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ABSTRACT 
 
Data from observational studies have suggested an involvement of abnormal glycaemic regulation in 
the pathophysiology of psychiatric illness. This may be an attractive target for clinical intervention 
as glycaemia can be modulated by both lifestyle factors and pharmacological agents. However, 
observational studies are inherently confounded, and therefore causal relationships cannot be reliably 
established. We employed genetic variants rigorously associated with three glycaemic traits (fasting 
glucose, fasting insulin, and glycated haemoglobin) as instrumental variables in a two-sample 
Mendelian randomisation analysis to investigate the causal effect of these measures on the risk for 
eight psychiatric disorders. A significant protective effect of a unit increase in fasting insulin levels 
was observed for anorexia nervosa after the application of multiple testing correction (OR = 0.48 
[95% CI: 0.33-0.71] – inverse-variance weighted estimate. The relationship between fasting insulin 
and anorexia nervosa was supported by a suite of sensitivity analyses, with no statistical evidence of 
instrument heterogeneity or horizontal pleiotropy. Further investigation is required to explore the 
relationship between insulin levels and anorexia. 
 
INTRODUCTION 
 
Psychiatric disorders are complex phenotypes aetiologically influenced by a range of environmental 
(1, 2) and genetic factors (3-7). Currently, psychiatric disorders are treated with a combination of 
medication (8, 9) and psychotherapy approaches (10). Often these interventions address the 
symptoms of the disease without targeting the underlying mechanisms of action, and thus, managing 
psychiatric disorders remains difficult for many patients (11, 12). To address this, we need to better 
understand the risk factors and underlying pathophysiology of these conditions such that novel 
intervention strategies can be implemented. 
 
There has been increasing interest in the relationship between glycaemic regulation and psychiatric 
illness. Dysglycaemia has well characterised systemic effects, however, its importance in the brain is 
often underappreciated. Insulin has been implicated in many neurological processes including 
synaptic plasticity and cognition (13-15),  whilst neurons are dependent on glucose as their major 
energy source (16). A disproportionately high burden of comorbid type 2 diabetes has been observed 
in several psychiatric disorders, including: schizophrenia (17), bipolar disorder (17, 18), major 
depressive disorder (17), autism spectrum disorder (19), and Tourette’s syndrome (20). In addition, 
glycaemic abnormalities have been observed through direct serum measurement, including an 
association of elevated glycated haemoglobin with attention deficit hyperactive disorder (21), insulin 
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resistance with psychotic experiences (22), and increased insulin sensitivity in anorexia (23). 
Lifestyle factors and metabolic consequences of antipsychotic medication, such as weight gain (24, 
25), likely contribute to these associations. However, data from treatment naïve, first episode 
psychosis patients provides evidence of glycaemic dysregulation in these disorders beyond what is 
directly attributable to medication effects and lifestyle (22, 26, 27). This relationship is further 
supported by genetic studies. For instance, linkage disequilibrium score regression (LDSC) has 
demonstrated a negative genetic correlation between anorexia and both fasting inulin and glucose as 
indexed by common genomic variation (28). Polygenic risk score for schizophrenia has also been 
associated with insulin resistance (29), whilst there is evidence of shared genome-wide association 
study (GWAS) association signals for schizophrenia and type 2 diabetes which display statistical 
colocalisation (30). Given the importance of glycaemic regulation in the brain and the direct 
significance of insulin signalling, these data suggest that dysglycaemia may be involved in the 
pathogenesis of psychiatric disorders. This could have implications for clinical monitoring and 
precision medicine as this system can be modulated through direct pharmacological intervention and 
lifestyle alterations. 
 
The literature supporting the relationship between glycaemic traits and psychiatric disorders is largely 
composed of observational studies, preventing direct causal inferences. Randomised controlled trials 
(RCT) are viewed as an effective method to overcome this, however they are expensive and difficult 
to conduct with large sample sizes. An alternative method for inferring causal relationships between 
traits is Mendelian randomisation (MR), which is an analytical method to determine the causal effect 
of an exposure on an outcome by comparing the association of genetic instrumental variables (IV) 
with the outcome, relative to the IV effect on the exposure (31). Genetic variants which are rigorously 
associated with the exposure – discovered through GWAS – are selected as IVs, which in turn serve 
as proxies for the exposure. Two-sample MR is particularly advantageous as only GWAS summary 
statistics are required for the exposure and outcome traits of interest. Mendel’s principle of 
independent assortment and random segregation underpin that these IVs will be randomized, thus 
their random distribution in the population emulates the random distribution of an exposure for 
individuals in a RCT (32, 33).  In the present study, we have applied this approach to probe the causal 
effects of glycaemic traits on the risk for psychiatric disorders and observed a significant protective 
effect of increased fasting insulin levels on the risk of anorexia nervosa. 
 
 
MATERIALS AND METHODS 
 
Selection of genetic instrumental variables 
Instrumental variables (IVs) for Mendelian randomisation are genetic variants associated with a 
particular effect size for a trait. There are three main assumptions which underlie the use of these 
instrumental variables (34-36): 
 
IV1: the variant is rigorously associated with the exposure; 
IV2: the variant is independent of all confounders of the exposure-outcome relationship (“exclusion-
restriction assumption”); and 
IV3: the variant is associated with the outcome only by acting through the exposure (independent 
conditional on the exposure and confounders). 
 
 
IV1 is the only assumption which can be directly quantified (37); thus, we implement models 
(described below) to evaluate evidence for violations of these core assumptions. Specifically, 
pleiotropy, wherein a variant is associated with multiple phenotypes, may invalidate an IV if said 
pleiotropy constitutes an alternate causal pathway between the variant and the outcome (horizontal 
pleiotropy) (38). 
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We chose three core glycaemic traits to use as exposures in this study for which well-powered GWAS 
data were available: fasting insulin, fasting glucose, and glycated haemoglobin (HbA1c). IVs were 
genome-wide significant SNPs (P < 5 x 10-8, such that IV1 is satisfied) from the largest GWAS 
available for each trait (39, 40). Fasting insulin (FI) and fasting glucose (FG) data were obtained from 
the same meta-analysis of non-diabetic individuals of European ancestry (FI: N = 108,557, unit of 
effect = ln pmol/L; FG: N = 133,310, unit of effect = mmol/L). FI GWAS data was originally obtained 
from serum samples. FI results were additionally adjusted for body mass index (BMI) due to the 
complex relationship between insulin and weight gain (41-43). FG data was obtained from either 
plasma or from whole blood and corrected to plasma levels (39). IVs for HbA1c were obtained from 
the European subset of a GWAS meta-analysis (N = 123,665, unit of effect = % HbA1c). Genome-
wide significant SNPs were further categorised in this study as those acting through glycaemic 
pathways and those acting through erythrocytic pathways via annotation with GWAS catalog 
associations as described in Wheeler et al. (40). We chose to utilise the full set of significant SNPs 
as IVs, as well as the subset of the lead SNPs specifically annotated as glycaemic, to reduce potential 
horizontal pleiotropy (gHbAlc). The F statistic was calculated using equation one where R2 is the 
variance in the outcome explained by each SNP, k is the number of viable IVs and N is the sample 
size (Table 1), demonstrating all IVs were sufficiently strong.   
 

𝐹 = 	
𝑅%(𝑁 − 𝑘 − 1)
(1 − 𝑅%)𝑘	 			[1] 

 
Hereafter, we refer to four exposures, as opposed to three, as there are two IV sets used for HbA1c, 
all SNPs and SNPs annotated as glycaemic (gHbA1c). IVs for all four exposures (FI, FG, HbA1c, 
and gHbA1c) were clumped to remove variants in linkage disequilibrium (r2 < 0.001) upon 
importation into the TwoSampleMR (version 0.4.25) R package (44) (R v3.6.1).  
 
 
Table 1: Instrumental variables selected for each glycaemic exposure.  

Exposure Number of 
IVs 

Variance 
explained 

F statistic Sample size Units 

Fasting blood 
insulin 

14 0.64% 47.59 108557 ln pmol/L 

Fasting 
glucose 

37 3.44% 128.57 133310 mmol/L 

Fasting 
glycated 
haemoglobin 
(all) 

38 2.42% 77.32 123665 % glycated 
haemoglobin 

Fasting 
glycated 
haemoglobin 
(glycaemic) 

15 0.85% 67.50 123665 % glycated 
haemoglobin 

The number of IVs, variance explained, F statistic, sample size and units are described for the glycaemic 
exposures. The F statistic was calculated from the number of IVs, variance explained and sample size as 
described previously (45). The variance explained was only from the IVs utilised in this study (44). 
 
 
 
Outcome data 
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We selected eight psychiatric disorders for which GWAS data were available as the outcome traits in 
this study: anorexia nervosa (AN), attention-deficit hyperactivity disorder (ADHD), autism spectrum 
disorder (ASD), bipolar disorder (BIP), major depressive disorder (MDD), obsessive compulsive 
disorder (OCD), schizophrenia (SZ), and Tourette’s syndrome (TS). Outcome data was restricted to 
GWAS summary statistics from subjects of European ancestry in accordance with the exposure data, 
with the respective sample sizes as follows – AN: N = 72515 (46), ADHD: N = 53293 [European 
subset] (47), ASD: N = 46351 (48), BIP: N = 51710 (49), MDD: N = 1730005 [23andMe cohorts 
were not included in public release of the summary statistics from the psychiatric genomics 
consortium] (50), OCD: N = 9725 (51), SZ: N = 105318 (52), and TS: N = 14307 (53). 
 
Two sample Mendelian randomisation approach 
An overview of the analysis workflow for this study is presented in Figure 1. Firstly, we investigated 
the effect of fasting insulin, fasting glucose, HbA1c, and gHbA1c on the risk for each of the eight 
psychiatric disorders described above using an inverse-variance weighted effect model with 
multiplicative random effects (IVW) (54). The positive strand was inferred where possible otherwise 
palindromic SNPs were removed (55). We performed composite approaches and sensitivity analyses 
for exposure-outcome relationships which were significant after Bonferroni correction for the four 
exposures tested for eight outcomes [P < 1.56 x 10-3, 𝛼 = 0.05/(8x4)]. 
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Figure 1:  Workflow of the Mendelian randomisation analyses in this study. The effect 
of each glycaemic exposure on the eight psychiatric outcomes was tested using an inverse-
variance weighted effect model. Significant exposure-outcome causal estimates from this 
model, which survived multiple-testing correction using the Bonferroni method, were then 
retained for further sensitivity and pleiotropy analyses. Thereafter, evidence of horizontal 
pleiotropy and outlier instrumental variables was assessed. A directionality test was then 
implemented to ensure the exposure-outcome direction of causal effect was correct (as 
opposed to an outcome-exposure effect). IVW was then performed after the removal of 
potential confounding SNPs associated with both BMI and insulin. 

 
 
The IVW model is limited such that even one invalid IV can bias the overall estimate. Therefore, for 
estimates with corrected significance we sought to overcome this limitation by using the outlier-
robust MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) method (54, 56). MR-PRESSO is 
underpinned by the residual sum of squares (RSS), which serves as a heterogeneity measure of ratio 
estimates. Specifically, an IVW estimate using the IVs is calculated in a leave-one out fashion; if the 
RSS is decreased significantly relative to a simulated Gaussian distribution of expected RSS, then 
that variant is excluded from the IVW model. Simulations have demonstrated that this methodology 
is best suited to instances when less than half of the IVs exhibit horizontal pleiotropy (56). Two 
additional MR approaches were implemented to better account for potential invalid IVs: a weighted 
median estimate and MR-Egger. The weighted median model takes the median of the ratio estimates 
(as opposed to the mean in the IVW model), such that upweighting (with second order weights (57)) 
is applied to ratio estimates with greater precision (36). An advantage of this approach is that it is 
subject to the ‘majority valid’ assumption, whereby an unbiased causal estimate will still be obtained 
if less than 50% of the model weighting arises from invalid IVs. Secondly, an MR-Egger model was 
constructed (35). This is an adaption of Egger regression wherein the exposure effect is regressed 
against the outcome with an intercept term added to represent the average pleiotropic effect. 
 
 
Sensitivity and pleiotropy analyses 
The key assumption of the MR-Egger model is referred to as Instrument Strength Independent of 
Direct Effect (InSIDE), which assumes that there is no significant correlation between direct IV 
effects on the outcome and genetic association of IVs with the exposure (35, 58). In other words, the 
InSIDE assumption is violated if pleiotropic effects act through a confounder of the exposure-
outcome association. We also tested whether the Egger intercept is significantly different from zero 
as a measure of unbalanced pleiotropy or violation of the InSIDE assumption (59). Furthermore, 
heterogeneity amongst the IV ratio estimates was quantified using Cochran’s Q statistic, given that 
horizontal pleiotropy may be one explanation for significant heterogeneity (44, 60, 61). A global 
pleiotropy test was implemented via the MR-PRESSO framework utilising the expected and observed 
RSS (56). A leave-one-out analysis was then performed to assess whether causal estimates are biased 
by a single IV, which may indicate the presence of outliers, and the sensitivity of the estimate to said 
outliers (44). The MR Steiger directionality test utilizes the phenotypic variance explained by IV 
SNPs, comparing the instruments’ association with the exposure and outcome to determine if there is 
evidence that the assumed direction of causality is correct (62). For binary traits, the trait population 
prevalence was used to calculate variance explained and convert to the liability scale using the lower 
and upper bounds of population prevalence estimates used by the GWAS for consistency (0.9% and 
4% respectively for anorexia) (28, 63, 64). To investigate the significance of BMI-associated SNPs 
(65) on the relationship between outcome and exposure, SNPs associated with both traits were 
removed and the IVW estimate recalculated. All MR analyses were performed using the 
TwoSampleMR v0.4.25 package (44) in R v3.6.1 (66), with the exception of the MR-PRESSO model 
which utilised the MRPRESSO package v1.0. 
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Latent causal variable model to estimate the genetic causality proportion of fasting insulin on 
risk for anorexia nervosa 
Fasting insulin and anorexia nervosa display significant genome-wide genomic correlation as indexed 
by LDSC (46). This correlation may confound MR, and thus, we implemented a latent causal variable 
model (LCV) as an additional approach to investigate whether this correlation represents a causal 
relationship (67). Briefly, the LCV method assumes that a latent variable mediates the genetic 
correlation between two traits and tests whether this latent variable displays stronger correlation with 
either of the traits. Using fourth moments of the bivariate effect size distributions of all SNPs in both 
GWAS datasets and their LD structure, a posterior mean estimate of the genetic causality proportion 
(GCP) is derived which quantifies how much of the genomic architecture of one trait effects another. 
GCP values range from -1 to 1, with more positive values indicating greater partial genetic causality 
of trait one on two, and vice versa for more negative values. Full genetic causality is described as 
GCP = 1 or -1, which is rare in practice (67), with partial genetic causality occurring within these 
limits. A two-sided t test was used to assess whether the estimated GCP was significantly different 
from zero. The RunLCV.R and MomentFunctions.R scripts were leveraged to perform these analyses 
(https://github.com/lukejoconnor/LCV/tree/master/R). The fasting insulin summary statistics 
produced by Scott et al. were used as MR IVs followed up ~ 66,000 SNPs from previous GWAS. 
Whilst this is the largest sample size GWAS for this trait, the limited number of SNPs made it 
unsuitable for a genome-wide approach. Therefore, we utilised the smaller sample size GWAS 
summary statistics from Manning et al. (N = 33823) with more SNPs available as it was the basis for 
the LDSC previously performed between anorexia and fasting insulin (46, 68). Both summary 
statistics were cleaned and formatted in a standardised way (‘munged’) prior to analysis with the LCV 
model (67, 69, 70). 
 
 
 
RESULTS 
 
Selected IVs explained approximately 3.44%, 0.64%, 2.42%, 0.85% of exposure variance of fasting 
glucose, insulin, and glycated haemoglobin levels (HbA1c, gHbA1c) respectively. IVs were selected 
by clumping for LD to remove correlated variants and excluding palindromes for which the correct 
strand could not be inferred. An IVW model was used to estimate the casual effect of the four 
exposures on the eight psychiatric disorder outcomes. We revealed a significant protective effect of 
a unit increase [ln(pmol/L)] in fasting insulin levels on anorexia after the applying Bonferroni 
correction [OR=0.48, 95% CI:0.33-0.71, P=2.27 x 10-4] (Figure 2,3). In addition, the relationship 
between fasting insulin and MDD was nominally significant (uncorrected P < 0.05) [OR=0.85, 95% 
CI: 0.74-0.97, P=0.015], whilst all other causal estimates were not significant (Supplementary table 
1). 
 
 
We subjected the causal estimate of fasting insulin on the risk for anorexia to a suite of sensitivity 
analyses to assess the rigor of our derived IVW estimate and evidence of violations of core MR 
assumptions. No IVs were detected as outliers using the MR-PRESSO approach. Furthermore, the 
weighted median model supported the putative protective effect of increasing fasting insulin on risk 
for anorexia derived from the IVW (OR= 0.40, 95% CI:0.21-0.77, P = 6.3 x 10-3). The MR-Egger 
model was not significant; however, the causal estimate was in the same direction of effect as the 
other two approaches, albeit with an extremely wide confidence interval (OR = 0.68, 95% CI: 0.05-
9.10). It should be noted that the MR-Egger method typically has notably less power than other 
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approaches, particularly when fewer IVs are used (35).There was no compelling evidence for 
unbalanced pleiotropy amongst IVs utilised in this construct: heterogeneity between IV effects was 
not significant (Q = 8.24, df = 13, P = 0.827), the intercept of the MR egger regression did not 
significantly differ from zero (intercept = -5.7 x 10-3, P = 0.795), and the MR PRESSO test of global 
pleiotropy was also not significant. A leave-one out recalculation of the causal estimate did not 
indicate that a single IV or subset of IVs were unduly influencing the model (Figure 3). Given the 
putative bidirectional relationship between anorexia and body mass index (BMI) (46), we identified 
five fasting insulin IVs which were also associated with BMI at genome wide significance (P < 5 x 
10-8) and recalculated the IVW estimate with these instruments removed. The effect size observed in 
this reduced IVW model was not greatly attenuated (OR = 0.51 [95% CI: 0.32 – 0.83], P = 7.03 x 10-

3), suggesting that the relationship between insulin and anorexia is not unduly biased by horizontal 
pleiotropy through IV effects on BMI. 
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Figure 2: Effects of genetic instrumental variables on fasting insulin and anorexia 
nervosa. Points represent individual single nucleotide polymorphisms (SNPs) with grey lines 
indicating 95% confidence intervals. The legend denotes which MR test was used; inverse 
variance weighted (multiplicative random effects), MR egger or the weighted median. 

 
The MR models implemented in this study assume that the IVs impact the exposure, which in turn 
affects the outcome – however, in practice it is feasible that the orientation of the causal pathway is 
incorrect and that the outcome influences the exposure through the genetic instruments. To address 
this, we performed a Steiger directionality test. The variance in anorexia risk explained by the IVs 
was converted to the liability scale using the upper (4%) and lower (0.9%) bound of estimated 
population prevalence for anorexia (28), which supported the hypothesis that the effect of fasting 
insulin on risk for anorexia is the correct causal direction (P = 1.35 x 10-27 , P = 1.36 x 10-27 

respectively for the upper and lower bound prevalence estimates) (Supplementary table 5). Given the 
genetic correlation between fasting insulin and anorexia, we used a latent causal variable model to 
determine the proportion of trait one (fasting insulin) that genetically causes trait two (anorexia), 
which was quantified as the mean posterior estimate of the genetic causality proportion (GCP). The 
sign of the mean posterior GCP estimate suggests that fasting insulin is partially genetically causal 
for anorexia; however, this was not significantly different from zero, likely due to the large standard 
error  (𝐺𝐶𝑃	2= 0.39, SE = 0.33, P=0.26]. Whilst the LCV GCP estimate was not significant, there was 
strong evidence that the causal direction was not anorexia to insulin [H0: GCP= -1, P=3.6 x 10-104], 
in accordance with the Steiger directionality test results. 
 
 

 
 

Figure 3: Increasing fasting insulin is associated with a protective effect on risk for 
anorexia nervosa. A: Effect size estimates for the glycaemic exposures on anorexia nervosa. 
The inverse variance weighted effect model was utilised to calculate point estimates for each 
exposure as visualised on the Forest plot, with 95% confidence intervals shown. FI BMI 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.09.984690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.09.984690
http://creativecommons.org/licenses/by-nc/4.0/


 9 

adj=fasting insulin BMI adjusted, FG= fasting glucose, all HbA1c= all glycated haemoglobin 
SNPs, gHbA1c= glycaemic annotated glycated haemoglobin SNPs. B: Leave one out 
recalculation of the effect of fasting insulin on anorexia nervosa. The vertical axis shows 
which SNP was removed and the causal estimate recalculated; ‘All’ indicates the effect 
estimate when no SNPs were removed. 

DISCUSSION 
 
Glycaemic regulation is involved with many physiological processes, however, its role in 
neurological function has motivated investigation of this system in psychiatric disorders. Using a 
Mendelian randomisation approach which leverages genetic IVs as proxies for three glycaemic traits, 
we uncovered evidence of a protective effect of increasing fasting insulin on the risk for anorexia 
nervosa. No significant evidence of a causal effect of any of the glycaemic traits was found testing 
seven other psychiatric phenotypes. Notably, we did not replicate a previous study which 
demonstrated a risk increasing effect of fasting insulin on schizophrenia, however, we utilised a larger 
schizophrenia GWAS and different IVs (71). Although previous analysis has shown a relationship 
between first episode psychosis and glycaemic dysregulation, and elevated rates of dysglycaemia in 
psychiatry, this was not supported by our MR model. Our inability to detect this relationship may be 
limited by the strength of the instrumental variables used, or the observed effects from previous 
analysis may be due to variables with shared genetic liability which influence glycaemic homeostasis, 
such as inflammation or BMI. The future availability of more data with the power to explain a larger 
portion of the variance in the exposures and outcomes, could yet yield more evidence of a causal 
relationship between dysglycaemia and other psychiatric disorders. The negative relationship 
between increasing insulin and anorexia risk derived in this study supports the negative genetic 
correlation observed between the two GWAS studies by LDSC (28). The association between a 
natural log transformed pmol/L increase in fasting insulin and odds of anorexia yielded an odds ratio 
of 0.48 [95% CI: 0.33-0.71]. To contextualize this unit of effect, we considered fasting insulin values 
from a large cohort of 10.5 to 11 year old female normal weight European participants (72). The 
bottom decile of this cohort was estimated to have a 30.97 pmol/L fasting insulin concentration, a 
unit increase to which would correspond to approximately 84.19 pmol/L, roughly equivalent to the 
90th percentile of the cohort (~ 86.91). This estimate derived from the IVW model was supported by 
sensitivity analyses which did not indicate any statistical evidence of unbalanced pleiotropy which 
would confound the IVs we selected.  
 
The role of insulin signalling and glucose metabolism in the brain, and its interplay with the periphery, 
is complex, necessitating further research to specifically understand how fasting insulin could exert 
a protective effect on anorexia.  The relationship between circulating insulin and weight gain may 
contribute to this protective effect given peripheral insulin and insulin therapy in the context of 
diabetes is associated with weight gain (73, 74). There are a number of mechanisms by which this is 
proposed to be mediated, including the stimulatory effect of insulin on fatty acid storage and cell 
growth and a reduction in glycosuria (75-77). Furthermore, Mendelian randomisation analyses have 
supported a positive relationship between insulin and weight gain (78, 79). Given the nature of the 
clinical presentation of anorexia, the effect of insulin on hunger and satiety is particularly pertinent. 
Increased insulin levels in the body results in higher levels of hunger and an increased pleasantness 
associated with sweet taste (80). This corresponds to data from anorexia cohorts which report that 
individuals with anorexia have a reduced appreciation of sweet tastes (81). In contrast, insulin is 
postulated to have an anorexigenic effect in the brain (82, 83), partly through its inhibition of the 
orexigenic agouti-related peptide (AgRP) and neuropeptide Y (NPY) neurons (84, 85). This may 
contradict the putative risk-decreasing effect of insulin on anorexia we observed in our study, 
however, there is evidence of a significant sexual dimorphism in this phenomenon. An example of 
this has been demonstrated using intranasal insulin administration, in which hunger was decreased 
only in male participants, conversely, there were positive cognitive enhancing effects seen only in 
women (86). This sexual dimorphism in the effect of insulin signalling is further supported by rodent 
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data (87). As anorexia is significantly more prevalent in females (88) it is possible that the sexual 
dimorphic effect of insulin on hunger signalling is contributing to this discrepancy in prevalence.  
 
 
There are a number of future directions which arise from these data. Only Europeans were used in 
this analysis warranting its extension to trans-ethnic cohorts. As the negative relationship between 
insulin and anorexia is also evidenced using a genomic correlation approach, there is a need to 
investigate shared genes and biological pathways which may explain this association. This would be 
particularly valuable to interpret the causal estimate we uncovered, as individuals who develop 
anorexia may be genetically predisposed to have altered glycaemic homeostasis. Furthermore, a well-
powered, sex stratified GWAS of anorexia could be utilised to formally test whether the impact of 
insulin on anorexia risk displays sexual dimorphism. As diagnosis of anorexia is highly skewed 
towards females, it will likely be a continued challenge to genotype larger male cohorts which 
approach the sample sizes available for female participants. It is also important to consider the 
inherent limitations of MR in light of our data. We did not uncover any statistical evidence of 
unbalanced pleiotropy amongst the fasting insulin IVs; however, this cannot be definitively proven 
and future replication in larger studies is paramount.  Moreover, whilst the IVs selected for insulin 
were appropriately strong as quantified by an F-statistic, they still only explain a fraction of the 
phenotypic variance in fasting insulin. Despite these caveats and other methodological challenges 
associated with causal inference using IVs, we believe the insulin – anorexia model to be reliable. In 
conclusion, we uncovered evidence of a protective effect of fasting insulin on the risk of anorexia 
nervosa, with further work now required to further understand the biological mechanisms 
underpinning this relationship.  
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