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Abstract 

Access to quantitative information is crucial to obtain a deeper understanding of biological 
systems. In addition to being low-throughput, traditional image-based analysis is mostly limited 
to error-prone qualitative or semi-quantitative assessment of phenotypes, particularly for complex 
subcellular morphologies. In this work, we apply deep learning to perform quantitative image-
based analysis of complex neurodegeneration patterns exhibited by the PVD neuron in C. elegans. 
We apply a Convolutional Neural Network algorithm (Mask R-CNN) to identify 
neurodegenerative sub-cellular protrusions that appear after cold-shock or as a result of aging. A 
multiparametric phenotypic profile captures the unique morphological changes induced by each 
perturbation. We identify that acute cold-shock-induced neurodegeneration is reversible and 
depends on rearing temperature, and importantly, that aging and cold-shock induce distinct 
neuronal beading patterns. 

1. Introduction 

Aging, environmental stressors, and injury can induce reversible or irreversible changes at 
the subcellular, cellular, and tissue levels of an organism1–11. The Caenorhabditis elegans nervous 
system is not an exception and undergoes morphological and functional deterioration under these 
conditions. Morphological phenotypes indicative of neurodegeneration in this roundworm include 
somatic outgrowth, distorted soma, branched and wavy dendrites, and dendritic beading2,8,12–18. 
The ability of neurons to recover from degeneration has also been studied. For instance, Oren-
Suissa et al. found that primary dendrites in the PVD neuron reconnect via branch fusion following 
laser surgery19. PVD is a widely studied multi-dendritic nociceptor neuron that responds to harsh 
touch (mechanosensor) and cold temperatures (thermosensor) (Figure 1a)20–27. Prior work has 
identified genetic pathways important for organization of dendritic branches and dendritic self-
avoidance28–33. Dendritic organization in PVD is also affected by aging; while young animals have 
well-organized menorah-like dendritic structures, these tend to be replaced by non-uniform and 
chaotic outgrowth of dendritic branches32. Recently, Lezi et al. identified the formation of 
protrusions (or beading) along the dendrites of PVD during aging, through a process driven by the 
expression of an antimicrobial peptide34.  
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Characterization of PVD beading has thus far been performed by visual inspection and 
manual counting of fluorescent images, which is labor-intensive, time-consuming, and does not 
provide additional information about the observed morphological changes, aside from number of 
beads. Traditional image processing approaches typically rely on intensity difference for  image 
segmentation35–37. The protrusions that appear in PVD have fluorescence intensities similar to the 
rest of neuron and autofluorescent lipid droplets. Thus, traditional image processing approaches 
are unable to perform the challenging segmentation of PVD protrusions. Quantitative analysis of 
PVD neurodegeneration morphology is important to understand the root causes of 
neurodegeneration. Machine learning has proven useful for analysis of biological systems and deep 
phenotyping9,38–40. In this work, we sought to integrate cutting-edge deep learning approaches to 
segment beads in PVD fluorescence images from live animals (Figure 1b). Convolutional Neural 
Networks (CNNs) have recently shown state-of-the-art performance in image segmentation tasks 
across a wide range of biological and biomedical images datasets41–47. Here, we utilize Mask R-
CNN48, a CNN model that is designed to predict binary instance masks (one mask per predicted 
bead object) from an image to detect PVD beads. We follow this user-free segmentation approach 
with multiparametric phenotyping of PVD by extracting 46 quantitative features that describe 
beading patterns. These metrics include number of beads, cumulative area occupied by beads, 
average bead size, average pair-wise inter-bead distance, etc. We take advantage of the quantitative 
data provided by this pipeline to track subtle neurodegenerative phenotypes caused by different 
physiological stressors (Figure 1c). We validate our pipeline by assessing the effects of aging on 
PVD beading, and recapitulate previously observed changes34. In addition, we identify a 
previously unknown degenerative effect of exposure to acute cold-shock on neuronal structure. 
Finally, we show that this deep phenotyping approach enables predicting the biological status of a 
nematode (young, aged, cold-shocked) based on the quantitative metrics generated by the pipeline 
with over 85% accuracy. This analysis reveals that different stressors (aging and cold-shock) 
induce distinct neurodegenerative phenotypes hinting at potentially different underlying 
neurodegeneration mechanisms. This approach enabled automating image analysis of PVD 
neurodegeneration thus increasing throughput, eliminating the human bias and error introduced by 
manual assessment, and facilitated high content quantification of the subtle neurodegenerative 
changes in PVD, unfeasible in conventional methods. 
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Figure 1. Quantitative analysis of PVD neurodegeneration by deep learning. a) Schematic of PVD neuron with menorah-like 
dendritic branches. Fluorescence images of PVD anterior and posterior to the cell body. b) Schematic of quantitative analysis 
pipeline to study PVD neurodegeneration. c) Aging and acute cold-shock induce neurodegeneration on PVD dendrites. These two 
stressors increase the formation of bubble-like protrusions along the dendritic arbors of PVD.   

2. Results and Discussion  

2.1 Training the Mask R-CNN algorithm to perform complex image segmentation  

We adapted the convolutional neural network (CNN) model Mask R-CNN48 to 
automatically detect bead protrusions in high resolution images of nematode dendrites (Figure 
2a). The input to Mask R-CNN is a 1-channel grayscale microscopy image (1024 × 1024 × 1) and 
the output is a set of predicted bead regions consisting of one binary instance mask (1024 × 1024 
× 1)  per bead, i.e., a pixel has a value of 1 in the mask when it is part of a bead and 0 otherwise. 
A tiling procedure was employed to adapt Mask R-CNN for use with 2048 × 2048 × 1 microscopy 
images (see Methods and Materials), since this image size was sufficient to resolve the smallest 
bead protrusions. The Mask R-CNN architecture first generates regions of interest (ROIs) using a 
Faster R-CNN model, composed of a residual network (ResNet-10149) and a feature pyramid 
network50. ROIs are then processed with region proposal and ROI align neural network layers to 
produce an instance segmentation mask for each detected object. In contrast to thresholding based 
methods, which only rely on image intensity for predicting segmentations, CNNs automatically 
learn and then use hierarchical sets of image features directly from the training data without 
requiring manual feature engineering. Learning features enables relevant local context to be used 
in making segmentation predictions, e.g., the shape and size of the bead, what a dendrite looks 
like, and the proximity of beads to dendrites. We leveraged a transfer learning51 approach in which 
Mask R-CNN is pre-trained on a large annotated dataset (ImageNet52), and then fine tuned on a 
data set of nematode images that we manually annotated.  
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The Mask R-CNN algorithm requires a training data set comprised of raw images of PVD 
and their corresponding ground truth masks that label the protrusions. The masks were created 
from raw images using a custom MATLAB code that allows the user to draw around each bead 
location. A total of 19 images (each with ~ 50-150 beads with an average size of ~150 pixels) were 
manually segmented to compile the training set. In addition, an independent validation set was 
generated with 12 raw images and their associated binary masks. The validation set includes 
diverse images with ~30 to ~150 beads. These were equally split into images with a low (<100) 
and a high (≥ 100) number of beads, to test segmentation consistency. To assess segmentation 
performance, we quantified precision and recall, described as: 

 

In these expressions, true positives are correctly identified beads, false positives are non-
bead objects identified as beads, and false negatives are non-identified beads (Figure 2b). As 
shown in Figure 2c, the segmentation precision for the validation data set was 85% and 91% for 
images with low and high bead numbers, respectively. Similarly, a recall of 90% and 93% was 
obtained for low and high bead number images, respectively (Figure 2d). These slight differences 
could stem from the low number of beads while retaining the same level of objects that can be 
falsely identified as beads in the first group The optimized Mask R-CNN algorithm successfully 
scored 88% in precision and 91% in recall for the entire validation set. Thus, this machine-learning 
approach offers consistent unbiased segmentation with high accuracy.  

Importantly, precision and recall do not provide information to assess the performance of 
the model in ignoring objects that can easily be identified as beads (true negatives). In this 
particular phenotyping problem, this type of objects are prevalent. Autofluorescent lipid droplets 
can be easily mistaken for neurite protrusions, due to their round shape and location, which can 
overlap with PVD dendrites in maximum projections. Distinguishing round objects with 
comparable intensity levels and with similar locations and sizes is a significant challenge. To 
assess the power of the algorithm to distinguish between the two, we chose 3 images from animals 
with an abundance of fat-droplets that overlapped with dendrites, as part of our training set.  As 
shown in Figure 2e, the algorithm is successful in discerning fat droplets from beads, despite their 
similarities. Prior approaches have addressed this problem by performing dual color microscopy 
to compare images that show only lipid droplets with images that show the fluorescent reporter38. 
This deep learning approach eliminates the need to perform alternative analyses or dual color 
microscopy to subtract autofluorescent objects.  

True PositivePrecision =
True Positive + False Positive

True PositiveRecall =
True Positive + False Negative
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Figure 2. Deep learning approach successfully identifies beads in the PVD neuron. a) Schematic of segmentation pipeline. Raw 
2048×2048 images are fed to the trained Mask R-CNN model to perform instance segmentation. Yellow arrows point to neuronal 
beads. b) Illustration for true positive, true negative, false positive, and false negative cases used to quantify the performance of 
instance segmentation. c-d) The performance of the algorithm was examined by defining precision and recall of segmentation 
where 12 validation images were used. Error bars are Standard Error of Mean (SEM). e) Images showing the algorithm 
successfully distinguishes bubble-like protrusions (beads) from fat droplets.  

2.2 Deep phenotyping of age induced PVD neurodegeneration  

The nervous system in C. elegans undergoes morphological and functional decline due to 
aging14,18. Morphological changes in PVD include dendritic outgrowth and beading, which become 
more common as animals age, as evidenced in Figure 3a. As previously mentioned, quantitatively 
investigating beading is difficult as animals can exhibit tens to hundreds of beads with fluorescence 
intensity levels similar to those of labeled neurons and autofluorescent lipid droplets. Moreover, 
beading is a highly variable process, and quantification thus requires analysis of large animal 
populations. We first aimed to quantitatively analyze aging-induced beading in PVD using the 
deep learning pipeline. Our results (Figure 3b) show that the average bead count increases from 
days 2 to 4 and 6 of adulthood. Interestingly, the average number of protrusions does not appear 
to change significantly afterwards. These results suggest that there may be a saturation point for 
the beading process, which animals reach at mid-age.  

 One of the advantages of computer-based image segmentation is that quantification of 
beading neurodegeneration is not limited to the number of beads. Our post-segmentation 
MATLAB pipeline enabled extracting additional metrics (a total of 46, Supplemental information) 
to comprehensively describe the morphological neurodegeneration phenotypes. The average bead 
size (Figure 3c) seems to decrease slightly as animals age (days 6-12 vs. days 2-4), which can be 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.982074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.982074


6 
 

explained by an increase in percentage of small beads (area < 100 pixels) (Figure S1b). While the 
size is slightly reduced, the total area occupied by beads increases as nematodes age (Figure S1a). 
These results suggest that the main morphological change induced by aging is an increase in total 
beading (as measured by number or total bead area), rather than in bead size. The average inter-
bead distance (i.e., average of all pairwise distances) describes how dispersed the beads are, and 
decreases in older populations as expected due to an increase in total number of beads (Figure 
3d). Other metrics that describe bead size and spatial bead distribution (such as 90th percentile of 
bead size, and percentage of pairwise inter-bead distances < 300 pixels, Figures S1d-e) confirmed 
an overall trend towards accumulation of smaller beads with increased density throughout the 
neuron in older animals. 

To deepen our understanding of aging-induced beading, we compared the patterns 
exhibited anterior (towards the head) and posterior (towards the tail) to the PVD cell body, since 
separate images were acquired (Figure 3a). While both regions exhibit an increase in number of 
beads (Figure 3e), this change was more drastic in the anterior section. This difference could be 
explained by either a higher susceptibility to beading or by the fact that the anterior region occupies 
larger area, since the posterior is closer to the animal’s tail and is thus more tapered. The average 
inter-bead distance in the posterior region tends to be larger than in the anterior side (Figure 3f), 
as would be expected for a reduced number of beads. As shown in Figure S1f, bead morphology 
appears to be homogeneous, as there is no significant difference in anterior vs. posterior average 
bead size. Metrics such as the percentage of small beads (< 100 pixels) or the percentage of beads 
with close neighbors (pairwise inter-bead distances <300 pixels) did not show any significant 
differences along the two different sections of PVD (Figure S1g-h). This deep learning – based 
analysis corroborates the neuronal beading reported by Lezi et al., while deepening our 
understanding of the subtle neurodegenerative patterns that result from aging. 
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Figure 3. Deep learning allows quantitative analysis of aging induced morphological changes in PVD. a) Qualitative inspection of 
PVD at 3 time points of their life-span shows an increase in number of beads throughout the dendrites. Protrusion formation was 
identified in both anterior and posterior parts of the PVD neuron. Yellow arrows point to neuronal beads. b-d) Average number of 
beads, average of mean bead size, and average inter-bead distance of both anterior and posterior regions of PVD throughout 
aging. Lines are 25th percentile, mean, and 75th percentile. Whisker is standard deviation. Statistical analysis was performed with 
one-way ANOVA followed by Tukey multiple comparison correction. *P<0.05, **P<0.001, and ***P<0.0001. e-f) Average 
number of beads, and average inter-bead distance of anterior versus posterior regions of PVD throughout the aging process. Error 
bar is SEM. 

2.3 Acute cold-shock induces neurodegeneration in PVD neuron 

In addition to sensing harsh touch, PVD acts as a thermosensor activated by cold 
temperatures53. Cold-shock has been previously studied as a stressor for C. elegans 53–64. Robinson 
et al.identified that animals can survive short (4 hrs.) exposures to acute cold-chock (2 °C), but 
longer exposures (24 hrs.) result in death for a fraction of the population65. Furthermore, Ohta et 
al. showed that the pre cold-shock culture temperature is inversely correlated with survival rate 
(more animals survive cold-shock if previously cultured at lower temperatures)66. While the 
detrimental effects of cold-shock on nematodes’ survival and PVD’s involvement in responding 
to cold temperatures have been independently studied, the impact of cold-shock exposure on PVD 
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health has not been investigated. To answer this question, we first tested the effects of exposure to 
cold-shock on PVD morphology, where we identified the appearance of PVD neurite beading. 
Thus, we sought to examine the neurodegenerative effects of acute cold-shock at 4 °C through our 
deep learning phenotyping pipeline.  

To characterize the relation between cold-shock and beading, we first exposed different C. 
elegans populations to cold-shock for various durations. As shown in Figure 4a, eggs extracted 
from gravid hermaphrodites were transferred to NGM plates and cultured at 20 °C until day 2 of 
adulthood, when pre- cold-shock microscopy was performed. Nematodes were then split into four 
separate plates and transferred to 4 °C for either 4, 8, 16, or 24 hrs. Visual inspection of raw images 
suggested beading increases with longer cold-shock, but is especially evident in populations that 
were exposed for 16 hrs. or more. Quantitative analysis performed using the trained Mask R-CNN 
and post segmentation feature extraction pipeline shows that the number of beads gradually 
increases with longer periods of cold-shock (Figure 4b), and is almost doubled after 16 hrs., as 
compared to non-exposed animals. Similar to the aging process, beading reaches a saturation point, 
where no significant change in the number of beads is observed after 16 hrs. Interestingly, the 
percentage of small beads (area < 100 pixels) increases after 4 and 8 hrs. of cold-shock, but this 
effect is not observed after 16 and 24 hrs. (Figure S2b). This suggests that new small beads are 
generated in the first 8 hours, resulting in a higher percentage of smaller beads. The drop in 
percentage of small beads after 16 and 24 hrs. could be due to existing protrusions becoming larger 
once the number of beads saturate. This fluctuation in percentage of small beads is also reflected 
in the average size (Figure 4c), which slightly decreases during the first 8 hours of cold-shock and 
grows after 16 and 24 hrs. One potential explanation for these observations is that initially new 
small beads form, but eventually the beading mechanism switches to bead growth rather than bead 
generation. 

Computer-based image processing and quantitative analysis also enabled identifying subtle 
differences between aging and cold-shock beading patterns. While an increase in bead number was 
observed in both cases, cold-shock resulted in an increase in average inter-bead distance (Figure 
4d), in contrast to aging. This counterintuitive result can potentially be explained by the tendency 
of cold-induced protrusions to form in more distant dendrites (such as 3rd or 4th order branches) of 
healthy menorahs. With aging, beads are generated evenly throughout the entire neuron, likely as 
a result of the aging-induced disorganized branching that increases the density of dendrites (where 
beads are formed) throughout the worm’s body (Figure 4e). The information extracted from 
anterior and posterior regions of PVD for nematodes exposed to acute cold-shock shows very 
similar patterns to aging-induced neurodegeneration. The number of beads in the anterior part is 
greater than in the posterior side (Figure 4f) and the beads are on average farther apart in areas 
closer to the tail (Figure 4g). Bead size appears to be homogeneous in both sides (Figure S2f), 
while the anterior region has a slightly higher percentage of small beads (area < 100 pixels) (Figure 
S2g). Utilizing this deep learning quantitative phenotyping enabled the identification of a 
previously unknown effect of acute cold-shock on PVD degeneration, which is exacerbated with 
longer exposures. Moreover, this analysis suggests that beading patterns differ for aging and acute 
cold-shock, suggesting potentially different mechanisms of protrusion formation. 
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Figure 4. PVD neuronal structure undergoes morphological changes upon exposure to acute cold-shock. a) Schematic of acute 
cold-shock assay. Nematodes were cultured at 20°C until day two of adulthood, split into four plates, and cold-shocked for 4,8,16, 
or 24 hours. Fluorescence microscopy was conducted before exposure to cold-shock and after specific periods of shock. b-d) 
Average number of beads, average of mean bead size, and average inter-bead distance of anterior and posterior regions of PVD 
as nematodes experienced various duration of cold-shock. The lines are 25th percentile, mean, and 75th percentile. Whisker is 
standard deviation. Statistical analysis was performed with one-way ANOVA followed by Tukey multiple comparison correction. 
*P<0.05, **P<0.001, and ***P<0.0001. e) Illustration of distinct beading patterns in aging and acute cold-shock based on the 
inter-bead distance. Inter-bead distance decreases with aging while it increases with cold-shock. f-g) Average number of beads 
and average inter-bead distance of anterior versus posterior parts of PVD upon cold-shock. Error bar is SEM. 
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2.4 Post cold-shock recovery can eliminate PVD dendritic protrusions  

Given the significant increase in number of dendritic protrusions in PVD upon exposure to 
acute cold-shock, we next sought to determine its potential for regeneration. To test this 
hypothesis, we designed experiments to characterize PVD beading patterns after acute cold 
exposure and following a subsequent period under normal culture conditions (referred to as 
rehabilitation or recovery). As shown in Figure 5a, we performed 3 one-day rehabilitation regimes 
at 3 different temperatures, selected to cover the entire physiological range (15, 20, and 25 °C). 
Given that nematodes growth rate and life-span depend on culture temperature, we expected the 
population cultured at 25 °C to show a faster recovery rate than those grown at 15 °C.  After 
exposure to 16 hrs. of acute cold-shock, the average number of beads increased by 100% as 
compared to pre cold-shock conditions. After one day of rehabilitation we observed a decrease in 
the number of dendritic protrusions in all three rehabilitation temperatures (Figure 5b). As 
expected, populations cultured at 15 °C and 25 °C had the lowest (~30%) and highest (~50%) 
recovery, respectively, suggesting that recovery rate is correlated with growth rate.  

In addition to a reduction in number, the average bead size slightly decreases after 
rehabilitation (Figure 5c and Figure S4). This recovery is corroborated by the total area covered 
by beads (Figure S3a), which increases after cold-shock and decreases in all recovery regimes, 
indicating that bead formation due to cold-shock is reversible.  These results suggest that recovery 
occurs by both bead elimination and a gradual size reduction. To further understand the spatial 
patterns of cold-shock bead formation, we also explored inter-bead distances. As previously 
mentioned (Figure 4c), the average inter-bead distance increased post cold-shock, suggesting 
beads are formed in the farthest dendrites. One-day recovery treatment at all three temperatures 
reduced this metric (Figure 5d), suggesting that beads on the farthest dendrites are more prone to 
disappear post-recovery. As expected, the percentage of beads with close neighbors (inter-bead 
distance < 300 pixels) decreases with cold-shock and increases after recovery (Figure S3d).Taken 
together, these quantitative features suggest that cold-shock induces the formation of beads, 
particularly in distal regions (as the inter-bead distance increases), and that subsequent culture at 
physiological temperatures reverts these changes.  

In line with previous findings, the anterior region of PVD exhibits a higher number of beads 
than the posterior region, post-rehabilitation. However, recovery does not appear to favor either 
side, as both areas show a reduction of beading post recovery (Figure 5e). Likewise, while the 
posterior region shows higher inter-bead distances than the anterior region, both exhibit a reduction 
of inter-bead distance post recovery (Figure 5f). The average bead size, percentage of small beads 
(area < 100 pixels), and percentage of beads with close neighbors (inter-bead distance < 300 pixels)  
do not show any significant differences between the anterior and posterior regions, either post 
cold-shock or post recovery (Figure S3f-h), for most conditions. This suggests that the propensity 
of the anterior region to increased beading observed with aging is also observed upon cold-shock 
and after recovery from cold-shock. Taken together, these results indicate that after acute cold 
exposure, one day recovery at different temperatures can almost completely alleviate the induced 
neurodegenerative effects. In addition, this data suggests that a more efficient recovery can be 
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achieved by rehabilitation at higher temperatures. Finally, it appears that cold-shock preferentially 
induces beading in the farthest dendrites, but these are also preferentially removed during recovery. 

 
Figure 5. PVD neurodegenerative phenotypes caused by acute cold-shock are reversible. a) Schematic of post cold-shock 
rehabilitation treatment assay. Nematodes were cultured at 20 °C until day 2 of adulthood and were exposed to cold-shock for 16 
hrs. To perform recovery, the population was split into three plates at either 15 °C, 20 °C, or 25 °C for one day. b-d) Average 
number of beads, average of mean bead size, and average inter-bead distance of PVD neuron as nematodes experienced cold-
shock for 16 hrs. and undergo rehabilitation at 3 different temperatures. The lines are 25th percentile, mean, and 75th percentile. 
Whisker is standard deviation. Statistical analysis was performed with one-way ANOVA followed by Tukey multiple comparison 
correction. *P<0.05, **P<0.001, and ***P<0.0001. e-f) Average number of beads, and average inter-bead distance of anterior 
versus posterior regions of PVD as nematodes experienced cold-shock for 16 hrs. and rehabilitation at 3 different temperatures. 
Error bar is SEM. 
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2.5 Pre cold-shock culture temperature affects neurodegeneration severity  

Physiological culture temperature is a key environmental factor that affects development, 
growth, and life-span in poikilotherms, such as C. elegans57. Nematodes habituate to imposed 
environmental conditions, including temperature66–70. Previous studies have identified that after a 
4 °C of cold-shock over 85% of animals cultured at 25 °C die, while most animals cultured at 15 
°C survive66. These findings motivated us to investigate whether the pre cold-shock culture 
temperature plays a role in beading neurodegeneration. To test this, 3 parallel cold-shock/recovery 
experiments at 3 physiological temperatures were conducted (Figure 6a) where populations were 
cultured at 15, 20, and 25 °C for ~3.5, 2.5, and 1.5 days, respectively. These animals were then 
exposed to acute cold-shock at 4 °C and subsequently returned for one day to their culture 
temperature. The difference in culture time prior to cold-shock allowed animals to reach the same 
developmental stage. Based on prior studies where nematodes cultured at lower temperatures prior 
to cold-shock have a higher survival rate66, we hypothesized that lower temperatures would result 
in less severe neurodegeneration than high temperatures.  

Post cold-shock behavioral analysis revealed that animals grown at 25 °C were the most 
affected, as they recovered mobility long after transfer to room temperature (30 – 40 min), while 
this time was considerably shorter for animals cultured at 15 and 20°C. Once animals started 
crawling, nematodes cultured at 25 °C moved significantly slower than those cultured at lower 
temperatures, indicating that worms habituated to a higher temperature undergo a more drastic 
shock under cold exposure. These observations suggest that a larger temperature gradient between 
culture and cold-shock results in increased neuronal damage. As shown in Figure 6b, the number 
of beads present after cold-shock and rehabilitation confirm this trend. The average number of 
beads increases post cold-shock in all samples, with the smallest change for nematodes grown at 
15 °C. The mean bead count after cold-shock reaches the same level for samples cultured at 20 
and 25 °C, potentially due to beading reaching a saturation point. This upper limit in number of 
beads was also observed in neurodegeneration caused by aging and in cold-shock exposure for 
different periods of time. Interestingly, while populations rehabilitated at 15 and 20 °C show a 
reduction in number of beads, this effect was not present in those recovered at 25 °C. This could 
be explained by either a delayed or slower regeneration, or an inability to regenerate for animals 
cultured at 25 °C. Interestingly, in contrast to animals cultured at 15 and 20 °C, the mean bead size 
slightly decreased after the rehabilitation regime at 25 °C (Figure 6c), suggesting that recovery at 
25 °C does induce some regenerative effect. The regeneration results observed in animals cultured 
at 20 °C and recovered at 25 °C (presented in the previous section) support the idea that 
regeneration at 25 °C is possible, but is likely slower for the population cultured at 25 °C pre cold-
shock. Such delayed regeneration could stem from the more drastic difference between the 
baseline and cold-shock temperature. Finally, these experiments corroborate that cold-shock 
induced beading occurs in the farthest regions of the neuron, as inter-bead distance increases with 
cold-shock, and is then reduced after rehabilitation for all culture temperatures (Figure 6d). The 
percentage of small beads (area < 100 pixels) and the percentage of beads with close neighbors 
(inter-bead distances <  300 pixels) (Figure S5b,d) also show a reversal of the cold-shock exposure 
effect in all three physiological temperatures.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.982074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.982074


13 
 

 
Figure 6. Populations cultured at different temperature before being exposed to cold-shock show different susceptibility to 
neurodegeneration. a) Schematic of the experimental setup to study the effect of pre cold-shock cultivation temperature. Animals 
were cultured at 20 °C until young adulthood and then transferred to 15 °C, 20 °C, or 25 °C for 3.5, 2.5, and 1.5 days, respectively. 
Cold-shock was then performed for 16 hrs. and rehabilitation was performed for one day at the pre cold-shock temperature. b-d) 
Average number of beads, average of mean bead size, and average inter-bead distance of PVD for populations that undergo cold-
shock as described in part a). The lines are 25th percentile, mean, and 75th percentile. Whisker is standard deviation. Statistical 
analysis was performed with one-way ANOVA followed by Tukey multiple comparison correction. *P<0.05, **P<0.001, and 
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***P<0.0001. e-f) Average number of beads, and average inter-bead distance of anterior versus posterior part of PVD for 
populations that undergo cold-shock as described in part a).  Error bar is SEM. 

Consistent with our previous results, the anterior region of PVD showed a higher number 
of protrusions than the posterior (Figure 6e). Both regions, recapitulate the trends observed for 
pre cold-shock, post cold-scock, and post rehabilitation in the entire animal. The anterior region 
consistently exhibits ~20-100% higher number of beads than the posterior, with pre cold-shocks 
showing the largest difference. The average bead size does not show differences between these 
regions (Figure S5f). However, similar to previous experiments, the protrusions are more densely 
distributed in the anterior part, as is expected for a higher number of beads (Figure 6f). The results 
from this assay support our hypothesis that the culture temperature impacts how nematodes 
respond to acute cold-shock. Animals cultured at 15 °C exhibited the least neurodegenerative signs 
and faster recovery, while those grown 25 °C showed more drastic beading and slower 
rehabilitation rate. This difference in response indicates that the magnitude of the cold-shock 
(based on the baseline temperature) correlates with the induced neurodegenerative effects through 
a yet unknown mechanism. 

2.6 Predicting biological status using deep quantitative classification   

The quantitative analysis of beading induced by aging and cold-shock indicate that the 
induced patterns of PVD degeneration are different. To further investigate the morphological 
changes observed, we took advantage of the rich information obtained from the Mask R-CNN 
segmentation and feature extraction pipeline, which includes all 46 metrics. Through visual 
inspection of the raw images, as well as the quantitative analysis of the beading patterns, it is clear 
that beading phenotypes cannot be fully described with a single feature, such as number of beads. 
Furthermore, there is significant variability within a population. As shown in Figure 7a, a large 
fraction of aged animals exhibit less than 70 beads, which is considerably lower than the average 
of the population and is closer to the number of beads for young individuals. Likewise, some young 
animals showed more than 70 beads, which is significantly higher than the average of the 
population. The same variability was observed in cold-shock experiments, suggesting that the 
number of beads does not offer a comprehensive description about biological status of a nematode. 
Combining two metrics such as number of beads and average bead size still does not provide 
enough information to distinguish between young and aged adults (Figure 7a). 

Given that beading patterns relay information about the health state of PVD, we reasoned 
that beading phenotypes could be used to predict the biological state of the animals. To test this 
hypothesis, we sought to incorporate all 46 metrics extracted from each image in a classification 
model. In first attempt, as shown in Figure 7b, we performed PCA (Principal Component 
Analysis) on the 46 metrics. Two principal components (PC1 and PC2) explain 46% of the total 
variance, and are unable to accurately differentiate nematodes from these two stages in their life-
span. Thus, we aimed to test the ability of classification models to distinguish young and old 
nematodes using the metrics extracted from PVD beading patterns. As shown in Figure 7c, 
animals from different groups (e.g. pre and post cold-shock), can exhibit very similar beading 
patterns. Successful predictive models would prove the presence of subtle neurodegenerative 
patterns that can only be described using multiple metrics. We first developed a classification 
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model to distinguish young versus old adults. To create a labeled training set, data from the 
posterior side of PVD for worms younger than 4 days old were grouped together while the second 
class was comprised of information from nematodes older than 4 days old. An independent 
validation data set was then generated to test classification accuracy. It should be noted that these 
two classes are more difficult to distinguish than comparing day 2 vs. day 12 animals (i.e., the 
youngest vs the oldest samples). We tested four classification algorithms: Subspace Discriminant 
Ensemble (SDE), Support Vector Machines (SVM), Logistic Regression, and K-Nearest 
Neighbors (KNN). Two models, SDE and SVM, achieved both training and validation accuracies 
above 80%, with the validation accuracy of SDE reaching 90% (Figure 7d). For age-based 
classification, the information acquired from the PVD anterior side was also used to train separate 
models leading to training and validation accuracies higher than 80% (Figure S6a). These results 
suggest that age-induced PVD neurodegeneration causes subtle morphological changes that can 
only be captured using quantitative deep phenotyping. Similarly, we tested models for classifying 
nematodes exposed to cold-shock from those that did not experience this stressor. The training and 
validation set for this analysis was comprised of data from cold-shock performed at all three pre 
cold-shock temperatures and, as shown in Figure 7e, ~80% classification accuracy was obtained 
both in training and validation. Since differences between degenerated (i.e., old or cold-shocked) 
and healthy (young or non cold-shocked) animals have been shown, it was expected that these 
populations are distinguishable. However, given the significant variability in each population, the 
high classification accuracy obtained was surprising and points to consistent phenotypic patterns 
exhibited upon degeneration that are not evident to visual inspection. 

To further test the power of our deep phenotyping pipeline, we next investigated potential 
differences in PVD neurodegeneration exhibited upon aging and acute cold-shock. We compiled 
data from the anterior and posterior part of the PVD from aging and cold-shock assays to generate 
training and validation sets. As shown in Figure 7f, the SDE model reaches ~90% training and 
validation accuracy for the anterior and ~80% for the posterior regions (Figure S6c). This 
difference in classification accuracy could stem from the anterior part of PVD undergoing stronger 
beading patterns than the posterior. Notably, these results indicate that these two stressors cause 
distinct neurodegeneration patterns which can be captured by in depth quantitative analysis. As a 
last test, we sought to establish whether the differences in bead patterning between the anterior 
and posterior part of the PVD could be used to classify images of each class. An accuracy of ~85-
90% was achieved from different models, confirming underlying beading pattern differences 
between these two regions of the neuron (Figure S6d). This analysis reveals that at least some of 
the phenotypic changes in beading patterns are specific to each neurodegenerative stressor. The 
developed classification models are a powerful tool to identify potential differences in 
neurodegenerative patterns caused by various environmental stressors (cold-shock or aging). 
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Figure 7. Biological status of a nematode can be predicted based on PVD neuron’s health. a) Average of mean bead size versus 
the average number of beads for young and aged nematodes. Age-induced PVD degeneration patterns are complex and two metrics 
are not sufficient to accurately classify the two populations. b) Principle component analysis (PCA) for young and aged adults 
does not enable distinguishing young and aged groups, based on the two first principal components. c) Schematic of the pipeline 
for computer-based machine learning models to predict the nematode’s biological status based on the morphological structure of 
PVD. Raw images are fed to Mask R-CNN algorithm to obtain binary mask, which is then used to extract the 46 metrics. Multiple 
models were trained based on these 46 metrics, and tested on separate data sets. d-f) Classification accuracy for young vs. aged, 
cold-shocked vs control, and cold-shocked vs. aged nematodes. SDE=Subspace discriminant ensemble, KNN=K-nearest neighbor, 
SVM=Support vector machine.  

3. Conclusions 

Neurons undergo degeneration during the aging process. In C. elegans, PVD, a neuron 
responsible for mechano-sensation and thermo-sensation experiences morphological and 
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functional changes as animals age32,34. Prior studies have identified changes in dendrite 
morphology characterized by disorganization in the menorah-like dendritic arbors28,29. In addition, 
Lezi et al. identified that aging results in the formation of protrusions (or beads) along PVD 
dendrites34. However, analyzing such morphological changes is challenging. Manual inspection to 
quantify the number of protrusions is time-consuming, labor-intensive, low-throughput, and 
subject to human bias. In addition, manual counting provides limited information and makes 
thorough analysis of the complex phenotypes acquired in fluorescence images unfeasible.  In order 
to track morphological changes that PVD undergoes with degeneration, we integrated a cutting-
edge deep learning technique to segment the protrusions that form along PVD. This technology 
decreased the time required to process each image from 3 hours to less than a minute, while 
eliminating the human bias in analyzing the data. In addition, a secondary algorithm was developed 
to extract 46 different metrics that make up a comprehensive phenotypic profile that describes the 
neurodegenerative beading patterns.  

We implement a Convolutional Neural Network based algorithm (Mask R-CNN) to carry 
out challenging image segmentation, unfeasible with traditional image processing approaches. The 
algorithm segmentation precision and recall achieved 88% and 91% respectively. An important 
advantage offered by this technology (which cannot be quantified using the metrics above), is its 
capability to distinguish autofluorescent lipid droplets from actual protrusions, in spite of their 
remarkable similarities in shape, intensity, and location. The in-depth quantification of PVD 
morphology enabled by this technology revealed subtle neurodegenerative changes induced by 
aging and upon exposure to acute cold-shock. With this approach, we identified an increase in the 
number of beads formed along PVD as animals aged, recapitulating earlier work by Lezi et al34. 
In addition, the reduction in average bead size and inter-bead distance quantified in later points of 
the nematode’s life-span suggested that the protrusions formed due to aging tend to be small and 
appear close to each other. 

Prior work has focused on the effect of acute cold-shock on a population’s survival and  on 
PVD degeneration independently32,34,54,66. However, the neurodegenerative impacts of acute cold-
shock on PVD were still unexplored. We sought to test the effect of acute cold-shock on PVD by 
exposing populations of worms to 4 °C and subsequently quantifying the protrusions generated as 
a result. We demonstrate that exposure to cold-shock for 16 hrs. or more induces bead formation 
in PVD. In contrast to the beading patterns induced by aging, the average inter-bead distance 
increased in animals as a result of cold-shock, a counterintuitive result as an increased bead density 
is expected with a higher number of beads. This finding, however, can be explained by the 
formation of beads in the farthest regions of the neuron. These results were the initial signs of 
aging and cold-shock inducing phenotypically distinct neurodegenerative patterns. We next sought 
to study the regenerative potential of PVD post cold-shock. Thus, populations of worms exposed 
to cold-shock were transferred to 3 different temperatures (15, 20, and 25 °C) for a day of recovery. 
Interestingly, a decrease in the number of beads was observed after the rehabilitation in all 3 
temperatures, while the population cultured at 25 °C exhibited the greatest decrease. The increased 
inter-bead distance induced by cold-shock was reversed in all three temperatures. These results 
suggest that bead formation due to cold-shock is a reversible process, at least at the earlier stages 
of adulthood. We also investigated whether culture temperature impacts the severity of bead 
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formation due to cold-shock. Our data suggested that populations cultured at lower temperatures  
experience less drastic neurodegeneration, while those cultured at higher temperatures undergo 
more severe damage.  

Finally, we use our deep phenotyping approach to predict the biological status of 
nematodes based on 46 metrics extracted from the images. We tested multiple algorithms (SVM, 
KNN, SDE, and Logistic Regression) to classify young and old adults, cold-shocked and non-
shocked nematodes, and cold-shocked and aged worms. These models achieved ~85% 
classification accuracy, indicating distinct beading patterns result from different stressors. 
Importantly, this classification method, which relies on multiple descriptive metrics of beading 
patterns, enables deeper exploration of the relevant parameters that describe the biological status 
of the neuron and its particular degeneration pattern. These promising results suggest that this 
approach can be used in future studies to characterize beading patterns associated with other 
conditions or environmental stressors. While the nature of the beads is still unclear, this approach 
will be crucial in understanding their role, composition, and generation mechanisms, by applying 
it in genetic or drug screens, and to test the beading patterns formed under other conditions.  

In this work, we developed a computer-based comprehensive pipeline to study PVD 
neurodegeneration in a high-content, automated manner. Our quantitative analysis enabled 
interrogating the morphological changes that PVD undergoes under different scenarios, leading to 
deeper understanding of neuronal degeneration. Through this deep phenotyping pipeline, we 
identify a new environmental stressor (cold-shock) that induces neurodegeneration characterized 
by beading and reveal distinct neurodegeneration patterns induced by aging. The presented results 
are evidence that this high-content phenotyping technology can be used to characterize subtle, and 
noisy degeneration beading patterns with differences amongst stressors unnoticeable to the human 
eye. This pipeline is a promising approach to further explore the mechanisms underlying of 
beading neurodegeneration in these and other contexts (such as oxidative stress, dietary restriction, 
and neurodegenerative disease models), to understand the differences that lead to distinct aging 
and cold-shock induced degeneration, and to identify whether beads are a result of loss of neuronal 
integrity or could act as a protective mechanism.  

  

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.08.982074doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.08.982074


19 
 

4. Materials and Methods  

Worm Culture  

The C. elegans strain used in this work is NC1686 (wdls51 [F4H12.4::GFP + unc-119(+)]), 
which expresses GFP in PVD. All populations were cultured on solid Nematode Growth Media 
(NGM) plates. For aging experiments, 12 mg of Fluorodeoxyuridine (FUdR) was added to 1L of 
media (50 µM). Animals exposed to this concentration of FUdR produced non-viable eggs. For 
cold-shock experiments, plates without FUdR were used since experiments took place in 4 days. 
Age-synchronized populations were obtained by extracting eggs from gravid hermaphrodites using 
a bleaching solution (1% NaOCl and 0.1 M NaOH). Eggs were then transferred to NGM plates 
seeded with E. coli OP50. M9 buffer (3 g KH2PO4, 6 g Na2HPO4, 5 g NaCl, and 1 mL of 1 M 
MgSO4 in 1 L of water) with 5 µM Triton X-100 was used to transfer worms.  

Microscopy 

Animals were mounted on 2% agarose pads on glass slide. Agarose pads were placed at 
room temperature overnight before microscopy. A drop of 10 mM Tetramisole in M9 buffer was 
added for immobilization. Images were acquired on a Leica DMi8 equipped with a spinning disk 
confocal head (CrestOptics X-light V2) and a Hamamatsu Orca-Fusion camera using a 63x 
objective. The illumination source is a Laser Diode Illuminator (89 North LDI). The imaging 
settings were maintained constant for all images (exposure time of 60ms and laser power at 50%). 
Due to small field of view provided by the high magnification 63x objective (NA=1.40), two 
sections of each worm (anterior and posterior of PVD cell body) were imaged separately to cover 
larger area of the body. Images were acquired as z-stacks of 31 slices taken 1 µm apart. The final 
raw images used in this study were maximum projections of the z-stacks taken at every one-micron 
step.  

Image segmentation and analysis 

The input to the Mask R-CNN machine learning algorithm trained for this study were 
2048×2048 maximum projection PNG images. Images were preprocessed before being fed to the 
algorithm using MATLAB image processing toolbox (imadjust function) to equalize the image 
contrast throughout the data set. We modified the Mask R-CNN implementation open-sourced by 
Matterport Inc. under the MIT license71 using Python3, Keras72, and Tensorflow73. During training, 
each 2048 x 2048 x 1 image and its set of corresponding binary instance masks were split into 9 
overlapping tiles of size 1024 x 1024 x 1. Only non-zero instance masks were kept. The trained 
Mask R-CNN model was used to predict instance masks by similarly tiling the testing images. 
Predictions were made sequentially on 9 tiles from the top left to the bottom right of each image, 
and newly predicted instance masks were kept only if they did not overlap with any previously 
predicted mask by more than 30%. Only objects yielding a predicted probability greater than 0.9 
of being in the foreground or ``bead’’ class were kept. The Mask R-CNN head was trained for 20 
epochs and the entire model was trained for 400 epochs, starting from pretrained ImageNet 
weights. The training data were augmented using random combinations of flips, 90 degree 
rotations, and affine shearing. The model with the lowest validation loss after 400 epochs was used 
for predicting instance masks. The binary masks acquired by performing image segmentation using 
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the Mask R-CNN were then coupled with raw images and fed to secondary MATLAB based 
algorithm to extract metrics describing the morphology of neuron. 

Aging assay  

 Eggs extracted from gravid hermaphrodites were transferred to a seeded plate and 
maintained at 20 °C until the population reached late L4 stage and then transferred to an FUdR 
plate. FUdR plates were checked daily to ensure no viable eggs or progeny were produced. During 
the first 7-8 days of adulthood nematodes were transferred to a fresh FUdR plate on a daily basis 
to provide worms with sufficient food specially during their early adulthood. Every 2 days, a subset 
of nematodes was picked to perform high-resolution microscopy.    

Cold-shock assay 

The cold-shock experiments were designed to be conducted in ~4 days, which included 
Pre/Post cold-shock microscopy and rehabilitation. For the first two cold-shock assays, eggs 
extracted from gravid hermaphrodites were transferred to NGM plates and cultured for 4-5 days 
at 20 °C until they reach day 2 of adulthood, when pre cold-shock microscopy was performed. 
Cold-shock was performed by transferring plates to a 4 °C refrigerator for the designated amount 
of time. Plates were then placed at room temperature for 1 hr. before performing post cold-shock 
microscopy. This hour-long rehabilitation allowed nematodes to regain their mobility. For the tests 
where rehabilitation was needed, plates were transferred to designated temperature (15 °C, 20 °C, 
and 25 °C) for one day before post-rehabilitation microscopy was performed. For the pre cold-
shock culture temperature effect assay, nematodes were cultured at 20 °C until reaching young 
adulthood. Subsequently, the three populations were transferred to 15°C, 20 °C, and 25°C 
incubator and cultured for 3.5, 2.5, and 1.5 days before performing pre cold-shock microscopy on 
each population (to ensure all three samples reach the same developmental stage). Populations 
experienced 16 hrs. of cold-shock at 4 °C prior to post cold-shock microscopy. The samples were 
then transferred back to the temperature they were cultured at before cold-shock for one-day to 
examine the post shock recovery. 

Principal Component Analysis and classification  

 Principal Component Analysis (PCA) based on correlation was performed using JMP Pro 
14 software. For this analysis, a data set comprised of 150 images (half from animals younger than 
4 days and half from animals older than 4 days old). All 46 metrics extracted from images were 
incorporated in the analysis. The first two principal components explained 46% of the variance. 
Classification of biological status was conducted using MATLAB Classification Learner App. For 
all training sessions, all 46 metrics extracted from images were incorporated to train the models, 
and used 5 folds cross-validation was carried out. A separate validation set was used to test 
performance. 
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