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Abstract 
Mapping connections in the neonatal brain can provide insight into the crucial early stages of 
neurodevelopment that shape brain organisation and lay the foundations for cognition and 
behaviour. Diffusion MRI and tractography provide unique opportunities for such 
explorations, through estimation of white matter bundles and brain connectivity. Atlas-based 
tractography protocols, i.e. a priori defined sets of masks and logical operations in a template 
space, have been commonly used in the adult brain to drive such explorations. However, rapid 
growth and maturation of the brain during early development make it challenging to ensure 
correspondence and validity of such atlas-based tractography approaches in the developing 
brain. An alternative can be provided by data-driven methods, which do not depend on 
predefined regions of interest. Here, we develop a novel data-driven framework to extract 
white matter bundles and their associated grey matter networks from neonatal tractography 
data, based on non-negative matrix factorisation that is inherently suited to the non-negative 
nature of structural connectivity data. We also develop a non-negative dual regression 
framework to map group-level components to individual subjects. Using in-silico simulations, 
we evaluate the accuracy of our approach in extracting connectivity components and 
compare with an alternative data-driven method, independent component analysis. We 
apply non-negative matrix factorisation to whole-brain connectivity obtained from publicly 
available datasets from the Developing Human Connectome Project, yielding grey matter 
components and their corresponding white matter bundles. We assess the validity and 
interpretability of these components against traditional tractography results and grey matter 
networks obtained from resting-state fMRI in the same subjects. We subsequently use them 
to generate a parcellation of the neonatal cortex using data from 323 new-born babies and 
we assess the robustness and reproducibility of this connectivity-driven parcellation. 
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Introduction 
The neonatal period is a critical time for brain development, during which the 

refinement and maturation of white matter connections lay the groundwork for later 
cognitive development (Ball et al., 2015; Counsell et al., 2008; Girault et al., 2019). With 
diffusion MRI (dMRI) we can track these connections non-invasively and in vivo, which 
enables us to study the early development of structural connectivity and microstructure, even 
during the first weeks of life (see (Ouyang et al., 2019) for a recent review). 

DMRI studies of neonates have shown that the trajectory of fibre maturation reflects 
the neurodevelopmental hierarchy, with primary motor and sensory tracts developing earlier 
than the association tracts that enable higher order functioning (Dubois et al., 2008; Kulikova 
et al., 2015; Partridge et al., 2004). Studies have also demonstrated the impact of preterm 
birth (Ball et al., 2015; Batalle et al., 2017b; Brown et al., 2014; Girault et al., 2019) and 
maternal environment (Deoni et al., 2013; Tam et al., 2016) on the early development of 
white matter.  

Despite the large potential of diffusion imaging for exploring early developmental 
stages of the brain, current analysis techniques follow the paradigms that have been 
established for the adult brain. For instance, dMRI tractography protocols for identifying 
specific white matter bundles typically rely on delineation of regions of interest (ROIs) that 
provide a priori anatomical knowledge on the route of the tract; and these ROIs can be 
defined relative to a template for automated delineation (Bastiani et al., 2019; de Groot et 
al., 2013; Warrington et al., 2019).  

However, neonatal brains are not simply small adult brains (Batalle et al., 2017a), and 
this renders the above paradigm problematic. The rapid growth and changes in brain 
morphology during the neonatal period, as well as fast alterations in tissue composition that 
alter imaging contrast over time (Bastiani et al., 2019), render it challenging to ensure 
correspondence between template-driven ROIs and tractography protocols at different 
stages of development (Serag et al., 2012). Manual delineation on a subject-by-subject basis 
could be an alternative, but it is time-consuming, assumes very detailed knowledge of how 
neonatal neuroanatomy is depicted in MRI at various early development stages, and becomes 
prohibitive for large cohorts, such as the developing human connectome projects (Howell et 
al., 2019; Hughes et al., 2017). 

In this paper, we propose an alternative approach for simultaneously mapping white 
matter bundles and the corresponding grey matter nodes in the neonatal brain using data-
driven methods, which are inherently model-free and are expected to be more immune to 
the challenges described above. Independent component analysis (ICA) has been a commonly 
used data-driven method for identifying brain networks from resting-state functional MRI 
(fMRI) data (McKeown et al., 1998), and recent work has shown that it can be also applied to 
dMRI tractography data of the adult human brain (O’Muircheartaigh and Jbabdi, 2017; Wu et 
al., 2015) or of the non-human primate brain (Mars et al., 2019). We develop an alternative 
approach to ICA and explore its applicability in the neonatal brain. 

One limitation of applying ICA to tractography data is that the estimated independent 
components and the respective mixing matrix can contain both positive and negative values, 
whereas structural connectivity data is inherently non-negative. This leads to challenges in 
the interpretation of negative weights. To address this problem, we present an alternative 
data-driven method that can be used to identify non-negative connectivity components. Our 
approach is based on non-negative matrix factorisation (NMF) (Lee and Seung, 2001).  Like 
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ICA, NMF is an unsupervised technique that estimates a pre-defined number of components 
from the data. However, the elements and their weights are constrained to take non-negative 
values. Sparsity constraints in the decomposition allow identifiability and further provide an 
indirect means of requiring independence between the estimated components.  This results 
in a set of components whose weighted summation represents the whole system. Due to 
these advantageous properties, NMF has been recently used to identify networks of 
structural covariance (Ball et al., 2019; Sotiras et al., 2017, 2015) from MRI data.  

In this study, we present for the first time an NMF-based framework for extracting 
connectivity components from diffusion MRI data, both at the group and the individual level. 
We apply this approach within the context of mapping patterns of structural connections in 
new-born babies, aged 37 to 44 weeks post-menstrual age (PMA) at scan, using publicly-
released data provided by the developing Human Connectome Project (dHCP) (Hughes et al., 
2017; Hutter et al., 2018). First, we describe the theory for decomposing whole-brain 
tractography-induced connectivity matrices into grey matter networks and their 
corresponding white matter bundles. We subsequently use simulations to quantitatively 
evaluate the behaviour of the method and assess its performance against ICA. We explore 
the validity and interpretability of i) the automatically detected white matter patterns against 
results from standard tractography protocols available through the dHCP (Bastiani et al., 
2019) and ii) the grey matter patterns against components obtained from data-driven 
mapping of resting-state fMRI in the same subjects. Finally, we use the extracted structural 
connectivity components from a group of 323 new-born babies to derive connectivity-driven 
cortical parcellations of the neonatal brain and assess their robustness and reproducibility. 
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Theory 
Let X be an M x N dense1 “connectivity” matrix, with Xij {i=1:M, j=1:N} carrying 

information on the likelihood of structural connections existing between locations i and j in 
the brain. Without loss of generality, let us assume that locations i represent the whole brain 
and comprise of all imaging voxels, and that locations j represent grey matter and reside on 
the cortical white/grey matter boundary (WGB) and in subcortical grey matter. Diffusion MRI 
tractography can provide such a matrix if we seed streamlines from N seeds on the WGB and 
subcortical nuclei, and record visitation counts to M voxels across the brain, such that each 
column of X describes the connectivity profile of a grey matter location j. A data-driven 
decomposition of X can identify K components based on similarity of connectivity profiles. 
Different numbers of components can be obtained depending on the desired properties of 
the estimated components. 
 
Independent component analysis (ICA) imposes statistical independence between the 
components to perform a linear decomposition. An observed matrix X is represented as X = 
WS, where S is the independent sources matrix (each row k corresponds to a source/ 
component) and W the weights or mixing matrix (each column k corresponds to the weights 
of source k). As this is an ill-posed problem in general, ICA uses source independence to 
estimate an un-mixing matrix A, that best approximates W-1, to recover the original sources 
from the observed data: AX ≈ S. This process is entirely data-driven by the statistical 
properties of the mixture, with no prior knowledge of the mixing matrix or the signals. The 
first step of all ICA algorithms is to centre and whiten the data, to remove linear dependencies 
from the data. This can be achieved with a principal component analysis (PCA) or singular 
value decomposition (SVD). Then we seek an orthogonal rotation V to apply to the whitened 
data to optimise the statistical independence of the estimated components. This cannot be 
done analytically but there are a number of different methods of solving the problem 
iteratively. The FastICA algorithm (Hyvärinen and Oja, 2000), which uses non-Gaussianity as 
a proxy for independence, is one of the typically used algorithms. 

ICA has been used to identify networks from resting-state functional MRI data 
(McKeown et al., 1998), where T is the number of timepoints and the decomposition results 
into K spatial maps (covering all N brain voxels), each with a weight vector of length T. Each 
weight wik represents how much component k contributes to activity recorded at time point 
i. ICA has also been used recently in the case of dMRI tractography, where N is the number of 
seeds (O’Muircheartaigh and Jbabdi, 2017). In that case, the decomposition provides K spatial 
maps (covering all N points on the grey matter), each representing a component with shared 
connectivity profile through white matter, associated with a weight vector of length M. Each 
weight wik represents in this case how much component k contributes to the connection 
patterns of voxel i.   
 
Non-negative matrix factorisation is an alternative decomposition technique, where a matrix 
X is factorised into two matrices W and H, under the constraint that all three contain only 
positive values (Lee and Seung, 1999). This is more naturally suited for use with structural 
connectivity data, which is inherently non-negative. In general, NMF is an ill-posed problem 
and there exist multiple solutions in most cases. The linear superposition of components, 

 
1 By “dense” we refer to voxel-wise / vertex-wise representations rather than areal-wise nodes, i.e. N and M 
are in the order of thousands. 
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combined with the non-negativity constraint, lead to an implicit sparsity constraint in the 
algorithm (requesting a signal to be explained as a linear combination of non-negative 
regressors will inherently lead many weights close to zero). Additional explicit sparsity 
constraints can be applied to further constrain the solution space and improve the 
identifiability of the decomposition (Hoyer, 2004). Specifically, the cost function C to minimise 
is of the form: 
 
𝐶 = 	 !

"
‖𝐗	 −𝐖𝐇‖# + 𝛼!‖𝐖‖$! + 𝛼"‖𝐇‖$!, (1) 

 
where ‖𝑥‖# 	is the Frobenius norm, ‖𝑥‖$! is the L1-norm, used to explicitly impose sparsity, 
and α1 and α2 are tuning parameters that allow us to control the degree of regularisation on 
the mixing matrix and component matrix, respectively. Higher values of α’s lead to more 
sparsity in the resultant decomposition. The NMF can be initialised with a non-negative SVD, 
which has been shown to improve the accuracy of the decompositions (Boutsidis and 
Gallopoulos, 2008). 

Figure 1. Data-driven matrix decomposition methods applied to resting-state functional MRI and structural 
connectivity data. a) N functional time-courses of length T are recorded from points in the grey matter. We can 
apply a matrix decomposition technique, such as ICA, to this matrix, yielding an TxK mixing matrix of time courses 
and a KxN matrix of spatial components.  b) an MxN connectivity matrix describes the likelihood of structural 
connections existing between each of N grey matter seeds and M locations in the brain. The equivalent 
decomposition applied to this matrix gives us an MxK mixing matrix of spatial maps, and a KxN matrix of 
components in the grey matter. 
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Dimensionality reduction and back-projection  
In certain cases, large M dimensions (i.e. large number of imaging voxels) can pose 

computational and numerical convergence challenges. One can therefore use PCA to reduce 
the M x N matrix X, into a P x N matrix Xr of principal components. Applying the decomposition 
to this reduced matrix, results in a K x N set of components S, and a P x K mixing matrix in PCA 
space Wr. In order to obtain the mixing matrix in the original space of M imaging voxels, we 
can take the pseudoinverse of the component matrix S and project it back onto the original 
data to obtain the tract space mixing matrix, i.e. W = XS†, where S† denotes the pseudoinverse 
of S (see Suppl. Figure 1). 
 
From group to subject decompositions - Non-negative dual regression 

When considering data matrices X from multiple subjects (e.g., by averaging across 
subjects in the simplest case), the components and mixing matrices will represent the group. 
Dual regression can then be used to generate subject-level representations of the group 
components and mixing matrices (Beckmann et al., 2009; Nickerson et al., 2017), both for ICA 
and NMF decompositions. Dual regression comprises of two steps:  
i) Identify the subject-specific mixing matrix 𝐖,  from the group-level grey matter components 
S, using the subject-level connectivity matrix 𝐗,:   
𝐗, = 𝐖,𝐒 →	𝐖, = 	𝐗,𝐒% 
ii) Find the subject-level grey matter components 𝐒/, using the subject-specific mixing matrix  
𝐖, : 
𝐗, = 𝐖,𝐒/ →	𝐒/ = 	𝐖, %𝐗, 

In previous work, this multivariate regression has been achieved by taking the pseudo- 
inverse of the group-level components and the subject-level mixing matrix (O’Muircheartaigh 
and Jbabdi, 2017), as illustrated in Suppl. Figure 2. However, taking the pseudoinverse 
introduces negative values into the components and their weights, which leads to mixed-sign 
subject-level representations of the original non-negative group-level components. Instead, 
we have developed a “non-negative dual regression” technique for back projecting NMF 
results, using non-negative least squares (NNLS) (Ling et al., 1977) for the regression steps. 
NNLS solves an equation of the form 𝑎𝑟𝑔𝑚𝑖𝑛𝐱6|𝐀𝐱	 − 	𝐲|6" subject to x ≥0, in which x and y 
are vectors, and A is a matrix. Thus, the optimisation has to be performed separately for each 
target voxel in step (i) and each grey matter seed in step (ii) (see Suppl. Figure 3). This provides 
an entirely non-negative framework for dual regression that retains the sparse characteristics 
of the group-level NMF components, as shown in figure 2.  
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Figure 2. Example  dual regression results for a component from a K = 50 NMF decomposition. On the left, the 
component has been dual regressed onto two subjects’ data with the standard approach using the 
pseudoinverse. On the right, the component has been dual regressed with our non-negative method that uses 
non-negative least squares. In all volumetric images, left is left. 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.09.965079doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.965079
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

Methods 
We present the development of the above frameworks to map structural connectivity in the 
neonatal brain. We first give an overview of the data employed. We then describe a set of 
simulations that allow principled evaluation of the decomposition frameworks and we finally 
describe the methods we use to illustrate the benefits of our approach. 
 
Data 

We used structural, dMRI, and fMRI data made publicly available by the developing 
Human Connectome Project (dHCP) (www.developingconnectome.org). Briefly, data were 
acquired during natural sleep on a 3T Philips Achieva with a dedicated neonatal imaging 
system, including a neonatal 32 channel head coil (Hughes et al., 2017; Hutter et al., 2018). 
Diffusion MRI data were acquired over a spherically optimised set of directions on three shells 
(b = 400, 1000 and 2600 s/mm2, total number of volumes acquired per subject: 300). Pre-
processing was carried out according to the dHCP diffusion processing pipeline (Bastiani et 
al., 2019). This includes motion correction and distortion correction (Andersson et al., 2016; 
Andersson and Sotiropoulos, 2016). The data were super-resolved along the slice direction to 
achieve isotropic resolution of 1.5 mm3. Cortical surface reconstruction was carried out from 
T2w images with an isotropic resolution of 0.5 mm3, using a pipeline specifically adapted for 
neonatal structural MRI data (Makropoulos et al., 2018). Resting-state functional MRI data 
were acquired for 15 minutes (TE/TR = 38/392 ms, 2300 volumes) with an acquired resolution 
of 2.15 mm isotropic. fMRI pre-processing was carried out as detailed in (Fitzgibbon et al., 
2019), with an automated pipeline including fieldmap pre-processing to estimate 
susceptibility distortion; registration steps; susceptibility and motion correction; and 
denoising with ICA-FIX. 

Data were considered from a group of 323 subjects born at term age (175 male, 148 
female). Median (range) birth age was 40.1 (37.0, 42.3) postmenstrual weeks and age at scan 
40.9 (37.4, 44.4) weeks. Pre-processed data are available through the latest dHCP’s data 
release2. 
 
Data processing and whole-brain tractography  

Pre-processed data were further analysed to obtain structural connectivity matrices. 
To ensure alignment between subjects, we registered the anatomical surfaces to a 
representative template space before performing tractography. First, we used a surface 
registration pipeline (https://github.com/ecr05/dHCP_template_alignment), based on the 
multi-modal surface matching (MSM) algorithm (Robinson et al., 2018, 2014). Cortical folding 
was used to drive the alignment of neonatal WGB, cortical mid-thickness, and pial surfaces to 
the dHCP 40-week PMA surface templates (Bozek et al., 2018). This aligned vertices on the 
WGB surface to ensure consistent seed points for tractography across subjects. We then 
applied a previously computed non-linear volumetric registration (ANTs, Avants et al., 2011) 
to all MSM-derived surfaces to register them to 40-week PMA volumetric template space 
(Serag et al., 2012). This step was necessary to ensure that the tractography seeds were 
aligned to the target space, because the volumetric and surface-based neonatal templates 
are not inherently aligned (Bozek et al., 2018; Serag et al., 2012).  

 
2www.developingconnectome.org/second-data-release  
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Once the surfaces were aligned, we obtained connectivity matrices X for each subject, 
by performing whole-brain probabilistic tractography using FSL (Behrens et al., 2007; 
Hernandez-Fernandez et al., 2019). Fibre orientations (up to 3 per voxel) were estimated 
using a model-based deconvolution against a zeppelin response kernel, to accommodate for 
the low anisotropy inherent in data from this age group (Bastiani et al., 2019; Hernández et 
al., 2013; Sotiropoulos et al., 2016). We subsequently seeded 10,000 streamlines from each 
of 58,551 vertices on the WGB of both hemispheres (average vertex spacing 1.2 mm, 
excluding the medial wall) and from each of 2548 subcortical 2mm voxels (bilateral amygdala, 
caudate, hippocampus, putamen and thalamus), giving us a total of N = 61,099 seeds. This 
type of grey matter seeding has been shown to suffer less from the gyral bias in tractography, 
compared to whole-brain white matter seeding, even if gyral bias is less prominent in the 
neonatal brain (Thompson et al., 2019). Visitation counts were recorded between each seed 
point and each of M = 50,272 voxels in a whole-brain mask with the ventricles removed, 
down-sampled to 2 mm3. The pial surface was used as a termination mask to prevent 
streamlines from crossing between gyri, and streamlines were not allowed to cross the WGB 
more than twice (once at the seed point and again at termination), to reduce false positives. 
All masks (seeds, targets, exclusions) were defined in 40 post-menstrual weeks volume 
template space (Serag et al., 2012), however tractography was carried out in native space 
with results resampled directly to template space. Visitation counts were multiplied by the 
length of the pathway to correct for compound uncertainty in the estimated trajectories 
(O’Muircheartaigh and Jbabdi, 2017). The resulting dense matrices describe the likelihood of 
a white matter connection between each grey matter seed and the rest of the brain. The 
connectivity matrices were normalised by the total number of viable streamlines before being 
averaged across the group. 
 
Simulations  

We evaluated the performance of the decomposition frameworks (using NMF and 
ICA) in numerically simulated data, before applying them to real data. We simulated datasets 
X with a known number of underlying sources S, to observe how the behaviour of the 
decompositions over different model orders reflects the true dimensionality of the data.  
To find a realistic generative distribution to use for our sources, we used the spatial maps 
from standard tractography protocols in the neonatal brain (Bastiani et al., 2019) to generate 
connectivity blueprints (Mars et al., 2018) as proxies for the source spatial maps in grey 
matter space (Figure 1), and fit several distributions to the intensities of these maps 
(unwrapped to 1D). We found that log-beta distributions best described the data. The sources 
were therefore drawn from log-beta distributions, whose parameters in turn were drawn 
from Gaussian distributions according to the fits to the measured data. These sources are 
random and sparse, features that indirectly ensure a high degree of independence. Sources 
were scaled to lie in the range 0-1. The mixing matrix was randomly generated, normalised 
so the columns sum squared to 1. The simulated data was calculated as the product of the 
mixing matrix with the source matrix. Zero-mean, additive Gaussian noise was applied to that 
product via a logit transform, to maintain non-negativity. 
 
Varying L1-norm regularisation in NMF 

The NMF decomposition can be regularised with L1-norm terms to promote sparsity 
in the components (see equation (1)) (Févotte and Idier, 2011). We first tested NMF on the 
simulated data with varying levels of regularisation to assess its effect on the accuracy and 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 9, 2020. ; https://doi.org/10.1101/2020.03.09.965079doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.965079
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 
 

robustness of the decomposition. Data were simulated with K = 50 sources, and overall 
dimensions of N = 1200 and M = 1000, with noise added with σ2 = 0.05 to best match the real 
data. We used the same regularisation parameter for the mixing matrix and the components, 
i.e. α1=α2=α, following the implementation in scikit learn (Pedregosa et al., 2011). NMF was 
applied with model orders from 1 to 100 and with regularisation parameters, α = 0, 0.1, 0.25, 
0.5. This process was repeated with 100 noisy realisations of the data in each case. 
 
Varying number of sources 

We performed the simulations with varying number of sources in the data to check 
how this affects the results. The data were generated with σ2= 0.05 and with K=25, 50 and 75 
sources. ICA and NMF were applied with model orders from 1 to 100. For NMF, we used a 
regularisation parameter of α = 0.1 (see Simulation Results for justification). This was also 
repeated 100 times. ICA was first initialised with a PCA with P = 100 components, as described 
in the theory section. 
 
Varying noise levels 

Finally, we tested the impact of varying noise levels on the decompositions. Data were 
simulated as above. Gaussian noise was added to the data with varying σ2 = 0.0005, 0.005, 
0.05, and 0.5. 100 noisy realisations were generated in each case. The data were decomposed 
with ICA and NMF, with model orders K from 1 to 100. ICA was first initialised with a PCA with 
P = 100 components, as above.  
 
Assessing Performance 

We used three different metrics to assess the success of the decompositions on the 
simulated data: i) Reconstruction error: the sum of squared errors between the reconstructed 
data after decomposition and the original data: i.e. Σ(X – WS)2. This gives us a measure of the 
information lost through the decomposition. ii) Source-component correlation: the 
correlation between each original source and the estimated components. The best-matched 
component to each source was identified and the mean of the maximum correlation values 
for each component was considered. This describes how well the decompositions have 
characterised the underlying signals in the data, and is sensitive to overfitting, as redundant 
components that are not well matched to sources will bring the value down. iii) Sparsity: 
Following the approach in (Hoyer, 2004; Sotiras et al., 2015), we used a sparsity measure for 
the derived components based on the relationship between the L1-norm and the L2-norm: 

𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑥) = 	
√()	∑|-!|//∑-!

"

√()!
	 (2)	

This returns values between 0 and 1, with 1 signifying a maximally sparse component with 
only one non-zero element. This was calculated for each component vector in S, and we 
report the mean value across all components. Sparse components are desirable because they 
provide an easily interpretable representation of the data with minimal redundant 
information. In the case of NMF, sparsity constraints also make results more reproducible, by 
constraining the solution space. For ICA, sparsity can be thought of as a proxy for 
independence. 
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In-vivo data decompositions 
For real data, we decomposed group-average tractography matrices, using 

independent component analysis (ICA) and non-negative matrix factorisation (NMF), with a 
range of model orders K. ICA was initialised with regular PCA, in which the first 500 
components were retained (explaining 97% of the total variance). ICA was applied to the 
reduced dataset using the FastICA algorithm (Hyvärinen and Oja, 2000), with independence 
imposed in the seed domain. The pseudo-inverse of this matrix was projected back onto the 
group-level connectivity matrix to yield the corresponding white matter components. To deal 
with the sign ambiguity of ICA, components that were negative in the long tail of their 
distribution were sign-flipped, for consistency with the other methods (i.e. so that the main 
mass of the distribution was in the positive valued domain).  

NMF was performed with a coordinate descent algorithm (Cichocki et al., 2006), a 
Frobenius norm cost function (see equation (1)), and an L1-norm regularisation parameter α 
= 0.1. In NMF, the matrix is decomposed directly into the M x K mixing matrix and the K x N 
component matrix so there is no need for the back-projection step that was carried out for 
ICA after the PCA. 

All decompositions were implemented using scikit learn (Pedregosa et al., 2011) 
(python 2.7) and the code is available on GitHub (https://github.com/ethompson93/Data-
driven-tractography). 
 
Comparison to tractography-derived white matter tracts 

To assess validity and interpretability of the extracted components, we compared the 
automatically extracted white matter components with results obtained from standard, 
template-driven tractography protocols, developed for neonatal subjects, as described in 
(Bastiani et al., 2019). 28 tracts (13 bilateral) were mapped in each subject. The tracts included 
in this analysis were: acoustic radiation (AR), anterior thalamic radiation (ATR), cingulate 
gyrus part of cingulum (CGC), parahippocampal part of cingulum (CGH), cortico-spinal tract 
(CST), forceps minor (FMI), forceps major (FMA), fornix (FOR), inferior fronto-occipital 
fasciculus (IFO), inferior longitudinal fasciculus (ILF), medial lemniscus (ML), posterior 
thalamic radiation (PTR), superior longitudinal fasciculus (SLF), superior thalamic radiation 
(STR), and uncinate fasciculus (UNC). These were registered to a 40-week template and down 
sampled to 2 mm for comparison with the tract-space representations of our data-driven 
components. 
 
Split-half reliability analysis 

We performed a split-half analysis on a cohort of 323 term-age subjects to see how 
robust and reproducible our decompositions were across different model orders. We 
evaluated a number of model orders: K = 5, 10, 25, 50, 100, 20. For each value of K, we 
performed a one-to-one matching of components across the split-half, based on the 
Pearson’s correlation coefficients of their spatial maps, recording the correlation coefficients 
of the matched pairs as a measure of their similarity. This was repeated for the grey matter 
and white matter maps. We also measured the reconstruction error and the sparsity of the 
components for both ICA and NMF, as in the simulations. 
 
Comparison to functional resting-state networks 

The cortical patterns of structural connectivity from our NMF components were 
compared with resting state networks from fMRI. For this analysis, we selected a group of 55 
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subjects all born and scanned between 40 weeks and 41 weeks PMA (ie. all subjects within 
this age range who had both structural and functional data available). 

We first mapped the functional data onto the cortical surface, broadly following the 
fMRISurface pipeline outlined in (Glasser et al., 2013). The native WGB, midthickness and pial 
surfaces were affine registered to the same space as the functional data. The fMRI timeseries 
were then mapped onto the cortical surface using a partial volume weighted ribbon-
constrained volume to surface mapping algorithm, as implemented in HCP’s connectome 
workbench (Marcus et al., 2011). These data were then downsampled from the native mesh 
and registered to the 32k resolution template (using the same MSM transform as for the WGB 
surface used to seed tractography). Spatial smoothing was applied over the cortical surface 
with a Gaussian kernel, FWHM = 2 mm.  

Temporally-concatenated group-ICA was performed using FSL’s Melodic (Beckmann 
and Smith, 2004), with MIGP for the PCA step (Smith et al., 2014). We specified 50 
independent components. We performed NMF on the group-averaged structural connectivity 
matrices of the same group of subjects, with K = 50, for comparison. The similarity between 
the resultant grey matter spatial maps was assessed using Pearson’s correlation coefficient. 
 
Cortical parcellations using structural connection patterns 

We used the grey matter components to generate a hard parcellation of the cortex 
with K clusters, using a “winner-takes-all” approach. Each vertex on the cortical surface was 
labelled according to the component that had the highest weighting at that point. We tested 
the robustness of these parcellations by calculating the Dice coefficient between parcellations 
generated on each of the split-halves. Dice measures the overlap between two clusters, 
normalised by the number of elements in each cluster.  

We also assessed the parcellation using a Silhouette coefficient, which assesses the 
similarity of the vertices in a cluster in relation to the vertices in other clusters (Rousseeuw, 
1987). We used (1 - Pearson’s R) as a distance metric for the connectivity profiles of different 
vertices. A successful parcellation would group vertices with similar connectivity profiles, 
which are distinct from the connections in other parcels. 

Results from our data-driven parcellations were benchmarked against a “null 
distribution” of 100 random Voronoi parcellations of the same model order (Aurenhammer, 
1991). Voronoi parcellations are spatially-contiguous and geodesic-distance based and were 
generated from seeds randomly distributed over the surface of two spheres, mapped to the 
surface of each hemisphere of the cortex. Each vertex on the sphere is labelled according to 
its nearest seed point on the surface. The spherical parcellations were projected onto the 
cortex, providing random parcellations with a set number of contiguous spatial regions. 
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Results 
 

Simulations  
We performed simulations to evaluate the performance of ICA and NMF 

decompositions on a synthetic dataset in which the underlying sources were known. We first 
looked at the effect of varying the degree of L1-norm regularisation in NMF. We then 
investigated how the number of sources and the noise level in the data affected results. 
 
Varying L1-norm regularisation 

Increasing the regularisation parameter, α, increases sparsity, but also increases the 
reconstruction error. The NMF decomposition breaks down for high regularisation (α = 0.5), 
with high error and very low source-component correlation. Smaller amounts of 
regularisation improve the agreement between the components and sources and reduce the 
reconstruction error at the cost of reducing sparsity. A good middle-ground solution is shown 
(α = 0.1), balancing reconstruction accuracy and sparsity. We therefore opted to use α = 0.1 
for subsequent experiments.  
 
 

 
Figure 3. Simulation experiment to assess the effect of L1-norm regularisation on NMF. The degree of 
regularisation increases from left to right across the plots (a = 0.0, 0.1, 0.25, 0.5). Different metrics are shown 
from top to bottom: reconstruction error, correlation between derived components and underlying sources, 
sparsity of components. The true number of underlying sources (K = 50) is denoted by a vertical dashed line. Noise 
variance was σ2 = 0.05. Results are shown averaged over 100 noisy realisations of the data. 
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Varying number of sources 

We carried out the decompositions on data with varying numbers of underlying 
sources. Figure 4 shows that reconstruction error increases with the number of sources, so 
more information is lost between the decomposition and the original data as the data become 
more complex. For the source-component correlation, we can see two different regimes. 
When the number of components, N, is lower than the true number of sources in the data, K, 
the average correlation between the components and the true sources rises quickly for very 
low N, then plateaus until N = K. When N > K, the extra components overfit to the noise and 
bring down the average correlation with the sources. NMF achieves overall very high 
correlations between the reconstructed components and the true non-negative sources. NMF 
component sparsity increases rapidly for low N, then increases more slowly once the number 
of components exceeds the number of sources. In the case of ICA, sparsity reaches a peak 
when the number of components is equal to the number of underlying sources, then 
decreases. 

Figure 4.  Simulation results to show how decompositions vary with differing numbers of underlying sources. The 
dotted vertical line shows the number of underlying sources in each case (from left to right: K = 25, 50, 75). Results 
are shown from ICA and NMF decompositions, in orange and blue, respectively. σ2 = 0.05 and a = 0.1 for NMF. 
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Varying SNR 

Overall, reconstruction error increases with noise level. In general, reconstruction 
error decreases as the model order approaches K, the true number of underlying sources and 
then plateaus for higher model orders. The mean correlation between the components and 
the underlying non-negative sources increases as the number of components approaches K, 
and then decreases as the models overfit to noise. The sparsity of the components exhibits a 
relatively stable pattern for low and mid-levels of noise, but it becomes considerably reduced 
in the high noise scenario (σ2 = 0.5). 

 
 
Figure 5. Simulation results to assess the effect of varying noise levels on the ICA (orange) and NMF (blue) 
decompositions. The noise level increases from left to right across the plots (σ2 = 0.0005, 0.005, 0.05, 0.5). 
Different metrics are shown from top to bottom: reconstruction error, correlation between derived components 
and underlying sources, sparsity of components. The true number of underlying sources (K = 50) is denoted by a 
vertical dashed line. 
 

Figures 4 and 5 also enable us to compare the performances of ICA and NMF on 
simulated, non-negative data. ICA shows a lower reconstruction error than NMF, particularly 
when model order exceeds the number of true sources. This could, however, signify that ICA 
is overfitting to noise more than NMF, particularly since ICA also exhibits a lower correlation 
between its components and the underlying sources than NMF, at all model orders. This 
reflects the better suitability of NMF for identifying inherently non-negative patterns within 
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the data, in contrast to ICA, which generates components that contain both positive and 
negative values. NMF also generates components with consistently higher sparsity than those 
from ICA. 

To summarise, we evaluated the performance of ICA and NMF on a simulated dataset 
with non-negative sources. Based on the results of these simulations, we have chosen a 
regularisation parameter of α = 0.1 for NMF to use on the real data, as this promotes sparsity 
in the components, without compromising too much accuracy in the reconstruction. We have 
found that NMF has a number of advantages over ICA for non-negative data: it generates 
components that are more closely matched to the real sources, with higher sparsity and 
potentially less overfitting to noise.  
 
 
In-vivo results - Comparison between ICA, NMF and standard tractography 

To investigate the interpretability and validity of the extracted components, we 
compared the white matter components from both ICA and NMF with the group-averaged 
results from standard tractography protocols. A number of our data-driven components 
exhibit strong spatial similarity to known white matter pathways (figure 6). In fact, all the 
considered 28 tracts have well-matching components (Suppl. Figure 4). Both ICA and NMF are 
able to identify spatially separate regions of grey matter (i.e. networks), along with their 
underlying white matter connections, for example in the forceps minor, the ILF and the 
various thalamic projections.  

These examples demonstrate the advantages of using NMF over ICA. NMF 
components are inherently sparser (ICA-derived spatial maps typically cover the whole brain) 
and by construction non-negative. The main body of the anatomically relevant information 
conveyed by ICA components is present with NMF decompositions but in an inherently non-
negative manner. This suggests that the NMF sparsity constraints effectively enforce 
independence in the composition, similarly to ICA. In addition, we can observe qualitative 
improvements of NMF over ICA for a number of tracts. For instance, the NMF component 
corresponding to the right IFO has a stronger peak in the occipital lobe than the equivalent 
ICA component, and NMF has fewer false positive frontal projections in the left ILF.  

Interpretability can be also illustrated for components that do not match any tracts 
from the set we reconstructed using standard tractography protocols. An example is 
demonstrated in figure 7, where 10 components from the K = 100 NMF decomposition have 
been identified as corresponding to different segments of the corpus callosum. For each 
component, the grey matter (seed space) map is shown, along with the WM spatial map (tract 
space). 
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Figure 6. Example group level results from NMF and ICA (model order = 100), displayed alongside their matching 
tract from the standard protocols. Data-driven components are un-thresholded to enable the comparison 
between the negative values in the ICA components and the sparse, non-negative representations from NMF. All 
tractography and data-driven results are taken from split 1 of the split-half analysis.  The full set of 28 tracts with 
their matched data-driven components are shown in the supplementary material. 
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Figure 7. Ten components from the K = 100 NMF decomposition that correspond to segments of the corpus 
callosum. For each component, the grey matter (seed space) map is shown, along with the WM spatial map (tract 
space) rendered in 3D to aid visualisation. All rendered WM segments are shown at the top.  
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Assessing the reliability and accuracy of the decompositions 

To assess the reproducibility of the derived components, we performed a split-half 
reliability analysis for the ICA and NMF decompositions. Figure 8 presents histograms of 
correlations between the best-matching components across the split-halves, for both ICA and 
NMF. In all cases, the median value lies above 0.8, which shows that both methods are robust 
to different subject groups. Even if patterns are more variable for lower model orders (K < 
25), both methods perform similarly for higher K (50, 100, 200). Similar behaviour is observed 
for grey matter components and white matter mixing matrices. 

We also computed the reconstruction error and component sparsity. In line with the 
results from the simulations, reconstruction error decreases with increasing numbers of 
components, with ICA having slightly higher reconstruction accuracy than NMF (Suppl. Figure 
5). Sparsity is much higher for NMF than for ICA, as we would expect from a qualitative 
examination of the components in figure 6. Sparsity increases rapidly from 5 to 50 
components and increases after 100 components become smaller. Both measures have been 
calculated for both splits, and confidence intervals are displayed but very small, which 
indicates that these measures are stable for different groups of subjects. 

We explored how increasing the model order in the decomposition affects the 
splitting of components (Suppl. Figure 6). Equivalent components were identified across 
model orders by calculating the correlations between their spatial maps. We can see that the 
more coarse-grained connectivity patterns from the low dimensionality decompositions are 
broken down into more sparse, fine-grained spatial maps as we increase the number of 
components. For example, in the left panel of Suppl. Figure 6, we show an NMF component 
and the associated white matter spatial map from the K = 5 decomposition that delineates 
the left pyramidal tract. As we increase the number of components from K = 5 to K = 50, we 
see this bundle split into sub-components that characterise different parts of corona radiata 
projections. We can also see the increase in sparsity between the low and the high order 
components (which agrees with the quantitative results - Suppl. Figure 5b). 

 
 

 

Figure 8. Split-half reliability analysis for ICA and NMF. Pearson’s correlation scores were calculated between the 
best-matched components in each split for the white matter spatial maps (a) and the grey matter maps (b). The 
dotted lines on the violin plots indicate the 25th and 75th percentiles and the median is represented by a dashed 
line.  

a) b) 
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Having ascertained the reliability of the data-driven framework for a large group of subjects, 
we explored the behaviour of smaller groups. We performed a K = 50 decomposition on a 
single subject’s data, and then for groups of 5, 10, 50 and 200 subjects. The white matter and 
grey matter spatial maps from two of the resultant components are shown in figure 9. This 
shows that the patterns are robust even at the single-subject level, although the patterns are 
noisier with fewer subjects. A quantitative analysis of the similarity between the small group-
size results and the full cohort components is shown in Suppl. Figure 7, from which we can 
see that components from 10 subjects and 50 subjects have similarly very strong 
correspondence with the full cohort, while even the single-subject results are reasonable. 

 
Figure 9. Two components and their corresponding white matter pathways from K = 50 group-level 
decompositions with varying numbers of subjects. Component 1 correlates well with the tractography-delineated 
cortico-spinal tract, and component 2 with the inferior longitudinal fasciculus.  
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Comparison with functional resting-state networks 

As an extra indirect validation, we compared the grey matter maps from the NMF 
decompositions of the tractography data, with resting-state networks (RSNs) obtained from 
ICA decomposition of fMRI data. We performed group-level ICA (K = 50) on fMRI data from 
55 subjects and compared the resultant resting-state networks to those from a K = 50 NMF 
decomposition of the structural connectivity data from the same subjects. Through visual 
inspection, 24 of the functional components were found to contain noise or artefacts, so were 
discarded. We measured the similarity of the remaining 26 RSNs to our structural grey matter 
components using Pearson’s correlation coefficient, r, to identify the best matching pairs.  
 Most functional components were well matched to at least one structural component, 
with the lowest correlation value between an RSN and a tractography component being r = 
0.2. Over half (14 out of the 26 networks identified) had a correlation value r > 0.5 with their 
best-matched structural component. The correlation matrix in figure 10 is sparse, which 
indicates that there is specificity in the matching.  Where RSNs were strongly associated with 
multiple structural components, this was either a bilateral network split into the two 
hemispheres (e.g. fig 14b and c) or structural networks that overlapped with different regions 
of the RSN (fig 14a and d).  
 
 

   
Figure 10. Left: correlation matrix between the fMRI RSNs and their 26 best-matched tractography NMF 
components. Right: examples of the functional networks and their most spatially similar grey matter components 
from structural NMF. These correspond to the columns outlined in yellow on the correlation matrix. The 
corresponding white matter patterns are shown as maximum intensity projects. 
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Parcellations 
The grey matter components from NMF were used to generate hard parcellations of 

the cortex, using a winner-takes-all approach. This process was carried out on each of the 
split-half groups to assess how robust the parcellations are to different groups of subjects. 
Figure 11 illustrates the parcellation results for different values of K. We can observe high 
reproducibility of the parcels between the two split-halves, and parcellation schemes are 
robust across different model orders. Figure 12a quantifies the similarity by showing the 
distributions of Dice scores across all generated parcels. This can be compared against 
distributions of Dice scores obtained from 100 random Voronoi parcellations (with spatial 
continuity-enforced) of the same order as the decomposition used in each case. The 
parcellations using the NMF components are significantly more consistent than the 
equivalent randomly generated parcellations. Also shown in figure 11, is a subject-specific 
parcellation generated from the results of a non-negative dual regression. 

To further gain insight into the validity of these parcellations, we calculated the mean 
Silhouette score across parcels for the NMF-based parcellations at each model order, and for 
each split-half of the cohort. For comparison, we also computed the measure for 100 
randomly generated Voronoi parcellations with the same number of parcels. A silhouette 
score measures the similarity of the data within a parcel, relative to their dissimilarity to data 
in other parcels. From figure 12b, we can see that the mean Silhouette score across parcels 
for our data-driven parcellations is consistently higher than for the equivalent random 
parcellations. Furthermore, we can see that the validity of the parcellations increases with 
increasing numbers of parcels in data-driven parcellations. On the contrary, for random 
parcellations, the Silhouette score peaks at K = 25, and then decreases for greater values of 
K. Our results show that our data-driven parcellations provide a more meaningful clustering 
of the data than random parcellations, even when the random parcellation has spatial 
contiguity enforced.  
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Figure 11. Hard parcellations of the cortical surface from NMF, from each split-half of the cohort and from dual 
regression of the group-level results onto a single subject. The left hemisphere displayed only. Parcels are colour 
matched according to the correlation values between the original grey matter components. 
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Figure 12. a) Dice scores of matching parcels across the split-half analysis. For comparison, we also calculated 
the Dice score between one of the splits’ NMF parcellations and 100 randomly generated Voronoi parcellations 
of the same model order. b) Mean Silhouette score across clusters for NMF and Voronoi parcellations with model 
orders of 5, 10, 25, 50, 100 and 200. 
 
 
  

 

a) b) 
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Discussion 
We have developed and demonstrated a non-negative framework for simultaneously 

mapping white matter connections and corresponding grey-matter networks from diffusion 
MRI data in a data-driven manner. We presented this approach within the context of mapping 
structural connectivity in the neonatal brain. Non-negative matrix factorisation (NMF) is a 
powerful alternative to traditional tract delineation that has no parametric assumptions, no 
dependence on predefined ROIs and masks in a template space, and is suited to the inherently 
non-negative nature of tractography data. We directly evaluated the performance of the 
framework using numerical simulated scenarios and indirectly explored the validity of the 
extracted components by comparing them against known tracts and against networks 
obtained from a different modality (resting-state fMRI). We also demonstrated benefits 
compared to a similar-in-spirit approach that used independent component analysis (ICA) to 
map connections in the adult brain (O’Muircheartaigh and Jbabdi, 2017). NMF is an 
alternative decomposition method that provides more interpretable and accurate 
reconstructions of non-negative sources than ICA.   
 Our work falls within the family of other data-driven approaches for mapping 
structural connections from whole-brain tractograms, such as (Garyfallidis et al., 2012; 
O’Donnell and Westin, 2007; Siless et al., 2018). Our approach extends these efforts by 
allowing simultaneous reconstructions of white matter bundles, but also corresponding grey-
matter networks that these bundles connect. Furthermore, none of the previous data-driven 
approaches have been applied for mapping connections from diffusion MRI data of the 
neonatal brain, as shown here. 
 
Validation using Simulations 

We used simulations to investigate the behaviour of the decompositions in controlled 
scenarios, in which the ground truth was known, and we could evaluate performance as a 
function of preselected features. In order to generate realistic simulations for such a 
decomposition framework, we therefore learned properties of the sources from distributions 
obtained from in vivo data, and mixed non-negative sources to generate synthetic data with 
a known number of components.  

We first looked at the effect of adding an L1-norm regularisation term to the objective 
function for NMF (see equation 1). Increasing the regularisation reduces the accuracy of the 
data reconstruction, but a small amount (α = 0.1) improves the correlations between the 
sources and the components at lower model orders and promotes component sparsity. We 
decided to use an alpha value of 0.1 for subsequent work, as we deemed this to be a good 
compromise between higher component sparsity and sources reproduction, with only a 
minimal impact on reconstruction accuracy. Increasing the sparsity of components has been 
shown to generate features that are inherently more independent, while constraining the 
NMF solution space to make the decomposition more reliable (Hoyer, 2004).  

We also looked at the effect of adding varying levels of Gaussian noise to the data. As 
expected, the reconstruction error of the decompositions increased with increasing noise, but 
the correlation between components and true sources was fairly stable, particularly at low 
model orders. Comparing the results from ICA and NMF, both were able to reconstruct the 
original data (using the dot product of the mixing matrix and component matrix) with good 
accuracy, but the components from ICA were less well matched to the true non-negative 
sources themselves than those from NMF. This is because the components from ICA contain 
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negative values that are not found in the real sources, although mutual cancellation of 
positive and negative values in the components and mixing matrix allows the data matrix to 
be reconstructed accurately.  
 
Indirect Validation 

White matter spatial maps of the NMF components show strong spatial similarity to 
known white matter pathways (Figures 6, 7, Suppl. Figure 4). We explored a range of model 
orders from 5 to 200. The lower model orders generate more distributed components that 
contain multiple white matter bundles, whereas the higher model orders give more 
specificity, as shown in Suppl. Figure 6. The components from lower model orders (eg. K = 5) 
are split into smaller constituent parts for higher model orders, providing a component 
hierarchy as K increases. Quantitative analysis of the components shows that reconstruction 
error decreases with more components and that the sparsity of the components increases. 
This reflects the higher degree of freedom afforded by more components that permit a more 
detailed reconstruction of the original data, and components that are more tightly localised 
around fine-grained regions of similar connectivity. NMF components are more sparse than 
those from ICA, which indicates that the former is able to localise connectivity patterns more 
effectively, disregarding redundant information and keeping non-negativity in the 
reconstruction. At the same time, putting sparsity and sign aside, the patterns from ICA and 
NMF look broadly similar, as seen in figure 6. This hints towards NMF being able to separate 
spatially independent components, in an analogous manner to ICA, despite not having 
independence constraints enforced directly. This is because the sparsity constraint on the 
NMF decomposition promotes non-Gaussianity in the resultant components, which is used as 
a proxy for independence in the FastICA algorithm (Hyvärinen and Oja, 2000). Indeed, sparsity 
and independence criteria have previously been shown to generate very similar basis sets 
across several different data types (Saito et al., 2000). 

The grey matter maps of the NMF components were also shown to align well to 
resting-state networks from fMRI. This provides further evidence that these data-driven 
results are anatomically meaningful. It also opens up future possibilities for devising a multi-
modal data-driven framework that can fuse information across modalities and perform 
decompositions simultaneously for dMRI and fMRI data. 

 
Parcellations 

We used the grey matter maps of the NMF components to generate a cortical 
parcellation scheme. Specifically, each vertex on the cortical mesh was labelled according to 
the component with the strongest weighting at each point. This leads to a parcellation in 
which clusters share similar patterns of structural connectivity to the rest of the brain. 
Depending on the model order of the decomposition, the parcellation can be coarse or more 
fine-grained (see figure 11). An advantage of this approach is that it is entirely data-driven, so 
the parcellations are not biased by any subjective measures. It can also be used to generate 
subject specific parcellations, by using the subject-level grey-matter maps from dual 
regression. Other cortical parcellation schemes that exist for neonates tend to be based on 
adult atlases (Alexander et al., 2017; Oishi et al., 2011). Cortical parcellation schemes based 
on structural connectivity exist for adults, see (Tittgemeyer et al., 2018) for a recent review, 
but not for babies.  

We also performed a split-half reliability analysis of the parcellations, using Dice Score 
as a similarity measure, to see how reproducible the parcellations are for different model 
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orders. We compared the results with the Dice score between one split and a set of randomly 
generated Voronoi parcellations. For all model orders, the data-driven parcellations were 
more consistent than random parcellations. In addition, we used Silhouette score as a 
measure of the parcel validity, and again compared the performance of the NMF-based 
parcellations against 100 random Voronoi parcellations. Silhouette score measures the 
similarity of the connectivity profile of a given grey matter vertex to others in its parcel, 
relative to the connectivity of vertices in other parcels. We found that our data-driven 
parcellations consistently scored higher on this measure than the random parcellations (see 
figure 12). However, although this demonstrates that our parcellations are effectively 
clustering similarly connected vertices, this does not necessarily indicate that we are 
delineating neurobiologically relevant areas, which can be heterogeneous in their 
connections (Van Essen and Glasser, 2018). Incorporating information from different 
modalities would help to improve these parcellations further and ensure that the areal 
boundaries are neurobiologically relevant (Glasser et al., 2016). NMF can assist in enabling 
such benefits from multi-modal semi-automated approaches. 
 
Decomposition Domain 
 In the results presented here, we have been applying decompositions in the WGB seed 
domain, allowing white matter tract overlap. We also tried applying the decompositions to 
the transpose of the connectivity matrix, XT, which meant decomposing (and in the case of 
ICA enforcing independence) in the tract domain. ICA and NMF were performed on the 
transpose of the split 1 connectivity matrix, with K = 50. Looking at the similarity between the 
results from both methods (see Suppl. Figure 8), we can see that the ICA components are 
most affected by this change. Most NMF components are nearly identical to the original 
results. This agrees with expectations, as in NMF the sparsity and non-negativity constraints 
are enforced in both the mixing matrix and the components (see equation 1).  
 
Limitations 

Our decomposition framework uses whole-brain tractography data and its 
performance can therefore be challenged by tractography limitations, which are important 
to keep in mind when interpreting results. Tractography is an indirect measure of anatomy 
that is prone to identifying false positive connections (Maier-Hein et al., 2017). It has also 
been shown that tractography streamlines are biased towards terminations in the gyri rather 
than the sulci (Schilling et al., 2018; Van Essen et al., 2013), although the effects of this “gyral 
bias” can be minimised by seeding from the cortical surface rather than the whole brain 
(Donahue et al., 2016; Schilling et al., 2018), as we have done here. We have also shown in 
previous work that the effects of gyral bias are less prevalent in neonates than in adults due 
to the less developed cortical folding (Thompson et al., 2019) and we therefore expect less 
direct influence of such biases into the NMF performance in the neonatal brain. In fact, our 
parcellation borders did not show a consistent overlap with sulcal fundi or gyral crowns 
(Suppl. Figure 9).  

Data-driven decompositions can be more computationally demanding than standard 
tractography approaches, as they consider all data at once and extract all white-matter and 
grey-matter maps simultaneously, within the same decomposition. To reduce the memory 
requirements and the computational burden, we binned the whole brain tractography data 
into a 2 mm spatial grid, which subsequently defined size M in the decompositions (Figure 1); 
rather than using the native 1.5 mm spatial grid of the dMRI data. This provides WM 
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components at a lower resolution than available in the original data but does not change any 
trends or conclusions drawn from the presented analyses.  

 
 

Conclusions 
We have shown that data-driven methods can be used to jointly map white matter bundles 
and their corresponding grey matter networks from dMRI tractography data from neonatal 
subjects. In particular, we show that non-negative matrix factorisation provides a robust 
decomposition that is a natural fit for the inherently non-negative structural connectivity 
data. 
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Supplementary Figures 
 

 
 
Supplementary Figure 1. Illustration of a back projection step to obtain a white matter mixing matrix after data reduction by 
PCA. a) Data are first reduced to P principal components, and ICA applied to the data in the reduced subspace. b) Independent 
components are regressed onto the original data to obtain a mixing matrix in white matter space. 
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Supplementary Figure 2. Schematic illustration of the dual regression step used for ICA, that generates subject-level 
representations of the group-level components. The group-level grey matter components are first regressed onto the subject’s 
connectivity matrix to obtain the subject-level representations of the components in white matter. We then use the 
pseudoinverse of this mixing matrix to obtain the subject-level grey matter components. 
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 Supplementary Figure 3. Schematic illustration of the non-negative dual regression step used for NMF, that generates 
subject-level representations of the group-level components. We first use NNLS to solve the top equation, using the group-
level grey matter components and the subject’s connectivity matrix to solve for each row in the subject-level mixing matrix. 
We then use this mixing matrix to find the subject- level grey matter components by the same method. 
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Supplementary Figure 4. The full set of 28 tracts from the standardised protocols (Bastiani et al., 2019), alongside 
there corresponding components from ICA and NMF. Data-driven components are unthresholded to enable the 
comparison between the negative values in the ICA components and the sparse, non-negative representations 
from NMF. All tractography and data-driven results are taken from split 1 of the split-half analysis.   
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Supplementary Figure 5. a) Reconstruction error at each model order for ICA and NMF. This is the root mean squared error 
between the connectivity matrix and the dot product of the mixing matrix and the components. b) The sparsity of the derived 
components, calculated according to equation (2). 
 

 

Supplementary Figure 6. Similar components across different model orders, demonstrating the hierarchical 
nature of the decomposition. Starting with a single component from a lower dimensionality decomposition, we 
show components from higher model orders that have high spatial correlation with the original component, in 
tract space (r > 0.5). Tract space results are displayed as maximum intensity projections. Left: A component from 
the K = 5 decomposition showing the left cortico-spinal tract, which is split into more localised sub-components 
for higher K. Right: A component from the K = 10 decomposition that includes several different association fibres 
in the left hemisphere. At K = 200, this has been split into the uncinate fasciculus, inferior longitudinal fasciculus 
and middle longitudinal fasciculus.  
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Supplementary Figure 7. Correlation matrices between the white matter K = 50 NMF spatial maps from smaller 
group-level decompositions with the split 1 components from the main analysis. Each entry corresponds to the 
correlation between a component obtained from a group of L subjects (L=1,10,50) and the best-matching 
component from one of the split-halves of the full cohort (161 subjects). The matrices have been reordered so 
that matching components lie on the diagonal and are in descending order in terms of correlations. We can see 
that there is no significant increase in agreement between the 10 subject group with the full cohort and the 50 
subject group and the full cohort (average Pearson’s r of matching components = 0.89 for both), which indicates 
that the method is robust even for small group sizes. 
 
 
 
 
 
 

 
Supplementary Figure 8. Correlations between decompositions applied to connectivity matrices in both the (seed 
x white matter) and (white matter x seed) configuration. Highest Pearson’s r is plotted for each component or 
column of the mixing matrix with the equivalent matrix from the transposed decomposition. 
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Supplementary Figure 9. Our group-level NMF parcellation overlaid on the dHCP’s 40-week PMA sulcal depth 
template (Bozek et al., 2018) (blue for sulcal fundi, red for gyral crowns). There is no consistent pattern for 
parcellation boundaries to follow sulci or gyri, which indicates that our parcellation is not driven (at least to a 
large degree) by the gyral bias. 
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