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 2 

Summary  33 

Model systems are necessary to understand the biology of SCLC and develop new therapies against 34 

this recalcitrant disease. Here we provide the first online resource, CellMiner-SCLC 35 

(https://discover.nci.nih.gov/SclcCellMinerCDB) incorporating 118 individual SCLC cell lines 36 

and extensive omics and drug sensitivity datasets, including high resolution methylome performed 37 

for the purpose of the current study. We demonstrate the reproducibility of the cell lines and 38 

genomic data across the CCLE, GDSC, CTRP, NCI and UTSW datasets. We validate the SCLC 39 

classification based on four master transcription factors: NEUROD1, ASCL1, POU2F3 and YAP1 40 

(NAPY classification) and show transcription networks connecting each them with their 41 

downstream and upstream regulators as well as with the NOTCH and HIPPO pathways and the 42 

MYC genes (MYC, MYCL1 and MYCN). We find that each of the 4 subsets express specific 43 

surface markers for antibody-targeted therapies. The SCLC-Y cell lines differ from the other 44 

subsets by expressing the NOTCH pathway and the antigen-presenting machinery (APM), and 45 

responding to mTOR and AKT inhibitors. Our analyses suggest the potential value of NOTCH 46 

activators, YAP1 inhibitors and immune checkpoint inhibitors in SCLC-Y tumors that can now be 47 

independently validated. 48 

 49 
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 54 

Graphical Abstract 55 

 56 

 57 

Highlights 58 

• SCLC-CellMiner provides the most extensive SCLC resource in terms of number of cell lines 59 

(118 cell lines), extensive omics data (exome, microarray, RNA-seq, copy number, 60 

methylomes and microRNA) and drug sensitivity testing. 61 

• We find evidence of distinct epigenetic profile of SCLC cell lines (global hypomethylation 62 

and histone gene methylation), which is consistent with their plasticity. 63 

• Transcriptome analyses demonstrate the coherent transcriptional networks associated with the 64 

4 main genomic subgroups (NEUROD1, ASCL1, POU2F3 & YAP1 = NAPY classification) 65 

and their connection with the NOTCH and HIPPO signaling pathways. 66 

• SCLC-CellMiner provides a conceptual framework for the selection of therapies for SCLC in 67 

a personalized fashion allowing putative biomarkers according molecular classifications and 68 

molecular characteristics. 69 

• SCLC-Y cell lines differ from the other cancer cell lines; their transcriptome resemble 70 

NSCLC cell lines. YAP1 cell lines while being the most resistant to standard of care 71 

treatments (etoposide, cisplatin and topotecan) respond to mTOR and AKT inhibitors and 72 

present native immune predisposition suggesting sensitivity to immune checkpoint inhibitors.  73 
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Introduction 74 

Lung cancer is the leading cause of cancer death worldwide. Although small cell lung cancer 75 

(SCLC) represents only 15% of all lung cancers, it accounts for more than 30,000 cases in the US 76 

alone and has the most aggressive clinical course with most patients presenting with widely 77 

metastatic disease and a median survival of 10-12 months (Wang et al., 2017). The diagnosis of 78 

SCLC is based on histological features including dense sheets of small cells with scant cytoplasm, 79 

ill-defined borders and nuclei with finely granular chromatin lacking prominent nucleoli (Gazdar 80 

et al., 2017; Hann et al., 2019; Rudin et al., 2019). Immunohistochemistry shows high Ki-67, 81 

consistent with rapid cellular proliferation generally driven by high MYC oncogenic expression 82 

together with tumor suppressor RB1 and TP53 inactivation (Gazdar et al., 2017). Unlike the 83 

increasingly personalized treatment approaches for non-small cell lung cancer (NSCLC), SCLC is 84 

currently treated as a homogeneous disease (Hann et al., 2019; Rudin et al., 2019; Thomas and 85 

Pommier, 2016). The typical low life expectancy for a patient diagnosed with SCLC and the 86 

options for therapy (platinum-etoposide combination as first line therapy and topotecan at relapse) 87 

remain limited, causing the National Cancer Institute (NCI) to categorize SCLC as a “recalcitrant” 88 

cancer. 89 

Most SCLC tumors are characterized by their neuroendocrine differentiation, which can be 90 

histologically visualized using a panel of markers including synaptophysin (SYP), chromogranin 91 

A (CHGA), NCAm1 and insulinoma-associated protein 1 (INSM1) (Gazdar et al., 2017; Hann et 92 

al., 2019; McColl et al., 2017). Yet, a smaller subset of SCLC is negative for the standard 93 

neuroendocrine markers (Gazdar et al., 2017; Guinee et al., 1994; Hann et al., 2019; McColl et al., 94 

2017). Hence, SCLCs have been historically defined as “classic” (neuroendocrine: NE) or “variant” 95 

(non-neuroendocrine: non-NE) (Gazdar et al., 2017; Gazdar et al., 1985; Rudin et al., 2019). 96 

Ongoing efforts are designed to categorize the molecular subtypes of SCLCs (Gazdar et al., 2017; 97 

George et al., 2015; McColl et al., 2017; Rudin et al., 2019) and to rationalize novel therapeutic 98 

approaches based on molecular genomic characteristics of the disease (Gardner et al., 2017; 99 

McColl et al., 2017; Thomas and Pommier, 2016). 100 

To discriminate NE and non-NE SCLC, Gazdar et al, proposed a classification based on 101 

the expression of 50 genes including ASCL1 (achaete-scute homolog 1) and NEUROD1 102 

(neurogenic differentiation factor 1), which are key transcription factors binding to E-box-103 

containing promoter consensus core sequences 5’-CANNTG. ASCL1 and NEUROD1 drive the 104 

maturation of neuroendocrine cells of the lung (Borges et al., 1997; Ito et al., 2000; Neptune et al., 105 

2008) and are highly expressed in NE SCLCs (Zhang et al., 2018). A consensus nomenclature for 106 

four molecular subtypes has been recently proposed based on differential expression of two 107 

additional transcription factors, YAP1  (Yes-Associated Protein 1) and POU2F3 (POU class 2 108 

homeodomain box 3) for the non-NE SCLC subtype (Rudin et al., 2019). POU2F3 encodes a 109 

member of the POU domain family of transcription factors normally expressed in rare 110 

chemosensory cells of the normal lung epithelium (tuft cells) and of the gastrointestinal track 111 

(Huang et al., 2018). Selective expression of POU2F3 was identified recently by CRISPR screening 112 

in a subset of SCLC cells that lack NE features (Huang et al., 2018). YAP1, a key mediator of the 113 

Hippo signaling pathway, was discovered as being reciprocally expressed relative to the 114 

neuroendocrine transcription factor INSM1 (McColl et al., 2017). Hence, it has now been proposed 115 

to classify SCLCs into 4 groups based on the expression of NEUROD1, ASCL1, POU2F3 and 116 

YAP1 (Rudin et al., 2019). For short, we will refer to this classification as “NAPY” 117 

((N=NEUROD1, A=ASCL1, P=POU2F3 and Y= YAP1) in the present study. 118 
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Genomic initiatives have accelerated the pace of discovery for many cancers (Cancer 119 

Genome Atlas Research, 2012, 2014). Unfortunately, the TCGA was not extended to SCLC 120 

because of a lack of readily accessible and adequate tumor tissue, as most patients are diagnosed 121 

with SCLC by fine-needle aspiration, while surgically resected specimens are relatively rare. 122 

Further underscoring this issue, comprehensive genomic and transcriptomic data is available only 123 

for less than 250 SCLC tumors to date. Nevertheless, SCLC research has benefited from the 124 

systematic collection of a large number of tumor cell lines; most of them developed at the US 125 

National Cancer Institute (NCI) in the NCI-VA/NCI-Navy Medical Oncology Branches (Carney 126 

et al., 1985; Gazdar et al., 1985). This collection has been distributed widely, and detailed genetic 127 

and pharmacological annotation available from several groups including the NCI, the Broad-MIT 128 

and the Sanger/MGH (Barretina et al., 2012; Garnett et al., 2012; Polley et al., 2016). Yet, in spite 129 

of large number of cell lines and drugs profiled (Figure 1), the data are accessible only from 130 

different platforms making it challenging to systematically translate and integrate genomic data 131 

into knowledge of SCLC tumor biology and therapeutic possibilities. Additionally, a number of 132 

SCLC cell lines generated by the Minna-Gazdar group at UT Southwestern Medical Center 133 

(McMillan et al., 2018) had not been integrated in the preexisting NCI, Broad Institute 134 

(CCLE/CTRP) and Sanger-Massachusetts General Hospital (GDSC) databases. 135 

To substantially extend our understanding of the genomic features of SCLC, we performed 136 

genome-wide DNA methylation at single-base resolution by IIllumina Methylation 850k analysis 137 

on the NCI set of 68 SCLC cell lines and whole genome RNA-seq for 72 cell lines of the UTSW 138 

set. We also integrated these data in a global drug and genomic database (SCLC_Global) 139 

encompassing a total of 118 individual SCLC cell lines. This enabled us to enrich for the least 140 

represented SCLC subtypes, which are the non-NE YAP1 and POU2F3 subtypes and to further 141 

analyze the genomic and drug response characteristics of the YAP1 subgroup compared to the 142 

classical neuroendocrine NEUROD1 and ASCL1 subtypes of SCLC. The integrated data are 143 

available from the web-based tool, which we refer to as SCLC-CellMinerCDB 144 

(https://discover.nci.nih.gov/SclcCellMinerCDB/ ). 145 

 146 

Results 147 

 148 

SCLC-CellMinerCDB Resource 149 

SCLC-CellMinerCDB integrates genomic and drug activity data for total of 118 molecularly 150 

characterized SCLC cell lines (Figure 1) including 68 from the NCI (Polley et al., 2016), 74 from 151 

the GDSC (Garnett et al., 2012), 53 from the CCLE, 39 from the CTRP (Barretina et al., 2012) and 152 

73 from UT Southwestern (UTSW) (Gazdar et al., 2010). Details for each cell line (source of the 153 

cell lines with patient characteristics and main genomic features and classification) is provided in 154 

Supplemental Table S1. Among those 118 SCLC cell lines, 17 (14%) are in all five data sources, 155 

20 (17%) are in four data sources, 23 (20%) in three data sources, 15 (13%) in two data sources 156 

while 43 (36%) are present in only one data source (Figure 1A  and Supplemental Table S2). 157 

 Our integrated resource includes new data obtained by performing high resolution whole 158 

genome methylome and copy number analyses for 66 cell lines as well as whole genome-level 159 

transcriptome by RNA-seq for 72 cell lines. Data first made available here are highlighted with 160 

yellow background in Figure 1B. SCLC-CellMinerCDB also makes accessible whole exome 161 

mutation data for 12,537 genes across 72 cell lines of the UTSW SCLC database in addition to the 162 
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previously released whole exome sequencing data for 52 cell lines from CCLE and 62 cell lines 163 

from GSDC. 164 

The range of tested clinical drugs and investigational compounds in each dataset and across 165 

data sources is summarized in Figure 1D. The NCI database provides the largest number of tested 166 

compounds (N = 526), followed by the CTRP (N = 481), GDSC (N = 297) and CCLE (N = 224). 167 

The overlap between tested compound across the data sources is also shown in Figure 1D. 168 

SCLC_CellMiner allows multiple analyses listed in Table 1. They include confirming cell 169 

line consistency and identity across datasets, drug activity reproducibility across datasets, 170 

determinants of gene expression (based on DNA copy number, promoter methylation and 171 

microRNA expression), exploration and validation of genomic networks, classification of the cell 172 

lines based on metadata such as the NAPY, epithelial mesenchymal (EMT) and antigen presenting 173 

machinery (APM) scores and the validation and discovery of drug response determinants. 174 

 175 

Data Validation, Cross-Database (CDB) Analyses and CellMinerCDB Univariate Analyses 176 

Cross comparison for matched cell lines between databases was used to validate the new NCI-177 

SCLC methylome (850K Illumina array) by comparison with the published SCLC data of GDSC 178 

(450K array) (Rajapakse et al., 2018). The comparison yielded remarkably high overall correlation 179 

with a median of 0.92 for 7,246 common genes with with wide expression range for the 43 common 180 

cell lines (Figure 2A). Cross-correlation of the new RNA-seq data from UTSW with other gene 181 

expression data (microarray and RNA-seq) were also highly significant albeit with lower median 182 

correlations (Figure 2A). These data demonstrate the high reproducibility of the new data (NCI 183 

methylome and UTSW RNA-seq) (McMillan et al., 2018) across independent databases and the 184 

similarity of cell lines grown at different institutions and analyzed independently with different 185 

technical platforms (RNA-seq vs microarray, 850k vs 450k methylome arrays). 186 

 Measurement reproducibility across pharmacogenomic datasets can instantly be 187 

performed and displayed using CellMinerCDB (https://discover.nci.nih.gov/SclcCellMinerCDB/) 188 

by plotting the same gene (expression, copy number or methylation), drug or microRNA on the 189 

x-Axis and the y-Axis. Expression of Schlafen 11 (SLFN11), a gene whose expression is highly 190 

predictive of cytotoxic response to a broad range of DNA targeted agents including frontline 191 

treatments of SCLC (etoposide, topotecan, cis- and carboplatin)  as well as drugs under 192 

investigation such as the poly(ADP-ribose polymerase) inhibitors (olaparib, niraparib, rucaparib, 193 

talazoparib) (Barretina et al., 2012; Farago et al., 2019; Gardner et al., 2017; Murai et al., 2019; 194 

Reinhold et al., 2017a; Zoppoli et al., 2012) measured by RNA-seq in the UTSW database shows 195 

a 0.92 Pearson’s correlation with its measured values by Affymetrix microarray in the NCI 196 

database (Figure 2B). SLFN11 promoter DNA methylation measured by high resolution Illumina 197 

850k arrays in the NCI database also shows a 0.9 Pearson’s correlation with its measured values 198 

by Illumina 450k microarray in the GDSC database (Figure 2C). 199 

The other examples of cross-database analyses in Figure 2 are for MYC, which is commonly 200 

amplified and drives proliferation of a large fraction of SCLC (Dammert et al., 2019; Gazdar et al., 201 

2017), BCL2, which encodes a canonical antiapoptotic protein targeted by Navitoclax (ABT-263) 202 

(Rudin et al., 2012) and for two SCLC drugs etoposide and topotecan. MYC amplification (by 850k 203 

methylome array in NCI) is correlated with its overexpression (by RNA-seq in CCLE) (Figure 2D). 204 

The activity of navitoclax is correlated with BCL2 expression, suggesting BCL2 addiction for the 205 

cells overexpressing BCL2. Drug activity data for etoposide are correlated in the NCI and CTRP 206 
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databases (note that drug activity was measured by different assays in each database; Rajapakse et 207 

al. (2018)). The cells most sensitive or resistant to etoposide overlap for topotecan. 208 

Integrating the broader CellMinerCDB database (http://discover.nci.nih.gov/cellminercdb) 209 

of over 1000 cell lines including 74 and 53 SCLC cell lines in GDSC and CCLE (see Figure 1A) 210 

allows comparison between tissue of origin using CellMinerCDB (Rajapakse et al., 2018). For 211 

instance, the expression of MYC is correlated with the replication processivity factor PCNA 212 

(Proliferating Cell Nuclear Antigen) in SCLC (green) vs. other tissues including NSCLC (red), 213 

consistent with the replicative genotype of SCLC based on their high PCNA expression (alike 214 

leukemia and lymphoma cell lines) compared to NSCLC. Yet, high MYC expression is a feature of 215 

both the SCLC and NSCLC cell lines. 216 

 217 

SCLC Methylome 218 

Two prior studies described the DNA methylation profiles of SCLC with limited data for 219 

established cell lines; 18 cell lines were examined by Kalari et al. (2013) and 7 by Poirier et al. 220 

(2015) together with primary tumors and PDX samples. Here we determined the methylome of the 221 

66 cell lines of the NCI and processed the methylome data for the whole 985 GDSC cancer cell 222 

line dataset including its 61 SCLC cell lines. The data are highly reproducible in the two datasets 223 

for the 43 common cell lines (see Figure 2A and 2C). Thus, the SCLC-CellMiner resource provides 224 

the largest promoter methylation database for a total of 84 individual SCLC cell lines (43 common 225 

+ 23 specific to NCI-SCLC + 18 specific to GDSC). 226 

Globally low methylation levels of SCLC cell lines 227 

Global methylation levels showed marked differences between the SCLC cell lines and the other 228 

cancer cell lines from different histologies. The median level of global methylation of the SCLC 229 

cell lines is the lowest compared with 21 subtypes of cancers (Figures 3A-B), which may reflect 230 

their intrinsic plasticity and stemness. 231 

Yet, expression of some key SCLC genes is driven by promoter methylation, such as ASCL1 232 

and NEUROD1 (Supplemental Figure S1). Cells not expressing those genes tend to be 233 

overmethylated. Conversely, cells expressing ASCL1, NEUROD1, YAP1 and POU2F3 have no 234 

significant promoter methylation. Yet, hypermethylation is not detetable in a number of cell lines 235 

that do not express those genes implying that further studies are warranted to examine other 236 

epigenetic markers (likely histone marks) as regulators of SCLC gene expression. 237 

 238 

SCLC cell lines have a distinct methylome 239 

To determine the methylation signature of the SCLC cell lines and differences with other cancer 240 

types, we compared the DNA methylation profiles of the NCI-SCLC to the methylation profiles of 241 

the NCI-60 (which includes 7 tissues of origin with 6 NSCLC cell lines but no SCLC cell lines) 242 

and of 75 NSCLC cell lines of the GDSC. After selecting a total of 2,016 genes with the most 243 

variable methylation (standard deviation > 0.25), we performed hierarchical clustering (Figure 3C). 244 

All the SCLC cell lines segregated together, while the NSCLC cell lines (N = 83 from GDSC and 245 

NCI-60) formed 4 clusters interrupted by SCLC cell lines (Figure 3C). The 2,016 genes clustered 246 

into three main groups: i) genes hypomethylated in SCLC cell lines (clusters 1,2 and 4), ii) genes 247 

hypermethylated in SCLC cell lines (cluster 5), and iii) genes with high methylation range in all 248 

cell lines independent of their tissue of origin (cluster 3). The detailed list of the genes in each 249 

cluster is provided in Supplemental Table S3. 250 
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Pathway analysis of the 1,030 specifically hypomethylated genes (clusters 1 + 2) shows an 251 

enrichment of neurological as well as extracellular matrix (ECM) pathways (Figure 3D and 252 

Supplemental Table 3), consistent with the neuroendocrine and cell aggregation features of the 253 

classic SCLC cell lines (Gazdar et al., 2017). Among these neuroendocrine (NE) genes, figure 254 

ASCL1, CHGA and INSM1, which is consistent with their expression. Many genes involved in 255 

epithelial–mesenchymal transition (EMT) (Kohn et al., 2014) also tend to be hypomethylated in 256 

the SCLC cell lines including CLDN7, ESRP2, MARVELD2, PRSS8, ST14, IRF6, GRHL2, CLDN4, 257 

EHF, ADAP1 and CMTM3. Most of the EMT genes belong to cluster 4 and are also 258 

hypomethylated in the NSCLC cell lines. 259 

Analysis of the 238 genes selectively hypermethylated in SCLC (cluster 5) shows a 260 

significant representation of the beta-catenin/Tcf transaction and Wnt signaling pathway as well as 261 

genes involved in lipid metabolism by peroxisome proliferation-activated receptor alpha (PPAR) 262 

(Figure 3E). YAP1 and ERBB2 are also hypermethylated in most cell lines, as well as a large 263 

fraction of the canonical histone genes. 264 

Expression of histone and epithelial genes is highly driven by methylation in SCLC cell lines 265 

To further determine gene categories driven by promoter methylation, we compared the gene 266 

expression and methylation pattern of functional groups (Reinhold et al. (2017c); Supplemental 267 

Table S4). Two functional gene categories showed strong correlation between methylation and 268 

expression: epithelial and histone genes (Figure 3F), with 25 and 75 genes, respectively.  The 269 

median correlation was - 0.53 for the epithelial genes and - 0.50 for the histone genes. 270 

 Analysis of individual genes (Figure 3G) confirmed that histone genes are dominantly 271 

regulated by methylation in SCLC. Among the 62 canonical histone genes with available data, 21 272 

belong to H2A core histone family, 18 to H2B core histone family, 14 to H3 core histone family, 273 

13 to H4 core histone family and 9 to the H1 linker family. Among the 13 non-canonical histones, 274 

4 are replication independent histones (H1F0, H1FNT, H1FOO, H1FX) and replacements of H1 275 

histone. Their transcription is independent of DNA replication and they are expressed throughout 276 

the cell cycle in a tissue specific manner. The remaining are variants from core histones (H2AFJ, 277 

H2AFX, H2AFY2, H2AFY, H3F3C, H3F3B, H2AFV, H2AFZ). Unlike canonical histones that 278 

function primarily in genome packaging and gene regulation, variant histones distinct function 279 

including DNA repair, meiotic recombination and chromosome segregation (Buschbeck and Hake, 280 

2017). Canonical histones showed the highest correlation between expression and methylation 281 

suggesting that epigenetic regulation of canonical histone is a feature of SCLC carcinogenesis. On 282 

the contrary, we find that the expression of the non-canonical histones is inconsistently driven by 283 

methylation suggesting a higher dynamic state across the SCLC cell lines. 284 

 Detailed analysis of the macroH21 variant H2AFY using the RNA-seq data from the UTSW 285 

database revealed that SCLC cell lines predominantly express the macroH2A1.2 variant compared 286 

to the macroH2A1.1 variant. The macroH2A1.2 splice variant is known to promote homologous 287 

recombination and is essential for proliferation (Kim et al., 2018). This finding is consistent with 288 

the characteristically high proliferation of SCLC cell lines, which is regulated by methylation and 289 

epigenetics in addition to RB1 and TP53 inactivation and MYC oncogene overexpression. 290 

 291 

SCLC DNA Copy Number vs Methylome as Drivers of Gene Expression 292 

To determine how gene copy number and promoter methylation account for gene expression in the 293 

SCLC cell lines, we analyzed whole-genome DNA copy number data and correlated the expression 294 
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of each gene with DNA copy number (x-axis) and methylation (y-axis) (Figure 3G) (Reinhold et 295 

al., 2017c). 84% of the genes showed positive correlation with copy number and 65% negative 296 

correlation with DNA methylation. Consistent with the pathway analyses (Figure 3F), epithelial 297 

(green) and histone genes (red) were most consistently driven by promoter methylation. 298 

Correlations for individual genes between methylation and expression  can be readily checked 299 

using SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/). Snapshot examples of 300 

genes driven by methylation (NEUROD1, ASCL1, POU2F3, YAP1, SLFN11, SMARCA1, SOX1 301 

and CGAS) are presented in Supplemental Figure S1. Genes exhibiting low or no expression did 302 

not show a consistent correlation with promoter hypermethylation, consistent with diverse 303 

mechanisms for inhibiting gene expression. For each gene, CellMinerCDB allows the identification 304 

of cell lines with methylation-dependent and independent gene expression for further molecular 305 

and mechanistic studies. 306 

 Unlike the histone and epithelial genes, which are primarily driven by DNA methylation, 307 

the expression of key SCLC growth-driving genes, such as the oncogenes (MYC, MYCL, MYCN, 308 

AKT1) the tumor suppressor genes (CDKN2A, BAP1, VHL) and the chromatin remodeler genes 309 

(EP300 and CREBBP) are mainly driven by DNA copy-number alterations (Figure 3G). R values 310 

for any gene of interest (with data) are provided in Supplemental Table S5. Examples of 311 

CellMinerCDB snapshots are provided in Supplemental Figure S2 for MYC, MYCL and MYCN, 312 

BAP1 and VHL, whose expression is driven by copy number changes but not by DNA methylation. 313 

 314 

SCLC-Global Integrates the Transcriptome of all 116 SCLC Cell Lines 315 

To take advantage of all 116 cell lines with expression data by microarray or/and RNA-seq across 316 

the five data sources (Figure 1), we regrouped them by normalization using Z-score to remove 317 

dataset batch effects. Principal component and correlation analyses validated the approach 318 

(Supplemental Figure S3A-C). The data are available under “SCLC Global” at 319 

https://discover.nci.nih.gov/SclcCellMinerCDB/ in the pull-down tab for the “x- and y-Axis Cell 320 

Line Set”. For instance, the correlation for ASCL1 expression in the “SCLC-Global” vs SCLC 321 

NCI/DTP gives a Pearson’s correlation coefficient of 0.99 with a p-value=1.9e-55. SCLC-Global 322 

offers many other features including cross-correlation with other databases for DNA methylation, 323 

DNA copy number, DNA Mutation, MicroRNA or Drug Activity. 324 

 SCLC-Global gene expression tools can be used to retrieve all the genes correlated with the 325 

expression of any given gene. For instance, for the MYCN gene (Supplemental Figure S4A-C), the 326 

top correlate (Pearson’s correlation coefficient 0.967) is MYCNOS, the MYCN Opposite Strand 327 

antisense RNA. The data for individual cell lines can also be visualized by plotting MYCNOS 328 

against MYCN in the SCLC-Global database (Supplemental Figure S4B). Notably plotting MYCN 329 

vs MYCNOS in the CCLE database using CellMinerCDB extends the finding that MYCN is co-330 

expressed with its antisense RNA in both SCLC and brain tumor cell lines (Pearson’s correlation 331 

coefficient 0.81; Supplemental Figure S4C). 332 

 333 

SCLC Molecular Signatures: NE, NAPY and MYC Signatures 334 

Next, we tested the SCLC-global gene expression data to explore and validate the recently 335 

established molecular signatures of SCLCs (Rudin et al., 2019). As indicated previously, SCLC 336 

can be classified as neuroendocrine (NE) or non-neuroendocrine (non-NE) with only 10-25% being 337 
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non-neuroendocrine as defined by lack of expression of key neuroendocrine markers (Gazdar et 338 

al., 2017; Gazdar et al., 1985; McColl et al., 2017; Rudin et al., 2019; Zhang et al., 2018). 339 

Using the SCLC-Global dataset, we scored the 116 cell lines based on the classification of 340 

Gazdar and coworkers (Augustyn et al., 2014; Zhang et al., 2018), which uses the expression values 341 

of 50 genes to calculate a NE score. This NE score is highly correlated with the expression of SYP 342 

(encoding Synaptophysin), CHGA (encoding Chromogranin A), and INSM1 (encoding Insulinoma 343 

Transcriptional Repressor) (Figure 4A), which are used in routine diagnosis to establish the NE 344 

characteristics of SCLC biopsies. To explore the selectivity of these genes for SCLC cell lines, we 345 

examined the large collection of cell lines of the GDSC and CCLE (Rajapakse et al., 2018). CHGA, 346 

INSM1 and SYP were selectively expressed both in SCLC and brain tumors, which is consistent 347 

with the neuronal differentiation of SCLC (Supplemental Figure S5A-B). Moreover, the NE-SCLC 348 

cell lines, which can be readily labeled in SCLC-CellMinerCDB under the “Select Tissues to 349 

Color” tab, have significantly higher levels of expression of CHGA and SYP compared to non-NE 350 

cell lines (Supplemental Figure S5C). 351 

Rudin et al. (2019) proposed a more detailed molecular classification based on the 352 

expression of four transcription factor genes: NEUROD1 and ASCL1 for neuroendocrine, and YAP1 353 

and POU2F3 for non-neuroendocrine SCLCs (Figure 4B, Supplemental Table S6). Compared to 354 

the other cancer cell lines in the GDSC-CellMiner database, the highest expression of NEUROD1 355 

and ASCL1 is found in SCLC and brain tumors (Figure 4C), while POU2F3 expression is rare and 356 

limited to SCLC cell lines (Figure 4D). In contrast, YAP1 is not limited to SCLC and is expressed 357 

in a wide range of cancer types (except blood and lymphoid tumors) in addition to the non-358 

neuroendocrine SCLC (Figure 4E). Differential expression of the 4 transcription factors (“NAPY” 359 

classification for short) across the SCLC-Global database of 116 cell lines clearly distinguishes the 360 

four subtypes of SCLC cell lines (Figure 4B), with similar proportions as reported by Rudin et al. 361 

(2019) across tumors and cell lines. ASCL1 expression is commonly associated with NEUROD1 362 

expression (Figure 4B), indicating that a significant fraction of NE-SCLC cells have dual 363 

expression of ASCL1 and NEUROD1. Figure 4F shows that 63% of the ASCL1-expressing cells 364 

co-express NEUROD1 and 47% of the NEUROD1-expressing cells co-express ASCL1. 365 

The NE and NAPY classifications show high concurrence across the SCLC-Global cell 366 

lines (93.9% agreement with Cohen’s kappa of 0.79 after excluding intermediates; Figure 4) with 367 

the three NE genes CHGA, SYP and INSM1 most significantly overexpressed in the NEUROD1 368 

and ASCL1 subgroups compared to the POU2F3 and YAP1 subgroups of non-NE SCLC cell lines 369 

(Supplemental Figure S5D-E). 370 

The three MYC-genes MYC, MYCL and MYCN play key roles in SCLC carcinogenesis. 371 

MYCL was discovered as being selective amplified in SCLC (Johnson et al., 1987; Nau et al., 372 

1985).  Close to 80% of the SCLC cell lines highly express one of the three MYC genes with MYC 373 

and MYCL being the most prevalent (Figure 4G). Notably, and as noted previously, cells 374 

overexpressing one of the MYC-genes are negative for the two other MYC genes, indicating a 375 

mutually the mutually exclusive expression of the 3 MYC genes. Also, the non-NE SCLC cell lines 376 

(SCLC-Y and SCLC-P) express low MYCL and MYCN compared to the NE-SCLC (SCLC-A and 377 

SCLC-N) and YAP1 cells, which selectively express MYC but neither MYCL nor MYCN (Figure 378 

4G and Supplemental Figure S6A-B). 379 

 380 

 381 
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SCLC Transcriptional Networks Focusing on the ASCL1, YAP/TAZ and NOTCH Pathways 382 

Because the four NAPY genes (NEUROD1, ASCL1, POU2F3 and YAP1) are transcription factors, 383 

we performed transcription network analyses (Kohn et al., 2006) in connection with the NAPY 384 

classification.  Snapshots are presented in Supplemental Figure S4A-B, S5C,S6C and S7A&C for 385 

the “Univariate Analyses” and in Figure 5B & D and Supplemental Figure S5E for “Multivariate 386 

Analyses” (https://discover.nci.nih.gov/SclcCellMinerCDB/). 387 

 Figure 5A summarizes our analyses of the ASCL1-NOTCH genomic transcriptional 388 

network based on our molecular interaction map (MIM) conventions (Kohn et al., 2006) 389 

(https://discover.nci.nih.gov/mim/index.jsp). As a pioneer transcription factor, ASCL1 binds E-390 

box motifs (as NEUROD1) to promote chromatin opening and the activation of neuronal genes. 391 

Notably both NKX2.1 and PROX1, whose encoded polypeptides function together as transcription 392 

cofactors with ASCL1 are highly significantly co-expressed with ASCL1 in the SCLC cell lines, 393 

and this co-expression is not due to the presence of those genes on the same chromosomes (Figure 394 

5A), indicating upstream regulatory transcriptional control with the likely implication of super-395 

enhancers. As expected, the transcriptional targets of ASCL1 were co-expressed with ASCL1 396 

(Figure 5A-B). One of those known targets, BCL2 is positively correlated not only with ASCL1 397 

expression (Figure 5A-B) but also with POU2F3, whereas BCL2 expression was found negatively 398 

correlated with NEUROD1 expression (Supplemental Figure 7A-B). Expression of the cancer-399 

driving genes RET, SOX1, SOX2, FOXA1 and FOXA2 are also highly correlated with ASCL1 400 

expression (Figure 5A-B). 401 

 DLL3, another established transcriptional target of ASCL1 and a known inhibitor of the 402 

NOTCH pathway was found highly significantly correlated with ASCL1 (r = 0.61; p = 4.05e-13; 403 

Figure 5A). Analysis of the NOTCH pathway whose inactivation is crucial in NE-SCLC (Gazdar 404 

et al., 2017; Leonetti et al., 2019; Ouadah et al., 2019) using the SCLC-Global database showed 405 

that the 3 NOTCH transcripts (NOTCH1, NOTCH2 and NOTCH3) are jointly downregulated in 406 

the ASCL1 SCLC cell lines (Figure 5A-B). Functional downregulation of the NOTCH pathway is 407 

consistent with the highly significantly negative correlation (r = -0.545; p = 2.45e-10) between 408 

ASCL1 and REST, the transcriptional target of NOTCH (Figure 5A). Notably, the NEUROD1 409 

subset of NE-SCLC (SCLC-N) did not show a significant correlation between NEUROD1 and 410 

DLL3 expression (r = -0.18; NS) (Supplementary Figure S7C-D), providing no evidence that DLL3 411 

overexpression acts to down-regulate the NOTCH pathway in SCLC-N cell lines. Hence, in the 412 

SCLC-A cell lines, the negative correlation between ASCL1 and NOTCH genes could be related 413 

to the direct transcriptional inactivation of ASCL1 by NOTCH3 (Figure 5A). 414 

 Of the 116 SCLC cell lines in SCLC-CellMiner, nine belong to the YAP subset (see Figure 415 

4B&E). Because expression of YAP (YAP1) is also a feature in a wide variety of solid tumor cells 416 

(see Figure 4E), and YAP and its regulatory Hippo signaling pathway are the focus of many 417 

ongoing studies, we explored the YAP transcriptional network in the SCLC cell lines (Figure 5C). 418 

The first notable finding is that YAP1 expression is highly correlated with the expression of its 419 

heterodimeric partner TAZ (encoded by the WWTR1/TAZ gene) both in the SCLC-Global dataset 420 

(Figure 5C-D) and across the 986 cell lines of the GDSC (Supplementary Figure S8). This finding 421 

suggests a master transcriptional regulator upstream of both genes or YAP1 acting as super-422 

enhancer, as both genes are on different chromosomes (Figure 5C; chromosome location indicated 423 

in italic and parenthesis). 424 
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Next, we explored the Hippo pathway, which acts as a negative regulator of YAP/TAZ and 425 

is commonly inactivated in solid tumors (Dasgupta and McCollum, 2019; Ma et al., 2019; Totaro 426 

et al., 2018). Expression of both LATS2 and LATS1, which encode the core kinase of the Hippo 427 

pathway and negatively regulate YAP by sequestering phosphorylated YAP in the cytoplasm, are 428 

significantly positively correlated with YAP1 expression (Figure 5C-D). This unexpected finding 429 

suggesting a negative feedback loop is additionally supported by the fact that the transcripts of 430 

MOB1A and MOB1B, the cofactors of LATS1/2, are also positively correlated with YAP1 (Figure 431 

5C-D). Moreover, the transcripts of the negative regulators of YAP, AMOT and AMOTL2, which 432 

are released by depolymerized F-actin and sequester YAP from its nuclear translocation, are also 433 

significantly positively coregulated with YAP1 (Figure 5C-D) (Dasgupta and McCollum, 2019; 434 

Wang et al., 2019). Together, these results demonstrate that the YAP-SCLC cell lines co-express 435 

both YAP/TAZ and its negative regulator genes driving the Hippo pathway, and suggest an 436 

equilibrium (“metastable”) state where the Hippo pathway remains active to potentially negatively 437 

regulate YAP/TAZ in the Y-SCLC cells. 438 

 YAP/TAZ functions as a direct activator of the TEAD transcription factors (encoded by 439 

TEAD2/TEAD3/TEAD4), whose expressions are highly significantly coregulated with YAP1 440 

(Figure 5C). As expected, the transcriptional targets of the TEADs are also significantly correlated 441 

with YAP1 expression, some of which are included in Figure 5C (bottom section. Others can readily 442 

be found and discovered using the “Compare Pattern” of SCLC-CellMiner using the “Compare 443 

Pattern” of SCLC-CellMiner with TEAD or YAP1 as “seeds”. Among those are the cancer- and 444 

growth-related SMAD3 and SMAD5 genes, CCN1/CYR61, which encodes a growth factor 445 

interacting with integrins and heparan sulfate, and VGLL4 (Figure 5C, bottom right and Figure 5D). 446 

The NOTCH pathway is also a known transcriptional target of YAP/TAZ and the TEADs 447 

(Totaro et al., 2018). Consistent with this, we found a high positive correlation between YAP1 the 448 

NOTCH receptor transcripts NOTCH1, NOTCH2, NOTCH3 as well as the NOTCH transcriptional 449 

target REST, demonstrating the functional activation of the NOTCH pathway in SCLC-Y cells 450 

(Figure 5C-E). By contrast, and consistent with the biology of the NOTCH pathway, 4 of the 5 451 

NOTCH ligands, DLL1, DLL3, DLL4 and JAG2, which act as negative regulators of the NOTCH 452 

receptors (Andersson et al., 2011) are significantly negatively correlated with YAP1 (Figure 5E). 453 

The results of these analyses support the conclusion that the NOTCH pathway is “on” in the SCLC-454 

Y cells. By contrast, in the SCLC-A cells, the opposite is observed: the transcripts for the NOTCH 455 

receptors and the NOTCH ligands are negatively and positively correlated with the expression of 456 

ASCL1 (Figure 5E and Supplementary Figures S9A). Notably, the SCLC-P cells also show a 457 

positive correlation between the NOTCH receptor and REST effector transcripts and POU2F3 458 

(Figure 5F and Supplementary Figure  S9A and S10A). These analyses demonstrate a clear 459 

difference between the NE-SCLC (SCLC-N & -A) and the non-NE-SCLC (SCLC-P & -Y) with 460 

respect to the NOTCH pathway; with the pathway “off” in the NE subset (N & A) and “on” in the 461 

non-NE subset (P & Y). 462 

Global analyses of the NOTCH pathway across the 1,036 cell lines from 22 different tissue 463 

types of the Broad-CCLE collection (Figure 5G and Supplementary Figure  S9B-C) show that 464 

NOTCH2 and NOTCH3 expression are coregulated in many tumor types, especially brain, lung, 465 

lymph, thyroid, pancreas and uterus (Supplementary Figure  S9B-C) and that the NE- SCLC cell 466 

lines are characterized by lowest NOTCH expression (Figure  5G and Supplementary Figure  S9B). 467 

By contrast, the SCLC-Y- and -P cells are found among the NOTCH expressing cells. Of note, 468 
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analyses of the NOTCH pathway activity measured by REST expression shows that the SCLC-Y 469 

cells cluster with the NSCLC cell lines (Figure  5G and Supplementary Figure  S10B). 470 

 471 

Transcriptome of SCLC-Y Cells is Common with NSCLCs and Specific to this Subgroup 472 

To further examine the relationship between the SCLC-Y cell lines and the NSCLC cell line, we 473 

performed principal component and other dimension reduction analyses with respect to the whole 474 

transcriptome data (Figure 5I). tSNE (t-distributed Stochastic Neighbor Embedding) is a method 475 

to highlight strong patterns in a dataset by reducing the dimensionality of a dataset while preserving 476 

as much ‘variability’ as possible. We performed tSNE analysis using gene expression data between 477 

NSCLC (N = 100) and SCLC (N = 60) cell lines from the GDSC data source to identify clusters of 478 

subgroups. This approach segregated the SCLC-Y together with the NSCLC cell lines. The other 479 

SCLC cell lines (SCLC-A, SCLC-N and SCLC-P) formed a distinct cluster. Also, among the few 480 

NSCL cancer cell lines clustering with the NAP-SCLC were carcinoids of the lung and one 481 

misannotated cell line. These data support that SCLC-Y cell lines are a distinct entity among the 482 

SCLC subtypes and potentialy related to NSCLC. 483 

Another characteristic of the SCLC-Y cell lines is the significantly low RB1 mutations (only 484 

one cell line among 9 showing RB1 mutation; Figure  5H). The SCLC-Y cell lines also showed 485 

significantly reduced activity of the replication transcriptional network with highest RB1 486 

expression and lowest PCNA, MCM2 and RNASEH2A expression (Supplementary Figure S11A & 487 

D-F). Additionally, the SCLC-Y cells express the mesenchymal marker VIM as well as the 488 

cytoskeleton component and regulators CNN2 (actomyosin and F-actin component) and the AMOT 489 

genes, which regulate cell migration and actin stress fiber assembly (Figure 5C, left and right) 490 

(Dasgupta and McCollum, 2019). 491 

 492 

Global Drug Activity Profiling Suggests Transcription Elongation Pathways as General Drug 493 

Response Determinant and Hypersensitivity of the SCLC-P Cell Lines 494 

To explore potential connections between the NAPY classification and drug responses, we 495 

analyzed the drug sensitivity profiles of the 66 SCLC-NCI cell lines using 134 compounds with 496 

the highest activity range (> 0.09) (Polley et al., 2016). Unsupervised hierarchical clustering 497 

generated two groups of cell lines: those globally resistant to all drugs and those globally drug-498 

sensitive, with a bimodal distribution (Figure 6A). No obvious relationship was observed for the 499 

neuroendocrine cell lines (SCLC-N and SCLC-A), which were distributed in both clusters. Yet, all 500 

three SCLC-P cell lines clustered together among the most globally drug-sensitive whereas the 501 

SCLC-Y cell lines tended to be among the most resistant cell lines. 502 

Differential gene expression followed by enrichment pathway analyses was performed to 503 

determine potential differences between the most and least drug sensitive cell lines. The most 504 

significantly enriched pathway was the ribosomal and EIF2 signaling pathway, which was 505 

selectively activated in the sensitive compared to non-sensitive cell lines. EIF2 (Eukaryotic 506 

Translation Initiation Factor 2A) catalyzes the first regulated step of protein synthesis initiation, 507 

promoting the binding of the initiator tRNA to 40S ribosomal subunits. EIF2 factors are also 508 

downstream effectors of the PI3K-AKT-mTOR and RAS-RAF-MAPK pathways. The details of 509 

the analysis are provided in Supplemental Figure S12A-B. These results suggest that global drug 510 

response in SCLC is associated with active protein synthesis. 511 

 512 
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Drug Activity Profiling in Relationship with the NAPY Classification 513 

Both the ASCL1 (A) and NEUROD1 (N) subgroups showed a broad range of response to 514 

etoposide, topotecan and cisplatin, as well as to the potent PARP inhibitor talazoparib (Figure 6B 515 

and Supplemental Figure S12C). The most significant genomic predictor of response for these 516 

neuroendocrine SCLC-N & -A subgroup was SLFN11 expression (Supplemental Figure S12C; 517 

https://discover.nci.nih.gov/SclcCellMinerCDB/), which is consistent with analyses performed 518 

across other tissue types (Barretina et al., 2012; Rajapakse et al., 2018; Zoppoli et al., 2012). The 519 

potential value of SLFN11 expression as a predictive biomarker is also borne out by its highly 520 

dynamic and bimodal expression pattern (Figure 6F). Approximately 40% of the 116 SCLC cell 521 

lines of SCLC-global do not express SLFN11 (Supplemental Figure S12D). 522 

 The SCLC-Y cell lines showed the greatest resistance to the standard of care drugs 523 

(etoposide, cisplatin and topotecan) (Figure 6B). This result is not limited to SCLC, as a highly 524 

significant drug resistance phenotype was observed between YAP1 expression and response to 525 

etoposide and camptothecin across the database of the CCLE-CTRIP, which spans across a broad 526 

range of tissues of origin (Supplemental Figure S12E). 527 

 In addition to SLFN11, a predictive genomic biomarker of drug response is methylguanine 528 

methyltransferase (MGMT) for temozolomide (TMZ), which acts as a DNA methylating agent 529 

generating N7- and O6-methylguanines. MGMT removes O6-methylguanine, the most cytotoxic 530 

lesion. Cancer cells (typically glioblastomas) with MGMT inactivation are selectively sensitive to 531 

TMZ (Thomas et al., 2017). Analyses of the SCLC cell lines revealed lack of MGMT expression 532 

in 33% (N = 38) of the SCLC cell lines (Supplemental Figure S12D). Notably, the non-NE cell 533 

lines all expressed MGMT, indicating that the SCLC-P- and -Y cancer cells are predicted to be 534 

poor candidates to TMZ-based therapies (Farago et al., 2019). 535 

 To determine whether the NAPY classification predicts sensitivity to drugs not commonly 536 

used as standard of care for SCLC, we performed correlation analyses to identify the drugs that 537 

were significantly linked to a subtype among the 526 NCI compounds (Polley et al., 2016). The 538 

list of all the statistically significant drugs (p-value < 0.05; Kruskal Willis test) is provided in 539 

Supplemental Table S7). Eighteen drugs were highly subtype-specific (p-value < 0.01; Kruskal 540 

Willis test). Among them, 7 are PI3K-AKT-mTOR inhibitors and all of them show a higher activity 541 

in the non-NE cell lines (SCLC-Y and SCLC-P) (Figure 12D-E). The SCLC-P and -Y cell lines 542 

are also more sensitive to multi-kinase inhibitors including dasatinib or ponatinib. One agent was 543 

found specifically active in ASCL1 high expressing cell lines: ABT-737, a BCL2 inhibitor (Figure 544 

6C). Analyzing the GDSC, CCLE and CTRP (https://discover.nci.nih.gov/SclcCellMinerCDB/) 545 

showed that all BCL-2 inhibitors are most efficient in the SCLC-A cell lines, while the SCLC-Y 546 

cell lines are consistently resistant. The high sensitivity of the SCLC-A cell lines is consistent with 547 

the highly significant correlation between BCL2 expression and the activity of ABT-737. 548 

 549 

Immune Pathways are selectively expressed in the YAP1 Subgroup of SCLCs 550 

Although immune checkpoints inhibitors (ICI) have been approved in SCLC, the benefit in an 551 

unselected patient population is modest with approximately 2-month improvement in median 552 

overall survival when immunotherapy was added to first-line platinum and etoposide.  553 

To explore the activity of the immune pathways in the 116 cell lines of SCLC-Global and 554 

the potential value of the NAPY classification for selecting SCLC patients likely to respond to 555 

immune checkpoint inhibitors, we explored the transcriptome of the cell lines by focusing on a 556 
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subset of established native immune response and antigen-presenting genes. Figure 6G-H shows 557 

the unique characteristics of the SCLC-Y cell lines. Indeed, they are the only subset expressing 558 

innate immune response genes and for which expression of those genes such as the innate immune 559 

effector genes CGAS and STING, the antigen-presenting HLA gene (HLA-E) and the interferon-560 

inducible genes (IFIT3, IFITM1, IFI44L, IFIT, IFITM8P and IFITM3) are positively correlated 561 

with YAP1 expression in CellMiner-Global. By contrast, the NE subtypes show negative 562 

correlation between NEUROD1 and ASCL1 expression for those same immune genes (Figure 6G). 563 

 Based on the study of Wang et al. (2019) reporting a novel antigen presentation machinery 564 

transcription signature score (APM) yielding a high prediction index for tumor response to immune 565 

checkpoint inhibitors (ICI) in conjunction with tumor mutation burden (TMB), we tested the APM 566 

score in the SCLC cell lines (Supplementary Figure S13). The APM score showed a high 567 

correlation with PD-L1 expression, which is notable as PD-L1 is not included in the 13 genes 568 

constituting the APM score. Also, the SCLC-Y subtype showed the highest APM score 569 

(Supplementary Figure S13), consistent with the potential activation of their antigen presentation 570 

and innate immune response pathways. 571 

 572 

Cell Surface Biomarkers for Targeted Therapy in Relation with the NAPY Classification 573 

Antibody-targeted therapies including antibody-drug conjugates (ADC) represent a promising 574 

approach for specific homing, increased uptake and drug retention at tumor sites while reducing 575 

drug exposure to normal tissues and the associated dose-limiting side effects (Coats et al., 2019). 576 

Proof of concept in SCLC has been established for Rovalpituzumab tesirine (Rova-T), the ADC 577 

targeting DLL3 with a DNA-crosslinking warhead (Das, 2017). 578 

A primary criterium for efficient drug delivery treatment is to choose an exclusively or 579 

overexpressed target for the cancer cells. Figure 6I and Supplemental Figure S14 shows the 580 

expression of two receptors of clinical ADCs in the SCLC cell lines: DLL3 [used for SCLCs as 581 

rovalpituzumab tesirine (Morgensztern et al., 2019; Rudin et al., 2017)] and the carcinoembryonic 582 

antigen CEMC5 [used in other clinical indications as Labetuzumab govitecan (Das, 2017)]. Figure 583 

6I shows that DLL3 expression is highly correlated with ASCL1 expression (Pearson correlation = 584 

0.62), suggesting that treatments targeting DLL3, such as rovalpituzimab tesirine, could be 585 

selective toward SCLC-A tumors (Rudin et al., 2019). CEACAM5 is highly expressed in only a 586 

subset of SCLC-A cell lines, which may be potentially sensitive to labetuzumab govitecan (IMMU-587 

130) and other ADCs using CEACAM5 as their targeted receptor. Both DLL3 and CEACAM5 588 

have their highest expression in SCLC among all GDSC tissue types (Supplemental Figure S14). 589 

Expression of TACSTD2 (TROP2), which is used as target for sacituzumab govitecan (IMMU-132) 590 

in patients with triple-negative breast cancer (TNBC), exhibits a low expression level in all SCLC 591 

cell lines, suggesting that using TACSTD2 as targeted receptor may not be efficient in SCLC  592 

(Supplemental Figure S15). 593 

Among potential new targets for the development of ADCs, the previously described 594 

specific neuroendocrine markers NCAM1, CD24, CADM1 and ALCAM are highly expressed in 595 

non-YAP1 SCLC (Figure 6J), suggesting the potential of developing ADCs targeting such surface 596 

receptors for NE-SCLC and SCLC-P patients. In contrast, the non-neuroendocrine surface markers 597 

CD151 and EPH2 are highly expressed in the YAP1 cell lines (Figure 6K), suggesting their 598 

potential as target receptors for SCLC-Y cancers. 599 

 600 
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Discussion 601 

 602 

SCLC CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/) provides a unique resource 603 

including the most extensive SCLC datasets not only in terms of number of cell lines but also by 604 

its extensive omics and drug sensitivity databases. It also includes high resolution methylome data, 605 

which were performed for the purpose of the current study. SCLC CellMiner enables casual and 606 

experienced user to perform cross-comparison for all the omic and drug features of the SCLC cell 607 

lines of the NCI-DTP (SCLC NCI/DTP), Sanger-MGH (SCLC GDSC), Broad-MIT (SCLC CCLE 608 

and SCLC CTRP) and UT Southwestern (SCLC UTSW). It demonstrates the high reproducibility 609 

of the data for given cell lines across databases, which led to building an integrated platform 610 

(“SCLC Global”) to search genomic and drug features across the whole 116 cell line database. 611 

Human cancer-derived cell lines remain the most widely used models and the primary basis 612 

to study the biology of cancers. They also enable the testing of new drugs and determinant of 613 

response hypotheses to improve cancer treatment (Gillet et al., 2013; Marx, 2014). A recent 614 

example is the discovery of SLFN11 as a dominant determinant of response to widely used 615 

chemotherapeutic agents targeting replication including topoisomerase inhibitors, platinum 616 

derivatives, gemcitabine and hydroxyurea as well as PARP inhibitors (Barretina et al., 2012; Murai 617 

et al., 2019; Zoppoli et al., 2012). Hence, the large database of SCLC cell lines offers a spectrum 618 

of models with the full genetic and molecular diversity seen in this subtype of cancer, as 619 

exemplified by the clear division of the 116 cell lines across the four recently proposed subgroups 620 

of SCLCs (NAPY classification) (Rudin et al., 2019). Although it appears that at the genomic level 621 

driver mutations are retained, several studies reveal a drift at the transcriptomic level, leading to 622 

the conclusion that cancer cell lines bear more resemblance to each other, regardless of the tissue 623 

of origin, than to the clinical samples that they are supposed to model. However, several other 624 

studies have come to the opposite conclusion, demonstrating the need for human cancer cell line 625 

panels (Barretina et al., 2012; Neve et al., 2006; Reinhold et al., 2019; Wang et al., 2006; Weinstein, 626 

2012; Zoppoli et al., 2012). Although it was believed that tumor cells lost their differentiated 627 

properties during cell culture, it was later shown that this “dedifferentiation” was the result of 628 

stromal cell overgrowth and that “true” tumor cell cultures often retained their differentiated 629 

properties (Sato, 2008). For lung cancer cell lines, it has been shown that the genomic drift during 630 

culture life is not as great as commonly believed (Wistuba et al., 1999). The recent analyses across 631 

SCLC cell lines, PDX models and human tissues reported by Rudin et al. (2019) and our present 632 

analyses support this conclusion. 633 

SCLC is known to be highly proliferative (Gazdar et al., 2017) and to be under replication 634 

stress (Thomas and Pommier, 2016). The SCLC CellMiner transcriptome data provide evidence 635 

confirming that specific feature. Indeed, genes known to be involved in DNA replication 636 

exemplified by PCNA, MKI67 (encoding Ki67), FEN1 and PARP1  are highly expressed in SCLC 637 

compared to the other subtypes of cancers (Supplemental Figure S16). Moreover, we find evidence 638 

of chromatin alteration in SCLC. Not only are many core histone genes hypermethylated (see 639 

Figure 3) but also H2AFY, a non-canonical histone belonging to the H2A family encoding 640 

macroH2A.1, exhibits high expression in the SCLC cell lines. Two H2AFY splice variants have 641 

been identified and SCLC cell lines predominantly express high levels of the macroH2A1.2 variant 642 

compared to macroH2A1.1 (both encoded by H2AFY). The macroH2A1.2 splice variant is known 643 

to promote homologous recombination and is essential for proliferation (Kim et al., 2018). This 644 

further underscores the highly proliferative characteristic of SCLC cell lines, in addition to the 645 

overexpression of the MYCs genes (see Figure 4 and Supplementary Figure S2 and S6). 646 
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In the context of chromatin and the histone genes, ACTL6B, which encodes a subunit of the 647 

BAF (BRG1/brm-associated factor) complex in mammals is highly expressed in the SCLC cell 648 

lines (Supplemental Figure S17). The BAF complex is functionally related to SWI/SNF complexes, 649 

which are known to facilitate transcriptional activation of specific genes by antagonizing 650 

chromatin-mediated transcriptional repression. Interestingly, we found that the expression of 651 

ACTL6B is high and specific to SCLC and brain tumor cell lines and that its expression is highly 652 

correlated with other the expression of other chromatin genes including HMGN2, KDM4B and 653 

SMARCA4 (Supplemental Figure S17). Among the SCLC cell lines, only the neuroendocrine cell 654 

lines (high ASCL1 or high NEUROD1) harbor high expression of ACTL6B while the YAP1 SCLC 655 

cell lines express significantly less KDM4B and SMARCA4 (Supplemental Figure S17). These 656 

results suggest that this specific BAF complex subunit is critical in neuroendocrine SCLCs. 657 

Supporting the importance of epigenetics in SCLC carcinogenesis, we provide an extensive 658 

DNA methylation database including the methylome of 66 cell lines from the NCI performed by 659 

high resolution Affymetrix 850k array and the analysis of 61 cell lines from the GDSC analyzed 660 

by 450k Array (see Figures 1 and 3) and demonstrate that SCLC cell lines exhibit a distinct 661 

methylation profile. First, they are globally hypomethylated, suggesting a plasticity of SCLC cell 662 

lines compared to the other cancers. Secondly, they exhibit a distinct and coherent profile of 663 

methylation compared with other subtypes of cancers, especially NSCLC (see Figure 3). 664 

Interestingly, most of genes with low methylation are involved in neurological pathway suggesting 665 

that neuroendocrine differentiation could be driven by epigenetic and especially DNA promoter 666 

methylation. Only a few studies focused on SCLC methylation profile. In 2013, Kalari et al. found 667 

consistent results and identified more than one hundred specifically hypermethylated genes in 668 

SCLC with gene ontology analysis indicating a significant enrichment of genes involved in 669 

neuronal differentiation (Kalari et al., 2013). By contrast, Poirier et al. (2015) reported that SCLC 670 

tend to have a high methylation level. The apparent discrepancy could be due to the fact that they 671 

included PDX and tumor samples and that they did not measure the global level of promoter 672 

methylation, as we have done, but the proportion of highly variable CpGs. Yet, they concluded, 673 

that high methylation instability is consistent with the plasticity of SCLC (Poirier et al., 2015). 674 

SCLC CellMiner validates the recently proposed SCLC NAPY classification (Rudin et al., 675 

2019) (see Figure 4), and provides insights into the four NAPY genes and their coordinated 676 

pathway network and connections with the NOTCH pathway (Figures 5). The coregulation of many 677 

functionally related genes is notable for the ASCL1 and YAP1 pathways examined in Figure 5. 678 

Indeed, ASCL1 expression is highly correlated with the expression of its transcription coactivators 679 

NKX2-1 and PROX1 in spite of their different chromosome locations. The same observation applies 680 

to the YAP1/TAZ (WWTR1) heterodimer, suggesting master regulators upstream from the ASCL1 681 

and YAP1 genes. Identifying those potential regulators (super-enhancers, microRNAs or non-682 

coding RNAs) warrants further investigations, which hopefully will be fostered by the SCLC 683 

CellMiner resources. Unexpectedly, we found that the expression of the genes encoding the Hippo 684 

pathways (MOB1A/B and LATS1/2) and its coactivator (AMOT and AMOTL2) are co-expressed 685 

with highly significant correlation with YAP1. This finding suggest that the SCLC-Y cell lines are 686 

primed with a potential negative feedback from the Hippo pathway. Consistent with the results of 687 

Rudin et al. (2019) al., the NAPY classification shows that the cell lines driven by ASCL1 and 688 

NEUROD1 often overlap (see Figure 4F) except for their relationship with the NOTCH pathway 689 

where the SCLC-A cells show a stronger negative correlation with NOTCH gene expression than 690 

the SCLC-N cells (see Supplementary Figure 9). Both ASCL1 and NEUROD1 are transcriptional 691 

regulators and main drivers of neuroendocrine pathways and the cell lines co-expressing both gene 692 
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share common features in terms of co-expressed neuroendocrine genes, MYCL-MYCN 693 

overexpression, drug sensitivities and cell surface markers (see Figures 4 & 6), questioning how 694 

these two groups define clearly distinct entities. 695 

 Transcriptome and drug response analyses highlight the distinguishing features of the 696 

SCLC-Y cell lines. Indeed, by contrast to the three other transcription factors (ASCL1, NEUROD1 697 

and POU2F3), YAP1 expression is not specific to SCLC and YAP1 is widely and differentially 698 

expressed across a wide range of cancer cell lines (see Figure 4) (Ma et al., 2019). Notably, 699 

transcriptome analyses cluster the SCLC-Y with NSCLC cell lines, suggesting a different cellular 700 

origin for the SCLC-Y cancers (see Figure 5F). The SCLC-Y cell lines also express the NOTCH 701 

pathway, which is opposite to the SCLC-A neuroendocrine cell lines (see Figure 5 and 702 

Supplementary Figure S9). This differential feature could be related to the direct transcriptional 703 

activation of the NOTCH pathway by YAP/TAZ (see Figure 5C) (Yimlamai et al., 2014). In 704 

addition, SCLC-Y cell lines do not express MYCL or MYCN but rather MYC (see Figure 4), and 705 

consistent with the results of McColl et al. (2017), SCLC-Y cell lines tend and not to be mutated 706 

for RB1 (see Figure 5H) and to express RB1, which is not the case for the 3 other SCLC subtypes 707 

(see Figure S11). We also found that the SCLC-Y cells express the DNA replication and 708 

proliferation genes to a lower level than the other SCLC subgroups (see Supplemental Figures S11 709 

& S16). Finally, the SCLC-Y cell lines were often derived from non-smoker patients 710 

(Supplementary Table S1 & Figure 18). One of the limitations of this finding is that many cell lines 711 

were not annotated, so these results concerning tobacco status require confirmation in a larger 712 

cohort. In total, our data highlight that SCLC-Y cell lines are probably derived from a different cell 713 

type compared to the other neuroendocrine SCLC. 714 

The SCLC-Y also differ from the other subgroups, SCLC-N, A & P in terms of drug 715 

sensitivity. As demonstrated in Figures 6 & S12, while the SCLC-P cell lines are consistently 716 

among the most sensitive NAPY subgroup to the standard of care treatments (etoposide, cisplatin 717 

and topotecan) and to the PARP inhibitor talazoparib, the SCLC-Y cells are most resistant to those 718 

treatments. The SCLC-N and -A show a wide range of responses to those classical chemotherapies 719 

with some cell lines highly responsive and some not. A significant determinant of response to those 720 

standard of care treatments is SLFN11 expression (Murai et al., 2019), with a broad range of 721 

expression and approximately 40% of the 116 SCLC cell lines expressing no or very low SLFN11 722 

transcripts  (see Figures 6F & S12). Another potential determinant of response is MGMT with 723 

approximately 33% of the 116 SCLC cell lines expressing no or very low MGMT transcripts  (see 724 

S12D), which suggest the potential of using temozolomide in such tumors, especially in the case 725 

of brain metastases (Pietanza et al., 2018; Thomas et al., 2017). 726 

In spite of the resistance of non-neuroendocrine (or variant) SCLC cells (SCLC-P and -Y 727 

subgroups) to the standard of care treatments (Gazdar et al., 1992), we find that those subgroups 728 

appear responsive to mTOR and AKT inhibitors (see Figure 6D-E). Our result is consistent with a 729 

recent study (Wooten et al., 2019) showing that non-neuroendocrine SCLC cell lines are sensitive 730 

to PI3K-AKT-mTOR, AURKA inhibitors and HSP90 inhibitors. Moreover, we found that the main 731 

difference between sensitive and non-sensitive cell lines is activation of the EIF2 pathway (see 732 

Figures 6 and S12), which is consistent with the PI3K-AKT-mTOR and MKI inhibitors sensitivity 733 

of SCLC-Y and SCLC-P. This hypothesis could open new therapeutic options in SCLC using 734 

translation-targeted drugs in development (Bastide and David, 2018; Sulima et al., 2017). 735 

Treatments targeting the mTOR pathway in SCLC patients have been evaluated or are in ongoing 736 
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clinical trials. The results with monotherapy were not successful (Tarhini et al., 2010). Our findings 737 

suggest that better results might be obtained with appropriate patient selection. 738 

Three final therapeutic insights can be derived from our study. First, the SCLC-Y cell lines 739 

are the only NAPY subgroup with antigen presenting and native immune predisposition (see Figure 740 

6) while the neuroendocrine SCLC are among the most immune silent cancer cell lines based on 741 

their transcriptome profiles (see Figures 6G-H and S13). If verified in clinical samples, this finding 742 

might enable the selection of SCLC patient of the YAP1-expressing subgroup for immune 743 

checkpoint treatments. The second insight concerns the existence of potential surface markers that 744 

could be targeted selectively for the NAPY subgroups. As shown in the lower part of Figure 6, it 745 

is clear that the SCLC-Y cell lines express neither the therapeutically-relevant surface epitopes 746 

DLL3 or CEACAM5 (Das, 2017; Morgensztern et al., 2019; Rudin et al., 2017), which tend to be 747 

specific for the SCLC-A (and N) cancer cells. Yet, SCLC CellMiner could be used to identify 748 

potential surface markers of SCLC-Y cancers such as CD151 and EPHA2 (see Figure 6K). Finally, 749 

the SCLC-Y subgroup might respond to the YAP1 and NOTCH inhibitors in clinical development 750 

(Crawford et al., 2018; Leonetti et al., 2019). 751 

 Our analyses demonstrate the value of cancer cell line databases and imply that updating 752 

drug testing with new clinical drug candidates will provide valuable information to guide clinical 753 

trials. The results of our analyses also suggest the potential value of using the NAPY classification 754 

to select patients for targeted clinical trials. It is likely that genomic signatures based on genes 755 

expression (transcriptome) and DNA methylation (methylome) will have to be developed to build 756 

reliable tools to assign samples to each of the NAPY subgroups and determine their prognostic and 757 

therapeutic value. It also appears important to perform single-cell transcriptome and omic analyses, 758 

sequential biopsies and biopsies of different tumor sites to evaluate the tumor heterogeneity and 759 

plasticity of SCLCs. 760 

  761 
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Table 1: Examples of SCLC_CellMiner capabilities: 762 
 763 

 SCLC_CelMiner Explores & 

Validates 

Method Examples Examples of Findings 

1 Cell line reproducibility, & 

consistency 

Univariate Analyses: Plot Data: Expression of the same 

gene across different datasets (X & Y) 

Figs. 1 Cell lines are highly reproducible 

across datasets 

2 Omic data robustness & 

reproducibility 

Univariate Analyses: Plot Data: Expression, copy 

number variation, promoter methylation, mutations for 

the same gene across datasets (X & Y) 

Figs. 1B-

C 

Transcripts, promoter methylation, 

gene copy number are highly 

reproducible across datasets 

3 Drug data robustness & 

reproducibility 

Univariate Analyses: Plot Data: Activity of the same 

drug across datasets (X & Y) 

Fig. 2E-F Warning: Not all drugs are 

consistent across dataset 

4 Integrates all the SCLC cell line 

genomic datasets under 

SCLC_Global (NCI, GDSC, 
CCLE, CTRP, UTSW) 

Use the pull-down tabs for Cell Line Sets and choose 

SCLC_Global 

Fig. 4F; 

6H; S4A-

B; S5C 

The 119 SCLC cell lines can be 

classified in the 4 groups of NAPY; 

Development of NAPY genomic 
signatures 

5 Integration with CellMinerCDB Open in parallel: 

http://discover.nci.nih.gov/cellminercdb 

Figs. 2, 4, 

5 

POU2F3 is selective for SCLC; 

YAP1 is expressed widely beyond 

SCLC; ASCL1 is co-expressed with 

NEUROD1 

6 Select and compare subsets of cell 

lines based or tissue of origin or 

metadata: NAPY, TNBC, NSCLC 

Univariate Analyses: select Y axis: Select Tissue/s of 

Origin or Select Tissues to color (NEUROD1, ASCL1, 

POU2F3, YAP1, NE) 

Figs. 5F; 

S5; S15 

NEUROD1 and ASCL1 are also 

selectively expressed in CNS cancer 

cell lines 

7 Test Phenotypic data (mda): NE, 

APM, EMT 

Univariate Analyses: select Data Type mda: NE, APM, 

EMT. Additional selection can be done for subset (see 
# 6) 

Fig. 6 NE cell lines have low Antigen 

Presenting Machinery score (APM) 

8 Tissue- or Subset-type specific 

analyses (NAPY; NE) 

Select Tissue/s of Origin or Select Tissues to color Figs. 5-6; 

S10; S13; 

S17 

YAP1 cell lines have lower 

replication and highest APM score 

9 Epigenetics: promoter 
methylation for any given gene 

Univariate analyses: Plot Data: Expression of a given 
gene vs its methylation (X & Y Data Type) within a 

given Cell Line Set or across datasets (independent 

datasets can be tested for missing Data Type and 

confirmation) 

Fig. S1 Promoter methylation is a driver for 
gene expression (NAPY genes; 

SLFN11; MGMT; SMARCA1; 

CGAS) 

10 Gene amplification and deletions 

for any given gene 

Univariate analyses: Plot Data: Expression of a given 

gene vs copy number (X & Y Data Type) within a 

given Cell Line Set or across datasets (independent 

datasets can be tested for validation and missing Data 

Type)  

Figs. 1; 3; 

S2 

MYC genes and other oncogenes 

are often driven by copy number 

variation (CNV) 

11 Integrate and complement 

different datasets for common cell 

lines 

Univariate Analyses: Plot Data: Plot different 

parameters (Data Type for genomic or drug response) 

across Cell Line Sets (X & Y) to counter missing data 

in one dataset 

Figs. 1; 2; 

6 

Drug response data in one dataset 

can be correlated with genomics of 

another dataset  

12 Genomic pathway discovery 
(coregulated genes and 

microRNAs) 

Univariate analyses: Plot Data: expression of a given 
gene (X or Y Data Type) within a given dataset or 

across datasets; also use the Compare Patterns tab. 

Figs. 5; 6; 
S4; S5 

ASCL1 and YAP1 are integrated in 
tight genomic networks connected 

with the NOTCH pathway 

13 Discover determinants of drug 

response and targeted drug 

delivery 

Univariate Analyses: Plot Data: Compare Patterns: 

Coregulated genes for a given gene (X or Y) within a 

given dataset (independent datasets can be tested for 
confirmation) 

Figs. 6; 

S12-14 

Resistance of YAP1 cell lines to 

chemotherapy and potential 

response to mTOR and immune 
checkpoint inhibitors; NAPY-

specific antigen cell surface 

biomarkers 

14 Validate genomic determinant of 

drug response 

Univariate Analyses: Plot Data: Compare Patterns: plot 

genomic parameter vs drug (X or Y Data Type)  

Fig. 6 Validation of SLFN11 for DNA 

damaging chemotherapy 

15 Examine drug correlations: 

COMPARE analyses 

Univariate Analyses: Plot Data: Data Type: drug vs 

drug (X or Y); also select Compare patterns to identify 

drug-drug correlations 

Fig. S1 Cell lines sensitive to etoposide are 

cross-sensitive to topotecan 

16 Multivariate models of drug 

response & genomic features 

Multivariate Analyses: Cell Line Set; Response Data 

Type; Predictor Data Type/s; Predictor Identifier: enter 
drug and genomic parameters to be tested as indentifier 

or use LASSO to discover additional non-redundant 

determinants of response 

Fig. 5B & 

D; Fig. 
S5E 

Discover independent omic or drug 

parameters to build a molecular 
signature for drug response or gene 

expression 

17 Data download Univariate Analyses: View Data: Download tabs or 

Multivariate Analyses: Download tab 

Fig. 6 Allow further in depth analyses and 

data download in Excel 

18 Drug identifier conversion    

 764 
Highlighted in red characters are the option tabs of SCLC_CellMiner: (https://discover.nci.nih.gov/SclcCellMinerCDB/) 765 
  766 
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Figures and legends 767 

 768 

 769 

  770 
 771 
Figure 1 – Summary of the data included in SCLC-CellMiner and resources 772 
(A) Cell line overlap between the five data sources. Each colored box represents one cell line. The cell lines in 773 
red are from the NCI database (N = 68), in dark blue from CTRP (N = 39), in light blue from CCLE (N = 53), in 774 
orange from GDSC (N = 74) and in green from UTSW (N = 73). Cell line details are provided in Table S1. (B) 775 
Summary of the genomic and drug activities data for the five data sources in SCLC CellMinerCDB 776 
(https://discover.nci.nih.gov/SclcCellMinerCDB/). The number of SCLC cell lines for datasets and sources are 777 
indicated. For microarray, mutations, copy number and methylation data, the numbers indicate the number of 778 
genes. For RNA-seq data, the numbers indicate the number of transcripts. The bottom row show the total number 779 
of cell lines (N = 118) integrated in SCLC CellMinerCDB. New data analyses performed and made available are 780 
highlighted in yellow. (C) Cell line overlap between data sources. Details of the cell line overlap are provided in 781 
Table S2. (D) Drug overlap between data sources. 782 
  783 
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 784 
 785 
Figure 2 – Validation and reproducibility of the SCLC-CellMiner data with snapshots illustrating  786 
representative outputs of SCLC-CellMiner (https://discover.nci.nih.gov/SclcCellMinerCDB/) 787 
(A) Reproducibility between data sources. The figure represents the expression and methylation Pearson 788 
correlations between the indicated data sources for matched cell lines (see Figure 1). The median of expression 789 
Pearson correlation is 0.65, 0.67, 0.73, 0.66 and 0.71 for NCI /UTSW, NCI/GDSC, NCI/CCLE, UTSW/CCLE, 790 
and UTSW/GDSC, respectively. The median of methylation Pearson correlation between NCI and GDSC data 791 
sources is 0.94. (B) Snapshot from SCLC-CellMiner showing the reproducibility of SLFN11 gene expression 792 
across the 41 common cell lines independently of the methods used to measure SLFN11 expression (AffyArray 793 
for NCI/DTP on the x-axis vs RNA-Seq for UTSW). Each dot is a different cell line, which can be identified by 794 
moving the cursor to the dot on the CellMiner website. The data can also be readily displayed in tabular form 795 
and downloaded in tab-delimited format by clicking on the “View Data” tab to the right of the default “Plot Data” 796 
tab (see upper section of Figures 2B & C). (C) Snapshot from SCLC-CellMiner showing the reproducibility of 797 
SLFN11 promoter methylation across the 43 common cell lines independently of the methods used to measure 798 
SLFN11 expression (850 k Illumina Infinium MethylationEPIC BeadChip array for NCI/DTP on the x-axis vs 799 
Illumina HumanMethylation 450K BeadChip array for GDSC). (D) SCLC-CellMiner demonstrates the highly 800 
significant correlation between MYC DNA copy number (new data derived from the 850 K AffyArray methylome 801 
of the NCI-SCLC cell lines and MYC expression (data from CCLE) for the 36 common cell lines. (E-G) Examples 802 
(image snapshots from SCLC-CellMiner) of drug activity correlations across databases for the indicated drugs 803 
and the common cell lines)  (H) High proliferation signature of SCLC cell lines based on high PCNA and MYC 804 
expression. Note that SCLC (green) overexpress PCNA but fall into two groups with respect to MYC (high and 805 
low). The image was obtained through CellMinerCDB with the GDSC database 806 
(http://discover.nci.nih.gov/cellminercdb).  807 
  808 
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  809 

 810 
Figure 3 – Methylation profile of SCLC cell lines 811 
(A) SCLC cell lines exhibit low global methylation level compared to the non-SCLC of the NCI60 and of the 812 
GDSC (B). Each point represents the median methylation level of individual cell lines for the total set of 17,559 813 
genes. Twenty one different cancer subtypes are ranked according their global methylation level. SCLC cell lines 814 
from two different sources (NCI and GDSC; in red) show the lowest global level of methylation. (C) Comparison 815 
of the methylation profiles between SCLC cell lines (red bar at bottom), NSCLC cell lines included in the GDSC 816 
and NCI-60 (black bar), and non-lung cancer cell lines from the NCI-60. The heatmap displays the median level 817 
of methylation of 2,016 genes with high dynamic range (genes with a standard deviation  > 0.25 across the data 818 
sources) in the cell lines from SCLC-NCI (N=66), NSCLC-GDSC (N=75) and the NCI60 (N=60). Dark blue and 819 
dark red represent lowest and highest methylation median levels, respectively. Subtypes of the cell lines is 820 
indicated at the bottom (SCLC: red, NSCLC: black and NCI60: grey). SCLC cell lines represent one independent 821 
and distinct cluster. Among the 5 gene clusters, 3 show low methylation and one high methylation levels in 822 
SCLC. Examples of key SCLC genes are indicated at right. Details are provided in Supplemental Table S4. (D) 823 
Pathway analysis for clusters 1 & 2. (E) Pathway analysis for cluster 5. (F) Functional categories with significant 824 
correlation between gene transcript expression and DNA methylation. The figure shows histograms of the 825 
distribution of correlations of 17,144 transcript expression and DNA methylation data for the NCI-SCLC cell 826 
lines (N = 66). Median values are shown for the transcript expression versus DNA methylation level correlations 827 
of 20 functional groups of genes (defined in Supplementary Table S5). The x-axis are the Pearson correlations 828 
of the transcript expression versus the DNA methylation values, and the y-axis is the frequency. (G) Correlations 829 
between gene expression and predictive values of DNA copy number (X-axis) vs DNA methylation (Y-axis). An 830 
R value of 0 indicates no predictive power. R value of 1 or −1 and +1 indicate perfect negative and positive 831 
predictive power, respectively. Each point represents one of a total of 14,046 genes analyzed. Oncogenes and 832 
tumor suppressor genes (highlighted in purple and in blue, respectively) are primarily driven by copy number. 833 
Histone genes (red), and epithelial genes” (green) are primarily driven by DNA methylation (see Supplementary 834 
Table S5 for details. SCLC key genes (ASCL1, NEUROD1, POU2F3 and YAP1) are also indicated. 835 
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 837 
 838 
Figure 4 – SCLC genomic molecular classifications 839 
(A) Neuroendocrine versus non-neuroendocrine classification based on the expression of 50 genes (Gazdar et al., 840 
2017). Neuroendocrine (NE; in dark brown) and non-neuroendocrine status (nonNE; in grey) scores are 841 
represented for each cell line (N = 116). In light brown are the cell lines with an intermediate score. Numbers at 842 
the top correspond to the number of cell lines in each group. Expression of the clinical histological biomarkers 843 
CHGA, SYP and INSM1 is included. They were obtained after normalization by Z-score (see Supplemental Figure 844 
S2). Red and blue correspond to high and low gene expression, respectively. Detail are provided Supplementary 845 
Table S3. (B) Classification based on NEUROD1, ASCL1, POU2F3 and YAP1 (NAPY) expression (Rudin et al., 846 
2019). The heatmap displays expression of the NAPY genes in the overall 116 SCLC cell lines of SCLC-847 
CellMiner. Expression values across the 5 data sources were obtained after normalization by Z-score (see 848 
Supplemental Figure S2). Complete distance hierarchical clustering shows the expected 4 groups of cell lines. 849 
ASCL1 (N = 65) and NEUROD1 (N = 35) high-expressor cell lines are considered as NE-SCLC cell lines and 850 
POU2F3 (N = 7) and YAP1 (N = 9) cell lines, non-NE-SCLC cell lines. The Gazdar classification is included for 851 
comparison. Details are provided in Supplementary Table S3. (C) NEUROD1 and ASCL1 are specific for both 852 
SCLC and brain tumor cell lines. Expression of ASCL1 versus NEUROD1 in the GDSC database and processed 853 
with CellminerCDB. Each point represents a cell line (N = 986). (D) Common co-expression of NEUROD1 (y-854 
axis) and ASCL1 (x-axis) in the 11 SCLC. Each point represents a cell line. (F) POU2F3 is selectively expressed 855 
in SCLC but not in brain tumor cell lines (N=986 from GDSC processed with CellMinerCDB). (G) YAP1 856 
expression is not specific to SCLC. YAP1 exhibits a high range of expression across the different subtypes of 857 
cancer cell lines of the GDSC database (N=986). Plots in panels E-F are snapshots from CellMinerCDB 858 
(http://discover.nci.nih.gov/cellminercdb). (G) Classification based on MYC genes expression. The heatmap 859 
displays expression of MYC, MYCL and MYCN in 106 SCLC cell lines across the 5 data sources after 860 
normalization by Z-score (see Supplemental Figure S2). The figure also provides the NAPY classification for 861 
each cell lines. Details are in Supplementary Table S4. 862 
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 863 
 864 
Figure 5: Integration of the transcriptional networks of the neuroendocrine ASCL1 and non-neuroendocrine 865 
YAP1 SCLC cell lines with the NOTCH pathway 866 
(A-D). ASCL1 (panels A-B) and YAP1 (panels C-D) networks. Panel A shows the highly significant correlations 867 
between ASCL1 expression and its molecular transcriptional coactivators NKX2-1 and PROX1, and some of its 868 
downstream transcriptional targets (bayonet arrows). Numbers to the right indicate the significantly positive Pearson’s 869 
correlations coefficients (red) and chromosome locations (black in parenthesis) obtained from Miner Global 870 
(https://discover.nci.nih.gov/SclcCellMinerCDB). The NOTCH receptor network (blue boxes) with its transcriptional 871 
target REST are shown at the top of the panel (yellow box). Negatively significant Pearson’s correlations coefficients 872 
(blue) and chromosome locations (black in parenthesis) obtained from SCLCcellMiner Global 873 
(https://discover.nci.nih.gov/SclcCellMinerCDB) Panel B: visualization of the correlations between ASCL1 expression 874 
and the indicated genes corresponding to those shown in panel A. Note the counter-expression of the NOTCH receptor 875 
pathway (yellow highlight) with respect to ASCL1 expression. The image is a snapshot obtained using the multivariate 876 
analysis tool of SCLCcellMiner using the Global dataset of the 116 cell lines. Panels C and D. Same as panels A and 877 
B except for YAP1 across the 116 SCLC cell lines of SCLCcellMiner. Note the positive correlation between YAP1 878 
expression and the NOTCH receptor pathway (see text for details). (E) Negative correlations between the NOTCH 879 
receptors and ligands and ASCL1 vs YAP1 across the 116 cell lines of SCLCcellMiner. Pearson’s correlation 880 
coefficients with respect to ASCL1 (2nd column) and YAP1 (3rd column) are indicated in parenthesis. They can be 881 
obtained using the Global dataset of the 116 cell lines of SCLCcellMiner. (F) Correlation between NOTCH1 and 882 
NOTCH2 across the Global dataset of the 116 cell lines of SCLCcellMiner. YAP1 cells show significantly highest 883 
expression of both NOTCH1 and NOTCH2. (G). Correlation between NOTCH1 and NOTCH2 across the 1036 cell 884 
lines of the CCLE. The SCLC-YAP1 have highest NOTCH (see inset for annotations). (H) SCLC-YAP1 cells have 885 
significantly reduced frequency of RB1 mutations. Only one SCLC-YAP1 cell line (NCI-H196) shows RB1 mutation 886 
whereas 7 of the 9 SCLC-YAP1 show TP53 mutations. Data were compiled from the 116 cell lines  of SCLC-CellMiner 887 
Global (I). tSNE clustering plot using gene expression data of 60 SCLC and 100 NSCLC cell lines (microarray; GDSC 888 
data source). Each dot represents a sample and each color represents the type of the sample (see inset). 889 
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 890 

 891 
 892 
Figure 6: Therapeutic predictive genomic biomarkers for SCLC based on cancer cell lines drug 893 
response, gene expression and molecular NAPY classification 894 
(A). Cluster image map showing the global response of the NCI-SCLC cell lines (N = 66) across 134 different 895 
drugs from a broad range of chemical classes and targets. Cell lines are listed in the middle column and their 896 
NAPY classification to the left. (B). POU2F3 cells are the most sensitive to etoposide and talazoparib while the 897 
YAP1 cell lines are the most resistant. (C). Selective activity of the BCL2-BCL-XL inhibitor in a subset of the 898 
ASCL1-SCLC cell lines (left) and highly significant correlation with BCL2 expression (right). (D). Selective 899 
activity of the mTOR/AKT inhibitors in a subset of the non-NE SCLC cell lines (POU2F3 = P; YAP1 = Y). 900 
(E). Selective activity of the PI3K inhibitors in the non-NE SCLC cell lines. (F). SLFN11 expression across the 901 
116 SCLC cell lines exhibits bimodal distribution in all 4 subtypes of SCLC and is a predictive biomarker for 902 
DNA damaging chemotherapeutic agents (https://discover.nci.nih.gov/SclcCellMinerCDB)] (see Supplemental 903 
Figure S12). (G). Selective expression of native immune pathway genes in the YAP1 SCLC (correlations 904 
between each of the NAPY genes and the listed native immune response genes are listed with colors reflecting 905 
significantly positive and negative correlations (red and blue, respectively). (H). Snapshot from SCLC-906 
CellMiner illustrating the correlation between YAP1 and IFITM3 transcripts across the 116 cell lines of SCLC-907 
CellMiner Global (see Supplemental Figure S13). (I). Selective expression of the DLL3 and CEACAM5 908 
surface markers targeted by Rovalpituzimab tesirine (Rova-T) and Labetuzumab govitecan (IMMU-130), 909 
respectively, in the NE-SCLC cell lines (A preferentially) (see Supplemental Figure S13). (J). Potential surface 910 
biomarker targets for NE-SCLC and POU2F3 SCLC cells (N & A). (K). Potential surface biomarkers for non-911 
NE YAP1-SCLC cells. Data in panels A-E and I-K are from the 66 cell lines from the NCI-DTP drug and 912 
genomic database. 913 
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Material and methods 914 

 915 

SCLC CellminerCDB is dedicated CellminerCDB version for SCLC cell lines (Reinhold et al., 916 

2012; Reinhold et al., 2014; Reinhold et al., 2019; Reinhold et al., 2017b) 917 

https://discover.nci.nih.gov/cellminercdb/). 918 

 919 

SCLC-CellMinerCDB resources 920 

The cell line sets included in SCLC-CellMiner Cross-Data-Base (CDB) currently are from the 921 

National Cancer Institute SCLC cell lines from the Developmental Therapeutics Program Small 922 

Cell Lung Cancer Project (SCLC NCI-DTP), Cancer Cell Line Encyclopedia (CCLE), Genomics 923 

and Drug Sensitivity in Cancer (GDSC), Cancer Therapeutics Response Portal (CTRP), the 924 

University of Texas SouthWestern (UTSW) and a new merge resource Global expression SCLC 925 

(add help section SCLC CellMiner CDB URL address). The data source details are described in 926 

“Help” section of the SCLC CellMiner website. 927 

 928 

SCLC-CellMinerCDB data 929 

Most of the data including drug activity and genomics experiments were processed at the institute 930 

of origin and were downloaded from their website or provided from their principal investigator. 931 

However, methylation, mutation and copy number data were processed at Development 932 

Therapeutics Branch, CCR, NCI to generate a gene level summary as described previously 933 

(Barretina et al., 2012; Garnett et al., 2012; McMillan et al., 2018; Polley et al., 2016). 934 

 935 

DNA methylation data 936 

Gene-level methylation using the 850k Illumina Infinium MethylationEPIC BeadChip array was 937 

summarized based on (Reinhold et al., 2017b). In short, methylation data were normalized using 938 

the minfi package using default parameters, where probe-level beta-values and detection p-values 939 

were calculated for each probe. This provided 866,091 methylation probe measurements. 940 

Methylation probe beta-values for individual cell lines with detection p-values >=10-3 were set to 941 

missing. Also probes with median p-value >= 10-6 were set to missing for all cells and removed 942 

from the analysis. Probe locations on the human genome (hg19 version) defined by Illumina was 943 

used for the analysis, annotating proximal gene transcripts and CpG islands. Probes were 944 

designated as category “1” or “2”, with category “1” considered to be most informative. Category 945 

“1” probes overlapped CpG islands and they overlapped either the TSS region within a 1.5kb 946 

distance, the first exon or 5’-UTR region. Additionally, probes on the upstream shore of a CpG 947 

island with a maximal distance of 200bp from the TSS were also included as category “1” probes. 948 

Category “2” probes were positioned either in the upstream- or downstream shore of a CpG island 949 

and overlapping the first exon, or on the downstream shore of CpG islands overlapping a 200bp 950 

region from the TSS, or in 5’-UTR. In case of genes with multiple transcript start sites, the 951 

transcript methylation with the most negative correlation to the gene level expression was used. 952 

The analysis resulted in gene-level methylation values for 23,202 genes. 953 

 954 

Copy number 955 

Genome wide copy number for the cell lines was estimated from the methylation array data using 956 

the Chip Analysis Methylation Pipeline (ChAMP) (Tian et al., 2017) package. ChAMP returns lists 957 

of genomic segments with putative copy number estimates. However, the estimate is not valid for 958 

regions with high methylation detection p-values. For this reason, regions spanning more than 1kb 959 

with at least 5 probes with high detection p-values (p>0.05) were filtered out. The copy number 960 
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estimates were set to missing for those areas. Gene level copy number (for n=25,568 genes) was 961 

calculated for each gene individually, by calculating the average estimate between the transcription 962 

start sites and transcription end sites.   963 

 964 

RNAseq data 965 

The RNA-seq gene expression data from UTSW SCLC were obtained from analyses based on 966 

(McMillan et al., 2018). The raw data have been previously submitted to dbGaP (accession 967 

phs001823.v1.p1). For CCLE, the RNA-seq data was downloaded from the broad institute portal 968 

at https://portals.broadinstitute.org/ccle/data (version 2016-06-17) 969 

 970 

Global expression data 971 

We also generate a new Global SCLC dataset using all combined cell lines, averaging gene 972 

expression based on z-scored gene expression from all resources: NCI SCLC, CCLE, CTRP, 973 

GDSC and UTSW. For each experiment, genes were scaled across all cell lines to create a z-score 974 

normalized dataset. The data sources have a mixture of microarray and RNA-seq gene expression. 975 

To test for removal of batch effects by gene scaling (z-score normalization), principal component 976 

analysis (Partek Genomics suite v7.17.1222) was performed on the raw (Fig.S3A) and normalized 977 

data (Fig.S3B) for CCLE microarray and RNA-seq datasets. 978 

 979 

Pathway level correlation of expression and DNA methylation 980 

The correlation between methylation and gene expression for multiple functional categories was 981 

calculated based on genes in Supplementary Table S4. For each category, the median correlation 982 

of the related genes was calculated to identify potential categories of interest. 983 

 984 

Predictive power of DNA copy number and methylation on transcript expression. 985 

Testing the predictive power of DNA copy number and methylation on transcript expression was 986 

performed with linear regression analysis (as seen in Fig3G). For each of the 15,798 genes with all 987 

three forms of data available (transcript, methylation, and copy number levels) a linear regression 988 

model was fit, with both copy number and methylation as independent variables and transcript 989 

expression as the dependent variable. The model provided coefficients for the copy number and 990 

methylation that gave the lowest squared error between fitted values and true expression. We 991 

separated individual contributions of these two factors for gene expression prediction using the 992 

method of relative importance (Gromping, 2006), using the lmg method (Bacher, 1983) from the 993 

R package relaimpo to compute individual R2 values. Total (or combined) R2 is the summation of 994 

these two. Square roots of the R2 values were multiplied by the sign of the coefficients of the factors 995 

in the combined model to get the value of R. 996 

 997 

Cluster analysis 998 

The methylation heatmap was created with the ComplexHeatmap (Gu et al., 2016) R package 999 

(version 1.20.0) using the kmeans clustering available in the Heatmap() function of the package. 1000 

The number of reported clusters was selected based on cluster stability and biological significance. 1001 

 1002 

SCLC cell lines groupings according NEUROD1, ASCL1, POU2F3 and YAP1 expression, MYC 1003 

genes expression and neuroendocrine status defined by the Gazdar classification (Zhang et al., 1004 

2018) were done using the CIMminer tool from CellMiner 1005 

(https://discover.nci.nih.gov/cimminer/oneMatrix.do). The used parameters were Euclidean 1006 

distance method and complete linkage as cluster algorithm.  1007 
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 1008 

SCLC and NSCLC cell line grouping was performed with the gene expression data from the GDSC 1009 

microarray dataset using the t-SNE algorithm in R (v3.5.1). The random seed was set to 1, the 1010 

Euclidean distance of genes was calculated with the dist() function with default settings. The t-1011 

SNE grouping was calculated using the Rtsne() function from the Rtsne (van der Maaten, 2014) 1012 

package (v0.15) using the calculated distance matrix, with perplexity set to 10, and 5k maximum 1013 

iterations. 1014 

 1015 

The NCI SCLC drug activity heatmap was generated using Partek Software. First, drugs with 1016 

coefficient of variation less or equal to 0.09 were filtered out. Then the remaining data for the 1017 

selected 134 drugs (from originally 527) across the 66 SCLC lines were clustered using the 1018 

hierarchical method based on Euclidean distance and complete linkage. 1019 

 1020 

Gene set enrichment analysis 1021 

A preranked gene set enrichment analysis was run in R using the clusterProfiler (Yu et al., 2012) 1022 

and ReactomePA (Yu and He, 2016) packages. Pathways with an adjusted p-value below 0.05 were 1023 

considered as significantly enriched. Single sample gene set enrichment score (APM score) was 1024 

computed using the R package GSVA (version 1.28.0). 1025 

 1026 

Statistical methods. 1027 

Correlations, heatmaps, and histograms were generated mostly using The R Project for Statistical 1028 

Computing. Some plots and analysis (such as the Kruskal Willis test) were generated using Partek 1029 

Genomics suite v7.17.1222 (https://www.partek.com/partek-genomics-suite/) or using SCLC 1030 

CellMinerCDB and CellMinerCDB (http://discover.nci.nih.gov/cellminercdb). 1031 

Wilcoxon rank-sum tests were used to test the difference between continuous variables such as 1032 

drug sensitivity and gene expression according NAPY classification. We considered changes 1033 

significant if p-values were below 0.05. In the figures, p-values below 0.00005 were summarized 1034 

with four asterisks, p-values below 0.0005 were summarized with three asterisks, p-values below 1035 

0.005 were summarized with two asterisks and p-values below 0.05 were summarized with one 1036 

asterisk.  1037 

 1038 

Data availability 1039 

All newely generated datasets have been deposited to the Gene Expression Omnibus (GEO, 1040 

https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE145156.  1041 

 1042 

Data for reviewers 1043 

Data can be accessed at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145156 using 1044 

the reviewer token “wnyxcukabfgnhet”.  1045 
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