1	Title: Rainforest-to-pasture conversion stimulates soil methanogenesis across the Brazilian
2	Amazon
3	
4	Marie E. Kroeger ¹ *, Laura K. Meredith ^{2,3} , Kyle M. Meyer ^{4,10} , Kevin D. Webster ⁵ , Plinio
5	Barbosa de Camargo ⁶ , Leandro Fonseca de Souza ⁶ , Siu Mui Tsai ⁶ , Joost van Haren ^{3,7} , Scott
6	Saleska ⁸ , Brendan J.M. Bohannan ⁴ , Jorge L.M. Rodrigues ⁹ , Klaus Nüsslein ^{1#}
7	
8	1. Department of Microbiology, University of Massachusetts Amherst, Amherst, MA, USA
9	2. School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA
10	3. Biosphere 2, University of Arizona, Tucson, AZ, USA
11	4. Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
12	5. Planetary Science Institute, Tucson, AZ, USA
13	6. Center for Nuclear Energy in Agriculture, University of São Paulo, SP, Brazil
14	7. Honors College, University of Arizona, Tucson, AZ, USA
15	8. Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
16	9. Department of Land, Air and Water Resources, University of California Davis, CA, USA
17	10. Department of Integrative Biology, University of California – Berkeley, Berkeley, CA, USA
18	*Current address: Bioenergy and Biome Sciences, Los Alamos National Laboratory, Los
19	Alamos, NM, USA
20	# Author for correspondence: nusslein@microbio.umass.edu
21	
22	Running Title: Tropical deforestation stimulates methanogenesis
23	

24 ABSTRACT

25 The Amazon rainforest is a biodiversity hotspot and large terrestrial carbon sink that is 26 threatened by agricultural conversion. Rainforest-to-pasture conversion leads to the release of a 27 potent greenhouse gas by converting soil from a methane sink into a source. The biotic methane 28 cycle is driven by microorganisms; therefore, this study focused on active methane-cycling 29 microorganisms and their functions across land-use types. We collected intact soil cores from 30 three land use types (primary rainforest, pasture, and secondary rainforest) of two geographically 31 distinct areas of the Brazilian Amazon (Santarém, Pará and Ariquemes, Rondônia) and 32 performed DNA stable-isotope probing coupled with metagenomics to identify the active 33 methanotrophs and methanogens. At both locations, we observed a significant change in the 34 composition of the isotope-labeled methane-cycling microbial community across land use types, 35 specifically an increase in the abundance and diversity of active methanogens in pastures. We 36 conclude that a significant increase in the abundance and activity of methanogens in pasture soils 37 could explain the greater methane flux. Furthermore, we found that secondary rainforests 38 recovered as methane sinks, indicating the potential for reforestation to offset greenhouse gas 39 emissions in the tropics. These findings are critical for informing land management practices and global tropical rainforest conservation. 40

41 INTRODUCTION

42 Climate change, caused by the anthropogenic release of greenhouse gases¹, is affecting 43 every ecosystem on Earth. Although the majority of greenhouse gases released to the atmosphere 44 are associated with the industrial revolution and fossil fuel combustion, land use change is a 45 significant contributor. Specifically, tropical deforestation in the last decade has released ~1 Pg 46 C yr⁻¹, an equivalent to 10% of anthropogenic carbon dioxide emissions¹, and 78% of total

greenhouse gas emissions in Brazil are caused by land use change²⁻³. In addition to being 47 48 biodiversity hotspots of plants and animals, tropical rainforests are large terrestrial carbon sinks. 49 However, rainforest deforestation to create cattle pastures or agricultural fields releases large amounts of stored carbon, converting former terrestrial carbon sinks into major carbon sources³⁻⁴. 50 In the Amazon rainforest particularly, over 1 Mha of forest has been lost in 2017 alone⁵. The 51 52 conversion of primary rainforest (i.e. mature rainforest older than 150 years) to cattle pasture is a 53 main cause of deforestation in Brazil and not only changes plant diversity but also the microorganisms that drive soil biogeochemical cycling⁶. 54 55 The methane (CH_4) biogeochemical cycle is of interest because of its potency as a 56 greenhouse gas with 86-times the global warming potential of carbon dioxide over a 20-year timescale¹. Biotic CH₄ cycling is controlled by microorganisms, specifically methanogenic 57 archaea that produce CH_4 , and methanotrophic bacteria that consume CH_4^{7-8} . The balance 58 59 between these two functional groups determines whether the soil acts as a CH₄ source or sink. 60 Under anoxic conditions, soil methanogenic archaea generally metabolize fermentation products 61 such as acetate (acetoclastic methanogenesis) or reduce carbon dioxide with hydrogen (hydrogenotrophic methanogenesis) to produce CH_4^{9-11} . Methanotrophs are commonly aerobic 62 63 bacteria located at anoxic/oxic boundaries from either Gammaproteobacteria, 64 Alphaproteobacteria, or Verrucomicrobia, corresponding to Type I, II, and III methanotrophs, respectively¹²⁻¹³. Previous research into the different growth conditions of Type I versus Type II 65 66 methanotrophs found that Type II methanotrophs generally dominate high CH_4 , low oxygen environments along with nitrogen- and copper-limiting conditions¹⁴⁻¹⁶. However, Type II 67 methanotrophs have also been found in soils with low CH₄ concentrations¹⁷⁻¹⁹ likely due to two 68

69 isoenzymes of the particulate methane monooxygenase that have different affinities for CH_4^{20} 70 making them more versatile metabolically.

71 Researchers have focused on the impact of rainforest-to-pasture conversion on CH₄ cycling for decades²¹⁻²³. Measurements of in-field gas flux generally show soil CH₄ consumption 72 73 across seasons in mature rainforest, while pasture soils emit CH_4^{24-25} . Over the last decade, 74 further research into how tropical land use change influences CH₄ cycling microorganisms found 75 varied results. One study observed that the functional biomarkers for methanotrophy (pmoA and 76 *mmoX*) decreased in cattle pastures with no change to the methanogenesis biomarker (*mcrA*), 77 while another study observed a decrease in *pmoA* abundance from Type II methanotrophs and an increase in *mcrA* in cattle pastures^{6,19}. These previous studies investigated how land use change 78 79 in the Brazilian Amazon impacts the genomic potential of the soil methane-cycling microbial 80 community, but no study has directly targeted the active community.

81 Metatranscriptomics, metaproteomics, and stable isotope probing are increasingly common techniques to target the active microorganisms in an environmental sample²⁶⁻²⁹. 82 83 Previous research by our group using metatranscriptomics and metaproteomics was unable to 84 determine if soil CH₄ cycling genes and proteins were differentially expressed between land use 85 types due to low counts (unpublished data). Therefore, for this study we used stable isotope 86 probing to determine the active fraction of the soil microbial community cycling CH₄, referred to 87 henceforth as members of the active community. Stable isotope probing is commonly applied to 88 study CH₄ cycling in soil given the specific nature of the substrate and its relevance to climate change³⁰⁻³². This technique uses the less abundant isotope of an atom, such as ¹³C-carbon, to 89 label the microorganisms capable of consuming the ${}^{13}C$ and, via their anabolic metabolism, 90 91 incorporating it into their DNA, which then can be separated by ultracentrifugation from the

92	community DNA. Subsequently, next generation sequencing enables the identification of active
93	community members and provides insight into their functional potential.

94 The central goal of this study was to determine how the members of the active CH₄-95 cycling microbial community, their functions, and CH₄-related metabolic pathways changed 96 across land use types (primary rainforest, cattle pasture, and secondary rainforest) and 97 geographically distinct regions of the Brazilian Amazon. We hypothesized that the cause of 98 increased soil methane production in cattle pastures was caused by a decrease in active 99 methanotrophy. To test this hypothesis, we sampled sites at the most active deforestation 100 frontiers in northeastern and southwestern Amazonia in the states of Pará (Tapajós National 101 Forest) and Rondônia (Fazenda Nova Vida), respectively. To determine the community 102 composition and functions of the active methane-cycling microorganisms, we coupled stable isotope probing (DNA-SIP) with metagenomics, using either ¹³C-labeled methane (CH₄), carbon 103 104 dioxide (CO₂), or sodium acetate (NaAOc) as a substrate. Overall, we observed significant shifts 105 in the active microbial community compositions and their methane-cycling functional genes 106 between land-use types, geographic location, and substrates. Specifically, the abundance and 107 diversity of active methanogens increased with conversion to pasture. Ultimately, this significant 108 increase in active methanogens in pasture soils significantly correlated with the in-field methane 109 gas flux. Therefore, we conclude that an increased abundance and diversity of active 110 methanogens is causing the overall net positive methane flux in cattle pastures.

111

112 METHODS

<u>Site description and sampling</u>: At each sampling site, we first took soil gas flux measurements as
detailed below, followed by collecting 5 to 6 soil cores. Seventy-two soil cores (5 cm diameter ×

115 10 cm depth) were collected from the Tapajós National Forest and its adjacent areas in the State 116 of Pará in June 2016 for DNA-SIP. Another 72 soil cores were collected from Fazenda Nova 117 Vida and its adjacent areas in the State of Rondônia in April 2017 for DNA-SIP (GPS 118 coordinates in Supplemental Methods). For each location, 18 soil cores were collected from each 119 land use type, two primary rainforests (PF1 or PF2), one cattle pasture (P), and one secondary 120 rainforest (SF). Soil cores were collected along a transect ranging from 100 to 200 meters with 121 five equidistant sampling points. Three adjacent soil cores were taken from each sampling point 122 with a fourth soil core taken from sampling points 2, 3, and 4 along the transect (Supplemental 123 Figure 1). The cores were stored at 4°C until incubation with stable isotopes in the laboratory (up 124 to 2 weeks later due to travel). The two additional soil cores collected at each sampling point 125 were immediately homogenized, and then divided into two volumes for total prokaryotic 126 community analyses from extracted DNA and for soil physical-chemical characterization. 127 128 Stable isotope probing: During incubation with stable isotopes, the intact soil cores (~200 g

129 depending on soil density) were stored in gas-tight glass jars in the dark. For each combination 130 of location (Pará or Rondônia) and transects across land use type (two primary rainforests, one pasture, one secondary rainforest), five soil cores were incubated with ¹³C-substrate and one 131 additional core with ¹²C-substrate as the control. For each sampling site this resulted in a total of 132 133 six cores for each of the three substrates, or 72 cores total for each location tested. Soils were 134 incubated at 25°C for ~7 months due to the low gas exchange at the surface top of the 135 undisturbed soil column (20 cm^2) compared to homogenized soil (20-32x lower rates; unpublished data). Either 25 mL of ¹³C-carbon dioxide (3% headspace concentration), 1 mL of 136 137 ¹³C-sodium acetate (1 mM final concentration, added to the top of each soil core), or 25 mL of

138	¹³ C-methane (3% headspace concentration) were added every two weeks. Equal volumes (1 mL)
139	of sterile water were added to carbon dioxide and methane incubations. Air was added once a
140	week to the ¹³ C-methane incubations to ensure an oxic headspace. Pressure was released
141	periodically prior to substrate injection from all jars. The duration of incubation was determined
142	by monitoring the methane gas flux and attempting to ensure 20 mM of substrate was
143	incorporated, following published recommendations to apply 5-500 μM ^{13}C per g of soil 33 . Our
144	target was to incorporate ~100 μ M 13 C per g of soil, rendering shorter incubation times
145	insufficient. Methane production or consumption was monitored throughout the incubation
146	experiment by gas chromatography (Shimadzu GC-17A, Kyoto, Japan). After incubation, each
147	soil core was sectioned longitudinally into five 2-cm tall segments (numbered 1-5 from top to
148	bottom) and stored frozen at -20°C until DNA extraction.
149	
150	DNA extraction, quantification, and sample processing: DNA was extracted from 0.25 g of soil
151	from all segments from two of the five ¹³ C soil cores using the DNeasy PowerSoil DNA
152	Extraction kit (Qiagen, Hilden, Germany) to determine the segment with the highest abundance
153	of methanogens or methanotrophs based on the respective functional marker genes using qPCR
154	as described below. Upon identifying the segment with the highest genomic abundance of

155 methanogens or methanotrophs, DNA was extracted from 4 g of soil from the identified segment

156 of three 13 C soil cores and from the 12 C-control for each substrate/sample site combination using

157 the DNeasy PowerMax Soil Kit (Qiagen). DNA was quantified fluorometrically using the Qubit

158 dsDNA Broad-Range assay (Invitrogen, Carlsbad, CA). A total of 5 µg of DNA was subjected to

159 ultracentrifugation according to a previously described protocol³³, followed by fractionation of

160 the density gradient into 12 fractions of equal volume. The continuity of the density gradient was

161	confirmed with a refractometer. DNA was precipitated following the published protocol ³³ except
162	for the addition of 20 μ g linear acrylamide (Invitrogen) instead of glycogen and each fraction
163	was quantified using fluorometry via the Qubit dsDNA High-Sensitivity assay (Invitrogen). To
164	identify the fractions with ¹³ C-labeled DNA, we quantified the abundance of methanogens or
165	methanotrophs in each fraction using qPCR of the respective functional gene marker for a subset
166	of samples compared to their respective ¹² C-controls (details in Supplementary Methods). We
167	pooled the ${}^{12}C$ (~1-5) and ${}^{13}C$ (~6-12) fractions, respectively. Since the GC content of microbial
168	DNA can influence DNA density, we sequenced both the light and heavy DNA fractions from
169	our ¹² C-controls for a total of 12 ¹² C-light DNA, 12 ¹² C-heavy DNA, and 36 ¹³ C-heavy DNA
170	samples per location.
171	
172	Quantitative PCR: The particulate methane monooxygenase alpha subunit gene (pmoA) was
173	amplified using the primer pair A189f/mb661r ³⁴⁻³⁵ , and the gene for the methyl coenzyme M
174	reductase alpha subunit (<i>mcrA</i>) was amplified using the primer pair mlas/mcra-rev ³⁶ . Standard
175	reaction mixtures and thermocycler conditions are specified in Supplemental Methods.
176	
177	Sequencing: All DNA library preparation and sequencing were performed at the University of
178	Oregon Genomics and Cell Characterization Core Facility (Eugene, OR) (Supplementary
179	Methods). Briefly, the three genes of interest (16S rRNA, pmoA, and mcrA) were amplified using
180	custom dual-indexed PCR primers designed by the core facility. For each location, paired-end
181	300 bp amplicon sequencing of the pooled heavy fractions for three ¹³ C-samples per sample
182	site/substrate combination and the pooled heavy and light fractions for all ¹² C-controls was
183	completed on an Illumina MiSeq sequencer (Illumina, San Diego, CA). For metagenomes,

184	sequencing of the heavy fraction of two ¹³ C-samples per sampling site/substrate combination and
185	all ¹² C-controls was performed on an Illumina HiSeq4000 across two flow lanes for each
186	location. All sequences were demultiplexed at the core facility.
187	
188	Soil physical-chemical analysis: Homogenized soil samples stored at 4°C were processed as
189	described in detail previously ³⁷ .
190	
191	Methane Gas Flux Measurements: In-field soil CH4 fluxes were measured using a field-
192	deployable Fourier transform infrared spectrometer (Gasmet, DX 4015, Vantaa, Finland)
193	sampling a recirculating flow-through soil flux chamber placed on soil collars (aluminum, inner
194	area of 284 cm ²) that were installed in soil (5 cm deep) at least 20 minutes beforehand. Fluxes
195	were calculated from the rate of headspace CH ₄ accumulation or depletion in a 30-minute period.
196	We fit linear models to concentration vs. time trends, limiting the extend of the time series used
197	to the initial linear decline in cases when nonlinear behavior was observed at late stages in the
198	measurement ³⁸⁻³⁹ .
199	
200	Data and statistical analysis: Amplicon sequences were processed and analyzed using the
201	DADA2 pipeline in QIIME2 ⁴⁰⁻⁴¹ . Metagenome sequences were processed and annotated using
202	MG-RAST ⁴² . GenBank and SEED Subsystem were used for the organismal and functional
203	annotations, respectively. The SEED Subsystem annotation "Methanogenesis strays" is
204	described as "several additional genes and clusters from methanogens." The influence of
205	homogeneous dispersion within each sample and heterogeneous dispersion between samples was
206	assessed using the Permdisp and Adonis functions, respectively, from the 'vegan' package in R

on dissimilarity matrices made from the annotation tables⁴³⁻⁴⁴. To specifically target the active 207 208 microbial community, the metagenomic annotations were rarefied (vegan:rrarefy) and counts 209 were normalized to the ¹²C-control for each substrate (see Supplementary Methods). After 210 rarefication, the dissimilarity between land use types within each substrate were analyzed 211 (vegan:Adonis). STAMP v2.1.3 was then used to identify active microorganisms and functions by comparing each individual ¹³C-sample to their respective ¹²C-control using Fisher's exact 212 test⁴⁵. All figures were made in R v3.5.1 using ggplot2^{43,46}. Soil physical-chemical data were 213 214 analyzed using ANOVA with a Tukey-Kramer post-hoc test. Correlation analyses between the 215 in-field methane flux and the abundance of active methane-cycling taxa or functional annotations were completed using a Pearson correlation $(cor.test)^{43}$. 216

217

218 Active Fraction Analysis: In this study, "active" means that the cells were actively growing (anabolically incorporating ¹³C) and not just metabolically active (catabolic turnover of ¹³C 219 substrate independent of growing). The incubations with ¹³C-labeled substrates determine both 220 actively growing and metabolically active community members, and we used our ¹²C incubation 221 222 controls to correct for the metabolically active part. Therefore, an annotation was deemed active, if it was significantly higher (p < 0.05) in the ¹³C-sample compared to the ¹²C-control. Samples 223 were normalized to their respective 12 C-control with features that had less abundance in the 13 C-224 than ¹²C-samples being marked as 0 counts. Samples from the same substrate were compared 225 226 between land use types in STAMP using the multigroup stats function (ANOVA with Tukey-227 Kramer Post-hoc test). All significantly different annotations were checked again to see if they 228 were active in the samples.

230	Data Accessibility: Metagenomes are available publicly on MG-RAST under the following
231	project accession numbers: mgp88468 and mgp86794. All raw amplicon sequence files have
232	been deposited on figshare under the following DOI: 10.6084/m9.figshare.10565552,
233	10.6084/m9.figshare.10565690, 10.6084/m9.figshare.10565870, 10.6084/m9.figshare.10565897,
234	10.6084/m9.figshare.10565957, 10.6084/m9.figshare.10565801.
235	
236	
237	RESULTS AND DISCUSSION
238	
239	Active Methane-Cycling Community Changes with Land-Use
240	To understand the active methane-cycling microbial community composition and
241	abundance, we analyzed sequences of both PCR-amplified marker genes (16S rRNA, mcrA, and
242	<i>pmoA</i>) and metagenomes. The amplification-based approach makes our data comparable to many
243	microbial studies that use these biomarkers, but this method comes with the potential issues of
244	primer bias allowing for missed taxonomic groups, lower phylogenetic resolution, and no
245	additional information on ecosystem processes ⁴⁷⁻⁴⁸ . Therefore, after confirming that enough label
246	was present in the target sample using amplicon-based sequencing, we used metagenomics to
247	gain a deeper understanding of the ¹³ C-labeled methane-cycling community and its supporting
248	members ⁴⁹⁻⁵¹ . The composition of the total soil microbial community, based on 16S rRNA,
249	significantly differed between geographic locations (Rondônia vs Pará; p=1e-03 r ² =0.118),
250	individual land-use types (primary rainforest(PF), pasture(P), secondary rainforest(SF), p=1e-03
251	r^2 =0.08), and added substrates (CH ₄ , CO ₂ , NaAOc, p=1e-03 r ² =0.08) (Figure 1). When we
252	specifically targeted the active community, we found that only samples incubated with CO_2

significantly differed between locations (Pará CO₂ p=3e-03; Rondônia CO₂ p=1.8e-02;

254 Supplemental Figures 2-3). It was unsurprising that location is the main driver to differentiate the 255 total microbial community since Rondônia and Pará are separated by ~1500 km. Also, abiotic 256 factors such as seasonal differences and/or soil physical-chemical properties could be driving these locational differences $^{52-54}$. The significant differences in CO₂ incubated samples may be 257 258 due to the similarity of the overall active community across samples, while the methane-259 consuming or -producing community makes up only a small fraction of that community and the 260 signal is lost when we look at the community composition broadly. 261 When we investigated the richness of active methane-cycling communities, we found that 262 pasture samples had the highest active methanogen richness in metagenomes from both locations 263 and regardless of substrate (CO₂ or NaAOc); however, it was only significant in Rondônia 264 NaAOc samples (P vs PF p=9.6e-03, P vs SF p=7.9e-03; Figure 2, Supplemental Table 1). All 265 active methanogens that significantly changed abundance between land-use types were 266 associated with pasture soils in both locations (Table 1). Specifically, *Methanosarcina* spp. 267 dominated the active methanogens for most samples in both locations regardless of substrate 268 (Figure 3, Supplemental Tables 2-3; 5-6). These archaeal species are known to have multiple methanogenesis pathways making them capable of utilizing both 13 CO₂ and 13 NaAOc, likely 269 explaining their dominance in both locations and substrates⁵⁵⁻⁵⁸. 270

We observed a significantly higher abundance of total active methanogens in Rondônia pasture soils compared to both primary and secondary rainforest samples in ¹³NaAOc samples (p=1e-03, p=3.8e-02, respectively) and compared to secondary rainforest in ¹³CO₂ samples (p=9e-03). There was no significant difference in the abundance of total active methanogens between land-use types for either methanogenic substrate in Pará, but many taxa did significantly change abundance (Table 1). Previous research studies showed mixed findings on methanogen
communities response to tropical land-use change ranging from no change to increased *mcrA*gene abundance in pastures^{59,6,19}. By targeting the active community, we directly show that
pasture soils have a higher richness of active methanogens and specific methanogenic taxa
significantly increase abundance. This increase in methanogen abundance and richness is likely
due to the increased soil carbon cycling occurring in pasture soils⁶⁰⁻⁶¹.

282 Previous research into methanotrophy across Amazonian land uses found methanotroph abundance to be lower in pasture relative to primary forest soils^{6,59,19}. Based on these studies, we 283 284 hypothesized that pasture soils would have the lowest abundance and richness of active 285 methanotrophs. Unlike the active methanogen community, we did not find a consistent 286 association between active methanotroph richness and land-use types across locations. The 287 highest richness was either found in pasture or secondary rainforest for Pará and Rondônia, 288 respectively, but it was not significant (Figure 2). The total active methanotroph abundance did 289 not significantly change between land-use types. In both locations and all land-use types, Type II 290 methanotrophs (Alphaproteobacteria) dominated the active methanotroph community (Figure 4, 291 Supplemental Tables 4, 7). Only one primary rainforest sample from Pará was dominated by 292 Type I methanotrophs and only one Type III methanotroph was found to be active, 293 *Methylacidiphilum*, but remained rare (Supplemental Tables 4, 7). 294 Although, the total abundance of active methanotrophs did not significantly change 295 between land-use types, the abundance of specific methanotrophs changed in Pará and Rondônia 296 associating with pasture and secondary rainforest, respectively (Table 1). This was surprising and not what we hypothesized based on previous studies^{6,19,59}. Several factors should be considered 297 298 to address this discrepancy. First, our study targeted the microorganisms actively consuming CH_4

299 rather than looking at the total microbial community. Studies of the total microbial community 300 can be influenced by the potential presence of extracellular DNA, which may affect estimates of abundance and diversity⁶²⁻⁶⁴. Additionally, we incubated our samples at CH₄ concentrations 301 302 above those in the atmosphere due to the inability to label the community at low concentrations. 303 Although necessary for the technique, this could influence the composition and activity of the 304 CH₄-consuming community. Furthermore, there is a possibility that we incorrectly assumed 305 primary rainforests would have the highest methanotroph richness and abundance since these forests are known to be methane $sinks^{21-22}$. Here, our findings enable the next question to test 306 307 what environmental variables govern the active CH₄-consuming community between land-use 308 types in the Brazilian Amazon.

309

310 Dominant Active Methanogenesis Pathways Differed Between Locations

311 We next asked which CH_4 -related metabolic pathways were active across land-use types 312 and how they changed in response to deforestation. We observed active methanotrophy based on 313 the abundance of the genes for particulate methane monooxygenase (*pmmo*) and soluble methane 314 monooxygenase (*smmo*) in all ¹³C-labeled samples and in both locations (Figure 5; Supplemental 315 Table 8). The *pmmo* genes were abundant and active in 94% of samples while *smmo* was active 316 in most secondary rainforest samples and Rondônia-PF1 (Figure 5; Supplemental Table 8). The 317 secondary rainforest and pasture samples at Rondônia significantly increased in *pmmo* 318 abundance (p=6e-03; p=3e-02, respectively) compared to primary rainforest (Supplemental 319 Table 8). We found no significant difference in the abundance of any active methanotrophy-320 related genes across land-use types in Pará (Figure 5). Overall, Rondônia had a significantly 321 higher relative abundance of *pmmo* to total methanotrophy annotations compared to Pará

322 (Supplemental Table 8) (p=1e-04). Soil physical-chemical properties are known to influence the 323 activity of these different methane monooxygenases⁶⁵. Copper is a key component regulating the 324 activity and abundance of these methane monooxygenases having a positive relationship with 325 *pmmo* abundance ^{66-67,12}. We observed a significantly higher concentration of copper (9x) in 326 Rondônia compared to Pará (p=7.42E-06) which may explain the increased abundance of active 327 *pmmo* genes.

328 Regardless of location, the abundance of active methanogenesis genes dominated in 329 pasture compared to other land-use types. Interestingly, in Pará we observed these significant increases in the ¹³CO₂ incubation, while in Rondônia the ¹³NaAOc incubation accounted for the 330 increased abundance (Figure 6; Supplemental Table 9). The Pará ¹³NaAOc incubation presented 331 332 some significant changes in methanogenesis-related genes including Coenzyme F420 synthesis 333 (p=8e-05), methanopterin biosynthesis2 (p=2e-03), and methanogenesis strays (p=1e-03). The 334 two pasture samples in Pará¹³NaAOc incubations performed very differently. Although pastures are considered to be more biotically homogeneous⁶⁸, these two samples differed strongly with 335 336 one sample having about 8.5x more active methanogens (Supplemental Table 4). When the 337 relative abundance of active methanogenesis genes to total annotations was investigated, we identified a significant difference between land-use types in the Pará ¹³CO₂ incubations (PF v P 338 p=1e-03, SF v P p=1.8e-02) and in the Rondônia ¹³NaAOc incubations (PF v P p=7e-02, SF v P 339 340 p=1.8e-02) (Supplemental Table 10). In addition to methanogenesis genes changing between 341 land-use types, we observed an increase in carbon cycling activity in Pará pasture soils incubated 342 with 13 CO₂ (Glycolysis and gluconeogenesis p=1e-03, Pentose phosphate pathway p=2e-03, 343 Entner-Doudoroff pathway p=3e-02). Overall, we found that active methanogenesis was driven 344 by methanogens using the hydrogenotrophic pathway in Pará and the acetoclastic pathway in

Rondônia (Supplemental Table 9). This shift in the dominant methanogenesis pathway between 345 346 locations may be due to differences in the physical-chemical soil parameters or a result of the 347 types of fermentation leading to either more acetate or hydrogen production. Interestingly, the 348 active methanogen community was dominated by *Methanosarcina* spp. in both locations. 349 Members of the genus *Methanosarcina* are known to require three different types of hydrogenases for the reduction of CO_2 to CH_4 with electrons derived from H_2^{58} . The 350 351 significantly increased activity of multiple types of hydrogenases (Energy conserving 352 hydrogenase ferrodixin Ech p=1.6E-08; membrane bound hydrogenases p=4.6e-02; Archaeal 353 membrane bound hydrogenases p=0.048; Coenzyme F420 hydrogenase p=5e-02) in soils from 354 Pará compared to soils from Rondônia indicates a selection for the hydrogenotrophic pathway. 355 This selection is supported by the increased availability of trace metals (iron) in soils from Pará which are needed by methanogenic hydrogenases⁵⁸. 356 357 358 Land-Use Change Alters Key Redox-Cycling Active Taxa 359 In the context of highly complex soil microbial communities, methanogens need other 360 microorganisms to produce the substrates necessary for this redox reaction to occur. 361 Methanogenesis is one of the least thermodynamically favorable anaerobic reactions; therefore, other redox reactions must transpire prior to methanogenesis⁶⁹. Although we were targeting 362 active methane-cycling microorganisms in this study, the methanogenic substrates used, ${}^{13}CO_2$ 363

and ¹³NaAOc, are not exclusively used by methanogens. Therefore, we investigated which

- 365 coexisting microorganisms were actively consuming these substrates and thereby interacting
- 366 with methanogens. Many non-methanogenic but active microbial taxa changed significantly in
- 367 abundance between land use types in both geographic locations. In the Pará 13 CO₂ SIP

368 incubations, we observed a significant increase of active Syntrophus aciditrophicus (p=1E-06) in 369 pasture along with many known sulfate-reducing bacteria (Supplemental Table 10. Syntrophus 370 aciditrophicus is known to promote the growth of *Methanospirillum* spp., which accounted for 2.76% of the active methanogen community in Pará 13 CO₂ pasture samples⁷⁰. In the secondary 371 372 rainforest, we found a significantly higher abundance of various active nitrifying and sulfur-373 oxidizing bacteria, such as Nitrobacter and Thioalkalivibrio. Many of these microbial groups are known to utilize CO₂ and have thermodynamically preferred redox potentials⁷¹⁻⁷⁶. Rondônia 374 375 pastures increased in active ammonia-oxidizing microorganisms including Nitrosococcus and *Geobacillus* species (¹³CO₂ samples: Supplemental Table 10). One potential cause of increased 376 377 *Geobacillus* species is the slash and burn process used to create pastures that deposits hydrocarbons in the soil, which these microorganisms are known to use $^{77-79}$. 378

379 The abundance of active Geobacillus, Clostridium, and Sulfolobus spp. increased in Pará 380 ¹³NaAOc incubated pasture soils (Supplemental Table 11). Some *Geobacillus* and *Clostridium* 381 spp. are known to utilize acetate, which may explain their increased abundance in the ¹³C-labeled 382 community⁸⁰⁻⁸¹. The denitrifying bacterium Hyphomicrobium denitrificans was active and 383 significantly increased abundance in Pará primary rainforest samples along with the genes associated with denitrification (p=0.02). In the ¹³NaAOc Rondônia soils, we observed a 384 385 significant increase in both sulfate-reducing and sulfur-oxidizing microorganisms along with nitrate-reducers in secondary rainforest with many competitors for acetate as a carbon source^{82,74} 386 387 (Supplemental Table 11). It is well documented that before methanogenesis is able to occur nitrate and sulfate must be depleted as electron acceptors⁶⁹. The increased abundance of active 388 389 sulfate and nitrate reducers in the Rondônia secondary rainforest and overall lack of active 390 methanogenesis indicates that these more favorable electron acceptors were still available in the

soil during incubation with ¹³NaAOc inhibiting methanogenesis through substrate competition⁸³⁻
 ⁸⁴.

393

394 Soil Physical-Chemical Parameters Increase Potential Methane Production

395 Land-use change is one of the strongest drivers to alter soil ecosystems. Parallel changes 396 to the soil physical-chemical parameters, physical structure, and aboveground vegetation may 397 provide additional support for increased methanogenesis in pasture soils. Specifically, the 398 compaction caused by cattle grazing creates more anoxic microsites providing more opportunity for methanogenesis to occur⁸⁵. The comparison of soil physical-chemical parameters between the 399 400 geographic locations presented several significant differences (Supplemental Tables 12-13). Of 401 note were increased concentrations of sulfur (p=2.95E-15) and copper (p=7.42E-06) along with 402 higher pH (p=1.35E-07) in Rondônia compared to Pará, and total soil acidity (p=9.29E-11) and 403 total nitrogen (p=2.31E-06) were significantly higher in Pará soils. For both locations, the soil 404 pH was significantly higher in pasture compared to primary rainforests. Soil bulk density was 405 found to be highest in pasture from both locations (Supplemental Figure 5). The increased pH in 406 pasture soils likely helps support methanogenesis since optimum process activity is at near neutral pH and quickly decreases as the pH becomes more acidic⁸⁶. Another contributing factor 407 408 to the increased methanogenesis in pasture soils is due to Urochloa brizantha excreting large amounts of carbon as root exudates into the soil⁸⁷. With increased carbon availability in pasture 409 soils, there is overall increased soil microbial activity⁸⁸. All of these changes to the soil in 410 411 pastures could contribute to the increased methanogenic activity observed in our SIP study.

413 <u>Relating Functional Activity from In-Field Methane Gas Flux to Functional Potential from</u>

414 <u>Metagenomics</u>

415 Research into modeling biological activity to help predict future climate scenarios has continued to grow over the past few decades⁸⁹⁻⁹¹. Since this study focused on the active methane-416 417 cycling microbial community across land use types, we performed a correlation between the 418 abundance of the active community or of functional biomarkers with the gas fluxes measured in 419 our sites. Tentatively, we found the strongest correlation between total active methanogen 420 abundance and field methane flux (p=6e-04, cor=0.573) (Figure 7). However, these findings will 421 need to be further investigated across more sampling points to confirm their validity broadly. 422 Overall, only Rondônia showed significant differences in field methane flux across land-use 423 types, with pasture having significantly higher methane emissions (PF vs P p=1e-04, SF vs P p=2e-03, SF vs PF p=9.9e-01; Supplemental Figure 6). The correlation observed between active 424 425 methanogen abundance and methane flux in the field provides further support that an increase in 426 methanogenesis activity is driving the change in methane flux between land-use types. 427 428 Minimal Enrichment of Methane-Cyclers After Incubation 429 In SIP studies specifically, we target the active microbial groups involved in a 430 biogeochemical process; however, the majority of soil SIP studies use homogenized soil where

soil columns get sieved⁹²⁻⁹⁷. It is clear from the literature that soil structure is an important aspect
of microbial activity and carbon cycling; therefore, if possible, microbial activity should be
studied under environmentally-relevant conditions. This study shows the feasibility of keeping
soil and its assembled microbial communities more similar to the natural environment by
incubating soil cores in-tact. We observed that even after seven months of incubation, the

436 abundance of functional marker genes (*pmoA* and *mcrA*) did not become greatly enriched. 437 Compared to field soils at the time of sampling, there was a small but significant increase of *mcrA* gene copies in Pará 13 CO₂ SIP soil (p=4.6e-03), but no significant difference in soils from 438 Para amended with ¹³NaAOc (p=7.2e-01) (Supplemental Figure 7). Overall, there was no 439 440 significant difference between the Rondônia SIP and field soils' mcrA gene abundance. The only significant difference found was between ¹³CO₂-incubated primary forest and pasture samples 441 442 (p=4.6e-02). Interestingly, *pmoA* gene abundance decreased significantly in SIP incubated soils 443 from Pará (p=1E-05) and Rondônia (p=4E-07, Supplemental Figure 8). One possible explanation 444 for the decreased *pmoA* gene abundance between SIP incubated and field soil is that during the 445 incubation the methanotrophic community was potentially altered. Our comparative analysis of 446 the metagenome data supports this possibility as a 7.7-fold and 4.0-fold increase from Rondônia and Pará, respectively, were observed in obligate methanotroph abundance between ¹³C vs ¹²C 447 448 heavy fraction samples. Since primer bias is a common problem, as previously discussed, the 449 change in community could alter the compatibility of the primer to the *pmoA* sequences of the 450 changed community; thus, potentially presenting a lower *pmoA* abundance in the SIP than field 451 soils.

452

453 <u>CONCLUSIONS</u>

Land use change from rainforest to pasture stimulates the soil methanogenic community in the Brazilian Amazon. Using undisturbed soil columns for SIP incubations, we were able to ascertain that methanogen abundance and activity is significantly higher compared to both primary and secondary rainforests which could drive methane emissions from the soil of Brazilian cattle pastures. Future studies should focus on identifying what specific environmental

459 factors are responsible for increased methanogenesis in pasture soils (i.e. pH, vegetation, 460 compaction, carbon or trace element availability, etc.), so that land management can better 461 mitigate CH₄ emissions. Another important finding was that secondary rainforests in both 462 locations have recovered as CH₄ sinks with an active methanotrophic community. Through large 463 forest restoration efforts occurring in the tropics, there is potential to see these forests recover 464 with enough time to overcome excess CH_4 production. It is currently unknown how long 465 secondary rainforests take to recover as a CH₄ sink, and how widespread this recovery is 466 geographically. Adoption of best management practices in pastures can compensate for a small 467 fraction of the impact of deforestation on net emission of greenhouse gases and the loss of 468 carbon from Amazonia. With the currently accelerating expansion of land-use change in 469 Amazonia understanding which players might assist mitigation of concomitant greenhouse gas 470 production is increasingly important for all agricultural management.

471

472 ACKNOWLEDGEMENTS

473 The authors thank the owners and staff of Agropecuaria Nova Vida for logistical support 474 and permission to work on their property. We also thank all collaborating private landowners of 475 Santarem for their support and access to their land. We would like to thank the Large-Scale 476 Biosphere-Atmosphere Program (LBA), coordinated by the National Institute for Amazon 477 Researchers (INPA), for the use and availability of data for logistical support and infrastructure 478 during field activities. We are grateful to Erika Berenguer, Liana Chesini, and Jos Barlow, 479 members of the EcoFor Project at Lancaster University, UK, for sharing some northern Amazon sites⁹⁸ with us and for logistical support during field activities. Additionally, we are grateful to 480

481	Alexandre Pedrinho and Wagner Piccinini for assistance with fieldwork and Kiran Khan, Alex
482	Thompson, Luke Gibney, and Rachel Feldman for assistance processing samples.
483	Funding. This project was supported by the National Science Foundation – Dimensions
484	of Biodiversity (DEB 1442183), NSF-FAPESP 446 (2014/50320-4), by the Agriculture and
485	Food Research Initiative Competitive Grant 2009-447 35319-05186 from the US Department of
486	Agriculture National Institute of Food and Agriculture, and by the U.S. Department of Energy
487	Joint Genome Institute through the Office of Science of the U.S. Department of Energy under
488	Contract DE-AC02- 442 05CH11231.
489	
490	ETHICS DECLARATIONS. Conflict of interest. The authors declare that they have no conflict
491	of interest.
492	
493	FIGURE AND TABLE LEGENDS
494	Figure 1. Composition of the total soil microbial community based on 16S rRNA. Non-metric
495	dimensional scaling plot of rarefied 16S rRNA SILVA annotations at genus-level from all
496	samples. The dotted lines outline samples from each geographic location (Pará and Rondônia).
497	The colored lines connect samples from the same land-use type to the centroid (primary

- 498 rainforest = green, pasture = orange, and secondary rainforest = blue). The circles represent the
- 499 standard error dispersion of samples for each substrate (NaAOc=sodium acetate, CO₂=carbon
- 500 dioxide, CH_4 =methane). The p-values and r^2 values for each variable (Location, Substrate, Land
- 501 Use) are derived from the Adonis function in the vegan package.
- 502 Figure 2. Richness of active methane cycling taxa (methanotroph or methanogen) from two
- 503 geographic locations (Pará or Rondônia), three land-use types (primary rainforest = green,

- 504 pasture = orange, and secondary rainforest = blue) incubated with one of three substrates
- 505 (methane, carbon dioxide, and sodium acetate).
- 506 Figure 3. Abundance of active methanogen genera in the ${}^{13}C$ metagenome samples. (a) The
- solution abundance of active methanogens in soils from Pará incubated with ${}^{13}CO_2$, (b) the abundance of
- 508 active methanogens in soils from Rondônia incubated with $^{13}CO_2$, (c) the abundance of active
- 509 methanogens in soils from Pará incubated with 13 NaAOc, (d) the abundance of active
- 510 methanogens in soils from Rondônia incubated with ¹³NaAOc. Samples on the x-axis are colored
- 511 by land use type (primary rainforest (PF) = green, pasture (P) = orange, and secondary rainforest
- 512 (SF) = blue).
- 513 Figure 4. Relative Abundance of methanotroph types I, II, and III across both geographic
- 514 locations (Pará and Rondônia) and land use types (primary rainforest, pasture, and secondary
- 515 rainforest). Type I = grey, Type II = blue, Type III = pink.

Figure 5. Heatmap visualizing the average relative abundance of active genes involved in
methanotrophy pathways. The scale is from lowest relative abundance (blue) to highest relative
abundance (red) of the genes and is normalized to each gene (i.e. column). The metagenome
samples are on the y-axis are colored by land use type (primary rainforest (PF) = green, pasture
(P) = orange, and secondary rainforest (SF) = blue) and have the location (Rondônia or Pará) in
the label. The genes involved in methanotrophy are on the x-axis. The dendrogram shows the
Euclidean distance between samples.

523 Figure 6. Dot chart illustrating the relative abundance of active methanogenesis genes. The

samples are grouped by location in descending order and include both methanogenic substrates

525 (CO₂ and NaAOc). The colors correspond to the land use type (green = primary rainforest,

526	orange = pasture, blue = secondary rainforest). The shapes of the dots correspond to substrate
527	(circle=CO ₂ , triangle = NaAOc). Active methanogenesis genes includes SEED subsystem
528	annotations as "Methanogenesis," "Methanogenesis from methylated compounds," and
529	"Methanogenesis strays," Methanogenesis strays are "additional genes and clusters from
530	methanogens". The specific genes associated with "Methanogenesis strays" can be found by
531	searching for the subsystem on the SEED viewer
532	(http://rast.theseed.org/FIG/seedviewer.cgi?page=SubsystemSelect).
533	Figure 7. The field gas flux for methane (CH ₄ mg-C/m ² /hr) correlated to active methanogen
534	abundance in ${}^{13}CO_2$ and ${}^{13}NaAOc$ SIP incubations. Primary rainforest = green, pasture = red, and
535	secondary rainforest = blue. Samples from Rondônia are circles and samples from Pará are

536 triangles.

537 Table 1. Methanogens and methanotrophs that are both active and significantly different between 538 land use types (primary rainforest, pasture, secondary rainforest). The term 'Land use 539 association' signifies which land use is associated with a significantly higher abundance of the 540 taxon. Mean relative abundance (%) depicts the average relative percent of each taxon in each 541 land use.

542

543 **Supplemental Table and Figure Legends**

. .

544 Suppl. Figure 1. Visualization of the sampling scheme for each geographic location and land-use 545 type (two primary rainforests, one cattle pasture, and one secondary rainforest). Soil cores (18 x) 546 were collected along a transect ranging from 100 to 200 m with five equidistant sampling points. 547 Three adjacent soil cores were taken from each sampling point with a fourth soil core taken from 548 sampling points 2, 3, and 4 along the transect.

550	Suppl. Figure 2. Non-metric multidimensional scaling indicating how similar the active soil
551	microbial communities are for the substrates (a) $^{13}CH_4$, (b) $^{13}CO_2$, (c) $^{13}NaAOc$ from Pará. The
552	plot was created using a Bray–Curtis dissimilarity matrix among all samples. Primary rainforest
553	= green, pasture = red, and secondary rainforest = blue.
554	
555	Suppl. Figure 3. Non-metric multidimensional scaling indicating how similar the active soil
556	microbial communities are for the substrates (a) ${}^{13}CH_4$, (b) ${}^{13}CO_2$, (c) ${}^{13}NaAOc$ from Rondônia.
557	The plot was created using a Bray–Curtis dissimilarity matrix among all samples. Primary
558	rainforest = green, pasture = red, and secondary rainforest = blue.
559	
560	Suppl. Figure 4. Abundance of active methanotroph genera in samples from (a) Pará or (b)
561	Rondônia incubated with ¹³ CH ₄ . The active metagenomes are colored based on land-use type
562	with primary rainforest = green, pasture = orange, and secondary rainforest = blue.
563	
564	Suppl. Figure 5. The soil bulk density (g/cm ³) for each land use (primary rainforest, pasture,
565	secondary rainforest) and geographic location (Rondônia and Pará).
566	
567	Suppl. Figure 6. The field gas flux for methane (CH_4 mg- $C/m^2/hr$) correlated significantly with
568	active methanogen abundance in SIP incubations for either substrate ${}^{13}CO_2$ and ${}^{13}NaAOc$.
569	Primary rainforest = green, pasture = red, and secondary rainforest = blue. Samples from
570	Rondônia are circles and samples from Pará are triangles.
571	

572	Suppl. Figure 7. The log mcrA gene copies per ng of DNA for soils from three land-use types
573	(primary rainforest, pasture, and secondary rainforest) in Rondônia and Pará incubated with
574	13 CO ₂ , 13 NaAOc, or no incubation (field soil). 13 CO ₂ samples = red, 13 NaAOc samples = blue,
575	unaltered samples = green.
576	
577	Suppl. Figure 8. The log <i>pmoA</i> gene copies per ng of DNA for soil from three land-use types
578	(primary rainforest, pasture, and secondary rainforest) in Rondônia and Pará incubated with
579	13 CH ₄ or no incubation (field soil).
580	
581	Suppl. Table 1. Significance values (p-values) from ANOVA with Tukey Honestly Significant
582	Difference Test comparing the richness of active methane-cycling taxa.
583	
584	Suppl. Table 2. The abundance of active methanogen species found in each ¹³ CO ₂ SIP incubation
585	from Rondônia.
586	
587	Suppl. Table 3. The abundance of active methanogen species found in each ¹³ NaAOc SIP
588	incubation from Rondônia.
589	
590	Suppl. Table 4. The abundance of active methanotroph species found in each ${}^{13}CH_4$ SIP
591	incubation from Rondônia. The Type column specifies whether that methanotroph species is
592	Type I, II, or III.
593	

Suppl. Table 5. The abundance of active methanogen species found in each ¹³CO₂ SIP incubation
 from Pará.

596

597 Suppl. Table 6. The abundance of active methanogen species found in each ¹³NaAOc SIP

598 incubation from Pará.

599

600 Suppl. Table 7. The abundance of active methanotroph species found in each ${}^{13}CH_4$ SIP

601 incubation from Pará. The Type column specifies whether that methanotroph species is Type I,

602 II, or III.

603

Suppl. Table 8. The relative abundance of active methanotrophy or methanotrophy-related genes for samples incubated with ¹³CH₄. Location indicates whether the sample is from Rondônia or Pará. Land use states whether the sample is from a primary rainforest, pasture, or secondary rainforest. The within and between location values show the p-value from a two-tailed t-test comparing land-use types.

609

Suppl. Table 9. The relative abundance (%) of active methanogenesis genes (methanogenesis +
methanogenesis strays + methanogenesis from methylated compounds) to the total
methanogenesis gene annotations for each sample incubated with either 13CO2 or 13NaAOc.
Location indicates whether the sample is from Rondônia or Pará. Land use states whether the
sample is from a primary rainforest, pasture, or secondary rainforest. SIP Incubation indicates
whether the sample was incubated with 13CO2 or 13NaAOc. PF = primary rainforest, P =
pasture, SF = secondary rainforest. Methanogenesis strays are described by SEED Subsystem as

617 "additional genes and clusters from methanogens". The specific genes associated with these 618 SEED Subsystems can be found by searching for the subsystem on the SEED Viewer 619 (http://rast.theseed.org/FIG/seedviewer.cgi?page=SubsystemSelect). The two-tailed t-test values 620 are p-values with significant (p<0.05) highlighted in red. 621 622 Suppl. Table 10. Microbial species implicated in the sulfur, nitrogen, or carbon cycle that were active and significantly different between land use types in Rondônia or Pará¹³CO₂-supported 623 624 SIP samples. The term "Land use association" indicates the land use type that had (1) a 625 significantly higher abundance than the other land use types, and (2) the microbial species was 626 active in that land use type. 627 628 Suppl. Table 11. Microbial species implicated in the sulfur, nitrogen, or carbon cycle that were 629 active and significantly different between land use types in Rondônia or Pará¹³NaAOc-630 supported SIP samples. The term "Land use association" indicates the land use type that had (1) 631 a significantly higher abundance than the other land use types, and (2) the microbial species was 632 active in that land use type. 633 634 Suppl. Table 12. Soil physico-chemical properties of samples collected in pasture, primary 635 rainforest, and secondary rainforest in the State of Pará, Brazil. The mean values and results

from an ANOVA with a post-hoc Tukey-Kramer test are tabulated. M.O. = organic matter. H+Al

637 = total soil acidity, SB = sum of exchangeable bases (Ca + Mg + K), CTC = cation exchange

638 capacity, m = aluminum saturation. mmolc = millimoles of charge, V = base saturation as a

639 percentage of CTC, m = aluminum saturation as a percentage of CTC.

- 641 Suppl. Table 13. Soil physico-chemical properties of samples collected in pasture, primary
- rainforest, and secondary rainforest in the State of Rondônia, Brazil. The mean values and results
- 643 from an ANOVA with a post-hoc Tukey-Kramer test are tabulated. M.O. = organic matter, H+Al
- 644 = total soil acidity, SB = sum of exchangeable bases (Ca + Mg + K), CTC = cation exchange
- 645 capacity. m = aluminum saturation, mmolc = millimoles of charge, V = base saturation as a
- 646 percentage of CTC, m = aluminum saturation as a percentage of CTC.
- 647
- 648
- 649

650 REFERENCES

651	1.	IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working
652		Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
653		Change. [Stocker, T.F., D. Qin, GK. Plattner, M. Tignor, S.K. Allen, J. Boschung, A.
654		Nauels, Y.Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press,
655		Cambridge, United Kingdom and New York, USA, 1535 pp.
656		
657	2.	De Azevedo, T.R., Junior, C.C., Junior, A.B., dos Santos Cremer, M., Piatto, M., Tsai,
658		D.S., & Rodrigues, A. (2018). SEEG initiative estimates of Brazilian greenhouse gas
659		emissions from 1970 to 2015. Scientific data, 5, 180045.
660		
661	3.	West, T.A.P., Börner, J., and Fearnside, P.M. (2019). "Climatic benefits from the 2006-
662		2017 avoided deforestation in Amazonian Brazil." Frontiers in Forests and Global
663		Change. 2:52.
664		
665	4.	Malhi, Y., Roberts, J.T., Betts, R.A., Killeen, T.J., Li, W., and Nobre, C.A. (2008).
666		"Climate Change, Deforestation, and the Fate of the Amazon." Science. 319:169-173.
667		
668	5.	Curtis, P.G., Slay, C.M., Harris, N.L. Tyukavina, A., and Hansen, M.C. (2018).
669		"Classifying drivers of global forest loss." Science. 361(6407):1108-1111.
670		

671	6.	Paula, F.S., Rodrigues, J.L.M., Zhou, J., Wu, L., Mueller, R.C., Mirza, B.S., et al. (2014).
672		"Land use change alters functional gene diversity, composition and abundance in
673		Amazon forest soil microbial communities." Molecular Ecology. doi:10.1111/mec.12786
674		
675	7.	Evans, P.N., Boyd, J.A., Leu, A.O., Woodcroft, B.J., Parks, D.H., Hugenholtz, P., and
676		Tyson G.W. (2019). "An evolving view of methane metabolism in the Archaea." Nature
677		Reviews Microbiology. 17:219-232.
678		
679	8.	Serrano-Silva, N., Sarria-Guzmán, Y., Dendooven, L., and Luna-Guido, M. (2014).
680		"Methanogenesis and Methanotrophy in Soil: A Review." Pedosphere. 24(3):291-307.
681		
682	9.	Zinder, S.H. (1993). "Physiological ecology of methanogens." In Ferry, J.G. (Ed).
683		Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. Chapman & Hall,
684		New York, NY, USA. pp 128-206.
685		
686	10	. Schink, B., and Stams, A.J.M. (2013). "Syntrophism among prokaryotes." In Rosenberg,
687		E., DeLong, F., Lory, S., Stackebrandt, E., & Thompson, F. (Eds). The Prokaryotes:
688		Prokaryotic Communities and Ecophysiology. Springer, Berlin. pp 471-493.
689		
690	11	. Costa, K.C., and Leigh, J.A. (2014). "Metabolic versatility in methanogens." Current
691		Opinion in Biotechnology. 29:70-75.
692		

693	12. Semrau, J.D., DiSpirito, A.A., and Yoon, S. (2010). "Methanotrophs and copper." FEMS
694	Microbiology Reviews. 34(4):496-531.
695	
696	13. van Teeseling, M.C.F., Pol, A., Harhangi, H.R., van der Zwart, S., Jetten, M.S.M., Op
697	den Camp, H.J.M., et al. (2014). "Expanding the Verrucomicrobial Methanotrophic
698	World: Description of Three Novel Species of Methylacidimicrobium gen. nov." Applied
699	and Environmental Microbiology. 80(21):6782-6792.
700	
701	14. Murrell, J.C., and Dalton, H. (1983). "Nitrogen Fixation in Obligate Methanotrophs."
702	Journal of General Microbiology. 129:3481-3486.
703	
704	15. Graham, D.W., Chaudhary, J.A., Hanson, R.S., and Arnold, R.G. (1993). "Factors
705	Affecting Competition Between Type I and Type II Methanotrophs in Two-organism,
706	Continuous-flow Reactors." Microbial Ecology. 25:1-17.
707	
708	16. Amaral, J.A., and Knowles, R. (1995). "Growth of methanotrophs in methane and
709	oxygen counter gradients." FEMS Microbiology Letters. 126:215-220.
710	
711	17. Dunfield, P.F., Liesack, W., Henckel, T., Knowles, R., and Conrad, R. (1999). "High-
712	Affinity Methane Oxidation by a Soil Enrichment Culture Containing a Type II
713	Methanotroph." Applied and Environmental Microbiology. 65(3):1009-1014.
714	

715	18. Bull, I.D., Parekh, N.R., Hall, G.H., Ineson, P, and Evershed, R.P. (2000). "Detection and
716	classification of atmospheric methane oxidizing bacteria in soil." Nature. 405:175-178.
717	
718	19. Meyer KM, Klein AM, Rodrigues JLM, Nüsslein K, Tringe SG, Mirza BS, et al. (2017).
719	"Conversion of Amazon Rainforest to Agriculture Alters Community Traits of Methane-
720	Cycling Organisms." Molecular Ecology. 26(6):1547-1556.
721	
722	20. Baani, M., and Liesack, W. (2008). "Two isoenzymes of particulate methane
723	monooxygenase with different methane oxidation kinetics are found in Methylocystis sp.
724	strain SC2." Proc Natl Acad Sci. 105(29):10203-8.
725	
726	21. Keller, M., Goreau, T.J., Wofsy, S.C., Kaplan, W.A., and McElroy, M.B. (1986).
727	"Production of nitrous oxide and consumption of methane by forest soils." Geophysical
728	Research Letters. 10(12):1156-1159.
729	
730	22. Steudler, P.A., Melillo, J.M., Feigl, B.J., Neill, C., Piccolo, M.C., and Cerri, C.C. (1996).
731	"Consequence of forest-to-pasture conversion on CH4 fluxes in the Brazilian Amazon
732	Basin." Journal of Geophysical Research: Atmospheres. 101(D13):18547-18554.
733	
734	23. Fearnside, P.M. (1997). "Greenhouse gases from deforestation in Brazilian Amazonia:
735	net committed emissions." Climatic Change. 35(3):321-360.
736	

737	24. Fernandes, S.A.P., Bernoux, M., Cerri, C.C., Feigl, B.J., and Piccolo, M.C. (2002).
738	"Seasonal variation of soil chemical properties and CO ₂ and CH ₄ fluxes in unfertilized
739	and P-fertilized pastures in an Ultisol of the Brazilian Amazon." Geoderma. 107:227-
740	241.
741	
742	25. Wick, B., Veldkamp, E., de Mello, W. Z., Keller, M. and Crill, P. (2005). "Nitrous oxide
743	fluxes and nitrogen cycling along a pasture chronosequence in Central Amazonia,
744	Brazil." Biogeosciences. 2: 175-187.
745	
746	26. Tveit, A.T., Urich, T., and Svenning, M.M. (2014). "Metatranscriptomic Analysis of
747	Active Peat Soil Microbiome." Appl. Environ. Microbiol. 80(18):5761-5772.
748	
749	27. Singer, E., Wagner, M., and Woyke, T. (2017). "Capturing the genetic makeup of the
750	active microbiome in situ." ISME J. 11:1949-1963.
751	
752	28. Keiblinger, K.M., Wilhartitz, I.C., Schneider, T., Roschitzki, B., Schmid, E., Eberl, L.,
753	Riedel, K., and Zechmeister-Boltenstern, S. (2012). "Soil metaproteomics - Comparative
754	evaluation of protein extraction protocols." Soil Biol. Biochem. 54:14-24.
755	
756	29. Kroeger, M.E., and Nüsslein, K. (2019). "Stable Isotope Probing – Detection of Active
757	Microbes in Soil." Modern Soil Microbiology, Third Edition. Ed. Jan Dirk Van Elsas.
758	Boca Raton: CRC Press.
759	

760	30. Esson, K., Lin, X., Kumaresan, D., Chanton, J.P., Murrell, J.C., and Kostka, J.E. (2016).
761	"Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-
762	Oxidizing Communities in an Acidic Boreal Peat Bog." Appl. Environ. Microbiol. 82(8):
763	2363-2371.
764	
765	31. Dumont, M.G., Radajewski, S.M., Miguez, C.B., McDonald, I.R., and Murrell, J.C.
766	(2006). "Identification of a complete methane monooxygenase operon from soil by
767	combining stable isotope probing and metagenomic analysis." Environ. Microbiol.
768	8:1240-1250.
769	
770	32. Lu, Y., Leuders, T., Friedrich, M.W., and Conrad, R. (2005). "Detecting active
771	methanogenic populations on rice roots using stable isotope probing." Environ.
772	Microbiol. 7(3): 326-336.
773	
774	33. Neufeld, J.D., Vohra, J., Dumont, M.G., Lueders, T., Manefield, M., Friedrich, M.W. and
775	J.C. Murrell. (2007). "DNA stable-isotope probing." Nature Protocols. 2: 860-866.
776	
777	34. Holmes, A.J., Costello, A., Lidstrom, M.E., and Murrell, J.C. (1995). "Evidence that
778	particulate methane monooxygenase and ammonia monooxygenase may be
779	evolutionarily related." FEMS Microbiol. Letters. 132:203-208.
780	

781	35. Costello, A. and Lidstrom, M.E. (1999). "Molecular Characterization of Functional and
782	Phylogenetic Genes from Natural Populations of Methanotrophs in Lake Sediments."
783	Appl. Environ. Microbiol. 65(11):5066-5074.
784	
785	36. Steinberg, L.M. and Regan, J.M. (2008). "Phylogenetic comparison of the methanogenic
786	communities from an acidic, oligotrophic fen and an anaerobic digester treating
787	municipal wastewater sludge." Appl. Environ. Microbiol. 74(21):6663-6671.
788	
789	37. Navarrete AA, Tsai SM, Mendes LW, Faust K, de Hollander M, Cassman NA, et al.
790	(2015). "Soil microbiome responses to the short-term effects of Amazonian
791	deforestation." Molecular Ecology. 24(10):2433-2448.
792	
793	38. Pirk, N., Mastepanov, M., Parmentier, FJ., Lund, M., Crill, P., and Christensen, T.R.
794	(2016). "Calculations of automatic chamber flux measurements of methane and carbon
795	dioxide using short time series of concentrations." Biogeosciences 13, 903-912.
796	
797	39. Salimon, C.I., Davidson, E.A., Victoria, R.L., and Melo, A.W.F. (2004). "CO ₂ flux from
798	soil in pastures and forests in southwestern Amazonia." Global Change Biology 10, 833-
799	843.
800	
801	40. Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., and Holmes,
802	S.P. (2016). "DADA2: High resolution sample inference from Illumina amplicon data."
803	Nat. Methods. 13(7):581-583.

804

805	41 Polyulish NA Kashlar P.D. Bidaout I.D. Dillon M. Polyon F. Knight D. Huttlay
803	41. Bokulich, N.A., Kaehler, B.D., Rideout, J.R., Dillon, M., Bolyen, E., Knight, R., Huttley,
806	G.A., and Caporaso Jr., G. (2018). "Optimizing taxonomic classification of marker-gene
807	amplicon sequences with QIIME 2's q2-feature-classifier plugin." Microbiome. 6(1):90.
808	
809	42. Keegan, K.P., Glass, E.M., and Meyer, F. (2016). "MG-RAST, a Metagenomics Service
810	for Analysis of Microbial Community Structure and Function." Methods Mol Biol.
811	1399:207-233.
812	
813	43. R Core Team. (2018). R: A language and environment for statistical computing R
814	Foundation for Statistical Computing Vienna Austria. URL https://wwwR-projectorg/
815	
816	44. Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. (2018).
817	vegan: Community Ecology Package. R package version 2.4-6. https://CRAN.R-
818	project.org/package=vegan
819	
820	45. Parks, D.H., Tyson, G.W., Hugenholtz, P., and Beiko, R.G. (2014). "STAMP: Statistical
821	analysis of taxonomic and functional profiles." Bioinformatics. 30(21):3123-3124.
822	
823	46. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Spring-Verlag New York,
824	2016.
825	

826	47. Pinto, A.J. and Raskin, L. (2012). "PCR biases distort bacterial and archaeal community
827	structure in pyrosequencing datasets." PLoS One. 7(8):e43093.
828	
829	48. Huse, S.M., Welch, D.M., Morrison, H.G., and Sogin, M.L. (2010). "Ironing out the
830	wrinkles in the rare biosphere through improved OTU clustering." Environ. Microbiol.
831	12(7):1889-1898.
832	
833	49. Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and Segata, N. (2017). "Shotgun
834	metagenomics, from sampling to sequencing and analysis." Nature Biotechnology.
835	35:833-844.
836	
837	50. Coyotzi, S., Pratscher, J., Murrell, J.C., and Neufeld, J.D. (2016). "Targeted
838	metagenomics of active microbial populations with stable-isotope probing." Curr. Opin.
839	Biotechnol. 41:1-8.
840	
841	51. Eyice, Ö., Namura, M., Chen, Y., Mead, A., Samavedam, S. and H. Schäfer. (2015). "SIP
842	metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading
843	bacteria in soil and lake sediment." International Society of Microbial Ecology
844	Journal. 9: 2336.
845	
846	52. Cardoso, D., Sarkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., et al.
847	(2017). "Amazon plant diversity revealed by a taxonomically verified species list."
848	Proceedings of the National Academy of Sciences. 114(40):10695-10700.

850	53. Sgouridis, F. and Ullah, S. (2017). "Soil Greenhouse Gas Fluxes, Environmental
851	Controls, and the Partitioning of N_2O Sources in UK Natural and Seminatural Land Use
852	Types." Journal of Geophysical Research: Biogeosciences. 10.1002/2017JG003783.
853	
854	54. Wanyama, I., Pelster, D.E., Butterbach-Bahl, K., Verchot, L.V., Martius, C., and Rufino,
855	M.C. (2019). "Soil carbon dioxide and methane fluxes from forests and other land use
856	types in an African tropical montane region." Biogeochemistry. 143:171-190.
857	
858	55. Lackner, N., Hintersonnleitner, A., Wagner, A.O., and Illmer, P. (2018).
859	"Hydrogenotrophic Methanogenesis and Autotrophic Growth of Methanosarcina
860	thermophila." Archaea. Vol 2018. Article ID 4712608.
861	
862	56. Ferry, J.G. (2011). "Fundamentals of methanogenic pathways that are key to the
863	biomethanation of complex biomass." Curr Opin Biotechnol. 22(3):351-357.
864	
865	57. Welander, P.V. and Metcalf, W.W. (2005). "Loss of the mtr operon in Methanosarcina
866	blocks growth on methanol, but not methanogenesis, and reveals an unknown
867	methanogenic pathway." Proc Natl Acad Sci. 102(30):10664-10669.
868	
869	58. Mand, T.D., and Metcalf, W.W. (2019). Energy Conservation and Hydrogenase Function
870	in Methanogenic Archaea, in Particular the Genus Methanosarcina. Microbiol. Molec.
871	Biol. Reviews, 83(4), e00020-19.

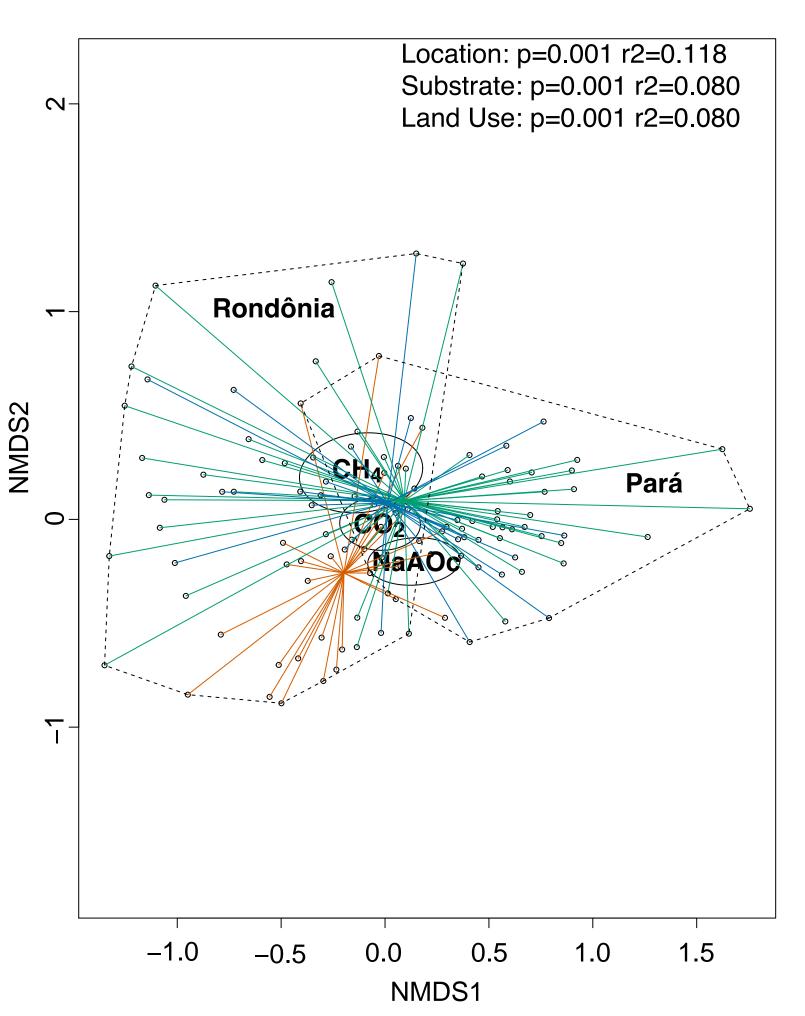
873	59. Lammel DR, Feigl BJ, Cerri CC, Nusslein K. (2015). "Specific microbial gene
874	abundances and soil parameters contribute to C, N, and greenhouse gas process rates after
875	land use change in Southern Amazonian Soils." Frontiers in Microbiology. 6:1057.
876	
877	60. Kroeger, M.E., Delmont, T.O., Meyer, K.M., Guo, J., Khan, K., Rodrigues, J.L.M., et al.
878	(2018). "New Biological Insights Into How Deforestation in Amazonia Affects Soil
879	Microbial Communities Using Metagenomics and Metagenome-Assembled Genomes."
880	Frontiers in Microbiology. 9:1635.
881	
882	61. Pedrinho, A., Mendes, L.W., Merloti, L.F., de Cassia da Fonseca, M., de Souza
883	Cannavan, F., Tsai, S.M. (2019). "Forest-to-pasture conversion and recovery based on
884	assessment of microbial communities in Eastern Amazon rainforest." FEMS Microbiol.
885	Ecol. 95(3):fiy236.
886	
887	62. Carini, P., Marsden, P.J., Leff, J.W., Morgan, E.E., Strickland, M.S., and Fierer, N.
888	(2017). "Relic DNA is abundant in soil and obscures estimates of soil microbial
889	diversity." Nat Microbiol 2: 16242.
890	
891	63. Lennon, J.T., Muscarella, M.E., Placella, S.A. and Lehmkuhl, B.K. (2018). "How, when,
892	and where relic DNA affects microbial diversity." MBio, 9:e00637-18.
893	

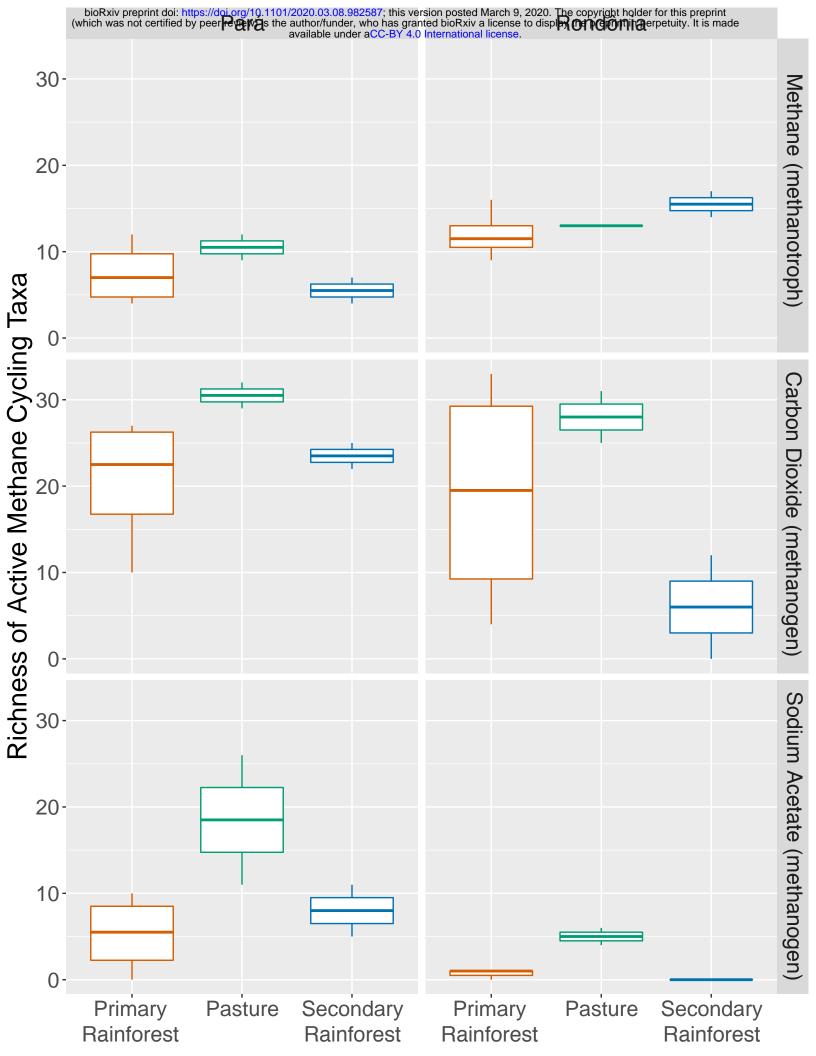
894	64. Sirois, S.H. and Buckley, D.H. (2019). "Factors governing extracellular DNA
895	degradation dynamics in soil." Environ. Microbiol. Reports 11:173-184.
896	
897	65. Mancinelli, R.L. (1995). "The Regulation of Methane Oxidation in Soil." Annu. Rev.
898	Microbiol. 49:581-605.
899	
900	66. Guggenheim, C., Brand, A., Bürgmann, H., Sigg, L., and Wehrli, B. (2019). "Aerobic
901	methane oxidation under copper scarcity in a stratified lake." Sci. Reports. 9:4817.
902	
903	67. Knapp, C.W., Fowle, D.A., Kulczycki, E., Roberts, J.A., and Graham, D.W. (2007).
904	"Methane monooxygenase gene expression mediated by methanobactin in the presence of
905	mineral copper sources."
906	
907	68. Rodrigues, J.L.M., Pellizari, V.H., Mueller, R., Baek, K., da C Jesus, E., Paula, F.S., et
908	al. (2013). "Conversion of the Amazon rainforest to agriculture results in biotic
909	homogenization of soil bacterial communities." Proceedings of the National Academy of
910	Sciences. 110(3):988-993.
911	
912	69. Hoehler, T., Losey, N.A., Gupsalus, R.P., and McInerney, M.J. (2018). Environmental
913	constraints that limit methanogenesis. In Stams and Sousa (Eds), Biogenesis of
914	Hydrocarbons. Berlin Heidelberg, Spring-Verlag (pp. 1-26).
915	

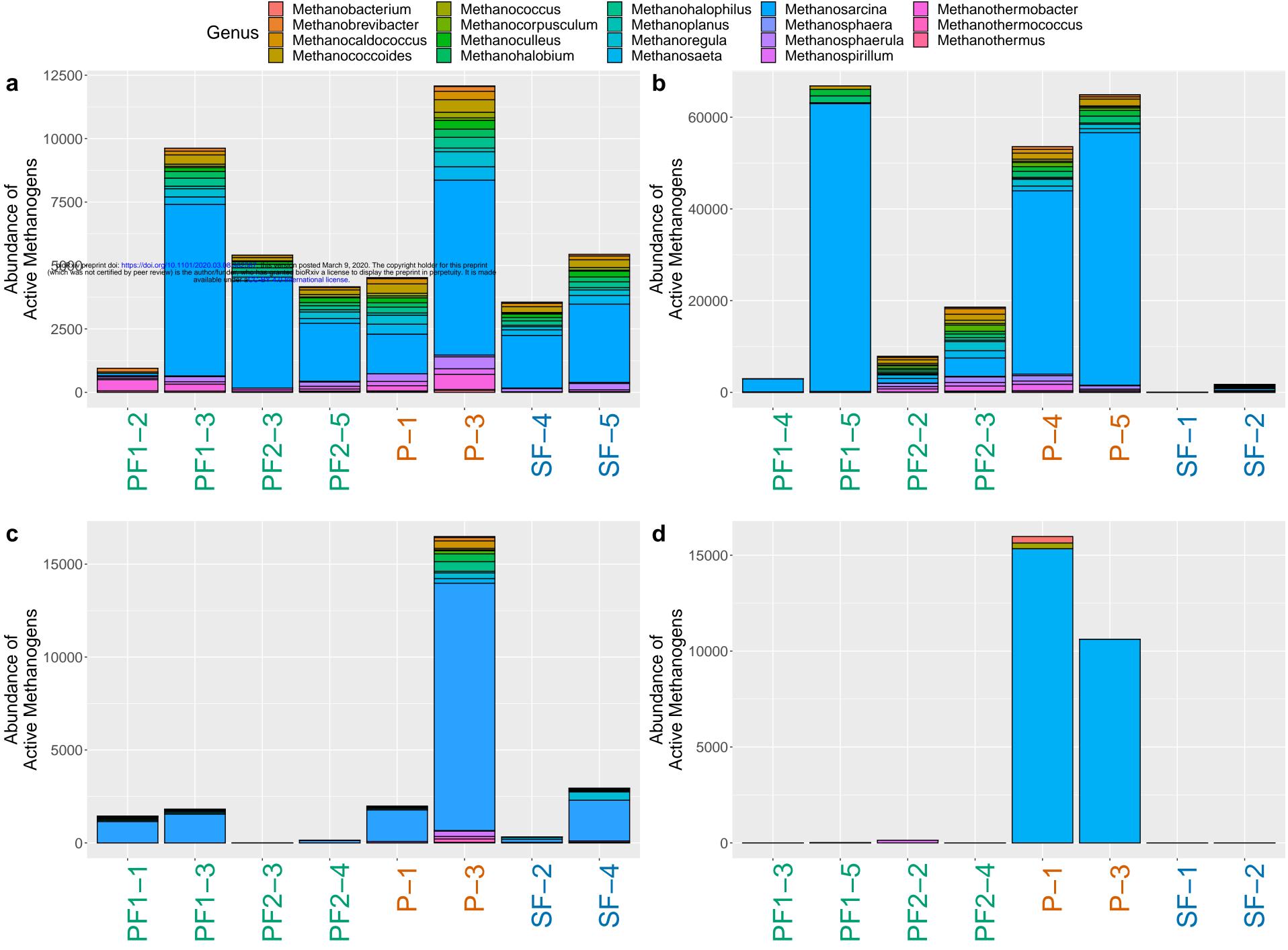
916	70. Elshahed, M.S., Bhupathiraju, V.K., Wofford, N.Q., Nanny, M.A., and McInerney, M.J.
917	(2001). "Metabolism of Benzoate, Cyclohex-1-ene Carboxylate, and Cyclohexane
918	Carboxylate by "Syntrophus aciditrophicus" Strain SB in Syntrophic Association with
919	H ₂ -Using Microorganisms." Appl. Environ. Microbiol. 67(4):1728-1738.
920	
921	71. Zehnder, A.J.B. and Stumm, W. (1988). Geochemistry and biogeochemistry of anaerobic
922	habitats. In A.J.B. Zehnder (Ed.), Biology of anaerobic microorganisms (pp.1-38).
923	
924	72. Wolfe R.S. (1991). My kind of biology. Annu. Rev. Microbiol. 45:1–35.
925	
926	73. Strittmatter, A.W., Liesegang, H., Rabus, R., Decker, I., Amann, J., Andres, S., Henne,
927	A., Fricke, W.F., Martinez-Arias, R., Barteis, D., Goesmann, A., Krause, L., Pühler, A.,
928	Klenk, H-P., Richter, M., Schüler, M., Glöckner, F.O., Meyerdierks, A., Gottschalk, G.,
929	and Amann, R. (2009). "Genome sequence of Desulfobacterium autotrophicum HRM2, a
930	marine sulfate reducer oxidizing organic carbon completely to carbon dioxide." Environ.
931	Microbiol. 11(5):1038-1055.
932	
933	74. Badziong, W., Ditter, B., and Thauer, R.K. (1979). "Acetate and carbon dioxide
934	assimilation by Desulfovibrio vulgaris (Marburg), growing on hydrogen and sulfate as
935	sole energy source." Arch. Microbiol. 123(3):301-305.
936	

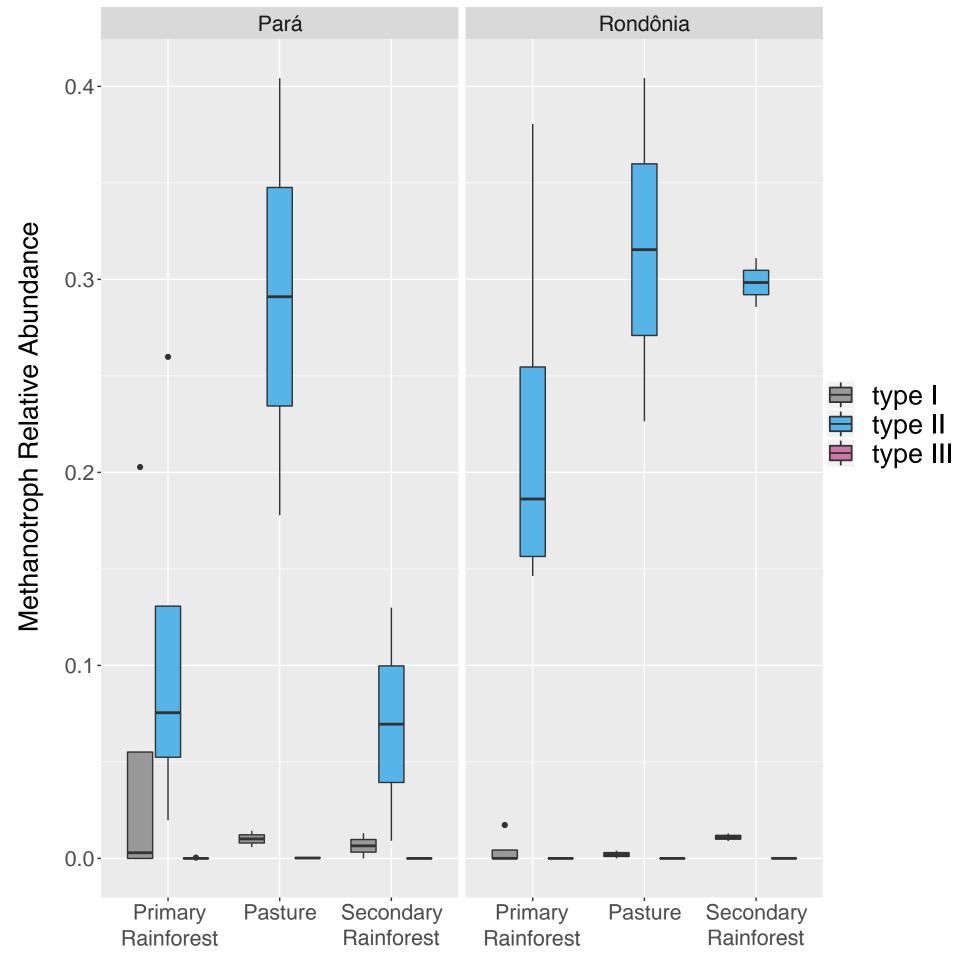
937	75. Watson, S.W. and Waterbury, J.B. (1971). "Characteristics of two marine nitrite
938	oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov.
939	gen. nov. sp." Arch. Microbiol. 77(3):203-230.
940	
941	76. Sorokin, D.Y., Tourova, T.P., Lysenko, A.M., Mityushina, L.L., and Kuenen, J.G.
942	(2002). "Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp.
943	nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable growth
944	on thiocyanate, from soda lakes." IJSEM. 52:657-664.
945	
946	77. Kukla, J., Whitfeld, T., Cajthaml, T., Baldrian, P, Veselá-Šimáčková, H., Novotný, V.,
947	and Frouz J. (2018). "The effect of traditional slash-and-burn agriculture on soil organic
948	matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea."
949	Land Degrad. Dev. 30:166-177.
950	
951	78. Banat, I.M. and Marchant, R. (2011). Geobacillus Activities in Soil and Oil
952	Contamination Remediation. In Logan, N.A. and De Vos, P. (Eds). Endospore-forming
953	Soil Bacteria, Soil Biology 27, Springer-Verlag Berlin Heidelberg. pp. 259-270.
954	
955	79. Durrer, A., Margenot, A.J., Silva, L.C.R., Bohannan, B.J.M., Nüsslein, K., van Haren, J.,
956	Andreote, F.D., Parikh, S.J., and Rodrigues, J.L.M. (in review). "Beyond total carbon:
957	long-term effect of deforestation on Amazonian soils."

959	80. Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova,
960	A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S., and Ivanov, M.V.
961	(2001). "Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus
962	subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum
963	reservoirs and transfer of Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus
964	thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus,
965	G.th." IJSEM. 51(Pt.2):433-446.
966	
967	81. Schnürer, A., Schink, B., and Svensson, B.H. (1996). "Clostridium ultunense sp. nov., a
968	mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic
969	methanogenic bacterium." IJSEM. 46(4):1145-1152.
970	
971	82. Myhr, S. and Torsvik, T. (2000). "Denitrovibrio acetiphilus, a novel genus and species of
972	dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column."
973	IJSEM. 50:1611-1619.
974	
975	83. Yao, H., Conrad, R., Wassmann, R., and Neue, H.U. (1999). "Effect of soil
976	characteristics on sequential reduction and methane production in sixteen rice paddy soils
977	from Chine, the Philippines, and Italy." Biogeochemistry. 47:269-295.
978	
979	84. Achtnich, C., Bak, F., and Conrad, R. (1995). "Competition for electron donors among
980	nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy
981	soil." Biol. Fertil. Soils. 19:65-72.

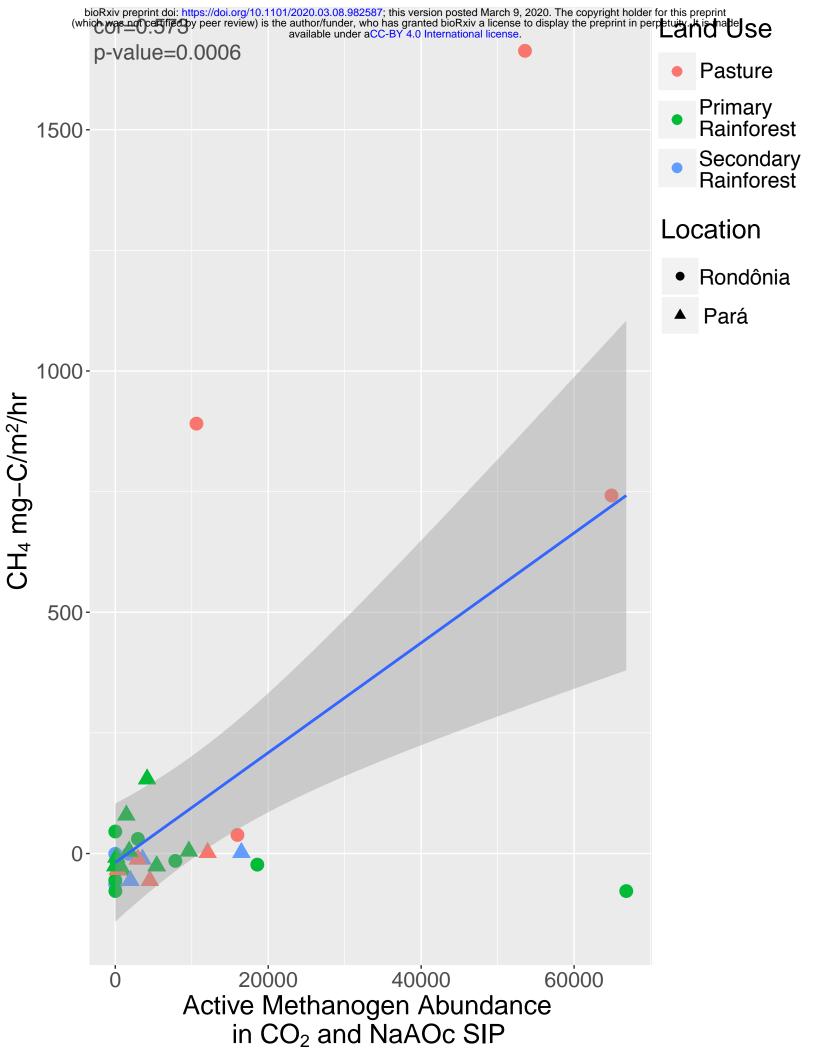

Ω	0	0
9	o	L


983	85. Verchot, L.V., Davidson, E.A., Cattânio, J.H., and Ackerman, I.L. (2000). "Land-Use
984	Change and Biogeochemical Controls of Methane Fluxes in Soils of Eastern Amazonia."
985	Ecosystems. 3:41-56.
986	
987	86. Wagner, R., Zona, D., Oechel, W., and Lipson, D. (2017). "Microbial community
988	structure and soil pH correspond to methane production in Arctic Alaska soils."
989	Environmental Microbiology. 19:3398-3410.
990	
991	87. Feigl, B.J., Melillo, J., and Cerri, C.C. (1995). "Changes in the origin and quality of soil
992	organic matter after pasture introduction in Rôndonia (Brazil)." Plant and Soil. 175:21-
993	29.
994	
995	88. Salimon, C.I., Davidson, E.A., Victoria, R.L., and Melo, A.W.F. (2004). "CO2 flux from
996	soil in pastures and forests in southwestern Amazonia." Glob. Change Biol.10:833-843.
997	
998	89. Zhou, J., Xue, K., Xie, J., Deng, Y., Wu, L., Cheng, X., Fei, S., Deng, S., He, Z., Van
999	Nostrand, J.D., and Luo, Y. (2011). "Microbial mediation of carbon-cycle feedbacks to
1000	climate warming." Nat. Climate Change. 2:106-110.
1001	
1002	90. Hotaling, S., Hood, E., and Hamilton, T. L. (2017). "Microbial ecology of mountain
1003	glacier ecosystems: biodiversity, ecological connections and implications of a warming
1004	climate." Environ. Microbiol. 19(8):2935-2948.


1	0	0	5


1006	91. Trevedi, P., Anderson, I.C., and Singh, B.K. (2013). "Microbial modulators of soil
1007	carbon storage: integrating genomic and metabolic knowledge for global prediction."
1008	Trends in Microbiology. 21(12):641-651.
1009	
1010	92. Wilhelm, R.C., Singh, R., Eltis, L.D. and Mohn, W.W. (2019). "Bacterial contributions to
1011	delignification and lignocellulose degradation in forest soils with metagenomic and
1012	quantitative stable isotope probing." ISME J. 13:413-418.
1013	
1014	93. Pepe-Ranney C, Campbell AN, Koechli CN, Berthrong S, Buckley DH. (2016).
1015	"Unearthing the Ecology of Soil Microorganisms Using a High-Resolution DNA-SIP
1016	Approach to Explore Cellulose and Xylose Metabolism in Soil." Frontiers in
1017	Microbiology. 7: 703.
1018	
1019	94. Murase, J., Hordijk, K., Tayasu, I, and Bodelier, P.L.E. (2011). "Strain-specific
1020	incorporation of methanotrophic biomass into eukaryotic grazers in a rice field soil
1021	revealed by PLFA-SIP." FEMS Microbiol. Ecol. 75:284-290.
1022	
1023	95. Radajewski, S., Ineson, P., Parekh, N.R., and Murrell, J.C. (2000). "Stable-isotope
1024	probing as a tool in microbial ecology." Nature. 403:646-649.
1025	

1026	96. Cébron, A., Bodrossy, L., Chen, Y., Singer, A.C., Thompson, I.P., Prosser, J.I. et al.
1027	(2007). "Identity of active methanotrophs in landfill cover soil as revealed by DNA-
1028	stable isotope probing." FEMS Microbiology Ecology. 62: 12-23.
1029	
1030	97. Lee, C.G., Watanabe, T. and S. Asakawa. (2017). "Bacterial community incorporating
1031	carbon derived from plant residue in an anoxic non-rhizosphere soil estimated by DNA-
1032	SIP analysis." Journal of Soils and Sediments. 17: 1084-1091.
1033	
1034	98. Berenguer, E., Gardner, T.A., Ferreira, J., Aragao, L.E., Camargo, P.B., Cerri, C.E.,
1035	Durigan, M., Junior, R.C.O., Vieira, I.C., Barlow, J. (2015). "Developing cost-effective
1036	field assessments of carbon stocks in human-modified tropical forests." PloS one, 10(8):
1037	<u>e0133139</u> .
1038	



Particulate methane monooxygenase (pMMO)							
Soluble methane monooxygenase (sMMO)							
Formaldehyde Assimilation Ribulose Monophosphate Pathway							
Serine-Glyoxylate Cycle							
Coenzyme PQQ Synthesis							
Nitrogen Fixation							
1 0 _1	Para-P	Para-PF2 Para-PF1	Para-SF	Rondonia-PF1	Rondonia-PF2	Rondonia-P	Rondonia-SF

Rondonia-PF1-CO2-5 Rondonia-P-NaAOc-1 Rondonia-P-NaAOc-3 Rondonia-PF2-CO2-3 Rondonia-PF2-CO2-2 Rondonia-PF2-CO2-2 Rondonia-PF2-NaAOc-4 Rondonia-PF2-NaAOc-4 Rondonia-SF-CO2-1 Rondonia-SF-CO2-2 Rondonia-PF2-NaAOc-2 Rondonia-PF1-NaAOc-3 Rondonia-PF1-NaAOc-3 Rondonia-SF-NaAOc-2 Rondonia-SF-NaAOc-2 Rondonia-SF-NaAOc-2	etiestieteamore die under acc-BY 4.0 International license. Rainforest	Rainforest
Rondonia-P-NaAOc-1Rondonia-P-CO2-4Rondonia-PF2-CO2-3Rondonia-PF2-CO2-2Rondonia-PF2-CO2-4Rondonia-PF2-NaAOc-4Rondonia-PF2-NaAOc-4Rondonia-PF2-NaAOc-4Rondonia-SF-CO2-5Rondonia-SF-CO2-2Rondonia-PF2-NaAOc-2Rondonia-PF2-NaAOc-2Rondonia-PF1-NaAOc-3Rondonia-PF1-NaAOc-3Rondonia-SF-NaAOc-1Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-3Rondonia-SF-NaAOc-3Rondonia-SF-NaAOc-3Rondonia-SF-NaAOc-3Rondonia-SF-NaAOc-3Para-P-NaAOc-3Para-P-CO2-3Para-P-CO2-1		
Rondonia-P-CO2-4Rondonia-PF2-CO2-3Rondonia-PF2-CO2-2Rondonia-PF2-CO2-4Rondonia-PF2-NaAOc-4Rondonia-PF2-NaAOc-4Rondonia-SF-CO2-5Rondonia-SF-CO2-2Rondonia-PF2-NaAOc-2Rondonia-SF-CO2-2Rondonia-PF1-NaAOc-2Rondonia-PF1-NaAOc-3Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-3Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-3Rondonia-SF-NaAOc-3Para-P-NaAOc-3Para-P-CO2-3Para-P-CO2-1		
Rondonia-P-NaAOc-3Rondonia-PF2-CO2-3Rondonia-PF2-CO2-4Rondonia-PF1-CO2-4Rondonia-PF2-NaAOc-4Rondonia-PF2-NaAOc-4Rondonia-SF-CO2-1Rondonia-SF-CO2-2Rondonia-PF2-NaAOc-2Rondonia-PF2-NaAOc-2Rondonia-PF1-NaAOc-3Rondonia-PF1-NaAOc-3Rondonia-SF-NaAOc-1Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-2Rondonia-SF-NaAOc-3Para-P-NaAOc-3Para-P-NaAOc-3Para-P-CO2-3Para-P-CO2-1		
Rondonia-PF2-CO2-3 Rondonia-PF2-CO2-2 Rondonia-PF1-CO2-4 Rondonia-PF2-NaAOc-4 Rondonia-PF2-NaAOc-4 Rondonia-SF-CO2-1 Rondonia-SF-CO2-2 Rondonia-PF2-NaAOc-2 Rondonia-PF1-NaAOc-3 Rondonia-PF1-NaAOc-3 Rondonia-SF-NaAOc-1 Rondonia-SF-NaAOc-2 Rondonia-SF-NaAOc-2 Para-P-NaAOc-3 Para-P-CO2-3 Para-P-CO2-1		
Rondonia-PF2-CO2-2 Rondonia-PF1-CO2-4 Rondonia-PF2-NaAOc-4 Rondonia-PF2-NaAOc-4 Rondonia-SF-CO2-1 Rondonia-SF-CO2-2 Rondonia-PF2-NaAOc-2 Rondonia-PF1-NaAOc-3 Rondonia-PF1-NaAOc-5 Rondonia-SF-NaAOc-1 Rondonia-SF-NaAOc-2 Rondonia-SF-NaAOc-2 Rondonia-SF-NaAOc-2 Para-P-NaAOc-3 		
Rondonia-PF1-CO2-4 Rondonia-PF2-NaAOc-4 Rondonia-PF2-NaAOc-4 Rondonia-SF-CO2-1 Rondonia-SF-CO2-2 Rondonia-PF2-NaAOc-2 Rondonia-PF1-NaAOc-3 Rondonia-PF1-NaAOc-5 Rondonia-SF-NaAOc-1 Rondonia-SF-NaAOc-2 Para-P-NaAOc-3 Para-P-CO2-3 Para-P-CO2-1	••••••	
Rondonia-PF2-NaAOc-4 Rondonia-P-CO2-5 Rondonia-SF-CO2-1 Rondonia-SF-CO2-2 Rondonia-PF2-NaAOc-2 Rondonia-PF1-NaAOc-3 Rondonia-PF1-NaAOc-5 Rondonia-SF-NaAOc-1 Rondonia-SF-NaAOc-2 Para-P-NaAOc-3 Para-P-CO2-3 		
Rondonia-P-CO2-5 Rondonia-SF-CO2-1 Rondonia-SF-CO2-2 Rondonia-PF2-NaAOc-2 Rondonia-PF1-NaAOc-3 Rondonia-PF1-NaAOc-5 Rondonia-SF-NaAOc-1 Rondonia-SF-NaAOc-2 Para-P-NaAOc-3 Para-P-CO2-3 Para-P-CO2-1	•	
Rondonia–SF–CO2–1 Rondonia–SF–CO2–2 Rondonia–PF2–NaAOc–2 Rondonia–PF1–NaAOc–3 Rondonia–PF1–NaAOc–5 Rondonia–SF–NaAOc–1 Rondonia–SF–NaAOc–2 Para–P–NaAOc–3 Para–P–CO2–3 Para–P–CO2–1	- 📥	
Rondonia–PF2–NaAOc–2 Rondonia–PF1–NaAOc–3 Rondonia–PF1–NaAOc–3 Rondonia–PF1–NaAOc–5 Rondonia–SF–NaAOc–1 Para–P–NaAOc–3 Para–P–CO2–3 Para–P–CO2–1	•	
Rondonia–PF2–NaAOc–2 Rondonia–PF1–NaAOc–3 Rondonia–PF1–NaAOc–5 Rondonia–SF–NaAOc–1 Para–P–NaAOc–2 Para–P–CO2–3 Para–P–CO2–1	•	
Rondonia–PF1–NaAOc–3 Rondonia–PF1–NaAOc–5 Rondonia–SF–NaAOc–1 Rondonia–SF–NaAOc–2 Para–P–NaAOc–3 Para–P–CO2–3 Para–P–CO2–1	•	
Rondonia–PF1–NaAOc–5 Rondonia–SF–NaAOc–1 Rondonia–SF–NaAOc–2 Para–P–NaAOc–3 Para–P–CO2–3 Para–P–CO2–1	▲	
Rondonia–SF–NaAOc–1	▲	
Rondonia–SF–NaAOc–2 Para–P–NaAOc–3 Para–P–CO2–3 Para–P–CO2–1	▲	
Para-P-NaAOc-3 Para-P-CO2-3 Para-P-CO2-1	▲	
Para-P-CO2-3 Para-P-CO2-1	▲	
Para-P-CO2-1		
	••••••	
Para-PF2-CO2-5		
Para-SF-NaAOc-4		
Para-PF2-NaAOc-4	····	
Para-PF1-NaAOc-3	_	
Para-P-NaAOc-1	📥	
Para-PF2-CO2-3	•	
Para-PF1-CO2-2	•	
Para-PF1-CO2-3	•	
Para-SF-CO2-5	•	
Para-SF-CO2-4	•	
Para-PF2-NaAOc-3	▲	
Para-PF1-NaAOc-1	▲	
Para-SF-NaAOc-2	▲	
0	.00 0.01 0.02	0.03

Relative Abundance of Active Methanogenesis Genes

