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Abstract 

A long standing hypothesis is that divergence between humans and chimpanzees might have 

been driven more by regulatory level adaptions than by protein sequence adaptations. This has 

especially been suggested for regulatory adaptions in the evolution of the human brain. There 

is some support for this hypothesis, but it has been limited by the lack of a reliable and powerful 

way to detect positive selection on regulatory sequences. We present a new method to detect 

positive selection on transcription factor binding sites, based on measuring predicted affinity 

change with a machine learning model of binding. Unlike other methods, this requires neither 

defining a priori neutral sites, nor detecting accelerated evolution, thus removing major sources 

of bias. The method is validated in flies, mice, and primates, by a McDonald-Kreitman-like 

measure of polymorphism vs. divergence, by experimental binding site gains and losses, and 

by changes in expression levels. We scanned the signals of positive selection for CTCF binding 

sites in 29 human and 11 mouse tissues or cell types. We found that human brain related cell 

types have the highest proportion of positive selection. This is consistent with the importance 

of adaptive evolution on gene regulation in the evolution of the human brain. 
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Introduction 
 

It has long been suggested that changes in gene regulation have played an important role in 

human evolution, and especially in the evolution of the human brain and behavior (King and 

Wilson 1975; Anon 2005). Many human and chimpanzee divergent traits (Varki and Altheide 

2005) cannot be explained by protein sequence adaptations. For example, there is little 

evidence to link protein sequence adaptations to traits related to cognitive abilities (Franchini 

and Pollard 2015). Conversely there is some evidence of brain-specific gene expression 

divergence in humans (Enard et al. 2002), which is consistent with a role of regulatory 

evolution. Yet a central question remains open: which regulatory changes were adaptive, if any? 

A major limitation in answering this is the lack of a robust model of neutral vs. adaptive 

evolution for regulatory elements.  

 
One approach to detect adaptive evolution on regulatory elements is to detect noncoding 

regions with lineage-specific accelerated evolutionary rates (Pollard et al. 2006; Prabhakar et 

al. 2006; Gittelman et al. 2015). For example, Gittelman et al. (2015) found human 

accelerated regions close to genes annotated to terms such as brain or neuron development. A 

major caveat is that such acceleration may result from neutral mechanisms such as biased gene 

conversion (Galtier and Duret 2007) rather than from selection. A second approach is to use a 

MK test framework (McDonald and Kreitman 1991; Ludwig and Kreitman 1995; Andolfatto 

2005; Arbiza et al. 2013; Gronau et al. 2013). This approach has two limitations. First, an 

expected neutral divergence to polymorphism ratio needs to be defined, whereas defining 

neutral sites for regulatory elements is difficult and can bias results (Zhen and Andolfatto 2012). 

And second it lacks power on individual elements, since many regulatory elements are short 

and present very few variable sites (Andolfatto 2005). 

 
We have developed a new method to detect adaptive evolution of transcription factor binding 

sites (TFBSs), based on predicted binding affinity changes. As a proof-of-principle, we first 

applied this method to well-known transcription factors, such as CEBPA and CTCF, in species 

triples focused on human, mouse, or fly. We validated it with three independent lines of 

evidence: our evidence of positive selection is associated to higher empirical binding affinity, 

higher substitution to polymorphism ratio in sequence, and lower variance in expression of 

neighbouring genes. Then, we used this method to detect positive selection of CTCF binding 

sites in 29 human tissues or cell types. We found the highest positive selection in brain samples, 
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followed by male reproductive system. The same analysis in mouse found the highest positive 

selection in the lung, with no special signal in the brain. Thus, we provide clear evidence for 

adaptive evolution of gene regulation in the human brain.  

 
Results  

Detecting positive selection on transcription factor biding sites  

We propose a computational model to detect positive selection on transcription factor binding 

sites (TFBSs), or any other elements for which we have experimental evidence similar to ChIP-

seq (Figure 1, and Methods). Briefly, a gapped k-mer support vector machine (gkm-SVM) 

classifier is trained on ChIP-seq peaks (here, TFBSs). This allows to compute SVM weights of 

all possible 10-mers, which are predictions of their contribution to transcription factor binding 

affinity (Lee et al. 2015). We can then predict the binding affinity impact of substitutions by 

calculating deltaSVM, the difference of sum weights between two homologous sequences. We 

compare each empirical TFBS to an ancestral sequence inferred from alignment with a sister 

species and an outgroup. 

 
Figure 1: Illustration of the procedure for inferring positive selection 

The method includes two parts. Part I (left) is the gapped k-mer support vector machine (gkm-

SVM) model training. The gkm-SVM classifier was trained by using TFBSs as a positive 

training set and randomly sampled sequences from the genome as a negative training set. Then, 

SVM weights of all possible 10-mers, the contributions of prediction transcription factor 

binding affinity, were generated from the gkm-SVM. Part II (right) part is the positive selection 

TFBSs Random	sequences

gkm-SVM	training	(10-mer)	

All	unique	10-mers SVM	weights
ATCGATCGAT

ATCCATCGAT

ATCGATGGAT

ATCGTTCGAT

ATGGATCGAT

3.12
2.80

0.01

-1.88

-2.81

-0.02

ATCGATCGAT

I.	Train	gkm-SVM	classifier

C.	10’000	times	random in	
silico		mutagenesis

deltaSVM

D.	Calculate	p-value	of	deltaSVM

Species	A	10-mers		Ancestor	10-mers		
B.	Calculate	deltaSVM

ATACATACATATCA

ATACATACACATCA

ATAGATAAAGATCA

Species	C

Species	B

Species	A

ATACATACAGATCA

A.		Infer	ancestor	sequence	

II.	Infer positive	selection for	one	TFBS

ATACATACAG:			0.72
TACATACAGA:			1.32
ACATACAGAT:		-0.31
CATACAGATC:			2.13
ATACAGATCA:			1.71

SUM:			5.57		

ATAGATAAAG:				1.73
TAGATAAAGA:				2.32
AGATAAAGAT:				0.22
GATAAAGATC:				3.11
ATAAAGATCA:				1.61

SUM:				8.99

deltaSVM=8.99-5.57=3.42

Ancestor	sequence		

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.03.09.984047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.984047
http://creativecommons.org/licenses/by/4.0/


 5 

inference. The ancestor sequence was inferred from sequence alignment with a sister species 

(species B) and an outgroup (species C). Then, the binding affinity change (deltaSVM) of the 

two substitutions accumulated in the red branch leading to species A were calculated based on 

the weight list. The significance of the observed deltaSVM was evaluated by comparing it with 

a null distribution of deltaSVM, constructed by scoring the same number of random 

substitutions 10000 times. 

 

Adaptive evolution on TFBSs is expected to push them from a sub-optimal towards an optimal 

binding strength, or from an old optimum to a new one (e.g. in response to changing 

environment). Thus TFBSs evolving adaptively are expected to accumulate substitutions which 

consistently change the phenotype to stronger or to weaker binding, whereas TFBSs evolving 

under purifying selection are expected to accumulate substitutions which increase or diminish 

binding in approximately equal measure, around a constant optimum. This reasoning follows 

the principle of a sign test of phenotypes (Coyne 1996; Orr 1998), although it uses the actual 

values and not just the sign. In practice, this should lead to a large absolute value of deltaSVM 

under adaptive selection. We estimate by randomization a p-value specific to each individual 

TFBS and to its number of substitutions (see Methods). Thus, our method can infer the action 

of natural selection pushing a TFBS to a new fitness peak of either higher (positive deltaSVM) 

or lower (negative deltaSVM) binding affinity than its ancestral state. 

 

Detecting positive selection on liver TFBSs in Mus musculus  

We first applied our method to a large set of TFBSs in the liver of three mouse species (Mus 

musculus domesticus C57BL/6J, Mus musculus castaneus CAST/EiJ, and Mus spretus 

SPRET/EiJ), identified by ChIP-seq for three liver-specific transcription factors, CEBPA, 

FOXA1, and HNF4A (Stefflova et al. 2013). We inferred positive selection on the lineage 

leading to C57BL/6J after divergence from CAST/EiJ (Figure 2A). For the sake of simplicity, 

we only present the results of CEBPA in the main text; results are consistent for FOXA1 and 

HNF4A (Supplementary materials). We first trained a gkm-SVM on 41945 CEBPA binding 

sites in C57BL/6J (see Methods). The gkm-SVM very accurately separates CEBPA binding 

sites and random sequences (Figure 2B). Based on the experimental ChIP-seq peaks in the 

three species, using SPRET/EiJ as an outgroup, we identified three categories of CEBPA 

binding sites: conserved in all three species ("conserved", 24280 sites), lineage specific gain in 

C57BL/6J ("gain", 6304 sites), and lineage specific loss in C57BL/6J ("loss", 6692 sites). 
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Based on whole genome pairwise alignments of C57BL/6J to CAST/EiJ and to SPRET/EiJ, 

we derived the substitutions accumulated on the C57BL/6J lineage for each CEBPA binding 

site (see Methods). We only kept binding sites with at least two substitutions, leading to 5114, 

1445, and 1497 TFBSs for conserved, gain, and loss categories respectively. For each binding 

site, we calculated a deltaSVM value, and inferred its significance by random in silico 

mutagenesis (see Methods).  

 
Figure 2: Mouse CEBPA biding sites study 

A. Topological illustration of the phylogenetic relationships between the three mouse 

species used to detect positive selection on CEBPA binding sites. We want to detect 

positive selection which occurred on the lineage of C57BL/6J after divergence from 

CAST/EiJ, as indicated by the red branch. SPRET/EiJ is the outgroup used to infer 

binding site sequence in the ancestor of C57BL/6J and CAST/EiJ.  
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B. Receiver operating characteristic (ROC) curve for gkm-SVM classification performance 

on CEBPA binding sites (5-fold cross validation). The AUC value represents the area 

under the ROC curve and provides an overall measure of predictive power.  

C. The left hand graphs are the distributions of deltaSVM for conserved, gain, and loss 

binding sites. The right hand graphs are the distributions of deltaSVM p-values (test for 

positive selection) for conserved, gain, and loss binding sites. 

D. The proportion of CEBPA binding sites with evidence of positive selection in conserved, 

gain, and loss binding sites. 

E-G. Comparison of biding intensity between positive sites and non-positive sites for mouse 

CEBPA. The number of binding sites in each category is indicated below each box. The p-

values from a Wilcoxon test comparing categories are reported above boxes. The lower and 

upper intervals indicated by the dashed lines (“whiskers”) represent 1.5 times the interquartile 

range, or the maximum (respectively minimum) if no points are beyond 1.5 IQR (default 

behavior of the R function boxplot). Positive sites are binding sites with evidence of positive 

selection (deltaSVM p-value < 0.01), non-positive sites are binding sites without evidence 

of positive selection. 

E. Conserved binding sites.  

F. Lineage specific gain binding sites. 

G. Lineage specific loss binding sites. We compare the binding intensity from CAST/EiJ, as 

an approximation for ancestral binding intensity, between positive loss binding sites and 

non-positive loss binding sites. 

 

We plot the distributions of deltaSVMs and of their corresponding p-values for each binding 

site evolutionary category (Figure 2C). As expected, the distribution of deltaSVMs is 

symmetric for conserved, has a skew towards positive deltaSVMs for gain, and a skew towards 

negative deltaSVMs for loss. These results confirm that the gkm-SVM based approach can 

accurately predict the effect of substitutions on transcription factor binding affinity change. For 

the distribution of p-values, in all binding site categories, there is a skew of p-values near zero, 

indicating some signal of positive selection. Gain has the most skewed distribution of p-values 

towards zero. Hereafter we will use 0.01 as a significant threshold to define positive selection, 

but results are robust to different thresholds (see Validation based on ChIP-seq binding 

intensity). This identifies almost 20% of gain having evolved under positive selection (Figure 

2D), relative to 4% of loss, and 2% of conserved. Random substitutions tend to decrease the 
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binding affinity rather than increase it (Figure S1), because it's easier to break a function than 

to improve it. Thus our method could be biased towards reporting as positive sites with more 

left shifted null distributions. However, this is not the case (Figure S2).  

 

In summary, we found widespread positive selection driving the gain of CEBPA binding sites. 

We also found some evidence of positive selection driving loss, or increase of binding affinity 

in some conserved sites. For the other two transcription factors (FOXA1 and HNF4A), we 

found very consistent patterns (Figure S3, S4).  

 

Validation based on ChIP-seq binding intensity 

We expect that conserved or gained sites which evolved under positive selection with positive 

deltaSVM should have increased binding affinity. Thus the positive binding sites (PBSs) 

should have higher biding affinity than non-positive selection binding sites (non-PBSs) in the 

focal species C57BL/6J. This is indeed the case (Figure 2E and 2F). In addition, conserved 

TFBSs have higher activity than recently evolved ones ('gain'). For loss, however, the PBSs 

have a strong decrease in binding affinity, so we expect higher binding affinity of PBSs in the 

ancestor. Using CAST/EiJ as an approximation for ancestor binding affinity, this is indeed the 

case (Figure 2G). Results are also consistent with different p-value thresholds (Figure S5).  We 

performed the same validations in FOXA1 and HNF4A, with consistent results (Figure S6).  

 

Validating the inference of positive selection with human liver TFBSs 

To further validate our method, we took advantage of the abundant population genomics 

transcriptomics data in humans. We inferred positive selection of CEBPA binding sites in the 

human lineage after divergence from chimpanzee, with gorilla as outgroup (Figure 3A). As in 

mouse, the gkm-SVM trained from 15806 CEBPA binding sites in human can very accurately 

separate TFBSs and random sequences (Figure 3B). The distribution of deltaSVMs is slightly 

asymmetric, with a higher proportion of positive values (Figure 3C). This is because these 

binding sites contain both conserved and gain, but no loss (since we detect only in the focal 

species). Based on the distribution of p-values, 7.5% of CEBPA binding sites are predicted to 

have evolved adaptively in the human lineage.  
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Figure 3: Human CEBPA biding sites study 

A. Topological illustration of the phylogenetic relationships between human, chimpanzee 

and gorilla. We detected positive selection which occurred on the lineage of human after 

divergence from chimpanzee, as indicated by the red branch. Gorilla is the outgroup 

used to infer binding site sequence in the ancestor of human and chimpanzee.  

B. Receiver operating characteristic (ROC) curve for gkm-SVM classification performance 

on CEBPA binding sites (5-fold cross validation). The AUC value represents the area 

under the ROC curve and provides an overall measure of predictive power.  

C. The left graph is the distribution of deltaSVM. The right graph is the distribution of 

deltaSVM p-values (test for positive selection). 

D. The ratio between the number of substitutions and the number of polymorphisms (SNPs) 

for CEBPA binding sites. Positive sites are binding sites with evidence of positive 

selection (deltaSVM p-value < 0.01), non-positive sites are binding sites without 

evidence of positive selection. The p-value from Fisher's exact test is reported above the 

bars. 

E. Comparison of expression variance (adjusted variance) of putative target genes (closest 

gene to a TFBS) between positive sites and non-positive sites. The number of binding sites 

in each category is indicated below each box. The p-values from a Wilcoxon test comparing 

categories are reported above boxes. The lower and upper intervals indicated by the 

# 
Su

bs
tit

ut
io

ns
 / 

# 
po

ly
m

or
ph

is
m

s
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
1.

2
1.

4

Pos
itiv

e s
ite

s

Non
−p

os
itiv

e s
ite

s

n=393 n=4810

 p= 0.0291

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●●●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●●●
●●

●
●

●

●
●●

●●

●●
●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●●

●●

●

●●

●

●●
●

●

●

●

●●●

●●●

●

●
●●●

●●

●

●

●

●

●

●●●

●●

●●●●●●

●●●

●

●

●●

●●

●●

●

●●●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●●●

●

●

●

●

●●●

●●

●

●●●

●●

●

●

●

●
●

●

●●

●●

●

●●●

●●

●●

●●

●

●

●

●

●

●●●●●

●●●

●

●

●●

●●

●

●

●

●

●●●

●●●

●

●

●●●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●

0.
0

0.
5

1.
0

1.
5

2.
0

Ex
pr

es
si

on
 v

ar
ia

nc
e 

ac
ro

ss
 p

op
ul

at
io

ns

Pos
itiv

e s
ite

s

Non
−p

os
itiv

e s
ite

s
n=280 n=4884

p= 4.14e−06

deltaSVM

Fr
eq

ue
nc

y

−30 −20 −10 0 10 20 30

0
20

0
40

0
60

0
80

0

Pvalue

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
30

0
50

0

0.0 0.2 0.4 0.8 1.0

0.
0

0.
2

 
0.

6
0.

8
1.

0

(AUC = 0.986)

!"#$

% "#$

&'()*

+,-(.)*/00

123-44)

Tr
ue

 p
os

itiv
e 

ra
te

0.
4

False positive rate

0.6 

CEBPA binding sites

CEBPA binding sites

CEBPA binding sites

CEBPA binding sites

A
B

C

D

E

Homo sapiens

Pan troglodytes

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●
●
●●●

●

●●●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●●

●

●

●●

●●

●

●

●

●

●

●●●

●●●●●

●
●

●●

●

●●

●

●●●●●
●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●●●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●●

●

●●●

●

●●

●

●

●

0
5

10
15

20

Human CEBPA TFBS

Ad
ju

st
ed

 v
ar

ia
nc

e

Pos
itiv

e s
ite

s

Non
−p

os
itiv

e s
ite

s

n=143 n=3081

p= 0.0151

CEBPA binding sitesE

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.03.09.984047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.984047
http://creativecommons.org/licenses/by/4.0/


 10 

dashed lines (“whiskers”) represent 1.5 times the interquartile range, or the maximum 

(respectively minimum) if no points are beyond 1.5 IQR (default behavior of the R function 

boxplot). Positive sites are binding sites with evidence of positive selection (deltaSVM 

p-value < 0.01), non-positive sites are binding sites without evidence of positive 

selection. 

 

Using the MK framework (McDonald and Kreitman 1991), we predict that PBSs should have 

higher substitutions to polymorphisms ratios than non-PBSs. Note that we do not need to define 

neutral sites a priori. As expected, we found that the PBSs have a significantly higher ratio of 

fixed nucleotide changes between human and chimpanzee to polymorphic sites in human than 

non PBSs (Figure 3D). This is an external validation that our method detects positive selection, 

as the input did not contain any information about polymorphism. 

 

Besides a higher substitutions to polymorphisms ratio, we also expect that the expression of 

PBSs putative target genes (see Methods) should be more conserved among human populations. 

If the expression of PBSs target genes is an adaptive trait in humans, further changes in 

expression will reduce fitness. Moreover, recent adaptive sweeps are expected to have reduced 

variability for the regulation of these genes. As expected, we found that PBSs target genes have 

significantly lower expression variance (adjusted variance, controlling for the dependency 

between mean and variance, see Methods) across human populations than non-PBSs target 

genes (Figure 3E).  

 

Thus, results from different sources of information support the expectations of our PBSs 

predictions. We performed the same analyses in HNF4A, and results are consistent (Figure S7). 

These results strongly suggest that our method is detecting real adaptive evolution signals.  

 

Detecting positive selection of TFBSs in Drosophila melanogaster 

By using a MK test framework (McDonald and Kreitman 1991), Ni et al. (2012) detected 

signatures of adaptive evolution on CTCF binding sites in D. melanogaster. They reported that 

positive selection has shaped CTCF binding evolution, and that newly gained binding sites 

show a stronger signal of positive selection than conserved sites. We applied our method to the 

same data as used in Ni et al. (2012). We detected positive selection in the D. melanogaster 

lineage after divergence from D. simulans (Figure S8A and S8B). Consistent with the findings 
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of Ni et al. (2012), we observed widespread positive selection for both conserved and gain 

(Figure S8C). In addition, the gain has a higher proportion of positive selection than conserved 

(Figure S8D). As Ni et al. (2012) did not report specific sites, we cannot compare results more 

precisely. For lineage specific loss binding sites, however, we did not detect any signal of 

positive selection (Figure S8C). Interestingly, the proportion of positive selection in D. 

melanogaster is much higher than in Mus musculus. For example, we find almost 40% of gain 

under positive selection in D. melanogaster, twice the proportion in Mus musculus. It should 

be noted that different transcription factors and tissues were used, which complicates direct 

comparison. 

 

Adaptive evolution of CTCF binding sites across tissues in human 

To test whether there is stronger adaptive evolution of gene regulation in some human tissues, 

we applied our method to 80074 CTCF binding sites across 29 adult tissues or primary cell 

types (hereafter "cell types"; see Table S2). We chose CTCF because it was the factor with the 

largest number of tissues or primary cell types studied in a consistent manner, by the ENCODE 

consortium (The ENCODE Project Consortium 2012; Davis et al. 2018). CTCF is well known 

as a transcriptional repressor, but it also involved in transcriptional insulation and chromatin 

architecture remodeling (Phillips and Corces 2009). The gkm-SVM model trained from one 

cell type can accurately predict the biding sites in another cell type, and the model trained with 

all CTCF binding sites has better performance than the model trained with cell type specific 

binding sites (Figure S9). Thus we used a general gkm-SVM rather than different models for 

different cell types. 
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Figure 4: Proportion of positive CTCF binding sites in different tissues or cell types. 

Positive binding sites are binding sites with evidence of positive selection (deltaSVM p-

value < 0.01). Colors correspond to broad anatomical systems. 

A. CTCF binding sites in 29 human tissues or cell types. 

B. CTCF binding sites in 11 mouse tissues.  
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We detected 3.52% of positive binding sites (PBSs) for adaptation on the human lineage 

(Figure S10A). We found that PBSs have higher substitutions to polymorphisms ratio than 

non-PBSs (Figure S11). In addition, PBSs are associated with a lower number of active cell 

types (Figure S12A) than non-PBSs, consistent with the prediction that pleiotropy can limit 

adaptive evolution (Wagner and Zhang 2011). We ranked cell types according to the 

proportion of binding sites that exhibit statistically significant evidence of positive selection. 

Brain related cell types have a higher proportion of positive selection than other cell types 

(Figure 4A). This pattern is consistent if we only use tissue specific CTCF binding sites 

(Figure S13A). Choroid plexus epithelial cell, brain microvascular endothelial cell, and 

retinal pigment epithelial cell have notably high PBSs frequencies. Non brain related 

nervous system cell types do not share this high positive selection. Nor does in vitro 

differentiated neural cell, which may reflect that they do not preserve the signal of specific 

in vivo differentiated cells. Notably, these brain related cell types also have a higher fraction 

of substitutions fixed by positive selection (see Methods) than other cell types, except lower 

leg skin (Figure S14).  

 

To check whether our test could be too liberal or conservative for some sites, we first 

analyzed the substitution rate of all possible substitutions and their corresponding affinity 

change (delatSVM) in human CTCF binding sites. We split all substitutions into two 

categories: substitutions on CpG, and substitutions not on CpG. Within each category, we 

found as expected that the transition rate is much higher than the transversion rate, but we 

didn’t find a trend for specific substitution types to strengthen or weaken binding affinity 

(Figure S15A and Figure S16). Between categories, we found that there is generally higher 

substitution rate on CpG, again as expected. Substitutions on CpG tend to weaken binding 

affinity (Figure S15A and Figure S16), indicating that our test could be conservative for sites 

with CpG substitutions. Second, we checked whether neighboring substitutions (dinucleotide 

substitutions) have a general tendency to change affinity in the same direction. Indeed, this is 

the case (Figure S15B), suggesting that our test could be too liberal or too conservative for 

dinucleotide substitutions, depending on the direction of affinity change.  

 

To check whether these biases (substitutions on CpG and dinucleotide substitutions) affect 

the pattern we found, first, we split all CTCF biding sites into two categories: sites with neither 
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CpG substitutions nor dinucleotide substitutions, and sites with either CpG substitutions or 

dinucleotide substitutions. For both categories, the proportion of positive selection binding 

sites (PBSs) detected is highly correlated with the original pattern (Figure S17A and B). In 

addition, as expected, there is a higher proportion of PBSs for sites without substitions on 

CpG, comfirming that our test is conservative for sites with CpG substitutions. Second, we 

both excluded all CpG sequences and dinucleotide substitution sequences from all binding 

sites, and we integrated the transition and transversion rate (4:1, estimated from Figure S15A) 

into our null model. Patterns of results were very robust to these changes (Figure S17C).  

 

To test whether the high regulatory adaptive evolution in brain is general to mammals, we 

performed the same analysis on CTCF binding data from 11 mouse adult tissues (Table S2; 

Figure S18). We investigated adaptive evolution in the M. musculus branch after divergence 

from M. spretus, a similar evolutionary divergence as that between human and chimpanzee 

(Enard et al. 2002). Similarly to human, we detected 3.54% binding sites which evolved under 

positive selection (Figure S10B) and found PBSs associated with a lower number of active cell 

types (Figure S12B). However, no tissue type had especially high adaptive evolution, and brain 

related tissues were among the lowest (Figure 4B). When restricting to tissue specific CTCF 

binding sites, lung has notably high adaptive evolution (Figure S13B). 

 

Discussion 

A robust test for positive selection on regulatory elements 

Detecting positive selection on regulatory sequences has long been a difficult problem (Zhen 

and Andolfatto 2012). Nearby non-coding regions are often used as a neutral reference 

(Andolfatto 2005; Haygood et al. 2007; Arbiza et al. 2013), but such neutrality is difficult to 

establish. Our approach does not require defining a priori neutral sites, but instead considers 

the effects of variation on activity (Berg et al. 2004; Moses 2009; Smith et al. 2013). Moreover, 

positive selection on a background of negative selection might not elevate the evolutionary rate 

above the neutral expectation, yet consistent changes in binding affinity can still be detectable. 

Indeed, the TFBSs of cell types detected under selection do not necessarily evolve faster 

(Figure S19). In principle, our method can also be applied to other genomic regions for which 

experimental peaks are available, such as open chromatin regions or histone modification 

regions. 
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Because positive selection on regulatory sequences is difficult to determine, it is important to 

validate our predictions with independent evidence. The most important validation is that 

predictions made independently of population data verify the expectations of higher 

substitution to polymorphism ratio (Figure 3D). Both this and the lower expression variance of 

neighboring genes (Figure 3E) are consistent with the prediction that positive selection will 

increase divergence but remove polymorphism (McDonald and Kreitman 1991), and that 

recently selected phenotypes will be under stronger purifying selection. Moreover, binding 

affinity change occurs in the direction predicted by our model (Figure 2E-G), and we can verify 

the prediction that pleiotropy limits adaptation (Wagner and Zhang 2011) (Figure S12).  

 

Despite its advantages, our method can still be improved. For example, in the null model of 

sequence evolution, we assume independent mutation patterns at each base-pair site and a 

uniform mutation rate over all sites. But both mutation rate and pattern can depend on 

neighboring nucleotides (Krawczak et al. 1998). These limitations of our null model might 

explain why the observed p-values do not quite follow the expected uniform distribution for 

high values.  

 

The importance of regulatory adaptation on human brain evolution 

Our results support the long proposed importance of adaptive regulatory changes in human 

brain evolution (King and Wilson 1975). They are remarkably consistent with accelerated 

gene expression evolution in the human brain, but neither in human blood or liver, nor in 

rodents, from Enard et al. (2002). Previous studies on human regulatory sequence evolution 

reported acceleration in brain related functions, but could not demonstrate adaptive 

evolution nor direct activity in the brain (Enard et al. 2002; Pollard et al. 2006; Prabhakar et 

al. 2006; Haygood et al. 2007; Gittelman et al. 2015). The reported link between human 

accelerated regions and function was very indirect, depending both on the attribution of a 

region to the closest gene, and on the functional annotation of that gene. 

 

The brain related cell types for which we detect a high proportion of positive selection are 

functionally related with cognitive abilities. For example, for astrocyte, abnormal astrocytic 

signaling can cause synaptic and network imbalances, leading to cognitive impairment 

(Santello et al. 2019). In addition, for choroid plexus epithelial cell, its atrophy has been 

reported to be related with Alzheimer disease (Kaur et al. 2016).  
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While we did not find a similar pattern by applying the same analysis to mouse, it isn't 

possible yet to conclude to a human or primate specific pattern. Indeed, the mouse analyses 

have two potential caveats. First, for the olfactory bulb and cortical plate in the mouse analyses, 

there are no corresponding anatomical structures in the human analyses. It is an open question 

whether the human olfactory bulb and cortical plate also have high adaptation. Second, the 

human analyses were based on ChIP-seq at cell type level but the mouse analyses were based 

on ChIP-seq at tissue level. In mouse, the astrocyte in cerebellum may also have high 

adaptation like the astrocyte in human, but the signal might be diluted by other cell types in 

cerebellum.  

 

Regulatory adaptation differs between tissues  

Outside of brain cell types, we found that male reproduction system (prostate and foreskin) has 

higher adaptive regulatory evolution than female reproduction system (ovary, uterus and 

vagina). This is consistent with the observation of high adaptive sequence evolution in human 

male reproduction (Wyckoff et al. 2000; Nielsen et al. 2005), and probably caused by sexual 

selection related selective pressures, such as sperm competition. However testis has a 

relatively low proportion of adaptive evolution, similar to ovary. This suggests that the high 

expression divergence in testis (Brawand et al. 2011) is mainly caused by relaxed purifying 

selection, maybe due to the role of transcription in testis for 'transcriptional scanning' (Xia et 

al. 2020). Outside of the brain, the top adaptive regulatory evolution systems seem to be the 

same as found for adaptive protein evolution, i.e. male reproduction, immune and endocrine 

systems (Clark et al. 2003; Bustamante et al. 2005; Nielsen et al. 2005; Daub et al. 2017). The 

high fraction of substitutions fixed by positive selection in skin is interesting (Figure S14), 

since skin is both involved in defense against pathogens, and has evolved specifically in the 

human branch with loss of fur (Brettmann and de Guzman Strong 2018). The lack of adaptive 

protein sequence evolution despite high adaptive regulatory evolution might be related to 

selective pressure on proteins in the brain (Drummond and Wilke 2008; Roux et al. 2017). 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 15, 2020. ; https://doi.org/10.1101/2020.03.09.984047doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.984047
http://creativecommons.org/licenses/by/4.0/


 17 

Materials and Methods 

Code and data availability 

Data files and analysis scripts are available on GitHub: 

https://github.com/ljljolinq1010/A-robust-method-for-detecting-positive-selection-on-

regulatory-sequences 

All data analyzed during this study are available from public databases listed under each dataset 

in the relevant Materials and Methods section. 

 

Mutagenesis for positive selection  

1. Training of the gapped k-mer support vector machine (gkm-SVM) 

gkm-SVM is a method for regulatory DNA sequence prediction by using k-mer frequencies 

(Ghandi et al. 2014) . For the gkm-SVM training, we followed the approach of Lee et al. (2015). 

Firstly, we defined a positive training set and its corresponding negative training set. The 

positive training set is ChIP-seq narrow peaks of transcription factors. The negative training 

set is an equal number of sequences which randomly sampled from the genome with matched 

the length, GC content and repeat fraction of the positive training set. This negative training 

set was generated by using “genNullSeqs”, a function of gkm-SVM R package (Ghandi et al. 

2016). Then, we trained a gkm-SVM with default parameters except -l=10 (meaning we use 

10-mer as feature to distinguish positive and negative training sets). The classification 

performance of the trained gkm-SVM was measured by using receiver operating characteristic 

(ROC) curves with fivefold cross-validation. The gkm-SVM training and cross-validation were 

achieved by using the “gkmtrain” function of “LS-GKM : a new gkm-SVM software for large-

scale datasets” (Lee 2016). For details, please check https://github.com/Dongwon-Lee/lsgkm.  

2. Generate SVM weights of all possible 10-mers 

The SVM weights of all possible 10-mers were generated by using the “gkmpredict” function 

of “LS-GKM”. The positive value means increasing binding affinity, the negative value means 

decreasing binding affinity, the value close to 0 means functionally neutral.  

3. Infer ancestor sequence 

The ancestor sequence was inferred from sequence alignment with a sister species and an 

outgroup.  

4. Calculate deltaSVM 

We calculated the sum of weights of all 10-mers for ancestor sequence and focal sequence 

respectively. The deltaSVM is the sum weights of focal sequence minus the sum weights of 
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ancestor sequence. The positive deltaSVM indicating substitutions increased the binding 

affinity in the focal sequence, vice versus.  

5. Generate Empirical Null Distribution of deltaSVM  

Firstly, we counted the number of substitutions between the ancestor sequence and the focal 

sequence. Then, we generated a random pseudo-focal sequence by randomly introducing the 

same number of substitutions to the ancestor sequence. Finally, we calculated the deltaSVM 

between the pseudo-focal sequence and the ancestor sequence. We repeated the above 

processes 10000 times to get 10000 expected deltaSVMs.  

6. Calculate p-value of deltaSVM 

For lineage specific gain TFBSs, the p-value was calculated as the probability that the expected 

deltaSVM is higher than the observed deltaSVM (higher-tail test). For lineage specific lose 

TFBSs, the p-value was calculated as the probability that the expected deltaSVM is lower than 

the observed deltaSVM (lower-tail test). For conserved TFBSs, we primarily focused on 

selection to increase binding affinity, and thus we performed higher-tail test. The motivation 

for this is that when we have ChIP-seq data in only one species, which is the most common 

case, the observed peaks are a mix of conserved and gained sites, and thus very little signal of 

decrease of binding is expected. The p-value can be interpreted as the probability that the 

observed deltaSVM could arise by chance.  

 

Mouse validation analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks and their corresponding intensity (normalized read count) datasets 

of three liver specific transcription factors (CEBPA, FOXA1 and HNF4A) in three mouse 

species (C57BL/6J, CAST/EiJ, SPRET/EiJ) were downloaded from 

https://www.ebi.ac.uk/research/flicek/publications/FOG09 (Stefflova et al. 2013, accessed in 

May, 2018 ). Peaks were called with SWEMBL (http://www.ebi.ac.uk/~swilder/SWEMBL). 

To account for both technical and biological variabilities of peak calling, Stefflova et al. (2013) 

carried out the following approaches. For each transcription factor in each species, they first 

called three sets of peaks: one for each replicate (replicate peek), and one for a pooled dataset 

of both replicates (pooled peak). Then, the peaks detected from the pooled dataset were used 

as a reference to search for overlaps in the two other replicates. When a pooled peak overlapped 

with both replicate peeks (at least one base pair overlap), it was kept for downstream analyses. 

For the number of peaks and average peak length, please check Table S1. 
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2. Peak coordinates transfer 

Based on pairwise genome alignments between C57BL/6J and CAST/EiJ or SPRET/EiJ, 

Stefflova et al. (2013) transferred the coordinates of ChIP-seq peaks in both CAST/EiJ and 

SPRET/EiJ to its corresponding coordinates in C57BL/6J.  

3. Sequence alignment files 

The sequence alignment files between C57BL/6J and CAST/EiJ or SPRET/EiJ were 

downloaded from https://www.ebi.ac.uk/research/flicek/publications/FOG09 (Stefflova et al. 

2013, accessed in May, 2018).  

4. Define different types of binding sites 

1) Conserved binding sites 

The conserved binding sites were defined as peaks in C57BL/6J which have overlapping peaks 

(at least one base pair overlap) in the other two species by genome alignment.  

2) Lineage specific gain binding sites 

The lineage specific gain binding sites defined as peaks in C57BL/6J with no overlapping peaks 

(at least one base pair overlap) in the other two species.  

3) Lineage specific loss binding sites 

The lineage specific loss binding sites defined as peaks in CAST/EiJ which overlapping peaks 

in SPRET/EiJ but not in C57BL/6J.  

 

Human validation analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks datasets of two liver specific transcription factors (CEBPA and 

HNF4A) in human were downloaded from 

https://www.ebi.ac.uk/research/flicek/publications/FOG01 (Schmidt et al. 2010, accessed in 

October, 2018). Peaks were called with SWEMBL (http://www.ebi.ac.uk/~swilder/SWEMBL). 

Negligible variation was observed between the individuals in terms of peak calling, so Schmidt 

et al. (2010) pooled replicates into one dataset for peak calling.  

2. Sequence alignment files 

The pairwise whole genome alignments between human and chimpanzee or gorilla were 

downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in December, 

2018).  

3. Single nucleotide polymorphism (SNP) data 
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Over 36 million SNPs for 1,092 individuals sampled from 14 populations worldwide were 

downloaded from phase I of the 1000 Genomes Project 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase1/analysis_results/integrated_call_sets/ (1000 

Genomes Project Consortium 2012, accesed in December, 2018). As suggested by Luisi et al. 

(2015), we only used SNPs of a subset of 270 individuals from YRI, CEU, and CHB 

populations.  

4. Liver expression data 

The library site normalized expression data of 175 livers was downloaded from downloaded 

from The Genotype Tissue Expression (GTEx) project https://gtexportal.org/home/ (GTEx 

Consortium 2017, Release V7, accessed in December, 2018). We further transformed it with 

log2. 

5. Putative target genes of TFBSs 

We assigned the nearest gene to each TFBS as its putative target gene.  

6. Adjusted variance  

There is a very strong dependency between mean and variance for gene expression (Figure 

S20A). To remove this dependency, as previously proposed (Barroso et al. 2018; Liu et al. 

2019), we calculated the adjusted variance. Specifically, we fitted a polynomial model to 

predict the variance from the mean in the log space. We increased the degrees of the model 

until there was no more significant improvement (tested with ANOVA, p<0.05 as a significant 

improvement). The adjusted variance is the ratio of the observed variance over the variance 

component predicted by the mean expression level. After this adjustment, there is no 

correlation between mean and variance (Figure S20B). 

 

Fly validation analysis  

1. ChIP-seq data 

The narrow ChIP-seq peaks of transcription factor CTCF in three drosophila species (D. 

melanogaster, D. simulans and D. yakuba) were downloaded from 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24449 (Ni et al. 2012, accessed in 

January, 2019). Peaks were called with QuEST(Valouev et al. 2008) at a False Discovery Rate 

(FDR) <1%. We obtained 2182, 2197 and 2993 peaks with average length of 243bp, 240bp 

and 201bp for D. melanogaster, D. simulans and D. yakuba respectively. 

2. Peak coordinates transfer 
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The peaks identified in D. simulans and D. yakuba were translated onto D. melanogaster 

coordinates by using pslMap (Zhu et al. 2007).  

3. Sequence alignment files 

The pairwise whole genome alignments between D. melanogaster and D. simulans or D. 

yakuba were downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in 

January, 2019).  

4. Define different types of binding sites. These were defined as in mouse, using D. 

melanogaster vs. D. simulans and D. yakuba. 

 

Human CTCF analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks of transcription factor CTCF across 29 tissues or cell types (Table 

S2) were downloaded from ENCODE (The ENCODE Project Consortium 2012). We did not 

use ChIP-seq datasets from cell lines, and only kept ChIP-seq datasets from tissues and primary 

cells. Briefly, peaks were called with MACS (Zhang et al. 2008) separately for each replicate. 

Irreproducible Discovery Rate (IDR) analysis was then performed (Li et al. 2011). Final peaks 

are the set of peak calls that pass IDR at a threshold of 2%. Peaks identified in different tissues 

or cell types were integrated by intersecting all peaks across datasets, with at least one base 

pair overlap used as the merge criteria. Overall we obtained 118970 merged peaks.  

2. Sequence alignment files 

The pairwise whole genome alignments between human and chimpanzee or gorilla were 

downloaded from http://hgdownload.soe.ucsc.edu/downloads.html (accessed in December, 

2018).  

3. Proportion of substitutions fixed by positive selection 

We calculated the Proportion of substitutions fixed by positive selection, a measure of effect 

size of selection, under the MK test framework (McDonald and Kreitman 1991; Smith and 

Eyre-Walker 2002):  

𝛼 = 1 −
𝐷𝑛𝑝𝑃𝑝
𝐷𝑝𝑃𝑛𝑝 

Dnp is the substitution number in non-PBSs; Pp is the polymorphism number in PBSs; Dp is 

the substitution number in PBSs; Pnp is the polymorphism number in non-PBSs. 

4. Estimate substitution rate  

The substitution rate, for example C -> T, was estimated as the number of C -> T divided by 

the number of nucleotide C in the ancestor sequence. 
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Mouse CTCF analysis  

1. ChIP-seq data  

The narrow ChIP-seq peaks of transcription factor CTCF across 11 tissues (Table S2) were 

downloaded from ENCODE (The ENCODE Project Consortium 2012). Briefly, peaks were 

called with MACS (Zhang et al. 2008) separately for each replicate. Irreproducible Discovery 

Rate (IDR)) analysis was then performed. Final peaks are the set of peak calls that pass IDR at 

a threshold of 2%. Peak identified in different tissues/cell types were integrated by intersecting 

all peaks across data sets, with at least 1 base pair overlap used as the merge criteria. Overall 

we obtained 112657merged peaks.  

2. Sequence alignment files 

The sequence alignment file between C57BL/6J and SPRET/EiJ, please check “Mouse 

validation analysis” part of Materials and Methods. The sequence alignment file between 

C57BL/6J and Caroli/EiJ were downloaded from 

https://www.ebi.ac.uk/research/flicek/publications/FOG09 (Stefflova et al. 2013, accessed in 

May, 2018).  
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