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Abstract 

 
To develop a quantitative theory that can predict how microbiomes assemble, and how they respond to                

perturbations, we must identify which descriptive features of microbial communities are reproducible            

and predictable, which are unpredictable, and why. The emergent metagenomic structure of            

communities is often quantitatively convergent in similar habitats, with highly similar fractions of the              

metagenome being devoted to the same metabolic pathways. By contrast, the species-level taxonomic             

composition is often highly variable even in replicate environments. The mechanisms behind these             

patterns are not yet understood. By studying the self-assembly of hundreds of communities in replicate,               

synthetic habitats, we show that the reproducibility of microbial community assembly reflects an             

emergent metabolic structure, which is quantitatively predictable from first-principles, genome-scale          

metabolic models. Taxonomic variability within functional groups arises through multistability in           

population dynamics, and the species-level community composition is predictably governed by the            

mutual competitive exclusion of two sub-dominant strains. Our findings provide a mechanistic bridge             

between microbial community structure at different levels of organization, and show that the             

evolutionary conservation of metabolic traits, both in terms of growth responses and niches             

constructed, can be leveraged to quantitatively predict the taxonomic and metabolic structure of             

microbial communities. 
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Introduction 
  

Understanding how the confluence of metabolic and ecological factors conspire to shape the             

composition and function of microbial communities is needed in order to quantitatively predict how              

communities assemble, and how they respond to perturbations such as diet shifts (David et al. 2014) , or                 

antibiotic exposure (Shaw et al. 2019) . A fundamental challenge is that community assembly is governed               

by a confluence of stochastic and deterministic processes. As a result, the structure and function of                

microbial communities is affected by selection, historical contingency, and chance events, in a manner              

that remains poorly understood (Costello et al. 2012) . Developing a quantitative theory that integrates              

all of these selective and stochastic ecological processes into an ultimately predictive framework is a               

major aspiration of microbiome biology. This goal calls for us to identify the quantitative rules governing                

assembly of microbial communities at different levels of organization.  

 

Recent studies in a range of natural microbiomes, including those of systems as diverse as soils (Nelson,                 

Martiny, and Martiny 2016) , the oceans (Louca, Parfrey, and Doebeli 2016) , plants (Louca et al. 2016;                

Burke et al. 2011) , and the human gut (Turnbaugh et al. 2009) , have compared the metagenomic and                 

taxonomic structure of microbiomes assembled in natural “semi-replicate” habitats (e.g. in different            

hosts of the same species). These studies have reported intriguing, generic patterns of convergence and               

variability at different levels of organization. When binned by pathway, the quantitative fraction of the               

metagenome that is devoted to specific metabolic functions is often found to be quantitatively              

convergent across habitats, suggesting that these quantitative fractions are the result of environmental             

selection (Louca et al. 2018) . Yet, these studies also find that the taxonomic composition (at the genus                 

or lower level) is highly variable amongst replicate habitats, and this variability was also strong when                

grouping taxa by their ability to perform specific metabolic pathways (i.e. within functional groups). This               

has led to the proposal that environmental selection strongly determines the quantitative fractions of              

the metagenome devoted to different metabolic functions, whereas the taxonomic composition is more             

variable and sensitive to chance events, environmental heterogeneity, historical contingency, and other            

sources. 

 

A fundamental limitation of natural surveys is that it is difficult to draw direct mechanistic links between                 

physiological processes at the cellular level and the patterns of convergence and variation at higher               

levels of organization. We cannot, for instance, explain why the specific ratios of different metabolic               

pathways are what they are in a given natural environment, nor how they would change in response to                  

specific perturbations. Perhaps the biggest challenge is that, in most natural environments, we simply do               

not know the exact selective pressures experienced by microbes, nor do we have a detailed chronology                

of the historical events that may have influenced community assembly. 

 

Thus, a critical step towards quantitatively understanding microbial community assembly at different            

levels of organization is to study this process in simpler and well-controlled habitats, where all of the                 

selective and non-selective forces at play can be well understood and mechanistic links can be drawn. To                 

this end, we have recently investigated the self-assembly of hundreds of enrichment communities in              

replicate, identical synthetic habitats of known chemical and physical composition and known assembly             
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history (Goldford et al. 2018) . In these experiments, we found a strong convergence across replicates at                

higher levels of taxonomic organization (i.e. family or higher), despite the presence of substantial              

variability at lower levels (i.e. genus). In glucose-limited media, for instance, communities adopted             

quantitatively convergent ratios of the two dominant taxonomic families (Enterobacteriaceae and           

Pseudomonadaceae) across N~100 replicate habitats, despite the different starting pools of species            

(inocula) used to colonize each habitat ( Fig. 1A). At the same time, the species-level composition within                

each of these families was highly variable, and it was divergent even when communities were started                

from the same inoculum (Goldford et al. 2018) . 
  

These findings, placed in the context of the previously discussed surveys of natural communities, open               

many questions. What do these family-level assembly rules reflect? Do the convergent ratios of              

Pseudomonadaceae to Enterobacteriaceae in replicate sugar environments reflect an emergent          

metabolic self-organization of microbial communities? If so, can we mechanistically explain and            

quantitatively predict these ratios from first principles? Likewise, why is there such variability at the               

sub-family level in replicate habitats? Does it reflect neutral drift of species within the same functional                

guild, or simply random species sampling during colonization, or alternative stable states? (Aguirre de              

Cárcer 2019; Ley, Peterson, and Gordon 2006; Costello et al. 2012; Fukami 2015; Vellend 2010) . Through                

a combination of new experiments and genome-scale metabolic modeling, we will proceed to address              

these questions. 

  

Results 
  

Emergent metabolic self-organization of microbial community assembly in glucose-limited         

environments 

As previewed above, we have recently found that natural bacterial communities that were serially              

passaged every 48hr in glucose minimal media for 84 generations (12 transfers) self-assembled into              

stable communities containing N=2-17 taxa, which coexist thanks to extensive cross-feeding interactions            

(Goldford et al. 2018) . Despite their different starting inocula, these enrichment communities assembled             

into highly reproducible compositions at the family (or higher) level of taxonomy, while varying widely in                

their composition at (or below) the genus level (Goldford et al. 2018) . Communities were dominated by                

the Enterobacteriaceae (E) and Pseudomonadaceae (P) families, at a median ratio of P/E=0.27 (N=92,              

Q1=0.15, Q3=0.70) ( Fig. 1A ). 
  

The reasons for the strong reproducibility of community assembly at higher levels of taxonomic              

organization, and for the specific quantitative ratios of these two specific families remain unknown.              

Previous studies in natural communities have found that the fraction of the metagenome engaged in               

different metabolic functions is also strongly quantitatively conserved among similar habitats (Tringe et             

al. 2005; Louca et al. 2016, 2018) . We thus speculated that the observed taxonomic convergence may                

reflect an emergent metabolic organization that maps to phylogenetic community assembly through the             

family-level conservation of quantitative metabolic traits (Aguirre de Cárcer 2019) . 
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To evaluate this possibility, we isolated 73 member strains from 17 of our communities, spanning 11                

genera of the families Pseudomonadaceae (N=20 isolates), Enterobacteriaceae (N=47 isolates) as well as             

other less abundant members such as Moraxellaceae (N=3), Aeromonadaceae (N=1), Alcaligenaceae           

(N=1), and Comamonadaceae (N=1). On average, our isolates represented 88.8% of the taxonomic             

composition of the 17 communities from where they were collected ( Fig. S1; Methods). We first               

measured the growth rates of all of these isolates in the same glucose M9 minimal medium where the                  

communities had been originally assembled (Methods). All of the 73 isolates were able to grow on                

glucose in monoculture. Since this is the sole supplied resource, one might conclude that all species are                 

part of the same functional guild of glucose metabolizing bacteria. However, we also found that               

Enterobacteriaceae have much stronger growth rates than Pseudomonadaceae in glucose medium           

(median(E, glu)=0.45/h and median(P, glu)=0.27/h, p< 0.0001, Fig. 1B, Fig. S2 ). Despite this almost 2-fold               

difference in growth rate, both families consistently coexist in our synthetic glucose-limited habitats. 

 

In previous work, we found that cross-feeding was key for the maintenance of diversity in our                

communities (Goldford et al. 2018; Lu et al. 2018) . We thus hypothesized that the Pseudomonadaceae               

may be sustained in the community not because of their ability to metabolize glucose, but rather by                 

their higher competitive ability in the metabolic byproducts secreted by the Enterobacteriaceae. To             

identify what those byproducts are, we used liquid-chromatography mass spectrometry (LC-MS) to            

analyze the secreted metabolic byproducts of glucose metabolism for a dominant Enterobacter strain in              

our communities, as well as for E. coli MG1655 (Methods). These two species are representative of the                 

two main forms of fermentation typically found in the Enterobacteriaceae (Vivijs et al. 2015) . In both                

cases, we found that acetate, lactate, and succinate were the three primary byproducts secreted into               

the environment during the exponential phase, consistent with the known patterns of overflow             

metabolism in Enterobacteriaceae (Vivijs et al. 2015) (Fig. S3) . Of these, acetate was by far the                

dominant, at a concentration of 4.7 0.5 mM for E. coli and 6.0 0.2 mM for Enterobacter after 28h of     ±       ±        

growth. To test the generality of these secretion patterns, we then proceeded to quantify the amount of                 

acetate, succinate and lactate secreted by the Enterobacteriaceae strains when growing in glucose M9              

media (Methods). All three organic acids are strongly secreted by all the Enterobacteriaceae (at similar               

amounts across all isolates, with some genus-level variation (Fig. S4) ) but, as expected, not by the                

Pseudomonadaceae, since they are non-fermentative ( Fig. 1B ). Acetate is in all cases the dominant              

overflow byproduct (median= 8.5 mM, Q1=7.5 mM, and Q3=9.6 mM after 16h of growth). 

 

If the hypothesis outlined above is correct, then Pseudomonadaceae should have a higher growth rate               

than Enterobacteriaceae in acetate and possibly also in the other organic acids. To test this, we                

measured the growth rates of all of our isolates in acetate, succinate, and lactate minimal media,                

respectively (Methods). Pseudomonadaceae did indeed have close to 2-fold median higher growth rates             

in acetate (median(P, acetate)= 0.20/h and median(E, acetate)= 0.11/h, p<0.0001, paired Student’s            

t-test), which is the dominant byproduct, and also grew faster in succinate (median(P, succinate)=0.22/h              

and median(E, succinate)= 0.14/h, p<0.001, paired Student’s t-test), Fig. 1B, Fig. S2 and Fig. S5) . No                

significant difference in growth rates in lactate was observed.  

 

Altogether these results suggest that although the Enterobacteriaceae and Pseudomonadaceae found in            

our communities are all capable of metabolizing glucose, they are not all part of the same                
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“glucose-metabolizers” functional guild. Rather, our findings suggest that Enterobacteriaceae are          

selected by the glucose added to the medium, due to their fast growth in it. This fast growth is                   

accomplished through an overflow metabolism strategy, which leads to the excretion of highly similar              

quantities of the same dominant organic acids. This metabolic strategy is conserved at the family level                

and shared by all of the Enterobacteriaceae in our communities. Finally, our results suggest that the                

convergent set of organic acids secreted by the Enterobacteriaceae, as a byproduct of their overflow               

metabolism, provide the main substrate for the growth of Pseudomonadaceae, which are competitively             

selected by them. Based on this, we propose that the Enterobacteriaceae in our communities (as well as                 

the closely related Aeromonadaceae, which behave in the same way) form a phylogenetically conserved              

fermenter (F) functional guild, which is selected by the glucose due to their fast growth rates in glucose.                  

In turn, the Pseudomonadaceae (together with the Comamonadaceae and Moraxellaceae) form a            

second functional guild, which is made up of the respirator (R) bacteria that are selected by the organic                  

acids released by the fermenters, on which they specialize. The amount of acetate excreted by the                

Enterobacteriaceae species correlates with their maximum growth rate in glucose ( Fig. S6 , R2=0.49),             

further suggesting that selection for the fastest growers in the inoculum inevitably leads to the               

accumulation of organic acids. It is thus not the ability to metabolize a substrate, but the competitive                 

ability on it, which delineates membership in a functional group.  

  

To further confirm this scenario, we thawed 9 stable communities that had previously been frozen at the                 

end of 12 transfers in the prior study (Goldford et al. 2018) . To relieve any potential effects of freezing                   

and thawing on the composition and stability of these communities, we passaged them for an additional                

three transfers (Methods). We then measured the ratio between respirator (R) and fermenter (F)              

abundances (the R/F ratio) at different time points during a final 48h growth cycle (at 0, 10, 21, and 48                    

h), quantifying also the concentrations of glucose and acetate at each time. Consistent with our               

hypothesis, we find that fermenters have a growth advantage in all communities (characterized by a               

drop in the R/F ratio) early on the incubation period (T=0-10h) when glucose is abundant (Fig. 1C, Fig.                  

S7) . In turn, respirators have a growth advantage compared to fermenters (characterized by an increase               

in the R/F ratio) in the second part of the incubation period (T=21h-48h) for most of the communities (7                   

out of 9) (Fig. 1C, Fig. S7) , when glucose is absent but organic acids are abundant. The other two                   

communities nevertheless exhibit an increase in their R/F ratio from T=10h-T=48h, after glucose had              

been partially depleted. The growth of the fermenters was accompanied by a depletion of glucose,               

whereas the growth of the respirators is concomitant with a depletion of acetate ( Fig. 1C, Fig. S7 ). 
  

Our results indicate that the convergent ratio of Pseudomonadaceae to Enterobacteriaceae (the P/E             

ratio) reflects the relative frequencies of two metabolic specialist groups: respirators and fermentors             

(i.e. the R/F ratio). Further supporting this point, in other experiments we have run in our lab in recent                   

years, we have found that when communities lacked either Enterobacteriaceae or Pseudomonadaceae,            

these families were replaced in highly similar frequencies by members of other families with similar               

functional roles. For instance, Enterobacteriaceae can be replaced by Aeromonadaceae (Fig. 1A, Fig. S8) ,              

another family of known respiro-fermentative bacteria, which grows strongly in glucose (Fig. S2) by              

fermenting it to the same organic acids as Enterobacteriaceae (Fig. 1B) . Likewise, in other communities,               

we have observed that Pseudomonadaceae could be replaced by either Moraxellaceae (Fig. 1, Fig. S8)               

or Alcaligenaceae ( Fig. S8 ). All of these taxonomically divergent communities have different family             
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compositions, but highly similar convergent ratios of organic acid respirators to glucose fermenters as              

the one found in Fig 1A (R/F=0.29, Q1=0.17, Q3=0.69). This is consistent with the idea that family-level                 

convergence is a proxy for convergent functional self-organization, which arises due to the evolutionary              

conservation of quantitative metabolic traits such as niche construction, and the growth-rate response             

to nutrients. 

 

 

 
Figure 1. Emergent metabolic structure in self-assembled microbial communities. A. Barplots show the relative              

abundance of the dominant families (Enterobacteriaceae, Pseudomonadaceae, Aeromonadaceae and         

Moraxellaceae) in 92 communities started from 12 leaf or soil inocula (8 replicates each) after assembly in minimal                  

media with glucose for 12 growth/dilution cycles (data from (Goldford et al. 2018) ). Only taxa with relative                 

abundance > 0.01 are shown. Other families are shown in gray. B. Isolates belonging to different families were                  

grown in monoculture for 48h in minimal media supplemented with a single carbon source (CS) (glucose, acetate,                 

lactate, or succinate) (N=73, Fig. S2 ). Each dot corresponds to a strain’s maximum growth rate. Note that ****                  

indicates p<=0.0001, *** indicates p<=0.001, ns indicates p>0.05, paired Student’s t-test. We quantified the              

amount of acetate, lactate and succinate in the medium at various time points for all isolates. The dashed lines                   

represent the mean concentrations for isolates of each family. C. Communities were thawed and grown in minimal                 

media with glucose for a single incubation time. Samples were taken at 10h, 21h and 48h, and we measured the                    

R/F ratio and the concentrations of glucose and acetate in the medium. Only one representative community (out                 

of N=9) is shown. See Fig S7 for other communities. The R/F ratio represents the mean sd of the CFU ratios                ±      
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calculated by bootstrapping (N=1000 replicates). D. Predicted and observed P/E ratio. Simulations: Using Flux              

Balance Analysis, we calculated the biomass obtained from glucose fermentation by Enterobacteriaceae strains (E)              

and the biomass obtained from consumption of the E’s metabolic byproduct, acetate, by Pseudomonas strains (P).                

The predicted ratio between P and E biomass was calculated for 59 Enterobacteriaceae and 74 Pseudomonas                

metabolic models. The simulations predict a median P/E ratio of ~0.303 (Q1=0.302, Q3=0.356). Experiment.: P/E               

ratio observed experimentally in the glucose communities described in Fig. 1A (median=0.27, Q1=0.15, Q3=0.70,              

N=92). Each dot represents a P/E pair. 

 

Genome-scale metabolic modeling quantitatively explains the ratio of both functional groups 

This does not explain however why the observed ratio is R/F= 0.29. To test whether this ratio could be                   

explained from first principles, we carried out Flux Balance Analysis simulations using a recently              

developed extension that naturally exhibits overflow metabolism (Mori et al. 2016) . In our simulations,              

we first used a well-curated genome-scale metabolic model of a representative Enterobacteriaceae, the             

E. coli model (iJO1366, (Orth et al. 2011) ), and a well-curated genome-scale metabolic model of               

Pseudomonadaceae, the P. putida model (iJN1463, (Nogales et al. 2020) ). Using these models, we              

determined the biomass ratio of Pseudomonadaceae to Enterobacteriaceae in the limit scenario where             

E. coli metabolizes all of the glucose, secreting acetate as a byproduct, and P. putida fully respires the                  

produced acetate to CO2. The model predicts a P. putida/ E. coli ratio of P/E = 0.36. Parametric stability                   

analysis shows that this estimate is robust to the specific assumptions made in the model (Methods,                

Table S1 ). To test how the P/E ratio would vary with different Enterobacteriaceae or Pseudomonas               

species, we compiled a library of 59 Enterobacteriaceae and 74 Pseudomonas metabolic models             

(Methods, and Supplementary Methods) and repeated the above simulation to predict the P/E ratio for               

every pair of Enterobacteriaceae and Pseudomonas (Fig. S9) . Our simulations predict a median P/E ratio               

of 0.303 (Q1=0.302, Q3=0.356) which is strongly aligned with the experimentally observed median P/E              

ratio of 0.27 (Q1=0.15, Q3=0.70, N=92) in our glucose communities ( Fig. 1D). 
  

Replaying the tape of community assembly: Non-modular taxonomic variability within          

functional groups 

Despite their quantitatively convergent metabolic self-organization, communities often exhibited         

substantial taxonomic variation at the genus level or lower, even when they were started from the same                 

inoculum (Goldford et al. 2018) . What are the causes of the observed taxonomic variability within each                

functional metabolic group? One possibility is that the taxonomic variability reflects random sorting of              

species into different replicate habitats: Some genera may be sampled only into some but not all of the                  

habitats. Since there is no further migration after the first inoculation, this could easily lead to variability,                 

as was already shown elsewhere using simulations (Goldford et al. 2018) . An alternative hypothesis is               

that individual species within the same functional group are “equivalent” and would all have strongly               

similar fitness and thus exhibit neutral dynamics (Aguirre de Cárcer 2019) . Finally, taxonomic variability              

could also arise due to dynamic multistability in population dynamics, and the existence of alternative               

stable states (Fukami 2015) . 
  

The number of replicates in previous experiments is not high enough to unambiguously discriminate              

among these alternative hypotheses. Thus, we started a new experiment with 92 replicate communities,              

all initiated from the same inoculum and propagated in minimal media with glucose as before (Fig. 2A) .                 
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After 18 serial dilution transfers, most communities (77 out of 92) (we will leave the remaining ones                 

aside for now, and return back to them in later sections of this paper) assembled into the metabolic                  

structure described above, consisting of fermenters (glucose specialists) and respirators (organic acid            

specialists) at similar proportions as we had seen previously (R/F= 0.46, Q1=0.34, Q3=0.65) ( Fig. 2B). For                

these communities, we identified two alternative taxonomic compositions within the fermenter           

functional group and three alternative taxonomic compositions within the respirator functional group            

(Fig. 2B) , which are evident by visual inspection and are generally consistent with those found using                

cluster analysis (Fig. S10) . The dominant ESVs found in the respirator groups are an ESV of the genus                  

Alcaligenes and an ESV of the genus Pseudomonas. Among the fermenters, the dominant taxa were two                

strains of the genus Klebsiella (hereafter referred to as Kp  and Km (Methods)). 

 

 
Figure 2. Multiple alternative states at the metabolic and taxonomic level arise from assembly of replicate                

communities from a single inoculum. A . Schematic of experimental design: starting from a highly diverse soil                

microbial community, 92 communities were serially passaged in replicate habitats with glucose as the single               

carbon source for 18 incubation (growth/dilution) cycles (48h each). B. Taxonomic profile of communities shown at                

the exact sequence variant (ESV) level (one color per ESV) with corresponding genus and family level assignments.                 

Only the ESVs with a relative abundance > 0.01 are shown. After 18 transfers, we find that replicate communities                   

self-assembled in two major functional groups, fermenters only (N=15) or fermenters with respirators (N=77).              

Within the fermenter functional group, we can see two alternative taxonomic compositions depending on whether               

one or two Klebsiella strains are present. Within the respirator functional group, we can clearly identify three                 

alternative taxonomic groups ( Pseudomonas, Alcaligenes, and Alcaligenes + Delftia). 
 

Importantly, the taxonomic compositions of the fermenter and respirator groups in a given community              

were not independent (p obs>null <0.001 using C-score, Methods, Fig. S11 ), indicating that community             

assembly is not modular. In communities where Alcaligenes dominated the respirator group, the             

fermenter group could contain either Kp alone or both Kp and Km above a 0.01 abundance threshold. By                  

contrast, when Pseudomonas dominates the respirator group, the fermenter taxa would only contain             

one of those strains ( Kp), but never the other, and it also may contain a strain of the genus Enterococcus,                    

which is in turn never found co-occurring with Alcaligenes. The composition of the respirator group is                

also strongly determined by its dominant taxa: Alcaligenes may co-occur with Delftia (in 50              

communities), Achromobacter (N=7), and often both (N=6). Pseudomonas, on the other hand, is never              
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found together with neither of them. Importantly, Alcaligenes and Pseudomonas were never found             

together above an abundance of 0.01.  

 

Mutual exclusion between two respirator strains drives alternative states in multispecies           

communities 

Why do some communities contain Alcaligenes as the main organic acid specialist while others contain               

Pseudomonas? A first hypothesis is that these alternative states arise due to random sampling from the                

initial species pool. Because there is no immigration, any community where Alcaligenes and/or             

Pseudomonas was not stochastically sampled during inoculation will inevitably not have those strains at              

at the end of the experiment (Goldford et al. 2018) . To test this hypothesis, we first ask if, consistent                   

with this hypothesis, communities dominated by Alcaligenes have no Pseudomonas, and similarly, if             

communities dominated by Pseudomonas have no Alcaligenes. Contrary to this hypothesis, we find that              

in ~28% (18/65) of the Alcaligenes dominated communities, Pseudomonas is present below an             

abundance of 0.01 but above a cutoff that corrects for spurious detection during amplicon sequencing               

(Methods, Fig. S12) . Likewise, in ~67% (8/12) of the Pseudomonas dominated communities, Alcaligenes             

is present below an abundance of 0.01, and above the error threshold (Methods, Fig. S12 ). This result                 

suggests that the alternative states we observed are generally not caused by random sampling, nor to                

the extinction of established taxa due to the population bottleneck applied by every serial dilution into                

fresh media. 

 

The existence of a state where Alcaligenes is abundant and Pseudomonas is rare and of a state where                  

Pseudomonas is abundant and Alcaligenes is rare, in addition to the lack of a state where Alcaligenes                 

and Pseudomonas are both abundant, suggests that Alcaligenes and Pseudomonas may mutually            

outcompete one another, which can give rise to multistability in population dynamics. This can also lead                

to alternative stable states within a functional group (Gonze et al. 2017; Fukami 2015; Case 1990; Shaw                 

et al. 2019; Chen et al. 2014) . To test the possibility of multistability, we isolated the dominant strains                  

( Kp , P, and A) and inoculated multiple populations of Klebsiella ( Kp ) with varying initial densities of                

Alcaligenes and/or Pseudomonas (Fig. 3A), mapping a two-dimensional phase portrait (Fig. 3B and Fig.              

S13-S14) . We then passaged them in minimal glucose media for 12 growth-dilution cycles, allowing the               

communities to reach an equilibrium, and measured their abundances at three timepoints by colony              

counting (Fig. 3A) (Methods).  

 

Consistent with the expectation of multistable population dynamics, we find that Pseudomonas and             

Alcaligenes can both coexist with Klebsiella individually but not together, regardless of their initial              

densities (Fig. 3B-C, and Figs S13 and S14) . Importantly, and as expected from the multistability               

hypothesis, the invasion outcome (i.e. whether Pseudomonas or Alcaligenes dominate) depends on the             

initial position of the population in the phase portrait (i.e. the relative abundances of Pseudomonas and                

Alcaligenes). In the upper left part of the portrait when Pseudomonas starts at low and Alcaligenes at                 

high abundance, communities converge to a state dominated by Alcaligenes. In the lower-right part of               

the phase portrait, communities converge to a state dominated by Pseudomonas (Fig. 3B) . 
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Figure 3. Multistability leads to alternative attractors in community composition. A . We isolated the three               

dominant strains - Klebsiella ( Kp ), Alcaligenes ( A), and Pseudomonas ( P) that make up the two major alternative                 

attractors, and grew them in pairwise coculture ( Kp +A or Kp +P) or in three species consortia ( Kp+A+P) by mixing Kp                   

with different initial densities of A and/or P (see Methods). These reconstituted communities were grown in the                 

same conditions as the top-down assembly communities for 12 transfers (Methods). B. Phase portrait showing the                

state of the community after T= 3, 8, and 12 transfers. A square is colored orange if a community that was started                      

there contained A but not P at time T. It is purple if it contained P but not A, and it is gray if both A and P were                             

present. We can see that the phase portrait is divided in two regions: The upper-left diagonal is made up by the                     

basin of attraction of Alcaligenes dominated communities, whereas the bottom-right diagonal contains the basin              

of attraction for Pseudomonas dominated communities. Alcaligenes and Pseudomonas mutually exclude each            

other depending on their starting densities. See Fig. S13 for a second biological replicate experiment, which gives                 

similar outcomes. C. Temporal dynamics of the relative abundance of each taxa for a subset of the communities                  

shown in B. See Fig. S14  for the time series of all pairwise initial conditions of the phase portrait. 
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In a multistable system, a switch from one state to another only happens in the presence of strong                  

perturbations, for instance, by changing the abiotic environment (e.g., diet shift) or by changing the               

biotic environment (e.g. immigration of new species, or extinction of established species). Given that our               

communities were assembled under highly-controlled chemo-physical conditions without migration, we          

expect that once a community has switched to one state it remains in that state, and thus switches from                   

the high Alcaligenes/low Pseudomonas to the low Alcaligenes/high Pseudomonas state, or vice-versa,            

should be rare. To test this in our communities, we sequenced the full temporal dynamics for a                 

representative subset of the communities (Fig. S15) . The dynamics reveal that Alcaligenes either blooms              

early during the assembly of the community, after which it remains at high relative abundance               

(mean=0.27 0.11), or it never invades and remains at low abundance (mean=0.0027 0.0019), in which±           ±    

case Pseudomonas may invade and take the role of the dominant organic acid specialist (mean= 0.12               ±
0.030). Furthermore, the location of the basins of attraction for Alcaligenes and for Pseudomonas              

inferred from the phase portrait obtained with the bottom-up reconstitution of a minimal community              

( Kp , A, P) (yellow and purple regions, respectively, in Fig 3 ) approximates well the temporal community                

trajectories (Fig. 4) . Communities generally start in the transition region, which represents the unstable              

region between both stable states. As communities self-assemble, they approach one of the attractors              

and never switch between states (Fig. 4B) . Together, these findings suggest that the alternative states               

we observed between the two organic acid specialists likely arise from dynamic multistability driven by               

mutual inhibition between them. Whether Alcaligenes or Pseudomonas invades seems to be stochastic,             

but once invasion occurs (‘tipping point’), the community state is maintained over time. 

 

The presence of alternative respirators affects interactions among members of the fermenter            

group  

As discussed above, the identity of the dominant member of the respirator group shapes the               

composition of the fermenter group, indicating that the assembly of both taxonomic groups within a               

community is not modular (not independent from each other) (Fig. S11) . Communities with             

Pseudomonas as the dominant respirator co-occur with a single ESV of Klebsiella ( Kp ) as the sole                

member of the fermenter group, whereas when Alcaligenes dominates it can co-occur with both Kp and                

Km . This suggests that Alcaligenes and Pseudomonas may (differently) modulate interactions between            

Kp and Km , a signature of higher-order interactions (Sanchez-Gorostiaga et al. 2019; Billick and Case               

1994; Guo and Boedicker 2016; Bairey, Kelsic, and Kishony 2016; Sanchez 2019; Mickalide and Kuehn               

2019; Letten and Stouffer 2019; Tekin, Yeh, and Savage 2018) . To test this possibility, we grew Kp and                  

Km together in pairwise coculture, as well as in three species consortia together with either Alcaligenes                

or with Pseudomonas. Communities were passaged every 48h for 6 transfers in minimal glucose media               

(Methods). We found that Km is competitively excluded by Kp in pairwise co-culture and, consistent               

with the patterns we found in self-assembled communities, the species exclude each other when              

Pseudomonas was present (Fig. S16) . However, in the presence of Alcaligenes, the three strains can               

coexist. This suggests that Alcaligenes buffers (i.e. neutralizes) the competition between the two             

Klebsiella strains (Fig. S16) . 
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Figure 4. Multistable metabolic attractors between two organic acid specialists. Phase diagram inferred from the               

bottom-up experiment in Fig. 3 (Methods), showing the basins of attraction for Alcaligenes dominated (yellow               

area) and for Pseudomonas dominated (purple area) states, separated by a transition region (white area). The gray                 

dashed line indicates the separatrix between the two basins of attraction. In A, the dots show the relative                  

abundance of Alcaligenes and Pseudomonas at Transfer 18 (n=92). The gray shaded areas indicate the regions of                 

low Alcaligenes and low Pseudomonas that are below the detection level of amplicon sequencing. In B, overlaid                 

are the trajectories of the relative abundance of Alcaligenes and Pseudomonas for all communities for which we                 

measured time series population dynamics (N=19). The arrows become darker with time (i.e. from T1 to T18).  
  

Migration between communities leads to strong metabolic convergence 

A non-negligible number of the 92 replicate self-assembled communities (15/92) shown in Fig. 2B              

assembled into a functional state where respirators comprised less than 1% of the population              

(R/F=0.002, Q1=0.0014, Q3=0.0042). The existence of these communities appears to be a violation of              

the metabolic assembly rule discussed in Fig. 1 . It is not clear, however, whether such communities                

represent a stable metabolic attractor, as opposed to being “frozen” in a transient or meta-stable state                

as a result of community assembly in a closed system. Previous theoretical and experimental work has                

shown that dispersal between communities can homogenize communities, and disfavor marginally           

stable equilibria (eg. (Chase 2003; Fodelianakis et al. 2019; Leibold et al. 2004; Stegen et al. 2013) ).                 

Therefore, we hypothesized that opening the system by connecting communities through migration may             

prevent the system from getting locked into a meta-stable state, recovering the metabolic assembly              

rule. 

  

To investigate this hypothesis, we repeated our community assembly experiment using the same initial              

inoculum, but this time, in addition to the normal transfer, we also imposed migration between               
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communities for twelve growth cycles and then allowed the communities to stabilize without migration              

for six additional transfers (Fig. 5A) . This is similar to a metacommunity model (Leibold et al. 2004) , and                  

hereafter referred to as ‘global migration’. As predicted, we found that after 12 growth cycles of                

assembly under constant global migration, communities strongly converged to a single metabolic            

attractor composed of fermenters and respirators (Fig. 5B) . At the taxonomic level, they converge again               

to the most common state observed in the ‘no migration’ case (Fig. 2B) , that is, the state dominated by                   

the Enterobacteriaceae and Alcaligenaceae families and a median R/F ratio of 0.41 (Q1=0.37 and              

Q3=0.44) (Fig. 5B) . The community composition and R/F ratio remain quantitatively similar after six              

transfers of stabilization without migration (R/F=0.40, Q1=0.37, and Q3=0.47) despite a timid increase in              

the abundance of Delftia (~0.04) (Fig. 5B) .  
 

 
Figure 5. Migration between communities leads to strong metabolic and taxonomic convergence. A. 93 replicate               

communities all started from the same inoculum (and the same inoculum as in Fig. 2 ) were assembled in an open                    

system with global migration - that is, in addition to the normal transfer, each community received a small amount                   

of migrants from a common migrant pool. Communities were assembled under this migration scenario for twelve                

growth cycles (T1-T12), after which migration was stopped and communities were allowed to stabilize for six                

additional transfers without migration (T13-T18). B. Taxonomic composition of the communities at Transfers 12              

and 18. Only the ESVs with a relative abundance > 0.01 are shown. 
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This result is consistent with the hypothesis that the low R/F (~0.002) functional state observed in this                 

experiment is dynamically metastable, and that communities would converge to the same emergent             

metabolic attractor as those in previous experiments, given enough time. We again find that both               

Klebsiella ( Kp and Km ) and Delftia can co-occur with Alcaligenes, providing further evidence to the idea                

that alternative stable states at the species level can arise from mutual exclusion among members of the                 

subdominant, respirator functional group, which in turn recruit different sets of additional taxa in both               

the respirator and fermenter groups. 
 

Discussion   
 

In this paper, we set out to mechanistically investigate the patterns of convergence and divergence               

observed at different levels of microbial community organization. Multiple surveys of natural            

environments had previously found a pattern of emergent simplicity in microbial community assembly,             

whereby the microbiome seems highly variable at the species level, but becomes predictable at higher               

levels of organization, e.g. when we bin the metagenome by metabolic function (Louca, Parfrey, and               

Doebeli 2016; Louca et al. 2018) . The complexity and poor understanding of selective pressures and               

assembly histories in natural habitats has made it difficult to mechanistically and quantitatively             

understand these patterns. For instance, the specific ratios of various functional groups in a given               

habitat could not be explained from first principles, nor reconciled with known cellular processes and               

biochemical mechanisms. Here, we have addressed this challenge by focusing on communities            

assembled on synthetic habitats via serial passaging, where the selective pressures can be determined.              

We first show that, in glucose-limited synthetic environments, the quantitatively convergent ratio of             

Pseudomonadaceae to Enterobacteriaceae observed in previous studies reflects an emergent metabolic           

self-organization between glucose specialists and organic acids specialists. Enterobacteriaceae grow          

faster on glucose than Pseudomonadaceae. This fast growth in glucose is achieved through a              

respiro-fermentative overflow metabolism, which leads to the release of high-energy metabolic           

intermediates (mainly acetate, succinate and lactate) into the environment. These metabolic           

by-products in turn create new resource niches for Pseudomonadaceae, who generally grow faster on              

the organic acids than Enterobacteriaceae. Further, we show that the ratio of Pseudomonadaceae/             

Enterobacteriaceae observed experimentally is in agreement with the ratio predicted from           

genome-scale models with zero fitting parameters. 

 

This emergent self-organization between glucose specialists and organic acids specialists after ~60            

generations of community assembly in a glucose-limited environment shows a remarkably close parallel             

with findings from long-term experimental evolution of a single species. A notable example is the               

evolution of an acetate cross-feeding polymorphism in E. coli. Starting with a single strain of E. coli,                 

growth in a glucose-limited environment repeatedly leads to the evolution of a glucose specialist (which               

exhibits both an increased rate of glucose uptake and of acetate excretion), and of an acetate                

cross-feeder with an enhanced ability to use the acetate released by the glucose specialist (Rosenzweig               

et al. 1994; Turner, Souza, and Lenski 1996; Treves, Manning, and Adams 1998; Rozen and Lenski 2000) .                 

This suggests that the emergent self-organization in top-down community assembly in glucose mirrors             

the bottom-up emergence of the same metabolic structure by evolutionary forces, further reinforcing             
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the predictability of such structure. Intriguingly, strongly similar quantitative patterns of coexistence            

between fermenters and respirators, and more specifically, Enterobacteriaceae and         

Pseudomonadaceae, has also been observed in host-associated microbiomes, such as in the apple             

stigma microbiome (a sugar-rich environment) (Cui et al. 2020) and the microbiome of C. elegans (Berg                

et al. 2016) . 
 

To understand why there is substantial variability at lower levels of taxonomic organization (genus or               

lower level) within each functional group, we monitored the self-assembly of hundreds of replicate              

communities that were initially seeded from the same inoculum. Different mechanisms have been             

proposed to explain the emergence of alternative states under such constant conditions: random             

sampling from the initial species pool, neutral interactions between functionally redundant species and             

multistability (Aguirre de Cárcer 2019; Goldford et al. 2018; Costello et al. 2012) . We tested these                

different hypotheses in our glucose communities, and showed that the observed taxonomic variability             

was not due to random sampling from the initial species pool nor to neutral community dynamics but                 

arose due to dynamical multistability caused by mutual exclusion (Leventhal et al. 2018) between two               

dominant respirator taxa, which in turn lead to further taxonomic variability within the fermenter              

metabolic group.  

 

Our results also indicated that the taxonomic compositions of each of the two functional groups in a                 

community are not independent, but rather they can strongly affect one another, indicating that              

community assembly is not modular in our experiments (Grilli, Rogers, and Allesina 2016; Enke et al.                

2019) . Interestingly, the main driver of taxonomic variability among replicates was the dominant             

member of the respirator group (a sub-dominant species). Amelioration of competition between two             

fermenter strains in the presence of one (but not the other) dominant respirator points to the subtle                 

role that high-order interactions may play in community assembly (Billick and Case 1994; Mickalide and               

Kuehn 2019; Sanchez 2019; Sanchez-Gorostiaga et al. 2019; Senay et al. 2019; Levine et al. 2017; Grilli et                  

al. 2017) . This is also in line with previous observations of the potential importance of sub-dominant                

bacteria in shaping the composition of microbial communities (Lu et al. 2018) .  
 

Finally, our results make a case for the quantitative definition of functional niches: all members of the                 

Enterobacteriaceae and Pseudomonadaceae groups are capable of metabolizing both the supplied           

sugars and the endogenously produced organic acids. It is not the qualitative difference in their               

metabolic niches, but rather the strong (~2-fold) differences in fitness between both families in each               

substrate, what delineates the two different functional groups. Not surprisingly, members of the             

Pseudomonadaceae family are also known to choose organic acids over sugars when both are available               

(Bajic and Sanchez 2020; Rojo 2010) . The importance of diauxic switching for coexistence, particularly in               

periodic environments such as those used in our study, is predicted in numerous models but still                

relatively unexplored experimentally (Pacciani-Mori et al. 2019; Goyal, Dubinkina, and Maslov 2018) .  
 

Altogether, our work suggests that the observed convergence at higher levels of community             

organization reflects the existence of global metabolic attractors in microbial community assembly,            

which can be quantitatively predicted from first principles of bacterial metabolism. Efforts to formulate              

a predictive, quantitative theory of microbial community assembly require us to identify the right level               
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of description at which community assembly is reproducible and thus predictable. The confluence             

between our findings and recent empirical results in natural communities assembled in nutritionally             

similar habitats (Cui et al. 2020) point to promising directions where in vitro and in vivo work can                  

cross-inform each other and be used together to develop a theory of microbial community assembly.  

  

Methods 
 

Isolation of strains 

Strains were isolated from several communities previously stabilized in glucose minimal media and             

stored in 40% glycerol at -80C. The communities used were C1R2, C1R4, C1R6, C1R7, C2R4, C2R6, C2R8,                 

C4R1, C7R1, C8R2, C8R4, C8R5, C10R2, C11R1, C11R2, C11R5, C11R6, where CXRY stands for initial               

environmental sample (inoculum) X replicate community Y (Goldford et al. 2018) . These communities             

were plated in three different media: Tryptic Soy Agar (TSA) and minimal M9 supplemented with glucose                

or citrate at concentration 0.07 moles of carbon per liter. Isolates from these plates were streaked on                 

the corresponding medium based on visual inspection of colony morphology after 2 and 5 days. Colonies                

from the streaked plates were streaked twice more on new plates, then cultured in the corresponding                

liquid medium (Tryptic Soy Broth (TSB), M9 glucose or M9 citrate) and stored at -80C with 40% glycerol. 

  

Growth curves and maximum growth rate calculation 

Isolates were streaked from glycerol on TSA plates and grown at 30C for 48h. Single colonies of each                  

isolate were used to inoculate 500uL TSB in a deep-well plate. These pre-cultures were incubated at 30C                 

without shaking for 48h. Pre-cultures were then diluted 1:1000 in M9 supplemented with either glucose,               

acetate, lactate, or succinate at a final concentration of 0.07 moles of carbon per liter. The final volume                  

for the growth assays was 100uL in 384 well plates. Each isolate was assayed in two replicates. For                  

computing the maximal exponential growth rate, each replicate was first smoothed by fitting a              

generalized additive model with an adaptive smoother, using the gam function from the mgcv package               

in R.  

 

LC-MS of E. coli and Enterobacter on minimal glucose 

E. coli MG1655 and an Enterobacter strain isolated from the glucose communities in (Goldford et al)                

were revived from frozen stock by streaking on LB Agar. Two replicate colonies of each strain were used                  

to inoculate separate 50ml falcon tubes which contained 5ml of LB-Lennox and were incubated at 30C                

overnight (shaking at 200RPM). After ~16h of growth, overnight cultures were brought into balanced              

exponential by three serial transfers into fresh LB (1ml of culture in 4ml of fresh media). The first two                   

transfers were performed at 1h intervals whilst after the final transfer the cultures were allowed to grow                 

for 1h and 30 min. Cells were centrifuged, washed and re-suspended 3 times, using 1.1x M9 media                 

(containing no carbon source). After the final washing step, cells were normalized to an OD620 of 0.1.                 

500ul of M9 glucose in a 96 deep well plate was inoculated with 4ul of normalized cells, and grown at                    

30C. After 28h of growth, spent media was extracted using 0.2um Acropep filter plates. Spent media was                 

submitted for a targeted metabolomics analysis carried out by the Metabolomics Innovation Center             

(TMIC), in Alberta, Canada. This analysis quantified the abundance of >140 metabolites including             

biogenic amines, amino acids, acylcarnitines, glycerophospholipids, and organic acids by LC-MS. 
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48h growth assay of single strains 

Strains were revived from frozen stock and acclimated to growth on glucose minimal media (500uL) for                

48h. 4uL of the grown cultures were then inoculated into 500uL fresh glucose media (4 replicates each)                 

and samples were collected at different times during the 48h growth cycle (one replicate used per                

timepoint, i.e. at 0h, 16h, 28h, and 48h). At each timepoint, 100uL of samples were collected and stored                  

at -80C with 40% glycerol. The remaining samples were immediately centrifuged at 3000 rpm for 25min                

to separate the cells from the supernatant. The supernatant was transferred to a 96 well 0.2μm                

Acroprep filter plate on top of a 96 well NUNC plate fitted with the metal collar adaptor and centrifuged                   

at 3000 rpm for 10 min. The supernatant was immediately frozen at -80C until processing. 

  

48h growth assay of communities 

Previously stabilized communities in glucose minimal media for 12 serial transfers (Goldford et al. 2018)               

were revived from frozen stock and serially transferred for three passages on glucose minimal media,               

under the same experimental conditions as before. We selected a subset (N=9) of communities where               

fermenters and respirators were detected after three serial transfers. At the start of the fourth passage,                

4 replicate 96-wellplates were started. Samples were collected at different times during the 48h growth               

cycle (one plate used per timepoint, i.e. at 0h, 10h, 21h and 48h). At each timepoint, 100ul of samples                   

were taken and stored at -80C with 40% glycerol. The remaining samples were immediately centrifuged               

at 3000 rpm for 25min to separate the cells from the supernatant. The supernatant was processed as                 

described above. 

  

Measurement of glucose, acetate, lactate and succinate concentrations 

Glucose concentration was measured using the glucose GO assay kit from Millipore (GAGO20). Acetate              

concentration was measured using the Acetate assay kit (ab204719). D-lactate concentration was            

measured using the D-Lactate assay kit (ab83429). Succinate concentration was measured using the             

Succinate assay kit (ab204718). For each assay, the supernatant was diluted (if needed) to ensure that                

the OD readings are within the standard curve range. 

  

pH measurement 

Determination of pH was done using the same filtered supernatant as for the assays described above.                

Bromocresol purple (BCP) was used as a pH indicator. The standard curve was prepared by adding                

different amounts of HCl 1M to M9 without carbon, and measuring pH with an electronic pH-meter. pH                 

of the samples was interpolated on the standard curve as described in (Yao and Byrne 2001) . 
  

Fermentation profile assignment 

We assigned each Family to a fermentation profile- respirator (R) or fermenter (F) (Table S2) . For                

instance, bacterial genera belonging to the Enterobacteriaceae family are well-known fermenters while            

bacterial species belonging to the genus Pseudomonas are well-known non-fermenters. When counting            

CFUs, R and F were distinguished by platting on chromogenic agar (HiCrome Universal differential              

Medium from Sigma). White colonies were counted as R and blue/purple colonies were counted as F.                

Each isolated strain was platted on chromogenic agar to confirm its R/F assignment. There is a positive                 
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correlation between the R/F ratio obtained by CFU counting and 16S sequencing (slope= 1.51, intercept               

-0.81, R2=0.49; Fig. S17 ). 
  

FBA and constrained-based modeling 

Using genome scale metabolic modeling, we can obtain quantitative predictions of the biomass obtainable from               

glucose fermentation by an E. coli metabolic model (such as iJO1366) as well as the biomass obtainable from                  

consumption of E. coli metabolic by-products by a P. putida metabolic model (such as iJN1463). To predict the                  

amount of E. coli biomass generated, we simulate growth on excess glucose using constrained allocation flux                

balance analysis (CAFBA) (Mori et al. 2016) . We use CAFBA because it includes a proteome-allocation constraint                

that results in the secretion of organic acids such as acetate in aerobic environments. The CAFBA predicted                 

secretions are then used to set the environment for the P. putida model. To predict the amount of P. putida                    

biomass we simulate growth on the constructed environment using Flux Balance Analysis (see Supplementary              

Methods). For the E. coli (iJO1366) and P. putida (iJN1463) metabolic models we obtain a predicted P/E ratio of                   

0.36, which is close to the empirically observed median P/E ratio of 0.3 for our glucose communities ( Fig 1A, 1D,                    

(Goldford et al. 2018) ). This ratio is robust to large (2 fold) changes in the parameter used for CAFBA simulations                    

(Table S1) . To test how the P/E ratio would vary with different Enterobacteriaceae or Pseudomonadaceae               

species, we compiled a library of 59 Enterobacteriaceae and 74 Pseudomonadaceae metabolic models and              

predicted the P/E Ratio for every pair of models (Fig 1D) . The predicted ratios have a median of 0.3 and display a                      

similar bimodal distribution to that observed in our glucose communities. Similar distributions are seen if we                

separately examine each genus of Enterobacteriaceae, or species of Pseudomonas  (Fig S9) . 
  

Sample collection 

A soil sample was collected from a natural site in West Haven (CT, USA) using sterilized spatula, placed                  

into a sterile bottle, and returned to the lab. 10 g of soil sample were then placed into a new sterile                     

bottle and soaked into 100mL of sterile PBS supplemented with 200 µg/mL cycloheximide to inhibit               

eukaryotic growth. The bottle was vortexed and allowed to sit for 48 hours at room temperature. After                 

48h, samples of the supernatant solution containing the ‘source’ soil microbiome were used as inoculum               

for the experiment (see section below) or stored at -80C after mixing with 40% glycerol. 

  

Growth medium and ‘no migration’ experimental setup 

Replicate communities from the same source community were cultured separately in the wells of 96               

deep-well plates (VWR). Each replicate community was initiated by inoculating 4uL from the source              

community into 500uL of M9 minimal media supplemented with glucose 0.2% (i.e., 0.07 C-mol/L) (as in                

(Goldford et al. 2018) ). The communities were grown at 30C under static conditions for 48h. After 48h                 

growth, 4uL from the grown culture was transferred to fresh media. This dilution-growth cycle was               

repeated 18 times. For the first two growth cycles, cycloheximide (200 µg/mL) was added to the media.                 

OD620 was measured at the end of each growth cycle and samples of the grown communities were                 

stored at -80C after mixing with 40% glycerol. 

 

Migration between local communities experiment 

Similar to the treatment without migration, each replicate community was initiated by inoculating 4uL              

from the source community into 500uL of M9 minimal media. At the end of each growth cycle, however,                  

4uL from each well was pooled into a ‘migrant pool community’ and diluted 10000-fold. Each well of the                  
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fresh media was inoculated with 4uL of this migrant pool community in addition to the 4uL from the                  

corresponding replicate community (well) from the previous growth cycle. Thus, each replicate            

community from the 96 deep-well plate represents a local community from the same meta-community              

where the local communities are linked through migration. This migration step was performed for the               

first 12 growth cycles, followed by 6 dilution-growth cycles without migration (normal transfer only).              

OD620 was measured at the end of each growth cycle and culture samples were stored at -80C after                  

mixing with 40% glycerol. 

  

DNA extraction and library preparation 

Samples to be sequenced were centrifuged for 30min at 3500rpm. DNA extraction was performed              

following the DNeasy 96 Blood & Tissue kit protocol for animal tissues (QIAGEN) including the               

pre-treatment step for Gram-positive bacteria. DNA concentration was quantified using the Quan-iT            

PicoGreen dsDNA Assay kit (Molecular Probes, Inc) and normalized to 5ng/uL. 16S rRNA amplicon library               

preparation was conducted using a dual-index paired-end approach (Kozich et al. 2013) and has been               

described in detail in (Goldford et al. 2018) . The PCR reaction products were purified and normalized                

using the SequalPrep PCR cleanup and normalization kit (Invitrogen). 

  

Sequencing and taxonomy assignment 

The community composition profile was based on 16S (V4) rRNA gene sequence analysis, a commonly               

used genetic marker for classifying bacteria as it is highly conserved between different species. The               

samples were sequenced at the Yale Center for Genome Analysis (YCGA) using the Illumina MiSeq               

(2x250 bp paired-end) sequencing platform. Post-sequencing processing of the raw sequences, namely            

demultiplexing and removing the barcodes, indexes and primers, was performed using QIIME (version             

1.9, (Caporaso et al. 2010) ). The generated fastq files for the forward and reverse sequences were                

analysed using the Dada2 pipeline (version 1.6.0) to infer exact sequence variants (ESVs) (Callahan et al.                

2016) . The forward and reverse reads were trimmed at position 240 and 160, respectively, and then                

merged with a minimum overlap of 100bp. All other parameters were set to the Dada2 default values.                 

Chimeras were removed using the “consensus” method in Dada2. The taxonomy of each 16S exact               

sequence variant (ESV) was then assigned using the naïve Bayesian classifier method (Wang et al. 2007)                

and the Silva reference database version 128 (Quast et al. 2013) as described in Dada2. A single strain E.                   

coli (n=10) and a commercial DNA mock community (D6305, Zymo Research, Irvin, CA, USA) (n=12) were                

used as positive controls to correct for spurious detection during amplicon sequencing (Fig. S12).  
  

Species co-occurrence analysis 

Null model analysis of species co-occurrence for our assembled communities were carried out using the               

function cooc_null_model of the EcoSim R package (Gotelli 2000) with metric set to C-score. We first                

constructed a presence-absence matrix with all dominant genera (relative abundance >0.01) as rows             

(except for Kp and Km that were considered as two separate genera) and all replicate communities                

(N=92) as columns. We compared the observed C-score for our communities with the C-scores              

generated from 1000 randomly constructed null assemblages (matrices) using the fixed-equiprobable           

algorithm ( Sim 2). 
 

Isolation of dominant taxa 
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We isolated the four most abundant ESVs, two belonging to the Enterobacteriaceae family, one              

Pseudomonas and one Alcaligenes, and verified their taxonomy by sequencing the full-length 16S rRNA              

gene (GENEWIZ). Taxonomy was assigned using both the Silva database (v1.2.11) and the RDP Naive               

Bayesian rRNA Classifier Version 2.11 (training set 16). The two reference datasets provided equivalent              

taxonomic assignments and confirmed the identity assigned to the 16S V4 rRNA sequences. One of the                

most dominant ESVs belonging to the Enterobacteriaceae family was unidentified at the genus level but               

isolation of that strain followed by Sanger sequencing on the full-length 16S rRNA gene revealed that it                 

belongs to the genus Klebsiella. We therefore assigned that ESV to Klebsiella. The two Klebsiella isolates                

display different morphologies on glucose agarose plates and an indole test (Remel Kovacs Indole              

Reagent, #R21227) revealed that one of the isolates is indole positive while the other isolate is indole                 

negative. Based on this distinction, we decided to refer to the two Klebsiella as Klebsiella positive ( Kp)                 

and Klebsiella negative ( Km). 
 

Mapping isolates to amplicon sequencing data 

To match our isolates from Sanger sequencing (full-length 16S rDNA sequence) to the amplicon              

sequencing data (ESVs) of the communities, we performed a pairwise alignment using the function              

pairwiseAlignment from the R package Biostrings (Pagès et al. 2017) , with alignment type set to ” local".                

For each isolate in a community, we aligned its full-length Sanger sequence with all possible ESVs from                 

the same community and obtained the reported alignment scores. Sanger-ESV alignment with highest             

alignment score was picked. If two Sanger sequences were matched to one ESV, the one with lower                 

alignment score was dropped (19 of 73 isolate Sanger sequences were dropped). In the 54 pairwise                

alignments, the shortest consensus length is 234 base pairs, with 45 full matches, eight one base pair                 

mismatches, and one two base pair mismatches. 

 

Bottom-up invasion experiment 

We performed an invasion experiment between Klebsiella ( Kp) (resident) and Pseudomonas and/or            

Alcaligenes (invaders) either alone (mono-invasion) or together (co-invasion). Prior to the start of the              

invasion experiment, the three strains were grown from frozen glycerol stocks alone into LB-agarose              

plates. For each strain, colonies were re-suspended into 1x M9 (without glucose) and normalized to an                

OD620 of 0.1. The normalized A and P stocks were then serially diluted independently 10-fold four times                 

from 10-1 to 10-4. Note that here we refer to OD620 of 0.1 as the baseline OD (100). For the co-invasion                     

assays, Alcaligenes and Pseudomonas were mixed together for all five A and P dilutions (100 to 10-4)                 

generating 25 different A- P initial density combinations. Competitions were started by mixing 2uL of Kp               

with 2uL of the A:P mixtures (co-invasion) or 2uL of A or P monocultures (monoinvasion) at the 5                  

different dilutions into 500uL of M9 + glucose. In total, 36 invasion scenarios with different initial                

frequencies and densities of A and/or P (25 co-invasions, 10 mono-invasions, and Kp alone) were               

investigated in duplicate, setting the initial position of the population in the phase portrait shown in Fig                 

3. Strains were grown for 48h without shaking at 30C and then diluted 1:125 into fresh medium, and this                   

growth-dilution cycle was repeated for 12 transfers. The relative abundance of each strain was              

estimated by plating (Colony-Forming Units) on LB-agarose plates. 

  

Phase diagram and separatrix 

20 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.984278doi: bioRxiv preprint 

https://paperpile.com/c/AloCOE/2abk
https://doi.org/10.1101/2020.03.09.984278
http://creativecommons.org/licenses/by-nc-nd/4.0/


The phase diagram was obtained by analysis of the outcome of the bottom-up invasion experiment               

described above and shown in Fig. 3 and Fig. S12 . The ‘transition’ region was determined as follow. First,                  

we identified the ‘flickering’ region of the A- P initial frequency space where the outcome either changed                

(e.g. from coexistence (gray) to A dominated state (yellow)) or remained gray at any point during one of                  

the 3 transfers (T3, T8, T12) and in one or both of the 2 replicates analysed. The basin boundary of                    

Alcaligenes was determined by taking, for each initial frequency, the mid-points between the initial              

frequencies inside the basin of attraction of Alcaligenes and inside the ’flickering’ region that are closest                

to the transition line. Similarly, the basin boundary of Pseudomonas was determined by taking, for each                

initial frequency, the mid-points between the initial frequencies inside the basin of attraction of              

Pseudomonas and inside the ’flickering’ region that are closest to the transition line. The separatrix               

shows the midline between the two boundaries. In Fig. 3A, the datapoints where the relative abundance                

is below the detection threshold are arbitrarily set to a value of -4.33. 

 

Acknowledgements  

 
We want to thank Alicia Sanchez-Gorostiaga and Josh Goldford for helpful discussions, and Jackie Folmar               

for assistance with platting. We thank Sven Even Borgos and Juan Nogales for providing us with SBML                 

versions of Pseudomonas genome-scale metabolic models. The funding for this work partly results from              

a Scialog Program sponsored jointly by Research Corporation for Science Advancement and the Gordon              

and Betty Moore Foundation through grants to Yale University (AS). This work was also supported by a                 

young investigator award from the Human Frontier Science Program (RGY0077/2016) and by the             

National Institutes of Health through grant 1R35 GM133467-01 to AS. MRG was additionally supported              

by a Donnelley Postdoctoral Fellowship from the Yale Institute for Biospheric Sciences.  

  

 

References  

Aguirre de Cárcer, Daniel. 2019. “A Conceptual Framework for the Phylogenetically Constrained 
Assembly of Microbial Communities.” Microbiome 7 (1): 142. 

Bairey, Eyal, Eric D. Kelsic, and Roy Kishony. 2016. “High-Order Species Interactions Shape Ecosystem 
Diversity.” Nature Communications 7 (August): 12285. 

Bajic, Djordje, and Alvaro Sanchez. 2020. “The Ecology and Evolution of Microbial Metabolic Strategies.” 
Current Opinion in Biotechnology 62 (April): 123–28. 

Berg, Maureen, Ben Stenuit, Joshua Ho, Andrew Wang, Caitlin Parke, Matthew Knight, Lisa 
Alvarez-Cohen, and Michael Shapira. 2016. “Assembly of the Caenorhabditis Elegans Gut 
Microbiota from Diverse Soil Microbial Environments.” The ISME Journal 10 (8): 1998–2009. 

Billick, I., and T. J. Case. 1994. “Higher Order Interactions in Ecological Communities: What Are They and 
How Can They Be Detected?” Ecology. 
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1939614. 

Burke, Catherine, Peter Steinberg, Doug Rusch, Staffan Kjelleberg, and Torsten Thomas. 2011. “Bacterial 
Community Assembly Based on Functional Genes rather than Species.” Proceedings of the National 
Academy of Sciences of the United States of America 108 (34): 14288–93. 

Callahan, Benjamin J., Paul J. McMurdie, Michael J. Rosen, Andrew W. Han, Amy Jo A. Johnson, and 
Susan P. Holmes. 2016. “DADA2: High-Resolution Sample Inference from Illumina Amplicon Data.” 

21 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.984278doi: bioRxiv preprint 

http://paperpile.com/b/AloCOE/qSsvd
http://paperpile.com/b/AloCOE/qSsvd
http://paperpile.com/b/AloCOE/qSsvd
http://paperpile.com/b/AloCOE/qSsvd
http://paperpile.com/b/AloCOE/82ZH
http://paperpile.com/b/AloCOE/82ZH
http://paperpile.com/b/AloCOE/82ZH
http://paperpile.com/b/AloCOE/82ZH
http://paperpile.com/b/AloCOE/rewr
http://paperpile.com/b/AloCOE/rewr
http://paperpile.com/b/AloCOE/rewr
http://paperpile.com/b/AloCOE/rda1
http://paperpile.com/b/AloCOE/rda1
http://paperpile.com/b/AloCOE/rda1
http://paperpile.com/b/AloCOE/rda1
http://paperpile.com/b/AloCOE/rda1
http://paperpile.com/b/AloCOE/VuDmQ
http://paperpile.com/b/AloCOE/VuDmQ
http://paperpile.com/b/AloCOE/VuDmQ
http://paperpile.com/b/AloCOE/VuDmQ
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/1939614
http://paperpile.com/b/AloCOE/VuDmQ
http://paperpile.com/b/AloCOE/0egx7
http://paperpile.com/b/AloCOE/0egx7
http://paperpile.com/b/AloCOE/0egx7
http://paperpile.com/b/AloCOE/0egx7
http://paperpile.com/b/AloCOE/0egx7
http://paperpile.com/b/AloCOE/LOtF
http://paperpile.com/b/AloCOE/LOtF
https://doi.org/10.1101/2020.03.09.984278
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nature Methods  13 (7): 581–83. 
Caporaso, J. Gregory, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D. Bushman, Elizabeth 

K. Costello, Noah Fierer, et al. 2010. “QIIME Allows Analysis of High-Throughput Community 
Sequencing Data.” Nature Methods 7 (5): 335–36. 

Case, T. J. 1990. “Invasion Resistance Arises in Strongly Interacting Species-Rich Model Competition 
Communities.” Proceedings of the National Academy of Sciences of the United States of America 87 
(24): 9610–14. 

Chase, Jonathan M. 2003. “Community Assembly: When Should History Matter?” Oecologia 136 (4): 
489–98. 

Chen, Andrew, Alvaro Sanchez, Lei Dai, and Jeff Gore. 2014. “Dynamics of a Producer-Freeloader 
Ecosystem on the Brink of Collapse.” Nature Communications 5 (May): 3713. 

Costello, Elizabeth K., Keaton Stagaman, Les Dethlefsen, Brendan J. M. Bohannan, and David A. Relman. 
2012. “The Application of Ecological Theory toward an Understanding of the Human Microbiome.” 
Science 336 (6086): 1255–62. 

Cui, Zhouqi, Regan B. Huntley, Quan Zeng, and Blaire Steven. 2020. “Temporal and Spatial Dynamics in 
the Apple Flower Microbiome in the Presence of the Phytopathogen Erwinia Amylovora.” bioRxiv. 
https://doi.org/ 10.1101/2020.02.19.956078. 

David, Lawrence A., Corinne F. Maurice, Rachel N. Carmody, David B. Gootenberg, Julie E. Button, 
Benjamin E. Wolfe, Alisha V. Ling, et al. 2014. “Diet Rapidly and Reproducibly Alters the Human Gut 
Microbiome.” Nature 505 (7484): 559–63. 

Enke, Tim N., Manoshi S. Datta, Julia Schwartzman, Nathan Cermak, Désirée Schmitz, Julien Barrere, 
Alberto Pascual-García, and Otto X. Cordero. 2019. “Modular Assembly of 
Polysaccharide-Degrading Marine Microbial Communities.” Current Biology: CB 29 (9): 1528–35.e6. 

Fodelianakis, Stilianos, Alexander Lorz, Adriana Valenzuela-Cuevas, Alan Barozzi, Jenny Marie Booth, and 
Daniele Daffonchio. 2019. “Dispersal Homogenizes Communities via Immigration Even at Low Rates 
in a Simplified Synthetic Bacterial Metacommunity.” Nature Communications 10 (1): 1314. 

Fukami, Tadashi. 2015. “Historical Contingency in Community Assembly: Integrating Niches, Species 
Pools, and Priority Effects,” December. https://doi.org/ 10.1146/annurev-ecolsys-110411-160340. 

Goldford, Joshua E., Nanxi Lu, Djordje Bajić, Sylvie Estrela, Mikhail Tikhonov, Alicia Sanchez-Gorostiaga, 
Daniel Segrè, Pankaj Mehta, and Alvaro Sanchez. 2018. “Emergent Simplicity in Microbial 
Community Assembly.” Science 361 (6401): 469–74. 

Gonze, Didier, Leo Lahti, Jeroen Raes, and Karoline Faust. 2017. “Multi-Stability and the Origin of 
Microbial Community Types.” The ISME Journal 11 (10): 2159–66. 

Gotelli, Nicholas J. 2000. “NULL MODEL ANALYSIS OF SPECIES CO-OCCURRENCE PATTERNS.” Ecology. 
https://doi.org/ 10.1890/0012-9658(2000)081[2606:nmaosc]2.0.co;2. 

Goyal, Akshit, Veronika Dubinkina, and Sergei Maslov. 2018. “Multiple Stable States in Microbial 
Communities Explained by the Stable Marriage Problem.” The ISME Journal, July. 
https://doi.org/ 10.1038/s41396-018-0222-x. 

Grilli, Jacopo, György Barabás, Matthew J. Michalska-Smith, and Stefano Allesina. 2017. “Higher-Order 
Interactions Stabilize Dynamics in Competitive Network Models.” Nature 548 (7666): 210–13. 

Grilli, Jacopo, Tim Rogers, and Stefano Allesina. 2016. “Modularity and Stability in Ecological 
Communities.” Nature Communications 7 (June): 12031. 

Guo, Xiaokan, and James Boedicker. 2016. “High-Order Interactions between Species Strongly Influence 
the Activity of Microbial Communities.” Biophysical Journal 110 (3): 143a. 

Kozich, James J., Sarah L. Westcott, Nielson T. Baxter, Sarah K. Highlander, and Patrick D. Schloss. 2013. 
“Development of a Dual-Index Sequencing Strategy and Curation Pipeline for Analyzing Amplicon 
Sequence Data on the MiSeq Illumina Sequencing Platform.” Applied and Environmental 
Microbiology 79 (17): 5112–20. 

22 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.984278doi: bioRxiv preprint 

http://paperpile.com/b/AloCOE/LOtF
http://paperpile.com/b/AloCOE/LOtF
http://paperpile.com/b/AloCOE/ubrw
http://paperpile.com/b/AloCOE/ubrw
http://paperpile.com/b/AloCOE/ubrw
http://paperpile.com/b/AloCOE/ubrw
http://paperpile.com/b/AloCOE/ubrw
http://paperpile.com/b/AloCOE/HQHE
http://paperpile.com/b/AloCOE/HQHE
http://paperpile.com/b/AloCOE/HQHE
http://paperpile.com/b/AloCOE/HQHE
http://paperpile.com/b/AloCOE/HQHE
http://paperpile.com/b/AloCOE/T5Dln
http://paperpile.com/b/AloCOE/T5Dln
http://paperpile.com/b/AloCOE/T5Dln
http://paperpile.com/b/AloCOE/T5Dln
http://paperpile.com/b/AloCOE/TTIM
http://paperpile.com/b/AloCOE/TTIM
http://paperpile.com/b/AloCOE/TTIM
http://paperpile.com/b/AloCOE/TTIM
http://paperpile.com/b/AloCOE/mo4i
http://paperpile.com/b/AloCOE/mo4i
http://paperpile.com/b/AloCOE/mo4i
http://paperpile.com/b/AloCOE/mo4i
http://paperpile.com/b/AloCOE/0xZ8
http://paperpile.com/b/AloCOE/0xZ8
http://paperpile.com/b/AloCOE/0xZ8
http://paperpile.com/b/AloCOE/0xZ8
http://paperpile.com/b/AloCOE/0xZ8
http://dx.doi.org/10.1101/2020.02.19.956078
http://paperpile.com/b/AloCOE/0xZ8
http://paperpile.com/b/AloCOE/ORsyf
http://paperpile.com/b/AloCOE/ORsyf
http://paperpile.com/b/AloCOE/ORsyf
http://paperpile.com/b/AloCOE/ORsyf
http://paperpile.com/b/AloCOE/ORsyf
http://paperpile.com/b/AloCOE/BIoC
http://paperpile.com/b/AloCOE/BIoC
http://paperpile.com/b/AloCOE/BIoC
http://paperpile.com/b/AloCOE/BIoC
http://paperpile.com/b/AloCOE/BIoC
http://paperpile.com/b/AloCOE/3fnkU
http://paperpile.com/b/AloCOE/3fnkU
http://paperpile.com/b/AloCOE/3fnkU
http://paperpile.com/b/AloCOE/3fnkU
http://paperpile.com/b/AloCOE/3fnkU
http://paperpile.com/b/AloCOE/lv4p
http://paperpile.com/b/AloCOE/lv4p
http://dx.doi.org/10.1146/annurev-ecolsys-110411-160340
http://paperpile.com/b/AloCOE/lv4p
http://paperpile.com/b/AloCOE/PD7z6
http://paperpile.com/b/AloCOE/PD7z6
http://paperpile.com/b/AloCOE/PD7z6
http://paperpile.com/b/AloCOE/PD7z6
http://paperpile.com/b/AloCOE/PD7z6
http://paperpile.com/b/AloCOE/nn6I
http://paperpile.com/b/AloCOE/nn6I
http://paperpile.com/b/AloCOE/nn6I
http://paperpile.com/b/AloCOE/nn6I
http://paperpile.com/b/AloCOE/fKnd
http://paperpile.com/b/AloCOE/fKnd
http://paperpile.com/b/AloCOE/fKnd
http://paperpile.com/b/AloCOE/fKnd
http://dx.doi.org/10.1890/0012-9658(2000)081[2606:nmaosc]2.0.co;2
http://paperpile.com/b/AloCOE/fKnd
http://paperpile.com/b/AloCOE/vcJQ
http://paperpile.com/b/AloCOE/vcJQ
http://paperpile.com/b/AloCOE/vcJQ
http://paperpile.com/b/AloCOE/vcJQ
http://paperpile.com/b/AloCOE/vcJQ
http://dx.doi.org/10.1038/s41396-018-0222-x
http://paperpile.com/b/AloCOE/vcJQ
http://paperpile.com/b/AloCOE/MmDW
http://paperpile.com/b/AloCOE/MmDW
http://paperpile.com/b/AloCOE/MmDW
http://paperpile.com/b/AloCOE/MmDW
http://paperpile.com/b/AloCOE/o5jw
http://paperpile.com/b/AloCOE/o5jw
http://paperpile.com/b/AloCOE/o5jw
http://paperpile.com/b/AloCOE/o5jw
http://paperpile.com/b/AloCOE/5imr
http://paperpile.com/b/AloCOE/5imr
http://paperpile.com/b/AloCOE/5imr
http://paperpile.com/b/AloCOE/5imr
http://paperpile.com/b/AloCOE/kluQ
http://paperpile.com/b/AloCOE/kluQ
http://paperpile.com/b/AloCOE/kluQ
http://paperpile.com/b/AloCOE/kluQ
http://paperpile.com/b/AloCOE/kluQ
http://paperpile.com/b/AloCOE/kluQ
https://doi.org/10.1101/2020.03.09.984278
http://creativecommons.org/licenses/by-nc-nd/4.0/


Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, et al. 
2004. “The Metacommunity Concept: A Framework for Multi-Scale Community Ecology.” Ecology 
Letters  7 (7): 601–13. 

Letten, Andrew D., and Daniel B. Stouffer. 2019. “The Mechanistic Basis for Higher-Order Interactions 
and Non-Additivity in Competitive Communities.” Ecology Letters 22 (3): 423–36. 

Leventhal, Gabriel E., Carles Boix, Urs Kuechler, Tim N. Enke, Elzbieta Sliwerska, Christof Holliger, and 
Otto X. Cordero. 2018. “Strain-Level Diversity Drives Alternative Community Types in 
Millimetre-Scale Granular Biofilms.” Nature Microbiology 3 (11): 1295–1303. 

Levine, Jonathan M., Jordi Bascompte, Peter B. Adler, and Stefano Allesina. 2017. “Beyond Pairwise 
Mechanisms of Species Coexistence in Complex Communities.” Nature 546 (7656): 56–64. 

Ley, Ruth E., Daniel A. Peterson, and Jeffrey I. Gordon. 2006. “Ecological and Evolutionary Forces Shaping 
Microbial Diversity in the Human Intestine.” Cell 124 (4): 837–48. 

Louca, Stilianos, Saulo M. S. Jacques, Aliny P. F. Pires, Juliana S. Leal, Diane S. Srivastava, Laura Wegener 
Parfrey, Vinicius F. Farjalla, and Michael Doebeli. 2016. “High Taxonomic Variability despite Stable 
Functional Structure across Microbial Communities.” Nature Ecology & Evolution 1 (1): 15. 

Louca, Stilianos, Laura Wegener Parfrey, and Michael Doebeli. 2016. “Decoupling Function and 
Taxonomy in the Global Ocean Microbiome.” Science 353 (6305): 1272–77. 

Louca, Stilianos, Martin F. Polz, Florent Mazel, Michaeline B. N. Albright, Julie A. Huber, Mary I. 
O’Connor, Martin Ackermann, et al. 2018. “Function and Functional Redundancy in Microbial 
Systems.” Nature Ecology & Evolution, April. https://doi.org/ 10.1038/s41559-018-0519-1. 

Lu, Nanxi, Alicia Sanchez-Gorostiaga, Mikhail Tikhonov, and Alvaro Sanchez. 2018. “Cohesiveness in 
Microbial Community Coalescence.” bioRxiv. https://doi.org/ 10.1101/282723. 

Mickalide, Harry, and Seppe Kuehn. 2019. “Higher-Order Interaction between Species Inhibits Bacterial 
Invasion of a Phototroph-Predator Microbial Community.” Cell Systems 9 (6): 521–33.e10. 

Mori, Matteo, Terence Hwa, Olivier C. Martin, Andrea De Martino, and Enzo Marinari. 2016. 
“Constrained Allocation Flux Balance Analysis.” PLoS Computational Biology 12 (6): e1004913. 

Nelson, Michaeline B., Adam C. Martiny, and Jennifer B. H. Martiny. 2016. “Global Biogeography of 
Microbial Nitrogen-Cycling Traits in Soil.” Proceedings of the National Academy of Sciences. 
https://doi.org/ 10.1073/pnas.1601070113. 

Nogales, Juan, Joshua Mueller, Steinn Gudmundsson, Francisco J. Canalejo, Estrella Duque, Jonathan 
Monk, Adam M. Feist, Juan Luis Ramos, Wei Niu, and Bernhard O. Palsson. 2020. “High-Quality 
Genome-Scale Metabolic Modelling of Pseudomonas Putida Highlights Its Broad Metabolic 
Capabilities.” Environmental Microbiology 22 (1): 255–69. 

Orth, Jeffrey D., Tom M. Conrad, Jessica Na, Joshua A. Lerman, Hojung Nam, Adam M. Feist, and 
Bernhard Ø. Palsson. 2011. “A Comprehensive Genome-Scale Reconstruction of Escherichia Coli 
Metabolism--2011.” Molecular Systems Biology 7 (October): 535. 

Pacciani-Mori, Leonardo, Samir Suweis, Amos Maritan, and Andrea Giometto. 2019. “Adaptive 
Metabolic Strategies in Consumer-Resource Models.” bioRxiv. https://doi.org/ 10.1101/385724. 

Pagès, H., P. Aboyoun, R. Gentleman, and S. DebRoy. 2017. “Biostrings: Efficient Manipulation of 
Biological Strings.” R Package Version 2 (0). 

Quast, Christian, Elmar Pruesse, Pelin Yilmaz, Jan Gerken, Timmy Schweer, Pablo Yarza, Jörg Peplies, and 
Frank Oliver Glöckner. 2013. “The SILVA Ribosomal RNA Gene Database Project: Improved Data 
Processing and Web-Based Tools.” Nucleic Acids Research 41 (Database issue): D590–96. 

Rojo, Fernando. 2010. “Carbon Catabolite Repression in Pseudomonas : Optimizing Metabolic Versatility 
and Interactions with the Environment.” FEMS Microbiology Reviews 34 (5): 658–84. 

Rosenzweig, R. F., R. R. Sharp, D. S. Treves, and J. Adams. 1994. “Microbial Evolution in a Simple 
Unstructured Environment: Genetic Differentiation in Escherichia Coli.” Genetics 137 (4): 903–17. 

Rozen, Daniel E., and Richard E. Lenski. 2000. “Long-Term Experimental Evolution in Escherichia Coli. VIII. 

23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.984278doi: bioRxiv preprint 

http://paperpile.com/b/AloCOE/JHax
http://paperpile.com/b/AloCOE/JHax
http://paperpile.com/b/AloCOE/JHax
http://paperpile.com/b/AloCOE/JHax
http://paperpile.com/b/AloCOE/JHax
http://paperpile.com/b/AloCOE/GJfO
http://paperpile.com/b/AloCOE/GJfO
http://paperpile.com/b/AloCOE/GJfO
http://paperpile.com/b/AloCOE/GJfO
http://paperpile.com/b/AloCOE/z9cu
http://paperpile.com/b/AloCOE/z9cu
http://paperpile.com/b/AloCOE/z9cu
http://paperpile.com/b/AloCOE/z9cu
http://paperpile.com/b/AloCOE/z9cu
http://paperpile.com/b/AloCOE/8gpW
http://paperpile.com/b/AloCOE/8gpW
http://paperpile.com/b/AloCOE/8gpW
http://paperpile.com/b/AloCOE/8gpW
http://paperpile.com/b/AloCOE/FJPv
http://paperpile.com/b/AloCOE/FJPv
http://paperpile.com/b/AloCOE/FJPv
http://paperpile.com/b/AloCOE/FJPv
http://paperpile.com/b/AloCOE/eA6DM
http://paperpile.com/b/AloCOE/eA6DM
http://paperpile.com/b/AloCOE/eA6DM
http://paperpile.com/b/AloCOE/eA6DM
http://paperpile.com/b/AloCOE/eA6DM
http://paperpile.com/b/AloCOE/OBdwR
http://paperpile.com/b/AloCOE/OBdwR
http://paperpile.com/b/AloCOE/OBdwR
http://paperpile.com/b/AloCOE/OBdwR
http://paperpile.com/b/AloCOE/wYRKw
http://paperpile.com/b/AloCOE/wYRKw
http://paperpile.com/b/AloCOE/wYRKw
http://paperpile.com/b/AloCOE/wYRKw
http://paperpile.com/b/AloCOE/wYRKw
http://dx.doi.org/10.1038/s41559-018-0519-1
http://paperpile.com/b/AloCOE/wYRKw
http://paperpile.com/b/AloCOE/vHFw
http://paperpile.com/b/AloCOE/vHFw
http://paperpile.com/b/AloCOE/vHFw
http://paperpile.com/b/AloCOE/vHFw
http://dx.doi.org/10.1101/282723
http://paperpile.com/b/AloCOE/vHFw
http://paperpile.com/b/AloCOE/5Pll
http://paperpile.com/b/AloCOE/5Pll
http://paperpile.com/b/AloCOE/5Pll
http://paperpile.com/b/AloCOE/5Pll
http://paperpile.com/b/AloCOE/qshlI
http://paperpile.com/b/AloCOE/qshlI
http://paperpile.com/b/AloCOE/qshlI
http://paperpile.com/b/AloCOE/qshlI
http://paperpile.com/b/AloCOE/yb1o
http://paperpile.com/b/AloCOE/yb1o
http://paperpile.com/b/AloCOE/yb1o
http://paperpile.com/b/AloCOE/yb1o
http://paperpile.com/b/AloCOE/yb1o
http://dx.doi.org/10.1073/pnas.1601070113
http://paperpile.com/b/AloCOE/yb1o
http://paperpile.com/b/AloCOE/bDuE
http://paperpile.com/b/AloCOE/bDuE
http://paperpile.com/b/AloCOE/bDuE
http://paperpile.com/b/AloCOE/bDuE
http://paperpile.com/b/AloCOE/bDuE
http://paperpile.com/b/AloCOE/bDuE
http://paperpile.com/b/AloCOE/vtiJ
http://paperpile.com/b/AloCOE/vtiJ
http://paperpile.com/b/AloCOE/vtiJ
http://paperpile.com/b/AloCOE/vtiJ
http://paperpile.com/b/AloCOE/vtiJ
http://paperpile.com/b/AloCOE/fqmT
http://paperpile.com/b/AloCOE/fqmT
http://paperpile.com/b/AloCOE/fqmT
http://paperpile.com/b/AloCOE/fqmT
http://dx.doi.org/10.1101/385724
http://paperpile.com/b/AloCOE/fqmT
http://paperpile.com/b/AloCOE/2abk
http://paperpile.com/b/AloCOE/2abk
http://paperpile.com/b/AloCOE/2abk
http://paperpile.com/b/AloCOE/2abk
http://paperpile.com/b/AloCOE/1U2Q
http://paperpile.com/b/AloCOE/1U2Q
http://paperpile.com/b/AloCOE/1U2Q
http://paperpile.com/b/AloCOE/1U2Q
http://paperpile.com/b/AloCOE/1U2Q
http://paperpile.com/b/AloCOE/vSKS
http://paperpile.com/b/AloCOE/vSKS
http://paperpile.com/b/AloCOE/vSKS
http://paperpile.com/b/AloCOE/vSKS
http://paperpile.com/b/AloCOE/1AFC
http://paperpile.com/b/AloCOE/1AFC
http://paperpile.com/b/AloCOE/1AFC
http://paperpile.com/b/AloCOE/1AFC
http://paperpile.com/b/AloCOE/9nnh
https://doi.org/10.1101/2020.03.09.984278
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dynamics of a Balanced Polymorphism.” The American Naturalist 155 (1): 24–35. 
Sanchez, Alvaro. 2019. “Defining Higher-Order Interactions in Synthetic Ecology: Lessons from Physics 

and Quantitative Genetics.” Cell Systems 9 (6): 519–20. 
Sanchez-Gorostiaga, Alicia, Djordje Bajić, Melisa L. Osborne, Juan F. Poyatos, and Alvaro Sanchez. 2019. 

“High-Order Interactions Distort the Functional Landscape of Microbial Consortia.” PLoS Biology 17 
(12): e3000550. 

Senay, Yitbarek, Guittar John, Sarah A. Knutie, and C. Brandon Ogbunugafor. 2019. “Deconstructing 
Higher-Order Interactions in the Microbiota: A Theoretical Examination.” bioRxiv. 
https://doi.org/ 10.1101/647156. 

Shaw, Liam P., Hassan Bassam, Chris P. Barnes, A. Sarah Walker, Nigel Klein, and Francois Balloux. 2019. 
“Modelling Microbiome Recovery after Antibiotics Using a Stability Landscape Framework.” The 
ISME Journal 13 (7): 1845–56. 

Stegen, James C., Xueju Lin, Jim K. Fredrickson, Xingyuan Chen, David W. Kennedy, Christopher J. 
Murray, Mark L. Rockhold, and Allan Konopka. 2013. “Quantifying Community Assembly Processes 
and Identifying Features That Impose Them.” The ISME Journal 7 (11): 2069–79. 

Tekin, Elif, Pamela J. Yeh, and Van M. Savage. 2018. “General Form for Interaction Measures and 
Framework for Deriving Higher-Order Emergent Effects.” Frontiers in Ecology and Evolution 6: 166. 

Treves, D. S., S. Manning, and J. Adams. 1998. “Repeated Evolution of an Acetate-Crossfeeding 
Polymorphism in Long-Term Populations of Escherichia Coli.” Molecular Biology and Evolution 15 
(7): 789–97. 

Tringe, Susannah Green, Christian von Mering, Arthur Kobayashi, Asaf A. Salamov, Kevin Chen, Hwai W. 
Chang, Mircea Podar, et al. 2005. “Comparative Metagenomics of Microbial Communities.” Science 
308 (5721): 554–57. 

Turnbaugh, Peter J., Vanessa K. Ridaura, Jeremiah J. Faith, Federico E. Rey, Rob Knight, and Jeffrey I. 
Gordon. 2009. “The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in 
Humanized Gnotobiotic Mice.” Science Translational Medicine 1 (6): 6ra14. 

Turner, Paul E., Valeria Souza, and Richard E. Lenski. 1996. “Tests of Ecological Mechanisms Promoting 
the Stable Coexistence of Two Bacterial Genotypes.” Ecology 77 (7): 2119–29. 

Vellend, Mark. 2010. “Conceptual Synthesis in Community Ecology.” The Quarterly Review of Biology 85 
(2): 183–206. 

Vivijs, Bram, Leticia U. Haberbeck, Victor Baiye Mfortaw Mbong, Kristel Bernaerts, Annemie H. Geeraerd, 
Abram Aertsen, and Chris W. Michiels. 2015. “Formate Hydrogen Lyase Mediates Stationary-Phase 
Deacidification and Increases Survival during Sugar Fermentation in Acetoin-Producing 
Enterobacteria.” Frontiers in Microbiology 6 (February): 150. 

Wang, Qiong, George M. Garrity, James M. Tiedje, and James R. Cole. 2007. “Naive Bayesian Classifier 
for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy.” Applied and 
Environmental Microbiology 73 (16): 5261–67. 

Yao, W., and R. H. Byrne. 2001. “Spectrophotometric Determination of Freshwater pH Using 
Bromocresol Purple and Phenol Red.” Environmental Science & Technology 35 (6): 1197–1201. 

 

24 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.984278doi: bioRxiv preprint 

http://paperpile.com/b/AloCOE/9nnh
http://paperpile.com/b/AloCOE/9nnh
http://paperpile.com/b/AloCOE/9nnh
http://paperpile.com/b/AloCOE/K3y1
http://paperpile.com/b/AloCOE/K3y1
http://paperpile.com/b/AloCOE/K3y1
http://paperpile.com/b/AloCOE/K3y1
http://paperpile.com/b/AloCOE/s95hD
http://paperpile.com/b/AloCOE/s95hD
http://paperpile.com/b/AloCOE/s95hD
http://paperpile.com/b/AloCOE/s95hD
http://paperpile.com/b/AloCOE/s95hD
http://paperpile.com/b/AloCOE/klDb
http://paperpile.com/b/AloCOE/klDb
http://paperpile.com/b/AloCOE/klDb
http://paperpile.com/b/AloCOE/klDb
http://paperpile.com/b/AloCOE/klDb
http://dx.doi.org/10.1101/647156
http://paperpile.com/b/AloCOE/klDb
http://paperpile.com/b/AloCOE/qnQTp
http://paperpile.com/b/AloCOE/qnQTp
http://paperpile.com/b/AloCOE/qnQTp
http://paperpile.com/b/AloCOE/qnQTp
http://paperpile.com/b/AloCOE/qnQTp
http://paperpile.com/b/AloCOE/yAnQ
http://paperpile.com/b/AloCOE/yAnQ
http://paperpile.com/b/AloCOE/yAnQ
http://paperpile.com/b/AloCOE/yAnQ
http://paperpile.com/b/AloCOE/yAnQ
http://paperpile.com/b/AloCOE/dcmA
http://paperpile.com/b/AloCOE/dcmA
http://paperpile.com/b/AloCOE/dcmA
http://paperpile.com/b/AloCOE/dcmA
http://paperpile.com/b/AloCOE/9dHi
http://paperpile.com/b/AloCOE/9dHi
http://paperpile.com/b/AloCOE/9dHi
http://paperpile.com/b/AloCOE/9dHi
http://paperpile.com/b/AloCOE/9dHi
http://paperpile.com/b/AloCOE/vJlaT
http://paperpile.com/b/AloCOE/vJlaT
http://paperpile.com/b/AloCOE/vJlaT
http://paperpile.com/b/AloCOE/vJlaT
http://paperpile.com/b/AloCOE/vJlaT
http://paperpile.com/b/AloCOE/GHSI8
http://paperpile.com/b/AloCOE/GHSI8
http://paperpile.com/b/AloCOE/GHSI8
http://paperpile.com/b/AloCOE/GHSI8
http://paperpile.com/b/AloCOE/GHSI8
http://paperpile.com/b/AloCOE/WNLW
http://paperpile.com/b/AloCOE/WNLW
http://paperpile.com/b/AloCOE/WNLW
http://paperpile.com/b/AloCOE/WNLW
http://paperpile.com/b/AloCOE/aewLX
http://paperpile.com/b/AloCOE/aewLX
http://paperpile.com/b/AloCOE/aewLX
http://paperpile.com/b/AloCOE/aewLX
http://paperpile.com/b/AloCOE/mVZ5
http://paperpile.com/b/AloCOE/mVZ5
http://paperpile.com/b/AloCOE/mVZ5
http://paperpile.com/b/AloCOE/mVZ5
http://paperpile.com/b/AloCOE/mVZ5
http://paperpile.com/b/AloCOE/mVZ5
http://paperpile.com/b/AloCOE/XfRL
http://paperpile.com/b/AloCOE/XfRL
http://paperpile.com/b/AloCOE/XfRL
http://paperpile.com/b/AloCOE/XfRL
http://paperpile.com/b/AloCOE/XfRL
http://paperpile.com/b/AloCOE/RKEqt
http://paperpile.com/b/AloCOE/RKEqt
http://paperpile.com/b/AloCOE/RKEqt
http://paperpile.com/b/AloCOE/RKEqt
https://doi.org/10.1101/2020.03.09.984278
http://creativecommons.org/licenses/by-nc-nd/4.0/

