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ABSTRACT 5 

Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing 6 

within a niche, wherein many species contain genetic mechanisms of interspecies competition. Recent 7 

computational work suggests that physical structures in the environment can stabilize competition 8 

between species that would otherwise be subject to competitive exclusion under isotropic conditions. 9 

Here we employ Lotka-Volterra models to show that physical structure stabilizes large competitive 10 

ecological networks, even with significant differences in the strength of competitive interactions between 11 

species. We show that for stable communities the length-scale of physical structure inversely correlates 12 

with the width of the distribution of competitive fitness, such that physical environments with finer 13 

structure can sustain a broader spectrum of interspecific competition. These results highlight the generic 14 

stabilizing effects of physical structure on microbial communities and lay groundwork for engineering 15 

structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility. 16 

 17 

AUTHOR SUMMARY 18 

Natural environments often have many species competing for the same resources and frequently one 19 

species will out-compete others.  This poses the fundamental question of how a diverse array of species 20 

can coexist in a resource limited environment. Among other mechanisms, previous studies examined how 21 

interactions between species – like cooperation or predation – could lead to stable biodiversity. In this 22 

work we looked at this question from a different angle:  we used computational models to examine the 23 

role that the environment itself might play in stabilizing competing species. We modeled how species 24 

arrange themselves in space when the environment contains objects that alter the interfaces along which 25 

competing species meet.  We found that these ‘structured’ environments stabilize species coexistence, 26 

across a range of density of those objects and in a way that was robust to differing strengths of 27 

interspecies competition. Thus, in addition to biological factors, our work presents a generic mechanism 28 

by which the environment itself can influence ecological outcomes and biodiversity.  29 
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INTRODUCTION 30 

Natural environments from scales of microbes1–4 to large ecosystems5–8 are replete with communities 31 

whose constituent species stably coexist at similar trophic levels, despite apparent competition for space 32 

and resources. Generically, in spatially limited ecosystems species grow until resources and/or 33 

interactions with other species (e.g. competition or predation) limit their populations, notably not 34 

necessarily at a constant level through time9–11.  In some cases12, the same set of species may exhibit 35 

qualitatively distinct relationships in a way that depends on available resources, with corresponding 36 

maintenance or loss of diversity. Species diversity and ecosystem stability have a complicated 37 

relationship13,14, and qualitatively different theories have been developed to explain variations in species 38 

diversity and abundance in resource-limited natural environments15,16.  At one extreme, the principle of 39 

competitive exclusion asserts that if more than one species is competing within a niche, variations in 40 

species reproduction rates resulting from adaptation to the niche will necessarily lead one species to 41 

dominate within that niche to the exclusion of all other species, potentially driving inferior competitors 42 

into other niches17–21. Thus, competition for resources within a niche would push ecosystems toward 43 

lower species diversity22. At the other extreme are so-called ‘neutral theories’ which offer the null-44 

hypothesis that organisms coexisting at similar trophic levels are – per capita – reproducing, consuming, 45 

and migrating at similar rates, and hence maintenance of biodiversity is tantamount to a high-dimensional 46 

random-walk through abundance space23–25. Such models often require connections to an external meta-47 

community to maintain long-term stability26, lest random fluctuations will eventually drive finite systems 48 

toward lower diversity27,28. Many other mechanisms (which we cannot do justice to here) have also been 49 

proposed for maintenance of diversity in competitive ecosystems, including by not limited to: stochasticity 50 

and priority effects29,30; environmental variability31; models that encode specific relationships between 51 

species to maintain diversity32 (including the classic rock-paper-scissors spatial game11, cross-feeding33–37, 52 

metabolic trade-offs38–40, or cross-protection41); varied interaction models42; higher-order interactions – 53 

beyond pairwise – that stabilize diversity43–46; and systems where evolution and ecological competition 54 

happen simultaneously47,48. We do not take issue with any of these models / mechanisms, indeed, all of 55 

them are likely relevant and useful within certain contexts. Rather, this work uses computational modeling 56 

to argue that physical structure within an environment is a generic and robust mechanism for maintaining 57 

biodiversity in competitive ecosystems, across differences in competitive parameters, length-scales of 58 

physical structure, and for an arbitrary number of distinct species given lower-bound requirements on 59 

available space.  60 
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Microbial ecosystems present a particularly attractive test-bed for these ecological ideas.  From a practical 61 

point of view, they are small and fast growing, relatively easy to genetically manipulate, and can be grown 62 

in controlled and customizable synthetic environments35,49–52, such as microfluidics53,54. Conceptually, 63 

characterizing the forces and principles that establish and maintain microbial biodiversity is of significant 64 

interest in health-relevant settings like the human gut55–57 and in the myriad contexts where soil 65 

microbiota impact natural or agricultural ecosystems1,58. These contexts motivate the model herein 66 

discussed, which can be conceptualized as a multi-species microbial ecosystem adherent to reasonable 67 

simplifications that make computations tractable. We used a spatial Lotka-Volterra model and assumed 68 

that all pairwise interspecies interactions were competitive. We focused on the role that physical 69 

structure of the environment plays in long-term dynamics of such ecosystems.  Within the context of this 70 

model, our results were clear – steric structures distributed throughout the environment foster 71 

biodiversity in a way that depends less on the specific arrangement of those structures and more on the 72 

length scale of separation between the structures59.  This structural stabilization was robust even when 73 

the ecosystem contained significant asymmetries in the competitive interactions between species, and 74 

the degree of stabilization positively correlated with decreasing structural scale.  Finally, we provide 75 

evidence that the stabilizing effects of steric structure extend to an arbitrary number of species in 76 

competition with each other, as long as there is enough space. 77 

 78 

Results 79 

Competition and Structural Model 80 

We modeled interspecies interactions using the canonical spatial Lotka-Volterra (LV) framework, with 81 

simplifying assumptions motivated by attributes of microbial ecosystems. For all species, we assumed that 82 

the carrying capacity per unit area of the environment is the same, that the basal growth rate r is the 83 

same, and that their migration can be described by random walks with the same diffusion coefficient D. 84 

Using those assumptions, the system of partial differential equations (PDEs) that describe an N-species LV 85 

model can be non-dimensionalized and, without loss of generality, written as 86 

𝜕𝑆𝑖

𝜕𝑡
= ∇2𝑆𝑖 + 𝑆𝑖 (1 − ∑ 𝑆𝑘(1 + (1 − 𝛿𝑖𝑘)/𝑃𝑖𝑘)

𝑁

𝑘=1
). 87 

Each focal species Si has a local concentration from zero to one in units of the carrying capacity, time is 88 

measured in units of inverse growth rate r-1 and the natural length scale 𝜆 = √𝐷/𝑟 is proportional to the 89 
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root mean squared distance an organism will move over a single doubling time. Self-interactions and 90 

simple competition for space are accounted for by the constrained carrying capacity and the 91 

corresponding sum over Sk, and thus the diagonal elements 𝑃𝑖𝑖  are removed by the Kronecker delta, 𝛿𝑖𝑘.  92 

Pairwise interactions between species are described by the off-diagonal matrix elements 𝑃𝑖𝑘 which are 93 

the concentrations of species Sk above which Sk actively reduces the concentration of Si. Neglecting 94 

intrinsic permutation symmetries, there are 𝑁(𝑁 − 1) pairwise interaction parameters for each in silico 95 

ecosystem, which can be thought of as a directed graph whose edges connect each pair of species. We 96 

focused on the class of ecological graphs that correspond to all species in competition with all other 97 

species, termed ‘all-to-all’ (ATA) competition, which corresponds to all off-diagonal elements 𝑃𝑖𝑘 > 0. This 98 

work uses computationally tractable values of 𝑁 to support general claims about the dynamics of ATA 99 

ecosystems in structured environments, albeit such computations do not constitute a rigorous proof.   100 

This model is appropriate for describing diffusively-mediated locally competitive interactions; examples 101 

of such ecosystems include situations where multiple species compete for the same pool of resources and 102 

actively reduce competitor abundances through (e.g.) Type VI secretion system mediated killing60,61, 103 

secretion of toxins 62,63 or antibiotic antagonism64,65. Analysis of bacterial genomes indicates that (at least) 104 

a quarter of all sequenced species contain loci encoding for mechanisms of active competition toward 105 

other species66 (though not necessarily for the purposes of consuming them as prey). Additional PDEs 106 

would be required to describe highly motile cells, chemotaxis in exogenous chemical gradients, or the 107 

production, potency, transport and decay of rapidly diffusing secreted toxins. This system of PDEs (which 108 

is not new67,68) represents a baseline set of assumptions and corresponding phenomena from which to 109 

build more complex models69 of structured population dynamics. 110 

The 𝑂(𝑁2) dimensional parameter space is too large to exhaustively sample for large 𝑁, and thus we 111 

employed statistical sampling techniques.  We sampled a uniform random distribution of values for the 112 

off-diagonal elements 𝑃𝑖𝑘 whose mean was 〈𝑃〉 = 0.25 and whose width was specified by the parameter 113 

∆𝑃. The value 〈𝑃〉 = 0.25 indicates that on average when the local concentration of a given species 114 

reaches one-quarter of the carrying capacity, active reduction of neighboring competitors will occur.  For 115 

each value of ∆𝑃 and structural parameters, we performed 30 to 50 simulations each with a unique 116 

random sampling of the interaction parameters 𝑃𝑖𝑘. All simulations had initial conditions in which every 117 

grid position had a low (0.2%) probability of being populated by any one of the available species, such that 118 

each species could grow and claim territory before competing. The data herein presented uses an 8-119 

species system (56 interaction parameters), though in the last section we examine larger values of 𝑁. 120 
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Our in silico environments were square 2D planes with steric pillars distributed in the simulation space.  121 

Both the pillars and the bounding box were modeled with reflecting boundary conditions, thus, like a grain 122 

in soil or tissue in a gut, these pillars do not allow free transport through them, nor microbes to occupy 123 

them. Interspecies boundaries within the simulation area are primarily impacted by steric spacing70, and 124 

thus for simplicity the radii of the pillars were held fixed at R = 3 in dimensionless units for all simulations.  125 

We varied the mean distance between steric objects relative to pillar radius (Δx/R), which we refer to as 126 

the ‘structural scale’, and we varied the degree of disorder in the arrangement of those steric objects. 127 

Disorder was introduced by translating each pillar in a random direction by an amount drawn from a 128 

uniform random distribution whose width is reported relative to the structural scale. Thus, disorder is 129 

characterized by a continuous dimensionless variable δ, which when equal to zero means the pillars are 130 

arranged in an ordered triangular lattice, and as δ increases the pillars approach a random arrangement 131 

in the simulation space (including the possibility of overlap) (see SI Fig. 1).  132 

Finally, it is worth noting limitations and simplifications inherent in this modeling framework. These 133 

systems of PDEs are deterministic, that is, with the same interaction parameters, simulation size and initial 134 

conditions they produce the exact same dynamics. Stochasticity enters our simulation framework through 135 

the random initial conditions, disorder, and random samplings of the interaction parameters.  A number 136 

of excellent studies have examined low-𝑁 systems using fully stochastic dynamics71–75, revealing 137 

quantitative differences between deterministic and stochastic models, as well as qualitative differences 138 

over long time scales where stochastic fluctuations can drive a system into new parts of phase space, for 139 

example, into extinction cascades76,77 or mobility-dependent biodiversity71,73,78. Details of our 140 

computational setup are discussed in the Methods section and all of our code is available upon request.  141 

 142 

Environmental structure stabilizes all-to-all competition 143 

We compared the spatial population dynamics of an 8-species system with and without the inclusion of 144 

spatial structure. In both cases, each species engaged in active (population reducing) competition with 145 

every other species, for a total of 56 pairwise interactions each characterized by the value of an off-146 

diagonal matrix element.  In Fig. 1 we show the simplest version of this comparison, where the strength 147 

of the competitive interaction is equal between all pairs of species (i.e. all off-diagonal elements have the 148 

same value, ∆𝑃 = 0). When a system lacks steric structure, and hence is spatially isotropic, a single 149 

dominant competitor will emerge to the exclusion of all other species79 (Fig. 1 A/B). Spatial population 150 
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dynamics are determined by an interplay between the curvature of the interface between any two species 151 

and the relative values of the competition parameters for the species that meet at that interface70. If 152 

competition at a particular two-species interface is balanced (i.e. Pik = Pki) then interfacial curvature is the 153 

only determinant of interface movement; straight interfaces do not translate and curved interfaces 154 

translate in the direction that straightens them.  However, if the interaction at a two-species interface is 155 

unbalanced (i.e. Pik ≠ Pki) then there is a critical interface curvature below which the stronger competitor 156 

will invade the space of a weaker competitor, ultimately to the exclusion of the weaker competitor. 157 

Excepting literal edge cases, wherein boundaries between species contact multiple parallel edges of the 158 

simulation space, the dominance of a single competitor in isotropic space is robust to changes in the size 159 

of the simulation space, the number of species and the values of interaction parameters, given enough 160 

time. 161 

In contrast, the inclusion of physical structure leads to long term, stable representation of multiple (and 162 

often all) species across a range of structural scales and interaction parameters. In Fig. 1 C/D we show the 163 

evolution of balanced competitive interactions between 8 species with the same initial conditions and 164 

interaction parameters as Fig. 1 A/B, but in the presence of a triangular lattice of steric pillars. In this 165 

system, the abundances of all 8 species rapidly equilibrated leading to stable coexistence. In this stable 166 

state, each species established spatial domains whose boundaries were primarily composed of two-167 

species interfaces governed by the same rules of interfacial curvature and competitive parameters 168 

discussed above (Fig. 1Di).  The steric pillars also stabilized a number of distinct ‘junctions’ between 169 

species, including free three-way junctions in open space (Fig. 1Dii), three-way junctions centered on a 170 

pillar (Fig. 1Diii), and four-way junctions centered on a pillar (Fig. 1Div). Isotropic systems can transiently 171 

support two-species interfaces and free three-way junctions (Fig. 1A), but the three- and four-way 172 

junctions centered on a pillar can only exist in systems with steric objects. Junctions centered on pillars 173 

can support more than four species if pillars are large in comparison to the length scale (thickness) of the 174 

interface, though these did not occur in our simulations with random initial conditions – we only observed 175 

these higher-species junctions under contrived conditions (see SI Fig.2).  176 

 177 

Stabilization is robust to fluctuations in structure and competition asymmetries 178 

Next we held the degree of structural disorder fixed at zero (δ = 0) and explored how changes in the 179 

structural scale affected the number of stably coexisting species. Along one dimension, we held 〈𝑃〉 =180 
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0.25 and varied the interaction parameter ∆𝑃 subject to the constraint that ∆𝑃/2 < 〈𝑃〉, which ensured 181 

that all in silico ecosystems remained in the ATA graph class. Along a second parametric dimension, we 182 

varied the structural scale while holding pillar radii fixed. In Fig. 2 we measured the mean number of 183 

species at equilibrium as a function of both the width of the interaction-parameter distribution and the 184 

structural scale, with 30 replicates per parameter set for a total ~11,000 simulations. Consistent with 185 

previous work on two-species systems70, the average number of surviving species declined sharply both 186 

as competition asymmetry increased (i.e. as ∆𝑃/〈𝑃〉 increased) and as the structural scale increased. 187 

Conversely, systems with smaller structural scales and/or smaller competitive asymmetries robustly 188 

retained all eight species in the long-time limit. The structural scale sets the maximum interface curvature 189 

that can exist in an ordered environment, and hence limits the values of ∆𝑃/〈𝑃〉 for which all species can 190 

survive, that relationship is given by 191 

(
∆𝑥

𝑅
)

crit
= 2

𝜆

𝑅
√1 + (

〈𝑃〉

Δ𝑃
)

2

 192 

derived by setting the maximum geometric curvature equal to the curvature due to competitive 193 

asymmetry (see SI of 70). This relationship approximates the boundary between the regime of stable 194 

coexistence of all species and reduced species coexistence, as shown overlaid on Fig. 2. 195 

While these results are supportive of the stabilizing effect of steric structure on long-term species 196 

coexistence, rarely do natural environments contain highly ordered (δ = 0) steric structures, thus we 197 

explored how disorder affects species abundance at a fixed structural scale. First, we simulated the 198 

simpler case where all eight species had balanced competitive interactions (like Fig. 1) and examined the 199 

population dynamics in the presence of disordered steric structures (δ = 1). Like the ordered case, 200 

disordered systems with balanced competitive interactions displayed stable representation of all eight 201 

species (Fig. 3A).  We then compared the probability distribution for the number of coexisting species at 202 

equilibrium across four conditions (1,000 simulations for each):  with and without competitive asymmetry, 203 

and with and without structural disorder, as shown in Fig. 3B.  When ∆𝑃/〈𝑃〉 = 0 the number of species 204 

remained at the maximum value across all 1,000 simulations whether or not the steric structures were 205 

disordered. When competitive asymmetry was introduced the probability distribution for the number of 206 

stably coexisting species expanded across all possible values (1 to 8) and peaked between 6 and 7 species, 207 

regardless of whether the system was ordered or disordered. Those distributions were quantitatively 208 

similar, indicating that disorder was not a strong determinant of stable species coexistence.   209 
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We examined the survival probability distributions and applied the simplest possible rule that emerges 210 

from the statistical ensemble of initial conditions, competitive asymmetries, and disorder. For a given set 211 

of conditions we assumed that there is some probability 𝛼 that a species randomly selected from the full 212 

ensemble will survive in the long-term. This corresponds to a binomial distribution whose normalization 213 

is modified to account for the fact that there is no chance that all N species will die 214 

𝑝𝑛(𝑁, 𝛼) =
𝑁! 𝛼𝑛(1 − 𝛼)𝑁−𝑛

𝑛! (𝑁 − 𝑛)! (1 − (1 − 𝛼)𝑁)
 215 

where N is the maximum (initial) number of species and 𝑝𝑛 is the probability of 1 ≤ 𝑛 ≤ 𝑁 species 216 

coexisting at equilibrium. We used maximum-likelihood estimation to fit this model to the survival 217 

distributions and thus determined the value 0 < 𝛼 < 1 that corresponds to the ensemble average 218 

probability that any single species survives in equilibrium given the number of species 𝑁, simulation size 219 

L, structural parameters ∆𝑥 and R, the disorder δ, and sampling parameters 〈𝑃〉 and ∆𝑃; the exact 220 

functional dependence between those parameters and 𝛼 is not yet clear. This model captures the bulk of 221 

the survival distributions and mis-estimates the occurrence of rare events compared to the raw data. The 222 

fit values demonstrate that smaller systems and systems with higher competitive asymmetries both have 223 

lower per-capita survival probabilities (𝛼). For instance, examining systems with higher competitive 224 

asymmetry, we found that larger systems (L = 150) with or without disorder had quantitatively similar 225 

survival probabilities –  𝛼 = 0.746−0.010
+0.009 and 𝛼 = 0.767−0.009

+0.009 respectively – whereas under the same 226 

conditions a smaller system (L = 75) had survival probabilities of  𝛼 = 0.600−0.011
+0.011 and 𝛼 = 0.626−0.011

+0.011, 227 

respectively (See SI Fig. 3). 228 

We used those same 4,000 simulations to assess the variability in the amount of area that each species 229 

occupied at equilibrium divided by the total simulation area, giving a dimensionless quantity bounded 230 

between 0 and 1 that characterizes variability in species abundance. For each set of parameters, we 231 

measured the standard deviation in abundance across all species and all replicates to generate a 232 

probability distribution for the degree of variation – values closer to zero indicate that all species have 233 

roughly the same abundance. In the case of balanced competitive interactions, the probability 234 

distributions for abundance variations were nearly identical for the ordered and disordered systems, and 235 

the mean value of the variation was low (~0.05), meaning that if competitive interactions are balanced all 236 

species are have roughly the same abundance.  However, introducing moderate competitive asymmetry 237 

meant that some species intrude into the territory of other species, leading both to lower species diversity 238 

and to larger variations in species abundance. As such, we report the distribution of abundance variations 239 
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for all simulations that had equilibrium species numbers of S = 6, 7 and 8 (Fig. 3 C).  Again, disorder had 240 

little effect on those probability distributions. Systems that experienced extinctions of zero (S = 8), one (S 241 

= 7) or two (S = 6) species had a higher mean variation (by a factor of 3 to 5) and wider distribution of 242 

variations as compared to balanced competition. Additionally, we performed a wider sampling of the 243 

degree of disorder and the competitive asymmetry, and found that the average number of stably surviving 244 

species showed little dependence on the degree of structural disorder (Fig. 3D). When we correlated the 245 

mean number of surviving species as a function of the competitive asymmetry across all values of , the 246 

average correlation coefficient was 0.97 (see SI Fig. 4), meaning that the relationship between average 247 

number of surviving species and competitive asymmetry showed little dependence on disorder in the 248 

range 0 ≤ 𝛿 ≤ 1.  249 

As a final characterization of spatial structure, we examined the density with which interspecies 250 

boundaries connect steric objects.  Ignoring edge cases, every steric object has a set of Voronoi nearest 251 

neighbors, typically 5 to 7 in disordered systems and exactly 6 in a triangular lattice (see SI Fig. 5). Across 252 

our simulations, the vast majority (~ 98%) of all interspecies boundaries connected pillars that were 253 

Voronoi nearest neighbors, which is expected given geometric constraints. The number of those 254 

connections per unit area relative to the total number of possible Voronoi connections per unit area is a 255 

dimensionless measure of the amount of competition in a physically structured system – below we refer 256 

to this as the ‘connection density’, whose values lie between 0 and 1. When examined through that lens, 257 

disorder, at least for balanced interactions, had a significant effect on the distribution of connection 258 

densities across the ensemble of simulations, with ordered systems exhibiting higher connection densities 259 

(see SI Fig. 5). However, when examined under moderate levels of competitive asymmetry connection 260 

density significantly decreased (consistent with abundance variation increasing) and the difference 261 

between ordered and disordered systems again became small. These data suggest that structured systems 262 

with higher levels of competitive asymmetry, somewhat counterintuitively, have lower levels of 263 

competition as measured by the density of competitive interfaces in the system, because boundaries 264 

between mismatched competitors are less stable.  265 

 266 

Structure stabilizes larger numbers of species with system-size dependence 267 

All of the simulations discussed up to this point were performed within the same size grid L = 150 (with 268 

the exception of SI Fig. 3, L  = 75). Under any set of parametric conditions, the absolute minimum domain 269 
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size for a given species is set by the area of a triangle formed by three pillars that are all mutual Voronoi 270 

neighbors (so-called ‘Delaunay triangles’80), thus any system that is not large enough to contain domains 271 

of at least that size for each of 𝑁 unique species cannot support all 𝑁 species – this establishes a minimum 272 

system size for a particular number of species that scales as 𝑁(Δ𝑥)2. However, disordered systems have 273 

an additional system-size dependence – all else being equal, as the system size grows the probability 274 

distribution for the equilibrium number of species (e.g. Fig. 3B) shifts toward the maximum number of 275 

species (i.e. 𝛼 → 1). The mechanism behind this shift is that as the system increases in size, there are more 276 

opportunities for disordered steric objects to create a zone in which a weaker competitor is enclosed by 277 

an effectively smaller structural scale. We confirmed this by measuring the system size-independent 278 

distribution of local structural scale (SI Fig. 6). In an ordered system, the distribution of local structural 279 

scale is a delta-function centered on the lattice constant. As disorder increased we found that Voronoi 280 

zones emerged whose maximum convex edge-length was smaller than the lattice constant, meaning these 281 

were zones in which a species that would be too weak to compete in an ordered system, could potentially 282 

survive. The average number of these zones per unit area is scale-independent, thus increasing system 283 

size linearly increases the average number of those zones, and thus the per-capita survival probability α 284 

increases (e.g. compare Figs. 3B and SI Fig. 3), as does the survival probability of weaker competitors. 285 

Finally, in an ordered system we explored the effects of system size and competitive asymmetry as a 286 

function of the initial number of species, across the range 2 ≤ 𝑁 ≤ 12.  First, we measured the ensemble 287 

survival probability (𝛼) as a function of both competitive asymmetry and the initial number of species, 288 

with 50 replicates for each parameter set (Fig. 4A).  For low competitive asymmetry across all values of 𝑁, 289 

the ensemble survival probability was approximately 1, meaning all species survived, and hence the initial 290 

and final species numbers were equal. However, similar to Fig. 2, as competitive asymmetry increased 291 

species loss increased (𝛼 decreased), and the decrease in 𝛼 was more dramatic the larger the initial 292 

number of species. One potential mechanism behind this species-number dependent change in 𝛼 is that 293 

larger values of N offer a wider sampling of the matrix elements Pik, and thus increase the likelihood that 294 

a single competitor dominates over many other weaker species and/or that ‘ultra weak’ competitors 295 

emerge.  296 

Another potential link between species-number and decreasing 𝛼 was system-size. To test this, we ran 297 

simulations across the same range of species number at the highest value of competitive asymmetry for 298 

two different system sizes (L = 100 and L = 200).  For both system sizes, survival probability dropped as 299 

species number increased (Fig. 4B), but the smaller system experienced a significantly faster drop in 300 
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survival probability with species number.  This indicates that decreasing system size accounts for part, but 301 

not all, of the decrease in survival probability. We also examined the role of disorder in this context; 302 

consistent with our previous results disorder had a relatively minor effect as determined by 95% 303 

confidence intervals of MLE for the values of 𝛼 (see SI Fig. 7 for confidence intervals).  Together, these 304 

results add support to the finding that disorder at a fixed structural scale is not a strong determinant of 305 

stable biodiversity, but that system size and the number of initially competing species each modulate 306 

survival probability and hence equilibrium biodiversity. 307 

 308 

DISCUSSION 309 

In this work we used simulations to provide evidence that – within a range of structural scales and 310 

competitive parameters – the class of ecological graphs encompassed by all-to-all (ATA) competition is 311 

stable in structured environments. Other well-known ecological ‘games’, such as rock-paper-scissors (RPS) 312 

and its higher species-number analogs73,81, also reside within the ATA graph class. That is, values in the 313 

matrix P that produce stable intransitive (e.g. RPS) oscillations adhere to the same conditions as the ATA 314 

class, but are subject to additional constraints on their relative values. The RPS sub-class distinguishes 315 

itself by exhibiting two important features. First, unlike non-oscillatory systems that lie within ATA, 316 

oscillatory systems with spatial isotropy can exhibit stable representation of all species43,71,82, albeit with 317 

each species in constant spatial flux. Second, our previous work showed that in a symmetric game of RPS70, 318 

structure could have a destabilizing effect that ultimately led to extinction cascades ending with a single 319 

dominant species. Thus, while the vast majority of parameter combinations for Pik likely yield systems that 320 

are stabilized by structure, RPS graphs present the possibility of being destabilized by structure. Given 321 

that virtually all natural environments present structural anisotropy, destabilization of RPS networks due 322 

to structure may contribute to answering why RPS networks are only rarely observed outside of the 323 

lab21,83–85.   324 

Similarly, systems in which species cooperate or have competitive alliances – neither of which lie within 325 

the ATA graph class – can, by virtue of the specific localization of each species, be stabilized by structure. 326 

For instance, consider the simplest, non-ATA graph for which this can be true:  A and B compete, B and C 327 

compete, and A predates C (see SI Fig. 8A). If in a structured environment species C is stably and spatially 328 

isolated from A by the arrangement of B, then all three species will stably coexist due to the effects of 329 

physical structure, even though an interspecies boundary between A and C is unstable regardless of 330 
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structural parameters. The idea that specific spatial arrangements of species can be stable in a structured 331 

environment extends to other non-ATA graphs (e.g. SI Fig. 8B), and is consistent with established findings 332 

that spatially structured communities maintain biodiversity by localizing interactions among community 333 

members86–88. This also suggests the possibility that physical structure and positioning of species play a 334 

role in shaping their ecological and evolutionary relationships. Thus assessing the interplay between 335 

physical structure, graph structure, and ecological dynamics is a rich area of inquiry, one in which structure 336 

may play a qualitatively important role. 337 

For simplicity and ease-of-display we explored 2D systems in this work, however many natural systems 338 

are three dimensional. This work does not allow us to directly comment on what will happen in 3D 339 

systems, however: (i) graph structure and its attendant parameters as encoded by the interaction matrix 340 

are independent of dimensionality, (ii) the relationship between interface curvature and competitive 341 

asymmetry that underlies many of the results herein described have a natural extension into three 342 

dimensions, where the mean curvature of the 2D interspecies boundary in 3D space plays the analogous 343 

role as 1D curvature of a line interface in 2D space, and (iii) the measures herein described (e.g. 344 

dimensionless disorder, structural scale, connection density, survival probabilities, etc.) have natural 345 

extensions into 3D, meaning that direct comparisons can be made between 2D and 3D systems.  Similarly, 346 

there are illuminating comparisons to be made with other physical and biological systems, in particular 347 

the pinning phenomena that here slow or halt genetic coarsening play important roles in domain-wall 348 

stabilization in Ising-like systems due to pinning at random spatial impurities89, pinning-induced 349 

transitions of super-cooled liquids into glassy states90, arrest of lipid-bilayer domain coarsening in the 350 

presence of biopolymers that impose structure on the bilayer91, and have been shown to impact 351 

genotype-specific range expansion92. Likewise, other physical mechanisms, such as flow93, have been 352 

found to slow or halt coarsening in phase-separating systems, and still other work focuses on flow94,95 or 353 

chemical gradients96 in structuring communities. Thus structure is one of multitude physical mechanisms 354 

shaping communities in complex environments. 355 

Finally, even within this 2D reductionist framework we wonder how robust are pinned competition 356 

interfaces to: (i) stochastic spatial fluctuations caused either by finite organism size or other forms of 357 

motility (besides diffusion), (ii) tunable interaction strengths, such as with competition sensing 97,98, or (iii) 358 

phenotypic differentiation 99? Whether the details of interactions matter69 or not100, the stabilizing effect 359 

of structure is fundamentally related to how interspecies boundaries – which appear in many extensions 360 

of the LV model – interact with the boundary conditions imposed by structure, and hence we anticipate 361 
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that qualitatively, these results extend to a wider class of boundary-forming models (e.g. incorporating 362 

Allee effects70). Ultimately, an understanding of the interplay between ecological relationships, 363 

environmental structure, and other physical factors (like flow or chemical gradients) paves the way toward 364 

rational design of structured environments that tune the range of competitive asymmetries and/or 365 

stochastic fluctuations that an environment can stably support, and shift system dynamics and stability to 366 

favor particular species or interaction topologies.  367 

 368 

METHODS 369 

In the 2D simulation space, each species was seeded by randomly choosing 0.2% of all valid pixels in the 370 

simulation box and setting the concentration of that species to 1/𝑁 of the carrying capacity, where 𝑁 is 371 

the number of species being simulated; each species was represented by its own field matrix.  Steric pillars 372 

were placed with the specified radius R, spacing Δx, and degree of disorder 𝛿 within a simulation box 373 

whose side lengths were L. All reported length measures (R, L, Δx) are in units of 1.29𝜆, with the 374 

computational pixel scale set so that 1.29√𝐷 = 1.29 𝜆 = 5. Microbial density that coincided with pillar 375 

locations was removed from the simulation. The bounding box and pillar edges were modeled as reflecting 376 

boundary conditions. At each simulated time step (Δt = 0.01t, with t in inverse growth rate), populations 377 

diffused via a symmetric and conservative Gaussian convolution filter with standard deviation set by the 378 

diffusion coefficient, 𝜎 = √4𝐷∆𝑡.  After the diffusion step, changes in population density (growth and 379 

death) were calculated using the equations given in the main text, and used to update the density of each 380 

species matrix according to a forward Euler scheme. In combination with the small dimensionless time-381 

step and concentration-conserving convolution filter, hard upper and lower bounds (1 and 0 in units of 382 

carrying capacity, respectively) were enforced on each species field to ensure numerical stability of 383 

simulations; populations densities outside this range were set to 1 and 0, respectively.  We monitored a 384 

subset of the simulations and found that simulations were sufficiently stable that those hard limits were 385 

never encountered. For each set of structural scale (Δx/R) and competitive asymmetry (Pik) values, 30 to 386 

50 independently initialized replicates were simulated for 5000 doubling times or until equilibrium was 387 

reached, as defined by spatially averaged change in all species matrices falling below 0.001 between time 388 

steps. Mean population abundances of the simulation were recorded at an interval of 100 Δt for the 389 

duration of the simulation. Extinction was defined as the mean population density of any species dropping 390 

below a threshold value of ((2𝑅)2 − 𝜋𝑅2)/4𝐴, where R is the pillar radius and A the area of lattice points 391 

not obstructed by pillars. This non-zero threshold accounts for surviving populations ‘trapped’ between a 392 
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pillar and the corner of the simulation box and therefore not in contact with the rest of the simulation; 393 

this threshold value lies well below the minimum set by the local Delaunay triangulation.   394 

To create a controlled level of pillar-position disorder, each pillar center was displaced from a triangular 395 

lattice in a random direction by an amount drawn from a uniform random distribution whose width is 396 

characterized by the dimensionless parameter defined as 𝛿 = 2𝑤/(Δ𝑥 − 𝑅), where 𝑤 is the width of the 397 

uniform distribution. The competition parameters between all species were generated by choosing the 398 

mean strength of competition 〈𝑃〉 and then sampling a uniform random distribution of width ΔP about 399 

that mean for each directed interaction (i.e. the interaction matrix is not symmetric), subject to the 400 

constraint that Δ𝑃/2 < 〈𝑃〉, which ensures that all random samplings remain in the ATA graph class. 401 

Model Fitting 402 

Fitting to the modified binomial distribution was performed using maximum-likelihood estimation with 403 

all 1,000 simulations for each set of conditions; reported uncertainties for α are 95% confidence intervals. 404 

Data availability 405 

Code files to run simulations and analyses are available as supplemental files that can be downloaded on 406 

the publisher website. Raw simulation output is available upon request. 407 
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415 
Figure 1:  Steric structures stabilize an in silico multi-species ecosystem. Shown here are two 8-species 416 

in silico ecosystems in which all species are actively competing with all other species and the competition 417 

parameters are equal for all pairwise interactions. (A & B) Simulation of competition in an isotropic 418 

environment. If initial species representation is statistically equal, each species has equal probability of 419 

dominating the environment in the long-time limit. However, in any single simulation the dynamics of 420 

interspecies boundaries lead to a single dominant competitor in the long-time limit. (C & D) When species 421 

compete in an environment with ordered steric structures (𝑅 = 3, Δ𝑥/𝑅 = 3.5, and 𝛿 = 0), interspecies 422 

boundaries that are mobile under isotropic conditions quickly ‘pin’ between steric objects and arrest the 423 

genetic-phase coarsening that leads to a single dominant competitor, thereby robustly producing stable 424 

representation of all species. Steric structures also permit situations where 3 or more species form a 425 

‘junction’ around a steric object (Diii and Div). In both simulations 𝐿 = 150, 〈𝑃〉 = 0.25, and Δ𝑃 = 0.  426 
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 427 

Figure 2:  The number of species an environment can stably support depends on the degree of 428 

competition asymmetry and the structural scale. Simulations were performed across a range of 429 

competitive asymmetries characterized by the dimensionless parameter Δ𝑃/〈𝑃〉 and across a range of 430 

structural scales characterized by the dimensionless parameter Δ𝑥/𝑅. Each pixel corresponds to the mean 431 

of 30 simulations each with a unique random sampling of initial conditions (as described in Methods), a 432 

unique random sampling of the interaction matrix elements using Δ𝑃 and 〈𝑃〉, and a fixed structural scale. 433 

Structural scale and competitive asymmetry were both potent modulators of species coexistence, with 434 

smaller structural scale and lower competitive asymmetries leading to stable representation of all species 435 

(yellow region).  The black dashed line is a zero-fit parameter model relating the competitive asymmetry 436 

to the maximum curvature possible for a given structural scale, showing that relatively simple geometric 437 

considerations capture the onset of species loss. In all simulations 𝐿 = 150, 〈𝑃〉 = 0.25, 𝑅 = 3, and 𝛿 =438 

0.  439 
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 440 

Figure 3:  Species coexistence is robust in the presence of structural disorder. (A) Similar to Fig. 1C, these 441 

panes show the time evolution of an 8-species system where steric pillars were randomly perturbed from 442 

a perfect triangular lattice (𝛿 = 1).  From random initial conditions the system rapidly equilibrated to a 443 

stable configuration that supported all 8 species. (B) Simulations were performed to measure the 444 

probability distribution for the number of surviving species under four conditions (1,000 each): high and 445 

low competitive asymmetry and high and low structural disorder. The structural scale was held fixed. 446 

Without competitive asymmetry all species survived in all simulations, with or without disorder 447 

(red/green dot).  With high competitive asymmetry, the probability distributions spread across all possible 448 

numbers of species with relatively little distinction between ordered and disordered systems (colored X’s). 449 

Those distributions were well-described by a modified binomial distribution (solid lines) with an ensemble 450 

average single-species survival probability of 𝛼 ~ 0.75.  The distributions exhibit larger variation where 451 

there are less data (i.e. lower probabilities, from one to three surviving species).  (C) For each simulation, 452 

the normalized standard deviation (NSD) in equilibrium abundances was measured, and those values are 453 

shown here as a histogram for each of the four conditions. In the absence of competitive asymmetry 454 

(green, red), the mean NSD was low (~0.05 on maximum scale of 1).  When competitive asymmetry was 455 

high, we examined the NSD for all simulations that had 6, 7, or 8 surviving species (cyan, purple). All of 456 

those distributions were significantly wider and had significantly higher mean NSD’s, meaning that 457 

competitive asymmetry increases the variation in species abundance at equilibrium, regardless of how 458 

many species stably coexist. (D) We compared the average number of surviving species across a range of 459 

competitive asymmetry and disorder (0 ≤ 𝛿 ≤ 1).  Those distributions showed little variation with 460 

disorder and, as a function of competitive asymmetry, had a mean pairwise correlation of 0.97 (see SI Fig. 461 

4).  Thus our data suggest that structural scale has a stronger effect than disorder (at least over this range). 462 

In all simulations 𝐿 = 150, 〈𝑃〉 = 0.25, and 𝑅 = 3.  463 
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 464 

Figure 4:  Structure stabilizes larger numbers of species, but increasing competitive asymmetry 465 

increases species loss.  (A) Holding the structural scale fixed with no disorder, we measured the survival 466 

probability as a function of the initial number of species, between 2 and 12, across multiple values of 467 

competitive asymmetry. For lower values of competitive asymmetries, the final and initial numbers of 468 

species were essentially equal (𝛼 ~ 1). Higher levels of competitive asymmetry resulted in increasing 469 

degrees of species loss as the number of species increased.  This amplification of species loss is related, at 470 

least in part, to the same interplay between structural scale and maximum interface curvature that caused 471 

species loss in Fig. 2. (B) Comparing identical conditions between two different system sizes (𝐿 = 100 472 

and 𝐿 = 200), the effects of disorder are relatively small in comparison to the effects system size, with 473 

smaller system sizes (blue lines) showing a significant amplification of reduction in survival probability as 474 

compared to the larger system. In all simulations 〈𝑃〉 = 0.25 and 𝑅 = 3.  475 
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Supplementary Information:   476 

Competitive ecosystems are robustly stabilized by structured environments 477 

Tristan Ursell, Department of Physics, University of Oregon 478 

 479 

 480 

SI Figure 1.  The pairwise distance distribution as a function of the disorder parameter δ.  The distribution 481 

of separations between any two steric pillars does not depend on the size of the space in which those 482 

objects exist, assuming that the density of those objects is held fixed. For a perfect triangular lattice (δ = 483 

0), that distribution is a series of delta-functions (purple dots). Adding structural disorder (δ > 0) makes 484 

the distributions continuous, with increasing degrees of disorder ultimately approaching the distribution 485 

expected for randomly placed objects at a fixed density (black line).  As δ increases, the arrangement of 486 

steric pillars transitions smoothly from a triangular lattice to a random arrangement – in this work, we 487 

explored 0 ≤ 𝛿 ≤ 1.  488 
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 489 

SI Figure 2. Here a simulation is contrived via initial conditions to have 12 species stably coexist, each 490 

making contact with the same steric object (gray circle in the center).  The outer edge is also circular which 491 

permits stable coexistence of multiple species in a single open space. This figure demonstrates that, for a 492 

sufficiently large steric object as compared to the width of the interspecies transition zone, any number 493 

of species can ‘share’ a boundary with an object.  However, in an environment with many steric objects 494 

in proximity, the local Voronoi neighborhood limits the maximum number of species that can exist around 495 

an object, usually to 3 or 4.  496 
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 497 

SI Figure 3.  The type and format of data herein presented are the same as in Fig. 3B – the only difference 498 

is that here the simulation box is half the linear size (1/4 the area). Simulations were performed to 499 

measure the probability distribution for the number of surviving species under four conditions (1,000 500 

each): high and low competitive asymmetry and high and low structural disorder. The structural scale was 501 

held fixed. We used a maximum likelihood estimator (MLE) to measure the ensemble average survival 502 

probability (α) under those four conditions. Without competitive asymmetry (red and green X’s), the 503 

number of surviving species was heavily weighted toward the maximum possible number (8).  With high 504 

competitive asymmetry, the probability distributions spread across all possible numbers of species with 505 

relatively little distinction between ordered and disordered systems (cyan and purple X’s).  In all instances, 506 

the corresponding MLE fits are shown as solid lines. These results support the hypothesis that, regardless 507 

of structural scale, smaller environments hinder long-term species coexistence. In all simulations 𝐿 = 75, 508 

〈𝑃〉 = 0.25, and ∆𝑥/𝑅 = 3.5.  509 
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 510 

SI Figure 4.  To determine the impact of steric disorder on the mean number of surviving species, 511 

independent of the effect of competitive asymmetry, we correlated each row of Fig. 3D with every other 512 

row of the same figure (55 unique correlations). All of those correlations were greater than 0.928, and the 513 

mean of all of those correlations was 0.969, meaning that over a range of steric disorder the relationship 514 

between mean number of surviving species and competitive asymmetry was quantitatively similar.  515 
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 516 

SI Figure 5.   Using the same 4,000 simulations from Fig. 3, we examined the density of interspecies 517 

boundaries under those four conditions. (A) A sample image of 8 competing species in a disordered steric 518 

environment. Species establish spatial domains (solid colors) with dark boundaries between those 519 

domains where active competition takes places.  (B) Across all simulations (though here for the same 520 

image as A), custom image analysis software examined the positions of each pillar (white) and the 521 

corresponding Voronoi tessellation (magenta tessellation) that indicates which pillars are Voronoi nearest 522 

neighbors. Image analysis algorithms segmented the interspecies boundaries between pillars and 523 

classified them according to how many pillars a boundary connected (blue = 2, green = 3, orange = 4).  524 

Approximately 2% of all connections were not Voronoi nearest neighbors (data not shown), and thus these 525 

connections were not used in this analysis. Boundaries that made contact with the edge of the simulation 526 

(gray) were not used in this analysis. (C)  For each set of conditions, here shown as four colors (same colors 527 

as in Fig. 3B), we calculated the number of connections made by boundaries between Voronoi nearest 528 

neighbors as compared to the maximum possible number of boundaries (boundaries between all Voronoi 529 

nearest neighbors). While there is a notable difference between ordered and disordered connection 530 

density when competition is balanced (red and green), the salient difference is between balanced (red / 531 

green) and asymmetric (cyan / purple) competition. Systems with asymmetric competition have 532 

significantly fewer connections between objects, consistent with their higher abundance variability, and 533 

thus there is effectively less competition (i.e. fewer interfaces) in asymmetric systems.   534 
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 535 

SI Figure 6. Local statistics of Voronoi tessellation as a function of the structural disorder. (left) 536 

Distributions of distances between Voronoi nearest neighbors. In a perfect triangular lattice this 537 

distribution is a delta-function (black dashed line). As disorder increases the distribution of nearest 538 

neighbor distances spreads out and a significant fraction of neighbors are found closer together than in a 539 

triangular lattice of the same overall density. The vast majority of interspecies boundaries are between 540 

Voronoi nearest neighbors. Thus widening of the distribution impacts whether a particular interspecies 541 

boundary is stable, because the maximum curvature and hence maximum competitive asymmetry that is 542 

stable at a boundary is set by the distance between the objects that the boundary connects. The inset 543 

shows an example of a Voronoi neighborhood and the local distances being measured (dark blue lines). 544 

(right) We examined hypothetical domains defined by the convex polygon around a steric object (see 545 

inset) – this defines a consistent region inside of which a competitor could stably exist (many other 546 

polygons could also be drawn). Across a large number of such polygon domains, we measured the 547 

distribution of longest edge lengths as a function of structural disorder. If the longest edge is less than the 548 

triangular lattice constant with the same overall density, then this domain is guaranteed to be more stable 549 

to competitive asymmetry than the corresponding ordered polygon. As disorder increases, the fraction of 550 

all such polygons that meet this more stringent stability condition increases, supporting the hypothesis 551 

that disorder should have a stabilizing effect when competition is asymmetric, contingent on there being 552 

a sufficiently large area and hence sufficient opportunities for such domains to exist.   553 
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 554 

SI Figure 7. Same exact data as shown in Fig. 4B in the text, separated by value of 𝛿 and shown with 95% 555 

confidence intervals (dashed lines) determined by maximum-likelihood estimation. Variations caused by 556 

differences in 𝛿 are not significant, but variations caused by system-size differences are significant.  557 
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 558 

SI Figure 8. Spatial arrangements of species that support stability in non-all-to-all graphs. (A) The simplest 559 

example of a non-ATA graph (top) for which species abundances are stable in a structured environment – 560 

a single matrix element (arrow from C to A) breaks the ATA condition. The schematic (bottom) shows an 561 

arrangement of species that is stable, even though an interspecies boundary between A and C is not stable 562 

in any structured environment; this is the only arrangement that can stably support all three species for 563 

the graph shown. (B) A second, more complex example where four species can be arranged to yield stable 564 

abundances of all species, regardless of the interaction between species A and C (no connection shown). 565 

This graph admits three arrangements that allow A and C to coexist regardless of their interaction.  566 
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