and general life satisfaction, 239 

with a strong negative loading onto loneliness and positive loadings onto emotional support, 240 

friendship, life satisfaction and purpose (thus, cutting across the sub-scales of ‘psychological 241 

well-being’ and ‘social relationships’ within the NIH Toolbox). The second factor, by contrast, 242 

loaded strongly onto negative emotions, including fear, stress and sadness (all within the 243 

subscale ‘negative affect’ of the NIH Toolbox). The third factor loaded almost exclusively onto 244 

sleep-related markers, assessed as part of the Pittsburgh Sleep Questionnaire. It loaded 245 

negatively onto the amount of sleep but positively onto sleep troubles such as bad dreams, 246 

wakeups, and lack of sleep quality. Finally, the fourth factor loaded onto anger and physical 247 

aggression, hostility, and feelings of being rejected, including negative loadings onto 248 

agreeableness (Fig 3A and Supplementary Fig 2; Table 1). 249 

We used the loadings from the four factors multiplied onto participants’ original 33 250 

scores to construct latent behaviours capturing these four dimensions of participants’ well-251 

being. We summarized them as ‘social and life satisfaction’, ‘negative emotions’, ‘sleep’ and 252 

‘anger & rejection’.  253 

 254 

Relating latent behaviours capturing mental health to specific amygdala pathways 255 

In the next analysis step, we asked which of the above-defined connections between specific 256 

amygdala nuclei and ROIs carried information about mental well-being as captured by the 257 

four latent behaviours. For each of the four behaviours, we estimated a large number of 258 

regression models using in each case only a subset of connections as predictor variables. This 259 

approach has been used, for example, in analyses of human magnetoencephalography data 260 

(MEG; 38), where recordings across MEG sensors are highly correlated. It is suitable when a 261 

large number of correlated regressors precludes simultaneous inclusion in one regression 262 

model. Instead of testing each predictor separately, including more than one regressor in 263 

each sub-model ensures that variance that is shared among multiple regressors is not 264 

attributed to each individual predictor and thus, the unique contribution of each connection 265 

can be estimated. More precisely, we estimated k=10,000 regression models using a 266 

randomly selected subset of 5 out of the total of 196 connections. In each iteration, we 267 

recorded which connections were included and we determined the goodness-of-fit using 10-268 

fold cross-validation (CV). In other words, the fit of behaviour achieved using the random 269 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.980995doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.980995
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

 

subset of five connections was evaluated on 10% of left-out data, and this was repeated ten 270 

times, so that predictions were never generated from the same participants that the model 271 

was evaluated on (for further details, see Methods). We also ensured that our results were 272 

robust to the choice of model size (i.e. the number of connections in each model, here five; 273 

see Supplementary Figure 4). The contribution of each connection was quantified as the 274 

difference in Pearson’s correlation coefficient between predicted and true behaviour 275 

(achieved on the out-of-sample data) when the connection was or was not included in the 276 

model (rDiff; Fig 4A-C). An unpredictive connection would have a contribution around zero, 277 

meaning its inclusion as a predictor does not boost the performance of the model. By 278 

contrast, a predictive connection should improve the correlation between predicted and true 279 

behaviour when it is part of the model (positive difference). Overall, the procedure provided 280 

a robust quantification of the unique contribution of each connection that was unaffected by 281 

existing correlations between predictors (see Methods).  282 

 To provide an intuition for the raw results, we plotted the contribution of all 196 283 

connections for each of the four behaviours, sorted by ROI (Fig 4A) or amygdala nucleus (Fig 284 

4B). Several interesting patterns emerged from visually inspecting these results. First, 285 

contributions largely differed between the four behaviours (correlations between pairs of 286 

patterns of contributions to the four behaviours, illustrated by the four coloured lines in Fig 287 

4A-B were all <.35). For example, the connection between medial dorsal area p32pr and the 288 

basal nucleus (p32pr-B) strongly contributed to the prediction of life satisfaction (blue; 289 

rDiff=.185) but none of the other three behaviours (all rDiff<.06), while multiple connections 290 

with NAc were relevant for sleep (Nac-LaD: rDiff=.179; NAc-LaV=.155) but less for life 291 

satisfaction, negative emotions or anger. Second, some ROIs appeared more broadly relevant 292 

than others for predicting latent behaviours (more non-zero contributions in Fig 4A): most 293 

notably, LC and RN_DR, intriguingly both brainstem nuclei associated with major 294 

neurotransmitter pathways, contributed to multiple behaviours via multiple amygdala nuclei. 295 

By contrast, some regions, most prominently NAc, already mentioned above, seemed 296 

important for a specific behaviour - sleep. Third, examining the contributions sorted by 297 

amygdala nuclei highlighted broad differences between amygdala nuclei. For example, the Ce 298 

nucleus contributed most to predictions of negative emotions and anger while the basal 299 

nucleus was the most critical amygdala nucleus for predicting life satisfaction (Fig 4B). We 300 
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also examined histograms of, first, the contributions (Fig 4C) and, second, the underlying raw 301 

correlation coefficients across the k=10,000 regression models (Fig 4D; Supplementary Note 302 

1). 303 

 304 

 305 

Figure 4, The contribution of specific amygdala connections towards 306 
predicting mental well-being, A, The contribution rDiff of each connection was 307 
quantified as the average difference in Pearson’s correlation coefficient r between 308 
predicted and true latent behaviour when the connection was included in the 309 
predictive model versus when it was not included. 10,000 predictive models were 310 
run, each including five randomly chosen connections out of the total pool of 196 311 
connections between amygdala nuclei and a priori ROIs. All predictions were made 312 
using out-of-sample procedures. Visual inspection of rDiff values highlights 313 
anatomical specificity – e.g. the importance of connections with NAc for predicting 314 
sleep, areas p32pr and FOP4 for predicting life satisfaction and some connections 315 
predictive of multiple latent behaviours (highlighted with arrows). B, Same data as in 316 
A sorted by amygdala nuclei instead of ROIs on x. This highlights, for example, the 317 
relevance of multiple connections with the basal amygdala nucleus for predicting life 318 
satisfaction. C, Histogram of contributions rDiff across the 196 connections. The 319 
majority of connections are unpredictive (around 0). The tail to the right contains 320 
predictive connections and shows somewhat stronger predictors for life satisfaction 321 
(blue) and sleep (green) than for negative emotions (black) and anger (red). D, 322 
Histogram of raw Pearson’s correlation coefficients r across the 10,000 model 323 
iterations.  324 
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To establish whether contributions of individual connections could be considered meaningful, 325 

we performed multiple statistical tests. The first involved comparison against the 326 

performance of amygdala connections with randomly chosen other regions. The second was 327 

similar but compared our contribution values to those obtained from other subcortical-to-328 

cortical connections selected at random, instead of amygdala connections. The third 329 

comparison involved amygdala-to-ROI connections again but this time with the whole 330 

amygdala instead of individual nuclei. In a final test, we examined whether binarized 331 

behaviours were decodable using single connections.  332 

 333 

Social & Life Satisfaction 334 

For visualization, we sorted connections by the size of their contribution (Fig 5A). We 335 

established significance relative to other brain connections in two ways that both corrected 336 

for the number of tests. We generated a null distribution based on n=1000 different sets of 337 

randomly chosen connections, matched in number, and repeated the above model-fitting 338 

procedure with a reduced k=1000 for computational feasibility. In other words, we ran 339 

k=1000 iterations of cross-validated regression models each containing five randomly 340 

selected connections to predict the original behaviours, and we repeated this for n=1000 341 

different sets of 196 randomly drawn connections. In the first test, these randomly drawn 342 

connections were always to/from the amygdala (“amy-to-rnd”). In the second test, nuclei of 343 

the same size as the amygdala nuclei were defined at random subcortical locations and 344 

connections were between these random subcortical seeds and randomly selected cortical 345 

regions (“subc-to-rnd”). Thus, in both cases, our control connections were real brain 346 

connections and comparable to our original analysis in terms of their signal-to-noise. For each 347 

set of random connections, we remembered the contribution achieved by only the top 348 

connection. This procedure accounted for multiple comparisons because the same number 349 

of predictors as in our original analysis (196) was tested in both of the control cases. The 350 

resulting cumulative distribution function was used to establish FWE-corrected p-thresholds 351 

(Fig 5A). In the same way, we also generated a distribution based on the contribution rDiff of 352 

all connections in the control hubs, to establish uncorrected p-values (for illustration see 353 

Supplementary Figure 6A). 354 
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This showed that, for social and life satisfaction, one connection was significant when 355 

correcting for 196 comparisons, with two further connections reaching uncorrected 356 

significance at p<.001. All three connections were between the basal nucleus of the amygdala 357 

and a cortical region: the strongest one with the medial surface of PFC (p32pr with B, p(FWE,amy-358 

to-rnd)=.0048; p(FWE,subc-to-rnd)=.038), followed by one with frontal operculum (FOP4 with B; 359 

p(unc,amy-to-rnd)=.0003; p(unc,subc-to-rnd)=.0005), and another one with area 32 (a32pr with B, 360 

p(unc,amy-to-rnd)=.0009; p(unc,subc-to-rnd)=.0008; Fig 5A). Their contributions were rDiff=.185 for 361 

p32pr with B, rDiff=.168 for FOP4 with B and rDiff=.16 for a32pr with B. Inspection of further 362 

connections (Fig 5A) showed that all top connections were with the basal nucleus (B) of the 363 

amygdala and cortical regions, predominantly on the medial surface including in addition to 364 

the above, d32 with B, p24 with B, 9m with B, a24pr with B, but also some with the lateral 365 

surface (9-46d with B and 46 with B). In all cases, a stronger connection between the 366 

amygdala and these areas was related to improved life satisfaction (mean regression 367 

coefficients all positive: e.g. ß=.226 for p32 and B, ß=.213 for FOP4 and B, Fig 6). Thus, overall, 368 

larger coupling values, and thus in many cases weaker negative coupling (Fig 2), between 369 

medial and lateral PFC regions and amygdala related to improved life satisfaction. The 370 

correlation between the latent behaviour predicted using only the best connection (p32pr 371 

with B) and the true latent behaviour is shown for illustration in Fig 5C (r=.23). 372 
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 373 

Figure 5, Predictive connections differ across latent behaviours. A, Contribution 374 
values rDiff were sorted for each latent behaviour and the top ten connections are 375 
shown in each case. Significance was determined using multiple procedures. First, 376 
by considering other amygdala-to-cortical connections (“amy-to-rnd”) and 377 

considering the contribution of either only the top connection from the same number 378 

of 196 connections (pFWE<0.05: black asterisks *) or all connections (punc<0.001: grey 379 

asterisks *). The FWE and uncorrected distributions are illustrated in the two grey 380 
bars on the left, respectively. Using the same procedure, a second control was 381 
created using random subcortical seeds and their connections to any cortical region 382 
(“subc-to-rnd”; pFWE<0.05: black arrow symbols ^; punc<0.001: grey arrow symbols ^). 383 

We also tested whether binarized latent behavioural scores (1=top third, 0=bottom 384 
third) could be significantly decoded using just a single connection (decodability is 385 

denoted by a circle). Finally, we tested whether nuclei-specific connections 386 
outperformed the equivalent connection to the whole amygdala (denoted with a 387 
square). For predicting social and life satisfaction, connections between the basal 388 

nucleus of the amygdala and medial and lateral frontal cortex contributed most. By 389 
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contrast, subcortical connections and primarily agranular cortical regions were 390 
important for predicting negative emotions, and some of these connections were also 391 
important for predicting anger. Sleep was predicted by a quite distinct network 392 

consisting of connections almost exclusively to subcortical regions. B, Contribution 393 
values rDiff for connections with the whole amygdala, rather than specific nuclei, are 394 
sorted according to their rDiff contribution and the top five connections are shown. C, 395 
The true behavioural score obtained from the factor analysis is plotted against the 396 
behavioural score predicted, in each case, using only the top connection. This 397 

illustrates how a single anatomically specific connection can explain a considerable 398 
amount of variance related to a specific marker of mental well-being. D, Decodability 399 

is demonstrated for the top connection in each case. The AUC value obtained from 400 
the top connection is denoted by an orange line; AUC values from shuffled 401 
behavioural and connection values are shown in the histogram and were used to 402 

generate p-values.  403 

In the next step, we tested whether parcellating the amygdala into sub-nuclei 404 

increased our specificity for predicting mental well-being. We repeated the above regression 405 

procedure for the amygdala as a whole, i.e., using connections of the entire amygdala to the 406 

same set of 28 ROIs (Fig 5B and Supplementary Figure 5). Again, p-values were obtained using 407 

n=1000 repetitions of randomly sampled connections (each with k=1000 models containing 408 

five connections). We then used the probability of each whole amygdala connection to set 409 

the appropriate alpha level for the corresponding parcellated amygdala connections. In other 410 

words, we compared the effect of connections with specific nuclei of the amygdala against 411 

the same connections with the amygdala as a whole. If the probability of the parcellated 412 

amygdala connection is lower than the threshold set by the whole amygdala, we can infer 413 

that the parcellation increased our sensitivity. This showed that, indeed, the nuclei-specific 414 

connections to ROIs identified above performed better than would be expected from the 415 

connections that reflected connectivity of the same ROI to the entire amygdala. This was true 416 

for connections with the basal nucleus compared to the equivalent connection with the whole 417 

amygdala for all top connections (denoted with a square in Fig 5A). Only connections with the 418 

basal nucleus, but none of the other amygdala nuclei, outperformed whole-amygdala 419 

connectivity. Interestingly, the most predictive connection with the whole amygdala, and the 420 

only significant one, was with LC (rDiff=.185; ß=-.19, p(FWE,amy-to-rnd)=.0405, p(unc,amy-to-421 

rnd)=.0014, p(FWE,subc-to-rnd)=.003, p(unc,subc-to-rnd)=.0001; Fig 5B and Supplementary Figure 5). This 422 

connection’s alpha level (i.e. the probability of the same contribution rDiff to occur by chance 423 

given the control distribution) was smaller than the probability associated with any 424 

connection between LC and individual amygdala nuclei (square in Fig 5B). This may seem 425 
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surprising because in the nuclei-specific analysis, connections with cortical regions seemed 426 

most relevant. But in fact, it suggests that for cortical connections with the amygdala, the 427 

specificity achieved by subdividing the amygdala into nuclei was crucial for predicting life 428 

satisfaction, and all relevant connections were with the basal nucleus. By contrast, the 429 

coupling of individual nuclei with LC was not predictive of life satisfaction (compare to Fig 4A), 430 

suggesting LC’s interactions with the amygdala are broader and not tied to a specific amygdala 431 

nucleus. 432 

In the fourth test, we split life satisfaction scores into thirds and tested whether we 433 

could decode whether a participant was in the top or bottom third of participants based on 434 

the top connections described above (Fig 5D and Supplementary Figure 6). Despite the fact 435 

that our investigation focuses on a non-clinical sample that only exhibited limited variation in 436 

the behavioural mental health measures, and despite allowing the decoding algorithm to 437 

exploit information from only a single connection, prediction accuracies were significant for 438 

the top six connections as well as two further connections, including those discussed above 439 

(denoted with circles in Fig 5A, see also Fig 5D and Supplementary Figure 6; area under the 440 

curve (AUC) values, all >.6 and p-values generated from bootstrapping, all p<.05). Thus, using 441 

a single anatomically specific connection, in several cases, we were able to decode if someone 442 

was more or less likely to be socially connected and more generally satisfied in life. 443 

Supplementary Figure 3 shows a map of contributions for social & life satisfaction for 444 

the entire cortex. The colour in each cortical region reflects the contribution (rDiff, z-scored 445 

across behaviours and connections) of the functional coupling between the amygdala and 446 

that cortical region. In each case it displays the contribution for the amygdala nucleus that 447 

was greatest. 448 
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 449 

Figure 6, Connectional fingerprints highlight differences between markers of 450 
mental well-being, Fingerprints highlight the differences between the connections 451 

that significantly contribute to each latent marker of mental well-being. For each 452 
connection, the sign and size of influence (regression coefficient) is depicted. For 453 
illustration, fingerprints include the top five connections for each behaviour, and any 454 

other connections that were significant according to at least one of the four statistical 455 
criteria outlined in Figure 5.   456 

 457 

Negative Emotions  458 

The second marker of mental well-being, negative emotions, was subjected to the same 459 

statistical tests based on randomly chosen connections with the amygdala or random 460 

subcortical seeds, connections with the whole amygdala and decoding of behavioural scores 461 

using individual connections. When compared with the distribution of top connections from 462 
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randomly drawn sets of amygdala (amy-to-rnd) or other subcortical connections (subc-to-463 

rnd), no connection reached significance (FWE-corrected for 196 connections at p<.05 or 464 

uncorrected significance at p<.001). Nevertheless, inspection of the identity of the top 465 

connections showed that apart from area 9m, the connections that contributed most towards 466 

predicting negative emotions were exclusively with subcortical/brainstem regions (RN_DR, 467 

NAc, LC) and the most posterior aspects of PFC (area 25, pOFC; Fig 5A), and were therefore 468 

clearly distinct from those linked to social and life satisfaction. Interestingly, while 469 

connections with all subcortical regions positively related to negative emotions (e.g. ß=.15 470 

and ß=.155 for RN_DR with Ce and RN_DR with AB, ß=.156 and ß=.141 for NAc with AB and 471 

BaL, ß=.148  for LC with CoN), stronger positive coupling to medial and orbital PFC regions – 472 

which had the strongest influence – was related to reduced chances of experiencing negative 473 

emotions (9m with BaL: ß=-.175; 9m with Ce: ß=-.16; pOFC with LaD: ß=-.158, BA25 with Ce: 474 

ß=-.129; Fig 6). The correlation between predicted and true behaviour using the best 475 

predictor, 9m to B reached r=.17 (Fig 5C). 476 

Because the comparisons between amygdala nuclei connectivity and other random 477 

selected control connections were not significant after correction for 196 comparisons, the 478 

next step of comparing connections of amygdala nuclei with the adjusted alpha level derived 479 

from connections of the whole amygdala is perhaps best considered as providing a numerical 480 

indication only of whether consideration of individual amygdala nuclei is helpful. Comparison 481 

of nuclei-specific connections with those based on whole amygdala demonstrated that some 482 

predictions were stronger when they were estimated from sub-nuclei, especially those with 483 

cortical regions and RN_DR. For example, predictions achieved from connections with area 484 

9m were better than expected from the corresponding whole-amygdala connection when 485 

considering the precise nuclei, Ce and B. The same was true for connections between pOFC 486 

with LaD, and area 25 with Ce and RN_DR with Ce or AB. In all these cases, the specific 487 

connections’ contributions to a prediction of negative emotion scores were less likely to occur 488 

by chance than the adjusted alpha level predicted based on the same ROI’s coupling with the 489 

whole amygdala (squares in Fig 5A and Supplementary Fig 5). On the other hand, for two 490 

subcortical regions, NAc and LC, the adjusted alpha level obtained from the connectivity with 491 

the whole amygdala was smaller than the probability of all specific connections with precise 492 

nuclei, suggesting that negative emotions can be predicted best from NAc or LC connectivity 493 
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when considering coupling with the whole amygdala (square in Fig 5B). However, none of the 494 

connections with the whole amygdala reached significance (LC: rDiff=.123; ß=.15, p(FWE,amy-to-495 

rnd)=.20, p(FWE,subc-to-rnd)=.233; NAc: rDiff=.107; ß=.14, p(FWE,amy-to-rnd)=.39, p(FWE,subc-to-rnd)=.39; Fig 496 

5B and Supplementary Fig 5).  497 

Finally, decoding negative emotion scores in the top and bottom third showed that 498 

three connections provided significant decoding accuracies, 9m with B, pOFC with LaD, and 499 

RN_DR with Ce (circles in Fig 5A, see also Supplementary Fig 6; AUCs all >.6, p-values p<.05).   500 

 501 

Sleep 502 

Sleep, like social & life satisfaction, was reliably predicted by a subset of amygdala 503 

connections when compared with other randomly drawn connections. The connection 504 

between NAc and LaV was significant at FWE-corrected levels in both control analyses 505 

(rDiff=.179, p(FWE,amy-to-rnd)=.0039; p(FWE,subc-to-rnd)=.014) and another connection with NAc 506 

reached uncorrected significance at p<0.001 (NAc with LaD: rDiff=.155, p(unc,amy-to-rnd)=.0008; 507 

p(unc,subc-to-rnd)=.0003). Thus, sleep was best predicted by subcortical connections. Inspection 508 

of other top connections revealed no cortical predictors in the top eight connections (Fig 5A), 509 

but multiple brainstem-amygdala connections that contributed strongly to this behaviour, in 510 

stark contrast to both life satisfaction and negative emotions (Fig 6). Both NAc connections 511 

related positively to sleep problems. This suggests sleep problems increased with stronger 512 

positive coupling between amygdala and NAc (ß=.241, ß=.228; Fig 6). The best connection, 513 

NAc to LaV predicted sleep problems with r=.24 (Fig 5C). 514 

When considering the coupling between ROIs and the whole amygdala, NAc and LC 515 

were the strongest predictors of sleep problems, but neither of them was consistently 516 

significant (NAc: rDiff=.147, ß=.26, p(FWE,amy-to-rnd)=.19, p(FWE,subc-to-rnd)=.008; LC: rDiff=.090, 517 

ß=.21, p(FWE,amy-to-rnd)=.80, p(FWE,subc-to-rnd)=.198). Comparison of nuclei-specific connections 518 

with the adjusted alpha level obtained from the corresponding whole-amygdala connection 519 

showed for both NAc and RN_DR (as well as all other top connections apart from NAc with B), 520 

that the specific connections e.g. between NAc and LaD or LaV, or between RN_DR and AB or 521 

LaD were significant given the adjusted alpha level. Thus, they performed better than 522 

predicted by chance based on the corresponding whole-amygdala connection. Again, 523 
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considering sub-regions within amygdala made more specific predictions about mental well-524 

being possible.  525 

Decoding analyses revealed significant decoding for three connections between NAc, 526 

with LaV, LaD and AB, but also further connections between dPAG and Ce, and a32pr and LaV 527 

(circles in Fig 5A, see also Supplementary Fig 6). 528 

 529 

Anger & Rejection 530 

For anger, there was no predictor that performed better, at FWE-corrected levels (corrected 531 

for 196 comparisons), than expected from other randomly chosen amygdala or subcortical 532 

connections (Fig 5A). Inspection of the top connections revealed a majority of cortical 533 

connections, and almost exclusively with the Ce and lateral (LaV) amygdala nuclei. As for 534 

negative emotions, cortically, the posterior medial and orbital regions 25 and pOFC were 535 

relevant. However, unlike for any other behaviours, the largest number of top contributing 536 

connections was with the frontal operculum (FOP2 to LaV and Ce, FOP3 to LaV and AB). Four 537 

out of the top six predictors were with frontal operculum. The direction of effects for area 25 538 

to Ce was similar to that seen for negative emotion predictions; increased connectivity 539 

between these regions predicted reduced anger (ß=-.14; Fig 6), but stronger frontal opercular 540 

connections with the amygdala predicted increased problems with anger (ß=.207, ß=.188, 541 

ß=.202, ß=.183). The correlation between predicted and true behaviour based on the best 542 

predictor, FOP3 to LaV, was r=.21 (Fig 5C). 543 

The best connections between ROIs and the whole amygdala matched those identified 544 

above in terms of their ROI targets for anger (FOP3: rDiff=.076, ß=.17, p(FWE,amy-to-rnd)=.56, 545 

p(FWE,subc-to-rnd)=.33; RN_DR: rDiff=.067, ß=.18, p(FWE,amy-to-rnd)=.66, p(FWE,subc-to-rnd)=.42). 546 

Interestingly, in all cases, e.g. for connections between area 25 with Ce, FOP2 with LaV or Ce, 547 

and p24 and pOFC with LaV, the probability of nuclei-specific connections was smaller than 548 

predicted from the adjusted alpha level derived from the corresponding whole-amygdala 549 

connection, showing that the specificity provided by the nuclei improved the prediction 550 

(squares in Fig 5A and Supplementary Fig 5).  551 

Decoding binarized anger scores showed that multiple of our top connections allowed 552 

above-chance predictions, most prominently those with FOP regions, namely FOP3 with LaV 553 
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and AB, and FOP2 with LaV and Ce, but also area 25 with Ce, pOFC with LaV and a32pr with 554 

LaV (all AUC>.6 and p<.05).  555 
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Discussion 556 

The need to better describe the biological underpinnings of psychological illness and 557 

dimensional variation linked to psychological illness has long been recognized (for a recent 558 

perspective, see 23). Here, we used resting-state fMRI, a common in vivo tool for estimating 559 

human brain connectivity, but applied a fundamentally different rationale and approach to 560 

the analyses of both neural and behavioural data. Turning first to behavioural data analysis, 561 

rather than stratifying a disease such as depression into several biologically meaningful sub-562 

groups 39 or classifying people into categories (e.g. patient vs control), we aimed to define 563 

biologically meaningful latent behaviours that capture central aspects of mental health that 564 

exhibit variation even in the sub-clinical range. In the neural analysis we were able to predict 565 

these latent behaviours using a small number of anatomically motivated brain connections. 566 

All of this was done using out-of-sample methods, ensuring robustness and internal 567 

replicability. 568 

We identified four latent behaviours which we believe capture distinct aspects of 569 

people’s mental health: social/general life satisfaction, negative emotions, sleep problems, 570 

and problems with anger/rejection. Rather than using a summary measure, such as e.g. the 571 

total depression score, we reasoned that because specific brain connections carry specific 572 

combinations of input and output, mappings of behaviour onto precise brain connections are 573 

more likely achieved for functionally meaningful behavioural units 23,40. We obtained latent 574 

behavioural markers using a factor analysis 41. Alternatively, computational modelling 575 

approaches are sometimes used to identify precise measures of behaviour 42,42–44.  In order 576 

to link the latent behavioural markers to precise brain connections, we focussed on the 577 

amygdala.  First, we demonstrated that it was possible to identify in vivo seven component 578 

amygdala subregions that corresponded to amygdala nuclei. They reliably varied in their 579 

connectivity in comparison to one another, but they were topological arranged in a similar 580 

manner in both hemispheres. Second, we demonstrated that patterns of functional 581 

connectivity – correlations in the BOLD signals – between each amygdala nucleus and 28 582 

cortical, forebrain subcortical, and brainstem regions were approximately as predicted from 583 

anatomical tracer studies. We were then able to proceed to the final stage of the study and 584 

show that variation in functional connectivity between specific amygdala nuclei and these 585 

other regions were predictive of variation in the four latent behaviours. 586 
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 Three aspects of our data underlined the importance of the functional connectivity of 587 

specific amygdala nuclei. First, several of the best predictive connections associated with each 588 

latent behaviour explained enough variance to allow prediction of whether someone was in 589 

the top or bottom third of the given behaviour. The resulting decoding accuracies achieved 590 

using a single connection (Fig 5A,D and Supplementary Fig 6) were not too dissimilar from 591 

accuracies reported when predictions were based on large networks 1–5 and we would expect 592 

them to be even larger in a clinical population that includes the extremes of the behavioural 593 

distribution. In the context of neuroimaging, our sample size of 200 participants can be 594 

considered fairly large 23. We therefore believe the reported effect sizes are considerable and 595 

meaningful. Despite the importance of large network approaches, an advantage of the 596 

current approach is that it provides specific regions and connections as targets for therapeutic 597 

intervention involving a range of approaches such as pharmacological, neurostimulation, 598 

neurofeedback, or cognitive interventions. Second, variations in six or more of the 599 

connections were associated with significantly better predictions of the latent behaviours 600 

than was possible when just the connectivity of the amygdala as a whole was considered. 601 

Finally, in a third test, we established that the connection’s contributions were significant 602 

even when the null distribution that they were compared against was from the same 603 

amygdala nuclei but to a random set of 28 brain regions, or from same-size random 604 

subcortical nuclei to a random set of 28 brain regions. Indeed, for two of our latent 605 

behaviours, two to three connections between specific amygdala nuclei and other brain 606 

regions were significant predictors of the extent to which the behaviour was present, over 607 

and above what would be achieved using randomly chosen connections. Importantly, 608 

predictive connections largely differed between the four latent measures of mental well-609 

being (see fingerprints in Fig 6) and only few connections were shared.  610 

We had a strong anatomical prior not only on the importance of the amygdala but the 611 

importance of the amygdala’s interactions with specific cortical, forebrain subcortical, 612 

midbrain, and brainstem regions thanks to the large body of studies in animal models that 613 

has examined these circuits 10–13,20. As a result of careful fMRI data preprocessing we were 614 

able to examine activity not just within medial temporal lobe but even in specific brainstem 615 

regions and relate the coupling patterns to variation in our indices of mental health. We 616 

believe there are other prime anatomical hubs such as ventromedial and subgenual frontal 617 
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areas that would be worth investigating with a similar approach. It is unlikely that a single 618 

region or network is sufficient to fully predict all aspects of someone’s mental well-being 619 

7,15,20,39,45,46. Nevertheless, we believe it is important to recognize that individual and 620 

identifiable connections may have particular importance. This is a view taken more commonly 621 

when considering targeted interventions in mental health, such as for example using invasive 622 

deep brain stimulation (DBS) which has in some cases led to remarkable improvements in 623 

mood 45,47, but may work particularly well when the right connections between subcortical 624 

and cortical regions are targeted 48. Similarly, other non-invasive stimulation approaches such 625 

as repetitive transcranial magnetic stimulation (rTMS) are more likely to be successful when 626 

targeting specific circuits (e.g. subcallosal connectivity; 49). Such interventions could become 627 

more feasible with advances in non-invasive ultrasound methods 50–52. So, while our findings 628 

are not of immediate clinical relevance, they suggest interventions targeted at particular 629 

nuclei might benefit someone predominantly suffering from sleep problems while targeting 630 

others might benefit someone who experiences strong negative emotions. We note one 631 

potential limitation, namely that we relied on a large volume of data – approximately one 632 

hour of resting-state scans in each participant – from highly optimized pulse sequences, which 633 

may not be available regularly in patients. 634 

Our parcellation of the amygdala into seven nuclei strikingly resembled previous 635 

amygdala investigations but which were possible only post mortem 29–31. Saygin et al., for 636 

instance, scanned at a resolution of 100-150um at 7T and identified nine nuclei which 637 

resembled in their size, position and transitions patterns the seven nuclei identified here. 638 

Previous parcellations based on in vivo data have identified fewer subdivisions 24–27 but the 639 

borders identified in those studies still resembled a subset of the borders we identified here 640 

thereby underlining consistency in results. The finer grained parcellation we obtained 641 

reflected improved image quality and preprocessing pipelines that better controlled for 642 

physiological noise. We show that detailed amygdala parcellation is important for achieving 643 

the behavioural prediction accuracies reported here (Fig 5). This is unsurprising given known 644 

anatomical and functional differences between amygdala nuclei 19. 645 

The amygdala networks identified for the different latent behaviours seem plausible 646 

in the context of previous work. For example, social and life satisfaction highlighted 647 

connections between the amygdala and regions primarily located in medial and lateral frontal 648 
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cortex, more precisely areas p32pr, a32pr and d32 as well as areas FOP4 and 9-46d 34, with 649 

less pronounced negative coupling between these areas and the basal amygdala nucleus 650 

predicting improved life satisfaction. These areas in or close to the dorsal anterior cingulate 651 

cortex (dACC) as well as frontal opercular/insula regions have been linked to aspects of 652 

behavioural change and adaption 53,54, abilities compromised in anxiety 55, and are important 653 

for arbitrating between exploration and exploitation 56,57, a process changed in depression 58. 654 

Even though there is probably little direct coupling between dlPFC and amygdala, dlPFC is a 655 

stimulation target in depression, and alters amygdala threat responses 33. It thus seems 656 

unsurprising that connections between these medial and lateral frontal regions and the 657 

amygdala might contribute to overall social and life satisfaction.  658 

It is worth noting that, because rs-fMRI was used as a proxy for anatomical 659 

connectivity here, the patterns in activity coupling we identify do not necessarily correspond 660 

to monosynaptic connections. While monosynaptic connections might dominate in Figure 2B 661 

which illustrates, the strongest activity correlations of the amygdala nuclei, the relations we 662 

identified between activity coupling and mental health indices (Figures 4-6) may rely on a 663 

multi-component connection pathway or may involve connections between two amygdala 664 

nuclei.  665 

The associations between negative emotions, our second latent behaviour, and 666 

amygdala connectivity can also be understood in the context of the functions of these areas 667 

even if, once again, some of the critical pathways may be indirect. Amygdala connections with 668 

areas 9m, pOFC, 25 and subcortical structures (LC, RN_DR, NAc) seem plausible. Weaker 669 

coupling between area 25 and the central nucleus, between pOFC and the adjacent LaD 670 

nucleus, and between 9m and Ce and B nuclei are related to more pronounced negative 671 

emotions.  Although pOFC has received little attention, bipolar patients demonstrate reduced 672 

grey matter in pOFC 59 and both pOFC and amygdala have been linked to the most basic 673 

aspects of stimulus-reward association learning 60. Area 25 has been linked to autonomic and 674 

affective regulation and, just like the amygdala, exhibits abnormal metabolism in depressed 675 

patients 15,20. Stimulation of this region or its interconnections may reduce depression 45,48. 676 

The fourth latent measure of mental well-being we identified, anger and rejection, was also 677 

linked to areas 25 and pOFC, in addition to other frontal opercular regions that have recently 678 
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been linked to the balancing of the most recent outcomes with the wider, more long-term 679 

experience of reward 61,62.   680 

In contrast to cortical regions, stronger rather than weaker subcortical connectivity 681 

with amygdala nuclei predicted negative emotions. This suggests that diminished cortical-682 

amygdala interaction is accompanied with increased amygdala interaction with subcortical 683 

areas linked to the origins of widely branching neuromodulatory systems such as serotonin 684 

and noradrenaline (RN_DR, LC) and key targets of other systems such as dopamine (NAc). 685 

Noradrenaline mediates stress and stress-related responses and stress-induced dysregulation 686 

of the NA system may contribute to the pathogenesis of depression 63. Increasing NA can also 687 

be effective as an antidepressant treatment. LC occupied a somewhat unique position 688 

because it was the only region which was somewhat predictive of three out of four latent 689 

behaviours when considering coupling with the whole amygdala (Fig 5B and Supplementary 690 

Fig 5). This suggests that a more global coupling pattern between LC and amygdala may help 691 

regulate mood in a way that impacts multiple of our latent measures of well-being. Indeed, 692 

LC-amygdala coupling has been linked to the retrieval of emotional memories 64. Taken 693 

together, LC-amygdala connections seem central for mediating problems related to negative 694 

emotions that impact mental health.  695 

The third latent measure of mental well-being captured sleep problems and was 696 

linked to a distinctly different connectional fingerprint (Fig 6). Unlike the other three 697 

behaviours, it comprised only subcortical connections between lateral amygdala nuclei and 698 

NAc. The NAc is an important projection target of VTA dopamine neurons, and dysfunction of 699 

the striatum has been associated with sleep disturbances, with neurons in NAc core 700 

particularly important for controlling slow-wave sleep 65,66.    701 

In summary, our work suggests that strong anatomical priors derived from animal 702 

studies, in combination with neuroimaging data of sufficient anatomical detail, make it 703 

possible to forge links between dimensions of mental health and specific neural circuits.  704 

Crucially this also depends on the identification of mental health behaviour clusters which, 705 

even if in the subclinical range, are naturally emerging functional groupings that are more 706 

likely to map onto the brain’s functional organization. 707 
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Materials & Methods 708 

 709 

Participants 710 

Data and ethics were provided by the Human Connectome Project (HCP), WU-Minn 711 

Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) 712 

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience 713 

Research; and by the McDonnell Center for Systems Neuroscience at Washington University. 714 

Two hundred HCP subjects (n=200; mean age 29  .26; age range 22-36; 108 females, 92 715 

males) were pseudo-randomly chosen from the full HCP data set 716 

(https://www.humanconnectome.org/). Working on a subset of all 1206 HCP participants was 717 

necessary because one key aspect of the pre-processing was to correct rs-fMRI data for 718 

physiological noise, which particularly affects the key regions of this study such as the 719 

amygdala and brainstem. However, the quality of acquired physiological variables varies 720 

substantially across HCP participants. We therefore inspected the variance in physiological 721 

recordings of those participants’ in whom physiological measures had been acquired both 722 

visually and by plotting summary measures such as the total variance over time and only 723 

considered participants with sufficient signal in both cardiac and respiratory measurements. 724 

Participants were further selected to achieve a spread in their mental well-being scores. 725 

Specifically, we tried to achieve high variance in the total DSM score (ASR_Totp_T) which was 726 

not used in any further analyses (resulting mean total DSM score: 47.94, variance: 103.83; 727 

mean of all 1206 HCP participants: 47.41; variance: 80.61).  728 

 729 

Data and minimal pre-processing 730 

Four resting state runs were acquired on a Siemens Skyra 3T scanner using custom pulse 731 

sequences (for details see 67–69). In brief, resting-state runs lasted 14.4 minutes, had a TR of 732 

720ms, TE of 33ms, isotropic resolution of 2mm, 72 slices, and a multiband factor of 8 733 

resulting in 1200 timepoints. Two runs were acquired using right-left phase encoding and two 734 

using left-right phase-encoding. Spin-echo images and T1-weighted images were acquired for 735 

distortion correction and registration (for more details see 70). We used all four runs of each 736 

subject and downloaded the minimally pre-processed HCP data which is described in detail in 737 

28. In brief, these data are distortion-corrected, temporally filtered, projected on to a surface 738 
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reconstruction obtained from the T1-weighted image while maintaining subcortical voxels 739 

(cifti format), and minimally smoothed. Registration across participants was achieved using 740 

multi-modal areal-feature-based surface registration (MSMall) 34. 741 

 742 

Additional pre-processing 743 

Because noise caused by physiological artefacts (e.g. breathing, pulse) is particularly 744 

pronounced in brainstem and temporal lobe structures, all key areas for this study, we 745 

performed corrections for physiological noise in the data. Removal of artefacts caused by 746 

physiological signals is not currently incorporated in standard HCP pipelines. We used the 747 

PNM toolbox (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/PNM; 71) to generate physiological 748 

regressors (a total of 33 regressors comprised of: cosine and sine of basic cardiac and 749 

respiratory regressors modelled with an order of 4, and thus 16 regressors; multiplicative 750 

cardiac and respiratory terms cos(c+r), sin(c+r), cos(c-r), sin(c-r), each modelled using an order 751 

of two, and thus again 16 regressors; plus respiration volume per time (RVT)71). In addition to 752 

physiological regressors, we constructed 24 motion regressors from the six motion regressors 753 

provided (in the HCP data release, these are stored in Movement_Regressors.txt) (e.g., 70): 754 

the six original regressors, their derivatives, and the square of the resulting twelve regressors. 755 

We also used independent component analysis (ICA)-denoising as provided with the 756 

‘fixextended’ HCP dataset (melodix_mix and Noise.txt). The motion, physiological and ICA 757 

noise regressors were normalized, high-pass filtered and detrended to mimic the pre-758 

processing performed on the data. Then, motion and physiological confounds were 759 

aggressively regressed out of the data and ICA components (thus entirely removing any 760 

variance explained by physiological or motion parameters), and the noise ICA components 761 

were subsequently removed from the data using a soft regression (thus removing only the 762 

variance unique to the ICA noise components).   763 

The data were demeaned, the variance of the noise in the data normalized (as in  34) 764 

and the four runs of each participant were concatenated. Additional smoothing was applied 765 

to the surface only (sigma=5mm; no additional smoothing was applied to subcortical 766 

structures, including the amygdala). This yielded the fully pre-processed data for each of the 767 

200 participants which contained a total of 4800 time points from the combined 1200 time 768 

points of the four resting-state runs. 769 
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 770 

Group dense connectome 771 

A group average timeseries was generated from the 200 individual data sets using the 772 

algorithm ‘MIGP’ 72. MIGP is a computationally tractable method to approximate the group 773 

average time series using group-level PCA. The two parameters specifying (a) the number of 774 

data-points kept on-line during the iterative computation of the average and (b) the cut-off 775 

describing the number of principal components kept at the end were both set to 4800, 776 

corresponding to the number of data points in each individual’s file. A dense connectome was 777 

created from the average time series using the function cifti-correlation (using Fisher’s z). 778 

Ringing artefacts were corrected using Wishart RollOff 34. 779 

 780 

Clustering 781 

The full dense connectome was restricted to contain the connectivity of voxel’s in both 782 

amygdalae to the rest of the brain (647 voxels x 91282 brain-ordinates). Connectivity values 783 

were transformed into absolute values (i.e., unsigned ‘strength’ of correlation) to enable both 784 

positive and negative coupling patterns to inform the clustering solution (FSLnets ignores 785 

negative values in its hierarchical clustering routine). A similarity matrix was computed based 786 

on this absolute connectivity using Pearson’s correlation coefficient (FSLnets function 787 

nets_netmats, part of FSLnets: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). In other words, 788 

the similarity matrix captured, for any pair of amygdala voxels, the similarity of their 789 

connectivity profile to the rest of the brain. The similarity matrix was fed into a hierarchical 790 

clustering algorithm (function nets_hierarchy.m part of FSLnets). We thus obtained a 791 

clustering of the amygdalae based on the similarity of different amygdala voxel’s connectivity 792 

to the rest of the brain. 793 

To evaluate the number of clusters, or in other words, the appropriate depth of the 794 

hierarchical clustering tree, we aimed for a good balance between simplicity and detail, as 795 

well as anatomical plausibility. One simple heuristic to assess anatomical plausibility was to 796 

prefer solutions with corresponding clusters across left and right hemispheres. Another focus 797 

was on detail: for instance, it has been suggested that the two largest amygdala nuclei, basal 798 

and lateral nuclei, can be further split into several subdivisions 31. We were also keen to 799 

identify the rather small central nucleus in both hemispheres, given its importance for 800 
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connecting the amygdala to brainstem regions. The central nucleus split off at depth 10 and 801 

12 of the hierarchical clustering algorithm in the left and right hemisphere respectively, at 802 

which point both hemispheres contained 7 clusters (AB and CoN were still connected across 803 

hemispheres, so there were five uniquely left clusters, five uniquely right clusters and two 804 

clusters that contained both hemispheres, and thus depth 12). This clustering solution was 805 

also symmetrical across hemispheres. At the next depths from 13-15, AB split between L and 806 

R hemispheres and the ventral part of the lateral nucleus split into two halves first in the right 807 

hemisphere and then in the left hemisphere. This was more detail than we would have 808 

anticipated or required for interpretation of further analyses. Throughout the results, we 809 

therefore focussed on the depth 12 cluster solution, which when merging corresponding 810 

clusters in both hemispheres yielded seven final clusters (Figs 1B and 2A). Other clustering 811 

depths are shown in Supplementary Fig 1. 812 

 813 

Naming of clusters 814 

The labelling of clusters was largely based on the Atlas of the Human Brain by 31 and a post-815 

mortem parcellation at 7T with 100-150um resolution 29. The most dorsal, posterior and 816 

lateral nucleus (dark blue in Figs 1B and 2A) which was also the smallest in size (62 voxels 817 

across both hemispheres) perfectly matched in its size and position the central amygdaloid 818 

nucleus and was therefore labelled Ce. Judging from its position and size, it contained both 819 

medial and lateral divisions of the central nucleus’ 31. However, it is less clear whether it also 820 

contained the medial amygdaloid nucleus. The medial amygdaloid nucleus might have been 821 

part of this ‘Ce’ cluster or the adjacent cluster (middle blue in Figs 1B and 2A) which was 822 

positioned in a dorsal, posterior and medial location where the cortical amygdaloid nuclei are 823 

located (e.g. PCo=posterior cortical; ACoV and ACoD = anterior cortical, ventral & dorsal parts 824 

31; sometimes referred to as CAT = cortico-amygdaloid transition area e.g., 29). We therefore 825 

labelled this adjacent cluster CoN, as an agglomeration of the cortical nuclei of the amygdala. 826 

It contained altogether 133 voxels across left and right hemispheres, and possibly comprised 827 

cortical nuclei as well as the medial nucleus. Ventral and anterior to the Ce and CoN nuclei, in 828 

a medial position within the amygdala (light blue in Figs 1B and 2A), we identified a portion 829 

of the basal amygdala which very likely contained Mai et al.’s ventral and dorsal basomedial 830 

(BMVM and BMDM), and probably also its basolateral paralaminar and intermediate 831 
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subdivision (BLPL and BLI), and thus the majority of basomedial and basolateral aspects of the 832 

basal nucleus. We therefore refer to it simply as the basal nucleus B. It contained 74 voxels 833 

and was adjacent to a slightly more medial subdivision of the basal nucleus which we refer to 834 

as auxiliary basal (AB, green in Figs 1B and 2A) and which contained 104 voxels. This cluster 835 

AB, based on its size and location, would have contained the ventromedial part of the 836 

basolateral nucleus in 31 (BLVM) and closely corresponded to what Saygin and colleagues 29 837 

describe as AB as well. The remaining three clusters made up the lateral nucleus of the 838 

amygdala, namely its dorsal, intermediate and ventral portion (LaD, LaI, LaV, respectively, in 839 

red, yellow and dark red in Figs 1B and 2A). These clusters contained 84, 86 and 104 voxels, 840 

respectively.  841 

 842 

ROI selection 843 

We had a number of a priori regions of interest which were informed by prior work, including 844 

anatomical work using tracers in macaque monkeys as well as work in humans with mental 845 

health disorders. All our ROIs are illustrated in Fig 2C and will be motivated one by one.  846 

We included aspects of dorsolateral prefrontal cortex (dlPFC) despite it not having 847 

strong monosynaptic connections with the amygdala in monkeys, because of work involving 848 

neurostimulation to dlPFC, most commonly repetitive transcranial magnetic stimulation 849 

(rTMS), which has been shown to alleviate symptoms of mental health disorders, particularly 850 

depression 73,74 and because it has been implicated in the regulation of amygdala responses 851 

to threat 33,75. The location of stimulation over dlPFC can be variable across studies but is most 852 

common over areas 9/46 and 46 and particularly effective when strong connectivity with 853 

dlPFC and area 25 is observed 76. We therefore included all sub-clusters of areas 46 and 9/46 854 

reported in HCP’s multi-model parcellation version 1.0 34 which included 46 (316 vertices), 9-855 

46d (379 vertices), a9-46v (147 vertices), and p9-46v (214 vertices).  856 

On the medial and orbital surface, amygdala connectivity gradually changes along an 857 

anterior-posterior axis, with strongest connectivity posteriorly closest to the corpus callosum 858 

19,77. This also mimics the transition between agranular and dysgranular/granular cortex, and 859 

unimodal to transmodal connectivity 78,79. We included all agranular regions in the medial and 860 

orbital prefrontal cortex; all of the likely homologues of these areas have strong 861 

monosynaptic connectivity with the amygdala in monkeys. This included areas 32, 25, 24 and 862 
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the most posterior part of OFC. We also included granular area 9m, adjacent do area 32 in 863 

medial frontal cortex, and frontal operculum, which has also been highlighted in tracer 864 

studies for its connections with the amygdala. As above, we took the parcels obtained from 865 

HCP’s multi-model parcellation version 1.0 34 which are labelled areas 25 (54 vertices), a24 866 

(89 vertices), p24 (66 vertices), a24pr (75 vertices), s32 (55 vertices), p32 (122 vertices), d32 867 

(147 vertices), a32pr (163 vertices), p32pr (190 vertices), 9m (408 vertices) and pOFC (83 868 

vertices). Frontal operculum contains FOP1-FOP5 (with 61, 101, 83, 240 and 193 voxels, 869 

respectively). Apart from their strong connectivity with the amygdala many of these regions 870 

have indeed been implicated in mood disorders and social cognition. For example, PET work 871 

shows abnormal metabolism in subgenual PFC, including area 25, ventral 24 and possibly 32 872 

15, deep brain stimulation in sub-genual regions or their adjacent fibre passages can alleviate 873 

symptoms of depression 45,80,81 and negative biases in decision-making can be induced by 874 

stimulating pregenual cortex (rostral area 24 and dorsal area 32; 82). In addition, several 875 

studies have also highlighted the importance of peri-/pregenual cortex in social cognition 83,84. 876 

In summary, we included four cortical regions on the lateral, 10 cortical regions on the medial, 877 

one cortical region on the orbital surface, and five frontal opercular regions, and thus a total 878 

of 20 cortical ROIs. 879 

Subcortically, our major focus was on the key nuclei associated with different 880 

neurotransmitter systems because of their importance for mental well-being. We included 881 

the substantia nigra (SN), which contains the majority of dopaminergic neurons and the 882 

nucleus accumbens (NAc), an area receiving strong dopaminergic innervation 85. DA has been 883 

implicated in mental health disorders; for example, Parkinson’s disease, which is 884 

characterized by a loss of DA neurons in SN, leads to depression in a large percentage of 885 

patients (~35%; 86). But DA also plays a key role in reward-learning and sleep regulation. 886 

Striatal dysfunction has, for instance, been associated with sleep disturbances and a subset 887 

of NAc core neurons was found to regulate slow-wave sleep 65,66. The SN mask was taken from 888 

the NITRC Atlas of the basal ganglia 87 and contained 134 voxels. The NAc was taken from the 889 

Harvard Subcortical Atlas and contained 188 voxels. 890 

The bed nucleus of the stria terminalis (BNST) was included because of its role in 891 

mediating the long-term effects of anxiety and responses to stress 88. It is also sometimes 892 

considered part of the extended amygdala. The BNST mask was obtained from 89. 893 
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Two regions with opposing functionality within the periaqueductal grey (PAG) were 894 

included because of their importance in regulating autonomic arousal: ventrolateral PAG 895 

(vlPAG) which mediates rest- and digest-related behaviour and dorsal PAG (dPAG) which 896 

mediates fight and flight responses. The masks for these regions were taken from 90. The 897 

dPAG was the summation of Faull et al.’s dorsomedial (dm) and dorsolateral (dl) aspects of 898 

PAG; vlPAG contained 43 voxels and dPAG 45 voxels. 899 

The role of serotonin and of selective serotonin reuptake inhibitors (SSRI) in the 900 

pathology and treatment of mental health disorders is well known. The raphe nuclei are the 901 

most important source of serotonin in the brain. Masks for dorsal and median raphe nuclei 902 

were taken from the Harvard Ascending Arousal Network Atlas 91. The dorsal raphe nucleus 903 

(RN_DR) contained 23 voxels, and the median raphe nucleus (RN_MR) contained 8 voxels. 904 

Finally, locus coeruleus (LC), the main site of noradrenaline production was defined based on 905 

92 and contained 20 voxels.  906 

Probabilistic masks were binarized first, including all voxels with probability >.25, in 907 

other words, voxels that had a larger than 25% chance of being within the given region (NAc, 908 

SN). Binary files and all masks we received in binary format (BNST, PAG, LC, RN) were 909 

subsampled to 2mm, and binarized again using any voxels >.25 in subsampled space. The 910 

exceptions were NAc where thresholding at .25 would have yielded an unusually large ROI, 911 

so a threshold of >.75 was applied in the second step; for the raphe nuclei, thresholds were 912 

adjusted manually to maximise anatomical plausibility (>.6 and >.72 for dorsal and median, 913 

respectively).  914 

Thus, we included a total of eight subcortical and brainstem regions, which are shown 915 

in Fig 2C.  916 

 917 

 918 

Selection of behavioural scores 919 

Instead of using psychiatric scores (e.g. the total depression score), our goal was to define 920 

underlying variation in emotional and social wellbeing in the normal range but, in particular, 921 

those aspects of emotional and social wellbeing that might be affected in anxious or 922 

depressed individuals. We went through all restricted and unrestricted behavioural markers 923 
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acquired as part of HCP and selected those that related to mental well-being. We included 33 924 

behaviours composed of  925 

(1) Measures from the NIH Toolbox Emotion Battery (www.nihtoolbox.org) 93,94(total: 926 

17); each item was administered on a 5-point scale with options ranging from “not 927 

at all” to “very much”. In all cases a-d below, scores <40 are considered low and 928 

scores >60 are considered high. 929 

a. Six measures from the Negative Affect toolbox (Anger Affect: obtained 930 

using computer-adaptive testing (CAT), Anger Hostility: obtained from a 931 

questionnaire with 5 items, Anger Aggression: also 5 items, Fear Affect: 932 

CAT, Fear Somatic: 6 items, Sadness: CAT);  933 

b. Three measures from the Psychological Well-Being toolbox (Life 934 

Satisfaction, Mean Purpose, Positive Affect) – all obtained using CAT  935 

c. Six measures from the Social Relationships toolbox (Friendship, Loneliness, 936 

Perceived Hostility, Perceived Rejection, Emotional Support, Instrumental 937 

Support); loneliness obtained from a questionnaire containing 5 items, all 938 

others from questionnaires containing 8 items. 939 

d. Two measures from the Stress and Self Efficacy toolbox (Perceived Stress: 940 

10 items, Self-Efficacy: CAT) 941 

(2) Measures from the Pittsburgh Sleep Questionnaire 95 (total 9) composed of 942 

minutes to fall asleep (past month); hours of sleep per night (past month); sleep 943 

trouble: can’t go to sleep within 30 minutes; sleep trouble: wake-up in middle of 944 

night or early morning; sleep trouble: had bad dreams; overall sleep quality; how 945 

often taken sleep medicine; how often trouble staying awake during the day; how 946 

often trouble keeping up enthusiasm during the day. All of these were rated on a 947 

scale from 0-9.  948 

(3) Measures from the five-factor model 96 a) neuroticism; b) 949 

extroversion/introversion; c) agreeableness; d) openness; and e) 950 

conscientiousness 97. HCP data collection administered the 60-item version of the 951 

Costa and McRae Neuroticism/Extroversion/Openness Five Factor Inventory 952 

(NEO-FFI), which has good reliability and validity  97. This measure was obtained as 953 

part of the Penn Computerized Cognitive Battery 98. 954 
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(4) Measures from the Penn Emotion Recognition Test, again obtained as part of the 955 

Penn Emotion Recognition Test. During this test, participants are presented with 956 

40 faces and need to identify the emotion of the face from the five options happy, 957 

sad, angry, scared and no feeling. There are eight faces in each category. We 958 

included a) the number of Correct Anger Identifications (ER40ANG) ranging from 959 

0-8 and b) the number of Correct Fear Identifications (ER40FEAR) ranging from 0-960 

8. 961 

 962 

Factor analysis and creation of latent behaviours 963 

We conducted a factor analysis on these 33 behavioural markers (z-scored) using 964 

Matlab’s function ‘factoran’, with a ‘promax’ rotation. A Scree test 99 based on an initial 965 

sample of 100 participants suggested four factors (nFactors package in R with function nScree 966 

100), all of which seemed interpretable upon inspection of their weights. We therefore fixed 967 

the number of factors to four. Importantly, the same four factors replicated in our full dataset 968 

of 200 participants and inspection of a potential fifth factor showed lack of interpretability 969 

and would have introduced a high correlation between two of the factors (r=.5; compared to 970 

highest correlation in our set of four: .35).  Moreover, and most importantly, our four factors 971 

also replicated on the full set of 1206 HCP participants: the correlation between the factor 972 

weights for a factor analysis based on 200 versus 1206 participants was .95, .93, .97, .9 for 973 

the four factors. 974 

The weights obtained for the four factors were multiplied onto the original 33 975 

behavioural markers (z-scored) to construct four summary or latent behaviours per 976 

participant. These were summarized and are referred to throughout as ‘social and life 977 

satisfaction’, ‘negative emotions’, ‘sleep’ and ‘anger & rejection’.  978 

 979 

Regression analyses to identify the most predictive connections 980 

A regression approach was used to identify the most predictive connections, separately for 981 

each of the four latent behaviours. The data to be predicted, y, was in each case a 200x1 982 

vector describing the true latent behaviour for each participant. The matrix of potential 983 

predictors X was a matrix with 200 x 196 resting-state functional coupling (FC) values for each 984 

participant and the 196 connections described above (7 amygdala nuclei x 28 ROIs). Outlier 985 
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participants were conservatively rejected based on their individual FC values if more than 10% 986 

of their FC values across all connections deviated more than 3.5 standard deviations from the 987 

mean across participants. This identified five participants as outliers and all analyses were 988 

performed on the remaining 195. Next, confounds were regressed out of the data as in 101. 989 

Confounds included (1) acquisition reconstruction software version; (2) summary statistic 990 

quantifying average head motion; (3) weight; (4) height; (5) blood pressure – systolic; (6) 991 

blood pressure – diastolic; (7) haemoglobin A1C in blood; (8) cube-root of total brain volume; 992 

(9) cube-root of total intracranial volume. As described in detail in 101, in addition to these 993 

nine confounds, eight additional confounds included the demeaned and squared measures 994 

2-9 to account for potential nonlinear confound effects. A total of 17 confounds were thus 995 

regressed out of the matrix X. Both y and X were z-scored.  996 

For generating the plots in Fig 4, we estimated k=10,000 regression models using 10-997 

fold cross-validation. For each model, we selected a random subset of five out of the total of 998 

196 potential connections as predictor variables. We also generated a new cross-validation 999 

(CV) set in each iteration, with the additional constraint of keeping siblings together – i.e. all 1000 

members of the same family were allocated together to the training set or to the test set. In 1001 

each CV-fold, the goodness-of-fit was determined as the correlation (Pearson’s r) between 1002 

true latent behaviour and the out-of-sample model-predicted behaviour obtained using the 1003 

subset of five connections. For each model iteration, we saved the contributing connections 1004 

and the average r across the 10 folds. The overall contribution of each connection (Fig 4A-C) 1005 

was then determined across all 10,000 iterations as the average difference in r value between 1006 

all iterations that did and all iterations that did not include the connection in the model. The 1007 

distribution of these contribution values is shown across connections (Fig 4C), and we also 1008 

report the histogram of raw r values from all 10,000 model iterations (Fig 4D).  1009 

It is worth highlighting some of the features of this procedure that explain its 1010 

suitability for analysing our data. Including all connections in one large regression model was 1011 

not feasible due to the large number of regressors and existing correlations between them. 1012 

Our approach allowed us to identify two similar connections (e.g. NAc-LaV and NAc-LaD for 1013 

sleep) as important because these two would only seldom be included simultaneously, by 1014 

chance, in a regression model with five randomly selected connections. Using our approach, 1015 

a smaller number of connections, e.g. considering each connection individually or only 1016 
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including two at a time in each sub-model, would over-estimate some contributions because 1017 

shared features are assigned to each. On the contrary, larger sub-models with e.g. 20 or 30 1018 

connections would underestimate the predictors’ contributions. Importantly, we verified that 1019 

our main conclusions were robust to choices of model size ranging from 2 to 5 to 10 1020 

connections (Supplementary Figure 4).  1021 

Fitting a large number of k=10,000 regression models allowed robust estimates of 1022 

each connection’s contribution because with large enough k, contribution estimates converge 1023 

(Supplementary Fig 6D). If we had estimated only k=200 models, for example, we would have, 1024 

on average, estimated each connection’s contribution five times (200/196*5) and an average 1025 

of five numbers would have been our final contribution estimate rDiff. By fitting 10,000 1026 

models, we estimated each connection 10,000/196 * 5 = ~255 times, leading to a more robust 1027 

estimate. At k=10,000 iterations, the estimated contribution rDiff changed very little with 1028 

slight increases or decreases in the number of iterations: going from k=8,000 to k=10,000 1029 

iterations on average changed rDiff by .0058, going from k=10,000 to k=15,000 by .0055, 1030 

indicating convergence (Supplementary Fig 6D). There was no risk of overfitting because all 1031 

predictions were done out-of-sample. 1032 

To test whether contributions of individual connections were better than predicted 1033 

by chance, given the level of noise present in brain connections with the amygdala and given 1034 

our number of connections, we generated two versions of a null distribution (Supplementary 1035 

Fig 6A) by instead predicting the vector y containing the latent behaviours using n=1,000 1036 

random sets of connections between all amygdala nuclei and 28 ROIs. In each of the n=1,000 1037 

iterations, we included all 196 connections between the seven amygdala nuclei and 28 1038 

randomly chosen ROIs (28*7=196; “amy-to-rnd”), thus matching the total number of 1039 

connections with our main analysis of interest. We allowed connections from the original 1040 

amygdala nuclei to any cortical region except our set of a priori ROIs. For each of the 1,000 1041 

iterations with random connections, we ran 1,000 sub-models with different sets of five 1042 

connections and different CV-partitions, as above. We then extracted the distribution of the 1043 

top connection to obtain p-values corrected for multiple comparisons, and of all connections 1044 

to obtain uncorrected p-values (for illustration see Supplementary Fig 6A). To do this, we 1045 

calculated the cumulative distribution function of the corrected and uncorrected 1046 

distributions, which was used to generate the p-thresholds corresponding to FWE-corrected 1047 
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p<.05, and uncorrected p<0.001, respectively (denoted by black and grey asterisks in Fig 5A, 1048 

respectively). For the illustration of the strongest connections in the fingerprints in Fig 6, we 1049 

calculated the average regression coefficients for each connection to show the strength and 1050 

sign of their influence on predicting the latent behaviour (shown as numbers on the 1051 

connections in Fig 6). Scatterplots were produced for visual illustration of the strength of 1052 

predictive power achieved with only the top connection of each latent behaviour (Fig 5C).  1053 

The above distributions were generated based on connections between the amygdala 1054 

and randomly chosen other regions. As a result, they were likely conservative because we 1055 

believe the amygdala itself carries importance for predicting variation in mental health and 1056 

there might be other relevant connections with regions apart from the ones we specified a 1057 

priori. In a second control, we tested whether contributions of our amygdala-to-ROI 1058 

connections were superior to those obtained from connections with other subcortical 1059 

regions. In each of n=1000 iterations, we chose seven random seeds of the same size as the 1060 

amygdala nuclei, placed anywhere in HCP’s subcortical volume (containing NAc, brainstem, 1061 

caudate, cerebellum, diencephalon, hippocampus, pallidum, putamen & thalamus). By using 1062 

a subcortical seed and real brain connections, we matched the level of noise present in 1063 

subcortical structures to our original analysis. For each of these n=1000 random subcortical 1064 

seeds, we randomly chose 28 ROIs from anywhere in cortex, including our a priori ROIs (“subc-1065 

to-rnd”). This resulted in n=1000 hubs which closely matched the structure of our brain 1066 

connections of interest. For each one, we performed out-of-sample estimations of the 1067 

contribution of each connection, as above. Again, we generated null distributions by 1068 

remembering the contribution rDiff of the top connection, or all connections, resulting in 1069 

FWE-corrected and uncorrected p-values, respectively. 1070 

 1071 

Controlling for amygdala parcellation and ROI selection 1072 

To show that parcellating the amygdala yielded improvements in predictive power, we also 1073 

repeated the regression procedure with only the connections from our ROIs to the entire 1074 

amygdala instead of all individual nuclei (a total of 28 possible predictors). All figure panels 1075 

related to connections with the whole amygdala, instead of its seven distinct nuclei, were 1076 

generated using identical methods (Fig 5B and Supplementary Fig 5). Again, five connections 1077 

went into each model and 1,000 iterations of models were generated using different CV-1078 
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partitions. We generated separate null distributions for this analysis as before (k=1000, 1079 

n=1000) and the p-thresholds for whole amygdala connections (Fig 5B) are relative to these 1080 

new distributions which were generated based on (a) only the whole-amygdala to randomly 1081 

selected ROI connections (“amy-to-rnd”) or (b) random subcortical (‘fake amygdala’) seeds to 1082 

randomly selected ROI connections (“subc-to-rnd”). We also used the probability of each of 1083 

our whole-amygdala to ROI connections, obtained from these uncorrected distributions, to 1084 

generate adjusted alpha values against which we compared the corresponding nuclei-specific 1085 

connections to the same ROI. This test established if parcellating the amygdala into nuclei 1086 

helped us gain specificity in our predictions. For example, if the probability of the connection 1087 

from p32pr to the whole amygdala, given the uncorrected amy-to-rnd distribution, is p=.02, 1088 

we consider the parcellation to be a meaningful improvement if any of the nuclei-specific 1089 

connections to p32pr are less than this adjusted alpha of .02. In this example, this was the 1090 

case for the connection of p32pr with B (square symbol in Fig 5A; p<.001 given the nuclei-1091 

specific uncorrected distribution, and thus smaller than alpha of 0.02) but not any other 1092 

nuclei-connections with p32pr. The same rationale can be used for both uncorrected control 1093 

distributions (amy-to-rnd and subc-to-rnd) but the conclusions from both tests are virtually 1094 

identical and therefore only reported for the former distribution (amy-to-rnd). 1095 

 1096 

Decoding latent behaviours 1097 

For decoding analyses, outlier rejection and regressing out of confounds was applied to the 1098 

connectivity values as described above. For each latent behaviour, decoding was restricted to 1099 

participants with scores in the top and bottom third and the behaviour was binarized. The 1100 

predictors used by the decoder were the connections established as the top ten connections 1101 

in each case above. We used a linear support vector machine (SVM, Matlab’s function 1102 

fitclinear). The SVM was again trained on 90% and tested on the left-out 10% of values, with 1103 

CV-folds respecting family structures, and this was repeated for all 10 folds. Prediction 1104 

accuracy was computed as the area under the curve (AUC). P-values were derived from a 1105 

histogram derived from bootstrapping (10,000 iterations) using behavioural and connectivity 1106 

values that were shuffled between participants and respected family structure.  1107 
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Table 1, Behavioural markers and their loading onto the four factors 1372 

 1373 

No Name LifeSat NegEmot Sleep Anger/ 
rejection 

 NIH Toolbox Emotion 
Battery (5-point scale) 

    

1 Anger Affect -0.04 0.63 -0.08 0.21 
2 Anger Hostility -0.28 0.34 -0.12 0.20 
3 Anger Aggression 0.09 0.09 0.05 0.39 
4 Fear Affect -0.17 0.82 0.01 -0.16 
5 Feat Somatic 0.22 0.75 -0.02 -0.01 
6 Sadness -0.31 0.67 -0.04 -0.03 
7 Life Satisfaction  0.64 -0.10 -0.20 0.02 
8 Mean Purpose 0.54 -0.10 -0.12 0.09 
9 Positive Affect 0.67 -0.23 -0.13 0.16 

10 Friendship 0.67 0.06 0.07 0.02 
11 Loneliness -0.51 0.15 0.00 0.26 
12 Perceived Hostility -0.03 -0.11 -0.05 0.91 
13 Perceived Rejection -0.41 -0.14 0.00 0.66 
14 Emotional Support 0.81 0.24 -0.08 -0.10 
15 Instrumental Support 0.57 0.11 -0.05 -0.01 
16 Perceived Stress -0.30 0.48 0.01 0.25 
17 Self-Efficacy 0.57 -0.23 0.23 0.03 

 Pittsburgh Sleep 
Questionnaire (scale 
from 0-9)     

18 minutes to fall asleep 
(past month)  -0.12 -0.12 0.74 -0.09 

19 hours of sleep per night 
(past month) 0.10 0.16 -0.30 -0.16 

20 sleep trouble: can’t go to 
sleep within 30 minutes -0.10 -0.04 0.71 -0.02 

21 sleep trouble: wake-up in 
middle of night or early 
morning 0.08 0.05 0.55 0.04 

22 sleep trouble: had bad 
dreams 0.04 0.23 0.27 0.09 

23 overall sleep quality 0.00 0.08 0.53 0.07 
24 how often taken sleep 

medicine 0.10 0.19 0.35 -0.12 
25 how often trouble 

staying awake during the 
day -0.04 0.13 0.09 0.19 

26 how often trouble 
keeping up enthusiasm 
during the day -0.11 0.45 0.17 -0.12 

 5-factor model     
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27 agreeableness -0.01 -0.05 0.03 -0.51 
28 openness  0.13 0.21 -0.03 -0.08 
29 conscientiousness 0.05 -0.45 0.15 -0.03 
30 neuroticism -0.35 0.55 0.01 0.02 
31 extroversion/introversion 0.47 -0.09 0.05 0.03 

 Penn Emotion 
Recognition Test     

32 number of correct anger 
identifications -0.03 0.10 0.00 -0.09 

33 number of correct fear 
identifications -0.09 0.00 -0.02 -0.13 

 1374 

  1375 
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Supplement 1376 

Supplementary Note 1: Histogram of contributions 1377 

We also examined histograms of, first, the contributions (Fig 4C) and, second, the 1378 

underlying raw correlation coefficients across the k=10,000 regression models (Fig 4D). The 1379 

distribution of the contributions across connections (Fig 4C) had a small tail to the right 1380 

indicating a small number of predictive connections. Overall, the distributions were 1381 

comparable across behaviours, although life satisfaction (blue) and sleep (green) had a slightly 1382 

longer tail towards the right, indicating the existence of stronger predictors than for negative 1383 

emotions and anger (95% confidence intervals: lifeSat: [-.044,.119], negEmot: [-.043,.102], 1384 

sleep: [-.042,.101], anger: [-.036,.076]; consistent with Fig5A). The mode of the distributions 1385 

was slightly to the left of zero, probably due to overfitting the training data when using non-1386 

predictive connections in the model which then generalize less well to the testing data 1387 

(lifeSat: -.03, negEmot: -.03, sleep: -.02, anger: -.02). The raw correlation coefficients obtained 1388 

across models (Fig 5C) were shifted slightly to the right of zero (mode: lifeSat: .02, negEmot: 1389 

.02, sleep: .04, anger: .08), as expected if any of the connections meaningfully contribute to 1390 

predict behaviour. The distribution for anger was shifted the most, indicating a larger number 1391 

of connections, and thus a larger brain network, might help predict this behaviour. 1392 
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Supplementary Figure 1 – related to Figure 1 1393 

 1394 
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Supplementary Figure 1, Preprocessing and hierarchical clustering pipelines, 1395 
A, The minimally preprocessed HCP data was additionally corrected for 1396 
physiological noise to improve the signal in temporal lobe and brainstem regions, the 1397 

key areas for this study. All other data clean-up steps usually applied to generate 1398 
fully preprocessed HCP data, specifically fix-denoising and motion correction, were 1399 
applied at the same time. B, Illustration of the signal-to-noise improvements gained 1400 
from this additional preprocessing step compared to standard full HCP 1401 
preprocessing (in a subset of 100 participants). Top: Mean temporal signal to noise 1402 

ratio (tSNR) obtained following our preprocessing pipeline; Bottom: Difference in 1403 
tSNR between the preprocessing with and without physiological noise correction. 1404 

The ratio of tSNRs (physio – noPhysio) / (physio + noPhysio) is illustrated. This 1405 
shows tSNR gains in medial temporal lobe and medial prefrontal cortex but 1406 
particularly subcortical and brainstem structures. C, Summary of the additional 1407 

processing steps required to compute a group average connectome from the 200 1408 
individual concatenated resting-state fMRI (rs-fMRI) time-series. The group 1409 
connectome, restricted to connectivity between amygdala voxels and the whole 1410 

brain, formed the basis for the amygdala parcellation. D, Individual steps of the 1411 
hierarchical clustering algorithm led to increasing subdivisions of the amygdala. All 1412 

steps leading up to our final parcellation are shown. Hierarchical clustering was 1413 
performed on absolute connectivity values. Note, for example, the central nuclei 1414 
splitting off in step 9 (left) and 12 (right). The 12 cluster solution had five unique 1415 
clusters in each hemisphere and two connected clusters (same color = same 1416 

cluster). For subsequent analyses, the corresponding clusters in each hemisphere 1417 
were joined, resulting in a total of seven clusters.  1418 
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Supplementary Figure 2 - related to Figure 3 1419 

 1420 

 1421 
Supplementary Figure 2, Distribution of behavioural scores and extracted 1422 
latent behaviours, A, Distribution of all behavioural markers included in the factor 1423 

analysis shown in Figure 3 across the 200 HCP participants. For a full description of 1424 
each score see Table 1 and Methods. B, Distribution of the latent behaviours 1425 

generated from the factor analysis.   1426 

A Included behavioral markers B Extracted latent behaviors
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Supplementary Figure 3 – related to Figure 4 1427 
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Supplementary Figure 3, related to Figure 4, Maps of cortex and amygdala 1429 
illustrate maximal contributions towards behavioural predictions, A, The 1430 
distribution of rDiff values is shown for the entire cortex. rDiff values were z-scored 1431 

across behaviours and connections. Each cortical parcel displays the rDiff value 1432 
associated with the connection to the amygdala nucleus that was maximal for this 1433 
cortical region. B, The contribution of the seven amygdala nuclei to each behaviour 1434 
is shown. The values shown in the different colours summarize the contribution rDiff 1435 
of connections with this nucleus for any instances when the connection with this 1436 

nucleus was the top connection (out of all seven nuclei). Again, contribution values 1437 
were z-scored across behaviours and connections.   1438 
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Supplementary Figure 4 – related to Figure 5 1439 

 1440 

 1441 
 1442 
Supplementary Figure 4, related to Figure 5, Predictions are robust to model 1443 

size, A, Our main result in Figure 5A was obtained from 10,000 models with five 1444 
randomly chosen connections each (reproduced here for comparison: middle 1445 
column). We did not have enough data to optimize the number of connections 1446 
included in each model as an additional hyperparameter. For transparency, here we 1447 
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therefore show the results for models involving only two (left column) or ten (right 1448 
column) randomly selected connections in each of 10,000 model iterations. While 1449 
small differences exist (such as the order of the top two connections flipping for 1450 

Anger), none of the key results discussed in the paper are dependent on the 1451 
selection of model size. As would be expected, an individual connection predicts 1452 
slightly less variance (smaller rDiff), on average, when more regressors are included 1453 
in the model (moving from left to right columns). B, However, this is taken into 1454 
consideration in the generation of the respective control distributions which are used 1455 

to establish significance (for more details, see Supplementary Figure 6).   1456 
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Supplementary Figure 5 – related to Figure 5 1457 

 1458 

 1459 
 1460 
Supplementary Figure 5, Mental well-being predictions benefit from 1461 
parcellating the amygdala, To confirm that parcellating the amygdala into sub-1462 

nuclei increased our specificity for predicting mental well-being, we repeated the 1463 
regression procedure using connections with the entire amygdala to the same 28 1464 
ROIs (see also Figure 5B). A, This highlighted LC-amy connectivity as important for 1465 
predicting all latent behaviours except anger, NAc-amy connections for negative 1466 

emotions and sleep and RN_DR-amy connections for negative emotions and anger, 1467 

and thus primarily subcortical connections. Cortically, p32pr-amy connections were 1468 

predictive of life satisfaction and negative emotions and FOP3-amy connection for 1469 
anger. B, Histogram of contributions rDiff and raw r values are shown as in Figure 1470 
4C-D. C, The true behaviour obtained from the factor analysis is plotted against the 1471 
behaviour predicted, in each case, using only the top connection with the whole 1472 

amygdala. In summary, the anatomical specificity gained from parcellating the 1473 
amygdala improved the prediction of mental well-being in the majority of cases 1474 

(compare also Figure 5A-B). 1475 

  1476 

N
A
c_

am
y

SN
_a

m
y

 d
P
A
G
_a

m
y

vl
P
A
G

_a
m

y

R
N
_D

R
_a

m
y

R
N
_M

R
_a

m
y

B
N
S
T_a

m
y

LC
_a

m
y

pO
FC

_a
m

y

25
_a

m
y

s3
2_

am
y

a2
4_

am
y

p3
2_

am
y

9m
_a

m
y

p2
4_

am
y

d3
2_

am
y

a3
2p

r_
am

y

a2
4p

r_
am

y

p3
2p

r_
am

y

46
_a

m
y

9-
46

d_
am

y

a9
-4

6v
_a

m
y

p9
-4

6v
_a

m
y

FO
P
1_

am
y

FO
P
2_

am
y

FO
P
3_

am
y

FO
P
4_

am
y

FO
P
5_

am
y

-0.3

-0.2

-0.1

0

0.1

0.2

-0.3 -0.2 -0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

8

9

10

-0.5 0 0.5
0

100

200

300

400

500

600

700

-1 -0.5 0 0.5 1

LifeSat: factor analysis

-4

-2

0

2

4

L
if
e

S
a

t:
 p

re
d

 u
s
in

g
 L

C
-a

m
y

-1 -0.5 0 0.5 1

NegEmot: factor analysis

-4

-2

0

2

4

N
e

g
E

m
o

t:
 p

re
d
 u

s
in

g
 L

C
-a

m
y

-1 -0.5 0 0.5 1

Sleep: factor analysis

-4

-2

0

2

4

S
le

e
p
: 

p
re

d
 u

s
in

g
 N

A
c
-a

m
y

-1 -0.5 0 0.5 1

Anger: factor analysis

-4

-2

0

2

4

A
n

g
e
r:

 p
re

d
 u

s
in

g
 F

O
P

3
-a

m
y

A

B

C

Contribution (rDiff)

C
o
n

tr
ib

u
ti
o
n

 (
rD

if
f)

LifeSat
NegEmot
Sleep
Anger

Contribution (rDiff)

F
re

q
u
e
n

c
y

LifeSat
NegEmot
Sleep
Anger

LifeSat
NegEmot
Sleep
Anger

F
re

q
u
e
n

c
y

Raw r value (correlation coef ficient)

Raw r

r=0.19

r=0.15

r=0.26

r=0.17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.980995doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.980995
http://creativecommons.org/licenses/by-nc-nd/4.0/


66 

 

Supplementary Figure 6 – related to Figure 5 1477 

 1478 
Supplementary Figure 6, Illustration of statistical tests and iterations to 1479 

convergence A, We used two control analyses based on randomly selected 1480 
connections, in each case matching the number of connections from our original 1481 

amygdala-to-ROI analysis (7x28=196). In one case, random amygdala-to-cortex 1482 
hubs with 28 cortical regions were created (“amy-to-rnd”), in the second case, 1483 
random subcortical seeds of the same size as the original amygdala nuclei were 1484 

defined, and hubs with these seven ‘fake’ nuclei and 28 randomly chosen cortical 1485 
regions were constructed (“subc-to-rnd”). To generate uncorrected p-values, all 196 1486 
rDiffs were remembered in each of the 1000 random connection hubs and the 1487 
resulting distributions are shown in the dashed lines and centred on 0. To correct for 1488 
the number of connections tested (196), for each of the 1000 random hubs, we only 1489 

remembered the top connection’s contribution. This led to the FWE-corrected 1490 

distributions shown in the continuous line. In both cases, FWE-corrected and 1491 
uncorrected p-values were generated using the cumulative distribution function (cdf) 1492 
of the respective distributions. Distributions are shown exemplarily for life satisfaction 1493 
here, but see Supplementary Figure 4B for all other behaviours. B, In an additional 1494 

analysis, for comparison with other work that employs decoding techniques, we 1495 
selected the top and bottom third of participants for each latent behaviour. This was 1496 

done in order to maximize differences between our participants; note that our 1497 
participants scored in a relatively narrow, sub-clinical range. Latent behavioural 1498 

scores were binarized (1=high, 0=low). C, For the top 10 connections for each 1499 
behaviour, the area under the curve (AUC) and thus decoding performance is 1500 
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shown. We were able to decode whether a participant was in the top or bottom third 1501 
using multiple of the individual connections for all four latent behaviours. Significance 1502 
was established using shuffled behavioural and connectivity values (see Methods 1503 

and Figure 5D). D, The number of sub-models with five connections that were 1504 
estimated to determine each connections’ contribution (rDiff) was set to k=10,000. 1505 
To validate this choice, here we show (left y axis) the rDiff estimated for three 1506 
somewhat relevant connections (d32-B for lifeSat, 25-Ce for NegEmot and NAc-LaV 1507 
for sleep) as a function of the number of iterations/submodels that were estimated. 1508 

This highlights that estimates of rDiff become more and more stable the more 1509 
models are estimated. The right y axis shows the mean absolute difference in rDiff 1510 

across all 196 connections that is seen between two subsequent choices of k. This 1511 
shows that after about 8,000 iterations, estimates of rDiff hardly change, and that at 1512 
10,000 iterations, these estimates are robust and have converged.  1513 
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