1	Contributions of the four essential entry glycoproteins to HSV-1 tropism and the selection
2	of entry routes.
3	
4	Adam T. Hilterbrand ^a , Raecliffe E. Daly ^{a,b} , Ekaterina E. Heldwein ^{a,b,#}
5	
6	^a Department of Molecular Biology and Microbiology, Tufts University School of Medicine,
7	Boston, MA 02111
8	^b Graduate Program in Cellular, Molecular, and Developmental Biology, Tufts University School
9	of Medicine, Boston, MA 02111
10	
11	Running Head: The use of pseudotypes for investigating HSV-1 entry
12	
13	Keywords: Herpes simplex viruses, HSV-1, cell entry, endocytosis, inhibitors, pseudotypes
14	
15	#Address correspondence to Ekaterina E. Heldwein, katya.heldwein@tufts.edu
16	

17 Abstract

18 Herpes Simplex viruses (HSV-1 and HSV-2) encode up to 16 envelope proteins, four of which 19 are essential for entry. However, whether these four proteins alone are sufficient to dictate the 20 broad cellular tropism of HSV-1 and the selection of different cell-type dependent entry routes is 21 unknown. To begin addressing this, we previously pseudotyped VSV, lacking its native 22 glycoprotein G, with only the four essential entry glycoproteins of HSV-1: gB, gH, gL, and gD. 23 This novel VSV Δ G-BHLD pseudotype recapitulated several important features of HSV-1 entry: 24 the requirement for gB, gH, gL, gD, a cellular receptor, and sensitivity to anti-gB and anti-gH/gL 25 neutralizing antibodies. However, due to the use of a single cell type in that study, the tropism of 26 the VSV Δ G-BHLD pseudotype was not investigated. Here, we show that the cellular tropism of 27 the pseudotype is severely limited compared to wild-type HSV-1 and that its entry pathways 28 differ from the native HSV-1 entry pathways. To test the hypothesis that other HSV-1 envelope 29 proteins may contribute to HSV-1 tropism, we generated a derivative pseudotype containing the 30 HSV-1 glycoprotein gC (VSV Δ G-BHLD-gC) and observed a gC-dependent increase in entry 31 efficiency in two cell types. We propose that the pseudotyping platform developed here has the 32 potential to uncover functional contributions of HSV-1 envelope proteins to entry in a gain-of-33 function manner.

34

35 Importance

Herpes simplex viruses (HSV-1 and HSV-2) contain up to 16 different proteins in their
envelopes. Four of these, glycoproteins gB, gD, gH, and gL, are termed essential with regard to
entry whereas the rest are typically referred to as non-essential based on the entry phenotypes of
the respective single genetic deletions. However, the single-gene deletion approach, which relies

on robust loss-of-function phenotypes, may be confounded by functional redundancies among
the many HSV-1 envelope proteins. We have developed a pseudotyping platform, in which the
essential four entry glycoproteins are isolated from the rest, which can be added back
individually for systematic gain-of-function entry experiments. Here, we show the utility of this
platform for dissecting the contributions of HSV envelope proteins, both the essential four and
the remaining dozen (using gC as an example), to HSV entry.

46

47 Introduction

48 Herpes simplex viruses (HSV-1 and HSV-2) are enveloped viruses that infect much of the 49 world's population for life and cause diseases ranging from painful oral or genital lesions to 50 serious conditions such as encephalitis and blindness (1, 2). These viruses enter target cells by 51 different, cell-type specific routes. For example, they enter neurons by direct fusion of their 52 envelopes with the plasma membrane (3) and epithelial cells by endocytosis followed by fusion 53 with an endosomal membrane (4, 5). While these entry pathways have been broadly described, 54 the underlying mechanisms and the contributions of individual viral and cellular proteins to the 55 selection of these entry routes remain incomplete.

HSV-1 entry by any route requires the coordinated efforts of four glycoproteins – gB, gH,
gL, and gD, which are essential for entry (6-8) – and a cellular gD receptor (3, 9, 10). gB, gH,
gL, and gD are also sufficient for cell-cell fusion of uninfected receptor-bearing cells expressing
these four glycoproteins (11, 12). The prevalent model, which was largely developed through
studies using the cell-cell fusion system, posits that these four viral glycoproteins orchestrate
membrane fusion through a sequential activation process termed a cascade (13, 14). First, gD
binds one of its three cellular receptors, nectin-1, herpesvirus entry mediator (HVEM), or 3-O-

63	sulfated heparan sulfate (3-OS-HS) (15). Binding of gD to its receptor triggers a conformational
64	change within gD (14, 16, 17) that enables it to bind (18) and activate the gH/gL heterodimer
65	(13, 19, 20). In turn, gH/gL presumably interacts with and activates gB (13, 21, 22), the fusogen
66	that mediates the merger of the HSV lipid envelope with the cellular membrane (9, 10, 14, 23).
67	In addition to the essential four glycoproteins, HSV-1 encodes up to 12 more envelope
68	proteins, eight glycosylated and four unglycosylated (24-26). Current models of HSV-1 entry do
69	not account for the potential effects of these envelope proteins. Therefore, being able to
70	functionally uncouple the four essential glycoproteins – gB, gH, gL, and gD – from the rest is
71	fundamental for elucidating their contributions to HSV-1 cellular tropism and entry pathways.
72	One powerful system that enables such studies is the vesicular stomatitis virus (VSV)-
73	based pseudotype, in which the native VSV glycoprotein, G, is replaced with a viral envelope
74	protein of interest (27). The VSV pseudotyping system allows one to define entry mechanisms
75	conferred by a specific viral glycoprotein by effectively isolating it from its native viral context.
76	This platform has been used to elucidate the entry mechanisms of many viruses, notably those
77	that require BSL-3 or BSL-4 containment facilities, including SARS-CoV (28, 29), SARS-CoV-
78	2 (30), Ebola virus (31), Lassa virus (32, 33), Lujo virus (34), Hantavirus (35), Rift Valley fever
79	virus (36), or those that are difficult to culture, such as Hepatitis C virus (37) or Japanese
80	encephalitis virus (38). The use of VSV pseudotypes has been particularly useful in identifying
81	cellular receptors of many viruses (31-36).
82	To determine whether the essential four HSV-1 glycoproteins were sufficient for entry,
83	we previously generated VSV lacking its native glycoprotein G and pseudotyped with HSV-1
84	gB, gH, gL, and gD through <i>trans</i> -complementation (VSV Δ G-BHLD) (39). The VSV Δ G-BHLD
85	pseudotype efficiently entered C10 cells (B78 murine melanoma cells expressing HSV-1

86	receptor nectin-1), and its entry – like that of HSV-1 – required gB, gH, gL, gD, and a gD
87	receptor, and was inhibited by anti-gB and anti-gH/gL neutralizing antibodies (39). However,
88	this study left unknown whether the VSV Δ G-BHLD pseudotype could enter any HSV-1
89	susceptible cell types or utilize native entry routes. Therefore, we sought to directly compare the
90	cellular tropism and the entry pathways of the VSV Δ G-BHLD pseudotype and HSV-1 to
91	determine the extent by which these were conferred solely by the four essential glycoproteins.
92	Here, we expanded our studies to six additional HSV-1 susceptible cell lines. VSV Δ G-
93	BHLD was only able to enter, with reasonable efficiency, two out of the seven HSV-1-
94	susceptible cell lines. Additionally, the VSV Δ G-BHLD pseudotype entered both cell lines by
95	routes different from those used by HSV-1. Differences in tropism and routes of entry could not
96	be accounted for by either cell-surface receptor levels, their nature (nectin-1 vs. HVEM), the
97	relative amounts of gB, gH, gL, and gD, or virion morphology (VSV vs. HSV-1). Therefore, we
98	conclude that the four essential HSV-1 entry glycoproteins are insufficient for entry into any
99	HSV-1-susceptible cell and do not specify native entry routes. Our results raise an intriguing
100	possibility that HSV-1-specific components outside the essential four glycoproteins influence
101	HSV-1 entry. Indeed, when the HSV-1 glycoprotein gC was included in the VSV Δ G-BHLD
102	pseudotype (VSVAG-BHLD-gC), entry efficiency into CHO-HVEM and HaCaT cells increased,
103	suggesting a cell-type dependent gain-of-function conferred by gC. Therefore, we hypothesize
104	that the so-called non-essential HSV-1 envelope proteins, which are missing from the VSV Δ G-
105	BHLD pseudotype, are important in specifying both HSV-1 tropism and its routes of cell entry.
106	

Results

108	VSVAG-BHLD pseudotypes enter a limited repertoire of HSV-1 susceptible cells. To determine
109	the tropism of the VSV Δ G-BHLD pseudotype, we selected seven HSV-1-susceptible cell lines
110	(Fig. 1). The cell lines B78H1 and CHO-K1, which lack HSV-1 receptors served as negative
111	controls. HSV-1 efficiently infected all seven receptor-bearing cells but not the receptor-negative
112	cells (Fig. 1A). The VSV Δ G-BHLD pseudotype efficiently infected C10 cells (Fig. 1B),
113	consistent with our previous report (39). The VSV Δ G-BHLD pseudotype also infected CHO-
114	HVEM, CHO-nectin-1, and HaCaT cells, albeit with lower efficiency (Fig. 1B). Although
115	VSVAG-BHLD entry into CHO-HVEM and CHO-nectin-1 cells was relatively inefficient, it was
116	clearly receptor-dependent (Fig. 1B). However, no measurable VSV Δ G-BHLD entry was
117	observed in HeLa, Vero, or SH-SY5Y cells (Fig. 1B) even at MOI of 10 (Fig. S1A).
118	Two additional VSV pseudotypes were used as controls. VSV Δ G-G is VSV Δ G
119	pseudotyped in trans with native VSV glycoprotein G (39) . VSV Δ G-PIV5 is VSV Δ G
120	pseudotyped with entry glycoproteins HN and F from parainfluenza virus 5 (PIV5) (40). Both
121	controls infected all 9 tested cell lines, with varying efficiency (Figs. S1B and C), suggesting the
122	limited tropism of VSV Δ G-BHLD could not be attributed to VSV morphology alone.
123	
124	Cell-surface receptor levels do not correlate with differences in VSV Δ G-BHLD cellular
125	tropism. We first asked whether differences in cell surface levels of HSV-1 receptors could
126	account for VSVAG-BHLD entry efficiency. Levels of HSV-1 gD receptors nectin-1 and HVEM
127	vary across cell lines, and susceptibility to HSV-1 infection generally correlates with surface
128	receptor levels (41). Surface levels of nectin-1 and HVEM were measured in all 9 cell lines by
129	flow cytometry (Figs. 1C and D). As expected, neither receptor was detected on the receptor-

130	negative cell lines B78H1 and CHO-K1 (Figs. 1C and D). C10 and HaCaT cells had the highest
131	levels of nectin-1, whereas intermediate levels of nectin-1 were detected on CHO-nectin-1,
132	HeLa, Vero and SH-SY5Y cells (Fig. 1C). CHO-HVEM cells had high levels of HVEM but no
133	detectable nectin-1 on their surface (Fig. 1D). In addition to nectin-1, we also detected HVEM on
134	the surface of HaCaT and Vero cells (Fig. 1D), but the low amounts of HVEM suggested that
135	nectin-1 likely functions as the primary receptor in these cells. Surprisingly, while both C10 and
136	HaCaT cells expressed high levels of nectin-1, the VSV Δ G-BHLD pseudotype efficiently
137	entered only C10 cells. These results suggest that surface receptor levels alone do not explain the
138	varying entry efficiencies of the VSV Δ G-BHLD pseudotype into the tested cell lines.
139	
140	Differences in tropism of VSV Δ G-BHLD and HSV-1 do not correlate with the relative
141	gB:gH:gL:gD ratios. HSV-1 and VSV acquire their envelopes from different sources: Trans
142	Golgi Network (TGN) or endosomes for HSV-1 (42, 43) vs. the plasma membrane (PM) for
143	VSV (27). Different envelope origins could affect the gB:gH:gL:gD ratios on viral particles and,
144	possibly, influence entry efficiency. To test this hypothesis, purified HSV-1 and VSV Δ G-BHLD
145	particles were analyzed for gB, gH, gL, and gD content by western blot (Fig. 1E), and relative
146	gB:gH:gL:gD ratios were determined by densitometry. In each virus, levels of gH, gL, and gD
147	were normalized to their respective gB levels. We found that the gB:gH:gL:gD ratios in HSV-1
148	(1:0.47:0.05:1.36) and VSVAG-BHLD (1:0.57:0.12:1.31) virions were similar (Fig. 1F) and
149	unlikely to account for the observed differences in tropism.
150	
151	Entry of both VSVAG-BHLD and HSV-1 into C10 and CHO-HVEM cells occurs by

152 *endocytosis.* HSV-1 can enter different cell types by fusion at the plasma membrane (Vero and

153	SH-SY5Y) (5, 44) or by endocytosis (C10, CHO-nectin-1, CHO-HVEM, HeLa, and HaCaT) (3,
154	5, 45, 46). To compare the entry routes of the VSV Δ G-BHLD pseudotype and HSV-1, we chose
155	C10 and CHO-HVEM cells because the VSV Δ G-BHLD pseudotype infected C10 (~50%) or
156	CHO-HVEM (~8%) cells to an appreciable extent and in a receptor-dependent manner (Fig. 1B).
157	We first treated cells with a hypertonic solution of sucrose, a broad inhibitor of endocytic
158	pathways (47, 48). Entry of both HSV-1 and VSV Δ G-BHLD into C10 and CHO-HVEM cells
159	was inhibited by sucrose (Fig. 2A-D), implicating endocytosis. As a control, sucrose also
160	prevented the endocytic uptake of Alexa Fluor 488-labeled transferrin into both C10 and CHO-
161	HVEM cells (Fig. S2E). As expected, sucrose did not inhibit entry of VSVAG-PIV5 into either
162	cell line (Figs. S2B and D) because PIV5 enters by fusion at the plasma membrane (40, 49).
163	VSV entry occurs by endocytosis (50-52), and, accordingly, sucrose blocked entry of VSV Δ G-G
164	into C10 cells (Fig. S2A). Surprisingly, it did not block entry into CHO-HVEM cells (Fig. S2C),
165	suggesting that the inhibitory effect of hypertonic sucrose on VSV-G-dependent entry is cell-
166	type specific.
167	
168	VSVAG-BHLD entry requires dynamin but not clathrin whereas HSV-1 entry requires both.
169	Having established that the VSV Δ G-BHLD pseudotype entered cells by endocytosis, we next
170	sought to identify the entry routes and compare them to those of HSV-1 by using both chemical
171	and genetic means of inhibiting various endocytic uptake pathways.
172	First, we examined the role of clathrin-mediated endocytosis (CME), one of the most
173	well studied endocytic pathways hijacked by viruses for entry (53, 54). CME requires both
174	clathrin, to promote receptor-mediated endocytosis (55), and dynamin, a GTPase that mediates

175 scission of the endocytic vesicle (56). We chose three commonly used dynamin inhibitors:

176	Dynasore, Dyngo-4a, and myristyltrimethylammonium bromide (MiTMAB) (47, 57). For
177	clathrin inhibition, we chose Pitstop-2, which selectively blocks CME by preventing ligand
178	association with the clathrin terminal domain (47). Another CME inhibitor, chlorpromazine,
179	which prevents clathrin association with the plasma membrane (47), was also tested but found to
180	be toxic to both C10 and CHO-HVEM cells. Inhibitory activity of all four compounds was
181	ascertained by their ability to inhibit CME of transferrin (Figs. S3E and F).
182	HSV-1 entry into both C10 and CHO-HVEM cell lines was inhibited by all four
183	inhibitors (Figs. 3A and B) indicating that HSV-1 enters both cell lines by CME. Entry of the
184	VSV Δ G-BHLD pseudotype into C10 and CHO-HVEM cells was sensitive to all dynamin
185	inhibitors (Figs. 3C and D). However, Pitstop-2 did not block VSVAG-BHLD entry (Figs. 3C
186	and D), suggesting that CME was not involved in entry. Collectively, these observations
187	suggested that HSV-1 enters both C10 and CHO-HVEM cells by CME whereas VSV Δ G-BHLD
188	pseudotypes utilize a dynamin-dependent, clathrin-independent entry route. These results were
189	the first indication of possible differences in entry routes of HSV-1 and VSV Δ G-BHLD.
190	Entry of the control VSV Δ G-G pseudotype into C10 cells was blocked by all three
191	dynamin inhibitors and the clathrin inhibitor (Fig. S3A), and its entry into CHO-HVEM cells
192	was blocked by Pitstop-2 (Fig. S3C) and by two of three dynamin inhibitors, Dynasore and
193	Dyngo-4a (Fig. S4C), strongly implicating CME as the entry route (52, 58). VSVAG-PIV5 entry
194	into CHO-HVEM cells was not blocked by any of the four inhibitors (Fig. S3D) while its entry
195	into C10 cells was blocked only by one out of three dynamin inhibitors, Dyngo-4a (Fig. S3C),
196	consistent with the previous report of entry into other cell types by fusion at the plasma
197	membrane (40, 49).

199	Cholesterol is important for entry of both VSVAG-BHLD and HSV-1. Our results suggested
200	that VSV Δ G-BHLD did not use CME for entry into either C10 or CHO-HVEM cells,
201	implicating a clathrin-independent endocytic (CIE) route. Caveolin-dependent endocytosis is a
202	major CIE (59) that is hijacked by viruses such as SV40 or Japanese encephalitis virus (60, 61).
203	Caveolin-1 is cellular protein that, similarly to clathrin, promotes membrane curvature and
204	subsequent endocytosis through the formation of caveolae (62). Caveolin-dependent entry
205	requires plasma membrane cholesterol for proper caveolin-1 association with the membrane (62,
206	63).
207	Previous work has demonstrated that cellular cholesterol was important for HSV-1 entry
208	into C10 cells (64). Similarly, entry of both HSV-1 and VSV Δ G-BHLD into C10 and CHO-
209	HVEM cells decreased when cholesterol was removed from cellular membranes using a
210	cholesterol-depleting agent, methyl- β -cyclodextrin (M β CD) (Figs. 4A-D). Efficiency of
211	cholesterol depletion was confirmed by the reduction of the cholesterol-dependent association of
212	cholera toxin subunit B (CTB) (65) with C10 and CHO-HVEM cells upon M β CD treatment
213	(Fig. S4E). Entry of VSV Δ G-G was insensitive to cholesterol depletion (Figs. S4A and C), as
214	reported for other cell types (66, 67). In the case of VSV Δ G-PIV5, only entry into C10 cells was
215	cholesterol-dependent (Fig. S4B) whereas the entry into CHO-HVEM cells was not (Fig. S4D),
216	suggesting that cholesterol is required for VSV Δ G-PIV5 entry in a cell-type dependent manner.
217	Entry of neither HSV-1 nor VSV Δ G-BHLD into CHO-HVEM cells was reduced by the
218	knockdown of caveolin-1 (Fig. 4E), similarly to the VSV Δ G-G and VSV Δ G-PIV5 control
219	viruses (Fig. S4F). Successful knockdown was verified by western blot (Fig. 4F). Surprisingly,
220	no caveolin-1 was detected in C10 cells (Fig. 4G). Caveolin-1 was detected in 3T12 cells

(murine fibroblasts), which ruled out species-dependent recognition of murine vs. hamster
caveolin-1, (Fig. 4G). Therefore, C10 cells appear to express no detectable caveolin-1. We
conclude that while cellular cholesterol is important for the entry of both HSV-1 and VSVΔGBHLD, neither virus utilizes caveolin-1-mediated endocytosis for entry into C10 and CHOHVEM cells.

226

227 HSV-1 and VSVAG-BHLD do not enter C10 and CHO-HVEM cells by macropinocytosis, but 228 NHE1 and Rac1 are important for optimal VSVAG-BHLD entry. We next evaluated the 229 potential involvement of macropinocytosis, another CIE commonly used by viruses (68). We 230 selected three known inhibitors of macropinocytosis: cytochalasin D (CytoD), 5-(N-Ethyl-N-231 isopropyl)amiloride (EIPA), and NSC23766 (47). CytoD is a potent inhibitor of actin 232 polymerization that disrupts filamentous actin (47). EIPA blocks macropinocytosis by blocking 233 Na⁺/H⁺ exchange proteins (NHE), which decreases the intracellular pH and inhibits small 234 GTPase function important for macropinocytosis (69). NSC23766 blocks macropinocytosis by 235 inhibiting the activity of the small GTPase Rac1 (70). Inhibitory activity of all three compounds 236 was confirmed by their ability to inhibit macropinocytosis of rhodamine-B-labeled 70-kDa 237 dextran (Fig. S7E).

HSV-1 entry into either C10 or CHO-HVEM cells was not appreciably inhibited by any
of the macropinocytosis inhibitors (Figs. 5A and C). By contrast, VSVΔG-BHLD entry into both
C10 and CHO-HVEM cells was reduced by NSC23766 and, to a lesser extent, EIPA but not by
cytochalasin D (Figs. 5B and D). While the inhibitory effect of NSC23766 and EIPA would
appear to implicate macropinocytosis as the route of VSVΔG-BHLD entry into C10 and CHOHVEM cells, the lack of actin involvement argues against it. This is because assembly of

244	filamentous actin is essential for the formation of membrane ruffles and subsequent uptake
245	during macropinocytosis (71). Actin polymerization is, thus, a major hallmark of
246	macropinocytosis (68). Accordingly, we did not observe any appreciable co-localization of
247	VSV Δ G-BHLD virions with the 70-kDa rhodamine B labeled dextran, a fluid phase uptake
248	marker (Figs. S5 and S6). Collectively, these results suggest that neither VSV Δ G-BHLD nor
249	HSV-1 utilize macropinocytosis for entry into C10 or CHO-HVEM cells. However, NHE and
250	Rac1 facilitate VSVAG-BHLD entry into both cell lines, presumably, independently of their role
251	in macropinocytosis.
252	Although VSV enters cells by CME rather than macropinocytosis, it has been shown to
253	require filamentous actin to achieve full engulfment of the viral particle by the plasma membrane
254	during endocytosis, as observed in BSC-1 cells, an African green monkey epithelial cell line (58,
255	72). Indeed, VSV∆G-G entry into C10 cells was modestly reduced by cytochalasin D and EIPA
256	but not NSC23766 (Fig. S7A) whereas its entry into CHO-HVEM cells was somewhat reduced
257	by EIPA but not cytochalasin D or NSC23766 (Fig. S7C). The apparent lack of actin
258	involvement in VSV Δ G-G entry into CHO-HVEM cells may represent a cell-type specific
259	phenomenon. VSV Δ G-PIV5 entry was not blocked with any of the three inhibitors of
260	macropinocytosis, consistent with fusion at the plasma membrane, and was, in fact, increased in
261	the presence of EIPA in C10 cells (Fig. S7B).
262	
263	HSV-1 and VSVAG-BHLD differ in their requirements for Rab GTPases for entry. Endocytic

263 HSV-1 and VSV2G-BHLD differ in their requirements for Rab GTPases for entry. Endocytic
264 entry by many viruses requires small GTPases known as Rabs. Rab GTPases are important for
265 the formation of endosomal compartments in the cell (73). Different viruses penetrate endocytic
266 membranes at distinct endosomal maturation stages – for example, VSV fuses with membranes

267 of early endosomes whereas influenza A virus fuses with membranes of late endosomes (74) – 268 so, proper formation of these endosomal compartments is essential for viral entry. GTPases Rab5 269 and Rab7 are important for the maturation and formation of early endosomes and late 270 endosomes/multi-vesicular bodies (MVBs), respectively (75). Overexpression of dominant 271 negative (DN) forms of either Rab5 (Rab5DN) or Rab7 (Rab7DN) suppress early and late 272 endosome formation, respectively (76, 77). 273 To identify the endosomal compartment(s) required for HSV-1 or VSV Δ G-BHLD entry, 274 C10 and CHO-HVEM cells were transfected with constructs encoding fluorescently tagged 275 Rab5DN or Rab7DN and then infected. The transfection efficiency was 40-50% in C10 cells and 276 30-40% in CHO-HVEM cells as measured by flow cytometry. To determine entry efficiency by 277 flow cytometry, viral entry was calculated by dividing the percent of infected and transfected 278 cells by the total number of transfected cells. Overexpression of either Rab5DN or Rab7DN had

no significant effect on HSV-1 entry into either cell line (Figs. 6A and E). These results in C10

and CHO-HVEM cells agree with recent work that indicates HSV-1 enters CHO-HVEM cells by

a non-canonical endocytic route, independent of Rab5 or Rab7 (78). VSVAG-BHLD entry into

282 CHO-HVEM cells was also unaffected by either Rab5DN or Rab7DN (Fig. 6G). However,

283 VSVAG-BHLD entry into C10 cells was reduced in the presence of Rab5DN and, to some

extent, Rab7DN (Fig. 6C). We hypothesize that HSV-1 entry into both cell lines and VSVΔG-

285 BHLD entry into CHO-HVEM cells either do not depend on the endosomal maturation or occurs

very early after internalization, prior to the formation of early endosomes. By contrast, VSVΔG-

287 BHLD likely enters C10 cells out of early endosomes. This observation marked the first instance

288 of a difference in VSV Δ G-BHLD entry into C10 vs. CHO-HVEM cells.

289	As expected, entry of VSV Δ G-G into both C10 and CHO-HVEM cells was reduced in
290	the presence of Rab5DN (Figs. S8A and E), in accordance with reports of VSV fusing with
291	membranes of early endosomes (52). VSV Δ G-PIV5 entry into C10 cells was insensitive to
292	Rab5DN or Rab7DN (Fig. S8C). Although VSVAG-PIV5 entry into CHO-HVEM cells was
293	reduced by Rab5DN and Rab7DN in a statistically significant manner, the differences were
294	relatively small (Fig. S8G). This suggested that Rab5DN and Rab7DN have a minimal effect on
295	VSV Δ G-PIV5 entry as expected for a virus that fuses with the plasma membrane.
296	Another small GTPase, ADP-ribosylation factor 6 (Arf6), which is involved in regulating
297	vesicular trafficking (79), regulates the endocytic entry of HIV, Coxsackievirus, and Vaccinia
298	virus (80-82). To probe the role of Arf6 in entry, cells were treated with NAV-2729, which
299	blocks Arf6 interaction with guanine exchange factors (GEFs) thereby preventing its activation
300	(83). HSV-1 entry into both C10 and CHO-HVEM cells was inhibited by NAV-2729 (Figs. 6B
301	and F) whereas VSV Δ G-BHLD entry was not (Figs. 6D and H), which suggests that only HSV-1
302	entry requires Arf6 activity.
303	VSV Δ G-PIV5 entry was not inhibited by NAV-2729 in either C10 or CHO-HVEM cells
304	(Figs. S8D and H). However, VSV Δ G-G entry was inhibited by NAV-2729 in both C10 and
305	CHO-HVEM cells, suggesting that Arf6 could be involved in VSV endocytosis (Figs S8B and
306	F). These results point to a previously unappreciated role of Arf6 in HSV-1 and VSV entry.
307	
308	Entry of the VSV DG-BHLD pseudotype requires endosomal acidification in a cell-dependent
309	manner. To investigate the role of endosomal acidification in entry, we used three common
310	inhibitors, NH ₄ Cl, a weak base; monensin, a carboxylic ionophore; and bafilomycin A1 (BFLA),
311	an endosomal V-ATPase inhibitor. Each inhibitor effectively blocked endosomal acidification as 14

312 evidenced by decrease in Lysotracker fluorescence in inhibitor-treated cells (Fig. S9E). Entry of 313 VSVAG-G, which requires low pH as a trigger for membrane fusion, was sensitive to all three 314 inhibitors in both cell lines (Figs. S9A and C). By contrast, VSV Δ G-PIV5 entry, which occurs by 315 fusion at the plasma membrane, was insensitive to any of the inhibitors (Figs. S9B and D). 316 VSVAG-BHLD entry into C10 cells was inhibited by all three endosomal acidification 317 inhibitors (Fig. 7B) and thus appears to require endosomal acidification. VSV Δ G-BHLD entry 318 into CHO-HVEM cells was inhibited only by one out of three inhibitors, NH₄Cl (Fig. 7D) and 319 likely does not require endosomal acidification. Interestingly, HSV-1 entry into both C10 and 320 CHO-HVEM cells was inhibited by NH₄Cl and monensin but not by BFLA (Figs. 7A and C). 321 We hypothesize that the discrepancy in the inhibitory effects among the three inhibitors could 322 potentially be due to the distinct mechanisms by which BFLA, NH₄Cl, and monensin raise 323 endosomal pH.

324

325 Glycoprotein C (gC) increases entry efficiency into CHO-HVEM and HaCaT cells. The much 326 narrower tropism of VSVAG-BHLD pseudotype relative to HSV-1 suggested that envelope 327 proteins outside the essential four may contribute to HSV-1 tropism and entry efficiency. To test 328 this hypothesis, we generated a VSV-pseudotype containing gC in addition to gB, gH, gL, and 329 gD (VSVAG-BHLD-gC) (Fig. 8A). To generate the VSVAG-BHLD-gC pseudotype at 330 sufficiently high titers suitable for entry experiments, the amount of gB plasmid transfected into 331 HEK293T cells was increased. The corresponding VSV∆G-BHLD-pCAGGS control was 332 generated similarly. For yet unclear reasons, VSVAG-BHLD-pCAGGS entered CHO-nectin-1, 333 CHO-HVEM, and HaCaT cells (Fig. 8B) more efficiently than the VSVAG-BHLD pseudotype

(Fig. 1A). Transfection of higher amounts of the gB plasmid could, in principle, lead to a higher
expression levels of gB in the cells and, consequently, higher incorporation into the virions.
More importantly, however, the VSVΔG-BHLD-gC pseudotype entered CHO-HVEM and
HaCaT cells with a significantly higher efficiency than the VSVΔG-BHLD-pCAGGS
pseudotype (Fig. 8B). These results suggest that gC can increase cell entry efficiency in a cellspecific manner.

340

341 Discussion

342 Decades ago, glycoproteins gB, gH, gL, and gD were established as essential for HSV-1 entry

343 (6-8). These four glycoproteins are also sufficient for cell-cell fusion when co-expressed in

uninfected, receptor-bearing cells (11, 12). While these studies greatly increased our

345 understanding of the HSV-1 entry and fusion mechanisms, it was unclear whether these four

346 glycoproteins were sufficient to specify cellular tropism and the selection of entry routes, partly

347 due to the presence of up to 12 other envelope proteins. To begin addressing this, we generated a

348 VSV-based pseudotype containing HSV-1 gB, gH, gL, and gD. Being devoid of other HSV-1

349 proteins, the VSVAG-BHLD pseudotype provides a bare-bones platform to identify

350 contributions of the core set of four essential glycoproteins to HSV-1 cellular tropism and the

351 selection of entry routes.

Previously, we showed that the VSV Δ G-BHLD pseudotype efficiently entered C10 cells and that its entry recapitulated several important features of HSV-1 entry into susceptible cells: the requirement for gB, gH, gL, gD, and a gD receptor and sensitivity to anti-gB and anti-gH/gL neutralizing antibodies (39). Here, we expanded this study to six additional HSV-1-susceptible cell lines and made two key observations. First, we found that in addition to C10 cells, only

357 CHO-HVEM cells supported appreciable VSVAG-BHLD entry. Second, VSVAG-BHLD and 358 HSV-1 entered these two cell lines by distinct endocytic mechanisms as judged by the 359 differences in sensitivity to various inhibitors (Fig. 9 and Table S1). These results imply that 360 alone, gB, gH, gL, and gD permit entry of VSV pseudotypes only into a limited range of HSV-1-361 susceptible cell types and even then, do not specify native entry routes. On the basis of these 362 results, we hypothesize that other HSV-1 envelope proteins may have underappreciated roles in 363 defining HSV-1 tropism, entry route selection, or both. Although it may be too early to conclude 364 that the incorporation of gC into the VSVAG-BHLD pseudotype has changed its tropism, the 365 increase in cell-specific entry efficiency of the VSVAG-BHLD-gC pseudotype supports the use 366 of the pseudotyping platform developed here for future gain-of-function studies. In these future 367 studies, changes in tropism, entry routes, or both, may be uncovered.

368

369 VSVAG-BHLD pseudotype has a narrower cellular tropism than HSV-1. HSV-1 can infect a 370 wide range of receptor-bearing cell types from different species [reviewed in (25)]. However, the 371 VSVAG-BHLD pseudotype has a narrower tropism, efficiently entering only 2 out of 7 tested 372 cell lines. Puzzlingly, while VSVAG-BHLD entered two engineered rodent cell lines, it exhibited 373 little to no entry into the four human and primate cell lines typically used in HSV-1 studies, even 374 at an MOI of 10. The lack of VSVAG-BHLD entry did not correlate with the HSV-1 entry route 375 into these cells, namely, endocytosis for HeLa and HaCaT (5, 46) vs. plasma membrane for Vero 376 and SH-SY5Y (5, 44). Additionally, there was no clear correlation with the receptor type (nectin-377 1 vs. HVEM) or with the cell type. While any of these factors – species, cell type, receptor, or 378 route of entry – could potentially account for the decreased entry efficiency observed for 379 VSVAG-BHLD pseudotype, none stood out as major infectivity determinants.

380	We do not yet fully understand the reasons for the observed differences in tropism
381	between the VSV Δ G-BHLD pseudotype and HSV-1. At a first glance, the differences in virion
382	structure – bullet-shaped vs. spherical – could be responsible for the phenotypic differences.
383	However, the apparent differences in the entry of VSV Δ G-BHLD, VSV Δ G-G, and VSV Δ G-
384	PIV5 pseudotypes, all of which share the same VSV structure, suggest that virion structure is
385	unlikely to be a major factor responsible for the observed differences in entry of VSV Δ G-BHLD
386	and HSV-1. The gB:gH:gL:gD ratios were also similar between VSV∆G-BHLD and HSV-1. The
387	two viruses could, however, differ in lipid composition because VSV and HSV-1 acquire their
388	envelopes from different sources. VSV buds at the plasma membrane (PM) (27) whereas HSV-1
389	buds at the trans-Golgi network (TGN) (42) or endosome-derived vesicles (43). However,
390	according to recent lipidomics studies, the PM, the TGN, and the endosomes have similar lipid
391	compositions (84). While we acknowledge that even small differences in lipid composition of the
392	envelope could potentially contribute to differences in entry routes, this line of inquiry is beyond
393	the scope of the present study. Moreover, no benchmarks are in place because HSV-1 lipid
394	composition is unknown and cannot be altered on demand.
395	Importantly, VSV pseudotypes have been successfully used to study the entry of
396	enveloped viruses regardless of the envelope origin. In addition to viruses that, like VSV, acquire
397	their envelopes from the plasma membrane (Ebola virus, Lassa virus, Lujo virus) (31-34),
398	viruses that derive their envelopes from the ER (Hepatitis C virus, Japanese encephalitis virus)
399	(37, 38) or the Golgi (Hantavirus, Rift Valley fever virus) (35, 36) have also been studied. These
400	observations suggest that VSV pseudotypes can provide important insights into viral entry

401 mechanisms regardless of envelope origins.

402 This leaves differences in glycoprotein content as a potential reason for the differences in 403 tropism. HSV-1 has up to 12 envelope proteins outside of the core set of four, which are absent 404 from VSVAG-BHLD. We hypothesize that efficient entry by HSV-1 into susceptible cells 405 requires one or more of these other proteins. Indeed, some of them have already been shown to 406 increase HSV-1 entry efficiency. For example, deletion of the N terminus of glycoprotein K (gK) 407 promoted inefficient endocytic entry into Vero cells (85, 86), which normally support entry by 408 fusion at the plasma membrane (44). The N terminus of gK may thus regulate the fusion of the 409 viral envelope with the plasma membrane (85). Another HSV-1 glycoprotein, gC, aids viral 410 attachment by binding heparan sulfate moieties of cell surface proteoglycans (87) and promotes 411 efficient entry into cells that HSV-1 enters by an endocytic route (88). Thus, envelope proteins 412 outside of the core set of four could, indeed, modulate HSV-1 tropism by tuning entry efficiency. 413 In other words, the more efficiently HSV-1 enters a given cell type, the more likely that cell type 414 is to be successfully infected. 415 This hypothesis could be tested by adding the "non-essential" envelope proteins one-by-416 one into the VSVAG-BHLD pseudotype to test for their ability to restore entry into specific cell

417 lines. For example, the incorporation of gK into the VSV Δ G-BHLD pseudotype (VSV Δ G-

418 BHLD-gK) would be expected to increase the entry efficiency into cells that HSV-1 enters by

419 fusion at the plasma membrane (Vero and SH-SY5Y), whereas gC (VSV∆G-BHLD-gC) could

420 increase the entry efficiency into cells that HSV-1 enters by endocytosis (C10, CHO-nectin-1,

421 CHO-HVEM, HeLa and HaCaT). Indeed, we found that incorporating gC into the VSVAG-

422 BHLD pseudotype increased entry efficiency into CHO-HVEM and HaCaT cells. These results

423 are consistent with the reduced entry efficiency of an HSV-1 mutant lacking gC into these cell

- 424 types (88). The mechanism underlying the gC-dependent gain-of-function phenotype of
 425 VSVΔG-BHLD-gC will be explored in future work.
- 426
- 427 VSVAG-BHLD pseudotype is internalized differently from HSV-1. If HSV-1 gB, gH, gL, and 428 gD were sufficient to specify the native routes of HSV-1 entry, then we would have expected the 429 VSVAG-BHLD pseudotype to utilize the same entry routes into C10 and CHO-HVEM as HSV-430 1. However, while entry of both viruses occurred by endocytosis and required dynamin and 431 cellular cholesterol but not caveolin-1 or actin polymerization, further investigation uncovered 432 several notable differences in entry requirements (Fig. 9). 433 The first difference was that HSV-1 entry into C10 or CHO-HVEM cells was inhibited 434 by the clathrin inhibitor Pitstop-2, suggesting that it occurred by CME, whereas VSV∆G-BHLD 435 entry was not. HSV-1 entry inhibition by Pitstop-2 was unexpected because HSV-1 does not 436 appear to utilize clathrin for entry into several cell lines, including HaCaT (89), CHO-nectin-1 437 (90), Vero, HeLaS3, and HeLaCNX cells (91). However, the role of clathrin in entry into C10 or 438 CHO-HVEM cells had not been assessed prior to this study. Moreover, recent work has 439 suggested that HSV-1 entry into a human oligodendrocytic cell line (HOG) depends on clathrin 440 (92). Therefore, HSV-1 may utilize CME in a cell-specific manner. 441 Unlike HSV-1 entry, VSVAG-BHLD entry into C10 or CHO-HVEM cells was not 442 inhibited by Pitstop-2, which implicated CIE, rather than CME, as the entry route. 443 Macropinocytosis is a common CIE used by several viruses, but VSVAG-BHLD entry into both 444 C10 and CHO-HVEM cells was insensitive to the inhibitor of actin polymerization, cytochalasin 445 D, as was HSV-1. Given the essential role of actin polymerization in macropinocytosis (68, 71), 446 these data suggest that macropinocytosis is not the primary entry mechanism for VSVAG-BHLD

447	pseudotype or HSV-1. Accordingly, VSV Δ G-BHLD particles did not colocalize with a fluid
448	phase uptake marker 70 kDa rhodamine-B-labeled dextran to an appreciable extent. The lack of
449	actin involvement in HSV-1 entry was not entirely surprising because its requirement, as deemed
450	by cytochalasin D treatment, varies from cell line to cell line. For example, cytochalasin D
451	treatment blocked entry into CHO-nectin-1 cells (90) but not into primary keratinocytes or
452	HaCaT cells (89).
453	Unexpectedly, VSV Δ G-BHLD entry into both C10 and CHO-HVEM cells was sensitive
454	to two other inhibitors of macropinocytosis, EIPA and NSC23766. If the VSV Δ G-BHLD
455	pseudotype does not enter cells by macropinocytosis, why is its entry sensitive to EIPA and
456	NSC23766? One possibility is that the respective targets of these inhibitors, Na ⁺ /H ⁺ exchangers
457	and Rac1, could contribute to VSV Δ G-BHLD entry independently of their roles in
458	macropinocytosis. For example, EIPA inhibits the function of other cellular GTPases like Rac1
459	and Cdc42 (69) whereas NSC23766 could affect other downstream targets of Rac1 [reviewed in
460	(93)]. Alternatively, EIPA and NSC23766 could inhibit VSVAG-BHLD entry due to their
461	documented pleotropic effects on the cell. EIPA treatment can lead to a gross reorganization of
462	the endosomal network and changes in Na ⁺ and H ⁺ gradients in the cell (94, 95). Similarly, Rac1,
463	the target of NSC23766, is involved in several cellular processes in addition to regulating the
464	actin cytoskeleton (96).
465	
166	VCV AC DIH D manufature and HCV 1 differ in Internation and manufature to Manual

*VSV*Δ*G*-BHLD pseudotype and HSV-1 differ in late-stage entry requirements. Many viruses
467 that enter by endocytosis, for example, influenza A and VSV, rely on Rab-GTPase-dependent
468 endosomal maturation and acidification (74). VSVΔG-BHLD entry into C10 cells required Rab5,
469 an early endosome marker, and endosomal acidification. VSVΔG-BHLD entry into CHO-HVEM

470	cells and HSV-1 entry into both C10 and CHO-HVEM cells did not require either Rab5, or
471	Rab7, or endosomal acidification. Nevertheless, efficient entry of HSV-1 into both C10 and
472	CHO-HVEM cells required Arf6, a small GTPase involved in endosomal trafficking, including
473	CME and CIE (79). How Arf6 promotes HSV-1 entry is yet unclear considering its numerous
474	downstream effectors, including lipid modifying enzymes, proteins involved in endosome
475	trafficking, GTPase activating proteins (GAPs) and guanine exchange factors (GEFs) for other
476	GTPases [reviewed in (79)]. In contrast, Arf6 was dispensable for VSV∆G-BHLD entry.
477	One notable difference between VSV Δ G-BHLD and HSV-1 entry into C10 cells was that
478	$VSV\Delta G$ -BHLD entry required endosomal acidification. Previous work suggested that HSV-1
479	entry into C10 cells did not require endosomal acidification (45). Indeed, we confirmed that
480	HSV-1 entry into C10 cells was insensitive to bafilomycin A1 (BFLA), a well-known inhibitor
481	of endosomal acidification. The requirement for endosomal acidification for VSV Δ G-BHLD
482	entry into C10 cells was unexpected. The membrane fusion itself may not require low pH, in
483	agreement with the observations that cell-cell fusion in the presence of gB, gH, gL, and gD
484	occurs at neutral pH (13). However, concomitant with the endosomal acidification, there are
485	significant changes in endosomal ion concentrations and lipid content (97), which could affect
486	membrane fusion or the fusion pore expansion. Therefore, we hypothesize that during VSV Δ G-
487	BHLD entry, endosomal acidification promotes the establishment of endosomal conditions
488	conducive to fusion and that in HSV-1, envelope proteins outside the essential four may
489	functionally replace endosomal acidification.
490	Surprisingly, HSV-1 entry into both C10 and CHO-HVEM cells was inhibited by two
491	other inhibitors of endosomal acidification, NH4Cl and monensin. Previous work showed that

492 HSV-1 entry into CHO-HVEM cells was sensitive to inhibitors of endosomal acidification

493	ammonium chloride (NH ₄ Cl) and monensin (46, 98), indicating a requirement for endosomal
494	acidification. While NH_4Cl and monensin alkalinize the lumen of endosomes, the mechanisms
495	by which they do so differ dramatically from BFLA. NH ₄ Cl, when dissolved, exists in
496	equilibrium as NH_3 and NH_4^+ . Upon entering acidic environment, e.g., an endosome, NH_3
497	becomes protonated to NH_{4^+} , which leads to an increase in endosomal pH (97). Monensin is a
498	carboxylic ionophore that utilizes an electroneutral exchange of monovalent cations for protons,
499	effectively raising the endosomal pH (97). In parallel to these alkalinizing effects, NH_4Cl and
500	monensin can affect other cellular processes, e.g., vacuolization or organelle swelling. In
501	contrast, BFLA functions by specifically blocking the function of the V_0 domain of V-ATPases
502	thereby blocking the movement of protons across the endosomal membrane (99). At the nM
503	concentrations used, BFLA is very specific and potent in its action. Therefore, given that HSV-1
504	entry into either C10 or CHO-HVEM cells was not blocked by BFLA, we hypothesize that it
505	does not require endosomal acidification. Sensitivity of HSV-1 entry to NH4Cl and monensin
506	could, instead, be due to their ability to interfere with other cellular processes. Both compounds
507	alter ion content of the endosomes and cause vacuolization (97). While the impact of endosome
508	vacuolization on HSV-1 entry has not been investigated, a change in endosomal ion
509	concentration could, potentially, reduce the ability of HSV-1 to fuse with the endosomal
510	membrane. Indeed, binding of HSV-1 to the cell surface releases intracellular Ca ²⁺ stores (100)
511	and increases intracellular levels of Cl ⁻ ions (101), both of which appear important for
512	subsequent entry.
513	Collectively, we hypothesize that HSV-1, which does not require Rab5/7 or endosomal

acidification, fuses with the endosomal membrane prior to maturation of the newly formed vesicle into an early endosome [pH \sim 6.2 (102)] (Fig. 9). This latter scenario is consistent with

516	the rapid nature of HSV-1 entry into both C10 and B78A10 cells (B78 murine melanoma cells
517	expressing HVEM) cells ($t_{1/2}$ = 8-10 minutes) (45). Alternatively, endosomal maturation status
518	does not influence HSV-1 fusion with the membrane of the endocytic vesicle. VSV Δ G-BHLD
519	entry into CHO-HVEM cells, likewise, does not require Rab5/7 or endosomal acidification,
520	implying that VSV Δ G-BHLD may fuse with the endosomal membrane prior to delivery of the
521	endocytic vesicle to an early endosome. By contrast, VSV Δ G-BHLD entry into C10 cells
522	requires both Rab5 and endosomal acidification, which suggests that VSV Δ G-BHLD fuses with
523	membranes of early endosomes. This would suggest that during HSV-1 entry into C10 cells,
524	other envelope proteins may enable fusion prior to endosomal acidification.
525	As this and other studies show, HSV-1 entry is a complex phenomenon that requires at
526	least four glycoproteins (gB, gH, gL, and gD) that operate in the presence of up to 12 additional
527	envelope proteins, understudied with regard to entry. By establishing a platform where the
528	functionality of the four essential HSV-1 entry glycoproteins could be evaluated in isolation, we
529	demonstrated that they are insufficient to define HSV-1 tropism or specify native entry routes.
530	We have expanded the use of this platform by demonstrating that incorporation of an additional
531	envelope protein, gC, can lead to increased entry. Collectively, our work implicates other HSV-1
532	envelope proteins as underappreciated, yet potentially important contributors to HSV-1 tropism,
533	entry route selection, and, ultimately, pathogenesis.
534	

534

535 Materials and Methods

536 *Cells.* HEK293T (gift from John Coffin, Tufts University), Vero (ATCC[®] CCL-81[™]), HeLa

537 (ATCC[®] CCL-2[™]), and HaCaT cells (gift from Jonathan Garlick, Tufts University) were grown

538 in Dulbecco's modified Eagle medium (DMEM; Lonza) containing high glucose, and sodium

539 pyruvate, supplemented with L-glutamine (Caisson Labs), 10% heat inactivated fetal bovine 540 serum (HI-FBS; Life Technologies) and 1X penicillin/streptomycin (pen/strep) solution 541 (Corning). B78H1 cells (a gift from Gary Cohen, University of Pennsylvania) were grown in 542 DMEM containing high glucose, sodium pyruvate, and L-glutamine supplemented with 5% FBS 543 and pen/strep solution (1X). C10 cells (a gift from Gary Cohen, University of Pennsylvania), a 544 clonal B78H1-derivative stably expressing human nectin-1, were grown in DMEM containing 545 high glucose, sodium pyruvate, and L-glutamine supplemented with 5% FBS and pen/strep 546 solution (1X) and maintained under selection for nectin-1 expression with 250 µg/ml of G418 547 (Selleck Chemical) as done previously (39). CHO-K1 cells were grown in Ham's F12 medium 548 containing 10% FBS and pen/strep solution (1X). CHO-HVEM cells, a derivative of CHO-K1 549 cells that stably express human HVEM, were grown in Ham's F12 medium containing 10% FBS 550 and penicillin-streptomycin solution (1X), 250 ug/ml G418 and 150 ug/ml of puromycin (AG 551 Scientific). CHO-K1 and CHO-HVEM cells were a gift from Anthony Nicola (Washington State 552 University). CHO-nectin-1 cells, a derivative of CHO-K1 cells that stably express human nectin-553 1 were grown in Ham's F12 medium containing 10% FBS and penicillin-streptomycin solution 554 (1X), 250 ug/ml G418 and 5 ug/ml of puromycin (AG Scientific). CHO-nectin-1 cells were a gift 555 from Richard Longnecker (Northwestern University). SH-SY5Y cells were maintained in 556 EMEM (Sigma-Aldrich) supplemented with 15% HI-FBS and 1X penicillin/streptomycin. SH-557 SY5Y cells were a kind gift from Stephen Moss (Tufts University). 558 559 Plasmids. Plasmids pPEP98, pPEP99, pPEP100, and pPEP101 carry the full-length HSV-1 560 (strain KOS) genes for gB, gD, gH, and gL, respectively in a pCAGGS vector background.

561 These were kindly gifted by P.G. Spear (Northwestern University). pCMV-VSV-G, which

562	contains the full-length gene for the VSV glycoprotein, G, was a gift from Judith White
563	(University of Virginia). Rab GTPase dominant negative constructs [mCherry-Rab5DN(S34N)
564	and dsRed-Rab7DN] were purchased from Addgene (76, 77). For consistency, the dsRed in
565	dsRed-Rab7DN was replaced with mCherry by amplifying mCherry with the following primers:
566	5'-AGCGCTACCGGTCGCCACCATGGTGAGCAAGGGCGAG-3' (forward) and 5'-
567	AATTCGAAGCTTGAGCTCGAGATCTGAGCTTGTACAGCTCGTCCATGCC-3' (reverse).
568	mCherry was then cloned in frame with Rab7DN using AgeI and HindIII cut sites that were
569	engineered into the forward and reverse primers, respectively. As our HSV-1 reporter strain uses
570	tdTomato, eGFP-RabDN constructs were engineered. The same primers were used to amplify
571	eGFP from pEGFP-N2. The same cloning procedure was used to replace mCherry and dsRed
572	with eGFP in the Rab5DN and Rab7DN constructs, respectively. Isolated clones were sequenced
573	to verify mCherry and eGFP were in frame with the DN Rab genes. HSV-1 gC was amplified
574	from HSV-1 (F strain) BAC DNA (GS6000) with the following primers: 5'-
575	CGAGCTCGGCCACCATGGCCCCGGGGGGGGGG-3' (forward) and 5'-
576	GGGGTACCCCTCACGTAGAATCGAGACCGAGGAGAGGGGTTAGGGATAGGCTTACCC
577	CGCCGATGACGCTGCCG-3' (reverse). The amplicon was digested with SacI and KpnI and
578	cloned into the expression vector, pCAGGS. The C-terminus of gC was tagged with a V5
579	epitope tag for western blot purposes.
580	
581	Antibodies. Nectin-1 antibody [clone CK41 (103)] conjugated to phycoerythrin (PE) was

582 purchased from BD Biosciences. PE-isotype antibody was also purchased from BD Biosciences.

583 HVEM antibody (R140) was a gift from Gary Cohen (University of Pennsylvania). Caveolin-1

584 antibody (clone 4H312) was purchased from Santa Cruz Biotechnology. β-actin antibody

585	conjugated to horse radish peroxidase(sc-47778 HRP) was purchased from Santa Cruz
586	Biotechnology. Anti-V5 antibody (V8137) was purchased from Sigma-Aldrich.
587	
588	<i>Chemical inhibitors</i> . Monensin, methyl- β -cyclodextrin, cytochalasin D, Pitstop-2, and EIPA
589	were purchased from Sigma. Dynasore and MiTMAB were purchased from Calbiochem.
590	Bafilomycin A1 was purchased from ApexBio. Ammonium chloride was purchased from Fisher
591	Scientific. Dyngo-4a was purchased from Abcam. NSC23766 was purchased from Santa Cruz
592	Biotechnology.
593	
594	<i>Viruses.</i> Pseudotyped viral particles (VSV Δ G-BHLD) were generated as described previously
595	(39). Briefly, HEK293T cells (5.5 x 10^6 cells/10 cm dish) were transfected with 2.5 µg each
596	pPEP98, pPEP99, pPEP100, and pPEP101 using polyethyleneimine (PEI at 1 mg/ml) at a 3:1
597	weight ratio of PEI to DNA. VSV Δ G-BHLD-pCAGGS and VSV Δ G-BHLD-gC were generated
598	by transfecting HEK293T cells with 10 μ g pPEP98 and 2.5 μ g each of pPEP99, pPEP100,
599	pPEP101, and pCAGGS or pCAGGS-gC-V5 using GenJet Ver. II (SignaGen Laboratories). In
600	all cases, 24 hours post transfection, cells were infected at an MOI = 3 with VSV Δ G-G (VSV Δ G
601	pseudotyped with VSV G protein) and incubated at 30° C. Forty-eight hours post infection,
602	supernatants were collected, cleared of cell debris (two spins at 1500 x g for 10 minutes each),
603	and stored at -80° C. VSV Δ G-BHLD, VSV Δ G-BHLD-pCAGGS, and VSV Δ G-BHLD-gC titers
604	were determined on C10 cells.
605	HSV-1 (GS3217, F strain) was kindly provided by Gregory Smith (Northwestern
606	University). GS3217 contains a tdTomato reporter gene with a nuclear localization signal under
607	control of a CMV immediate early (IE) promoter (104). HSV-1 was propagated on Vero cells, 27

608	and titers were determined by plaque assay on Vero cells as previously described (105).
609	VSV Δ G-G helper virus was generated by Michael Whitt (University of Tennessee) and kindly
610	provided by Judith White (University of Virginia). New stocks were generated similarly to the
611	VSV Δ G-BHLD pseudotypes, replacing the HSV-1 glycoproteins with pCMV-VSV-G (10 µg per
612	10 cm dish). VSV Δ G-G titers were determined on C10 cells. VSV Δ G-PIV5 was generated and
613	kindly provided by S.P.J. Whelan (Washington University). As VSVAG-PIV5 contains the PIV5
614	HN and F proteins in the VSV genome, no complementation <i>in trans</i> was necessary. VSV Δ G-
615	PIV5 was grown on HEK293T cells and titers were determined on C10 cells. Entry of the VSV
616	pseudotypes (VSV Δ G-BHLD, VSV Δ G-G, VSV Δ G-PIV5, VSV Δ G-BHLD-pCAGGS, and
617	VSVAG-BHLD-gC) was assessed by the expression of the GFP reporter driven by the promoter
618	within the 3' leader sequence of the VSV genome.
619	

620 Entry experiments. 3x10⁵ B78H1, C10, CHO-K1, CHO-nectin-1, CHO-HVEM, HeLa, HaCaT, 621 Vero, or SH-SY5Y cells were seeded in 35 mm dishes. Cells were infected with viruses at a 622 MOI=1. Viruses were incubated with cells at 37° C for one hour. After one hour, viruses that had 623 not entered were inactivated with a low pH wash (40 mM Na citrate, 10 mM KCl, 135 mM 624 NaCl, pH 3.0). Complete growth media was added back to cells and infections were allowed to 625 progress for six hours prior to analysis by flow cytometry. Entry experiments in the presence of 626 inhibitors were performed similarly except that prior to infection, C10 and CHO-HVEM cells 627 were pretreated with the indicated inhibitors for one hour prior to infection. All inhibitors, with 628 the exception of sucrose and methyl- β -cyclodextrin, were present during the infection and the six hours post infection prior to analysis by flow cytometry by measuring tdTomato expression 629

630 (HSV-1 GS3217) or EGFP expression (VSV pseudotypes) to allow sufficient time for viral entry
631 and expression of the fluorescent reporters.

632	Viral entry experiments in the presence of fluorescently labeled Rab GTPase dominant
633	negative constructs were performed and analyzed as follows: cells infected with HSV-1
634	(tdTomato) were transfected with pEGFP-N2 as an empty vector control or eGFP-tagged RabDN
635	constructs whereas cells infected with VSV pseudotypes (eGFP) were transfected with
636	pmCherry-C1 empty vector control or mCherry-tagged RabDN constructs. The data are
637	represented as the percentage of infected and transfected cells out of the total number of
638	transfected cells with either the empty vector control or the RabDN constructs.
639	Prior to flow cytometry analysis, cells were trypsinized, resuspended in media and
640	pelleted at 450 x g for five minutes. Cells were washed with 1X PBS containing 1 mM EDTA (to
641	prevent clumping). Cells were pelleted again at 450 x g for five minutes. Cells were then
642	resuspended in 1X PBS with 1 mM EDTA and transferred to FACS tubes. Flow cytometry was
643	performed on a BD LSR II or FACSCalibur instrument. tdTomato expression (HSV-1 GS3217)
644	or EGFP expression (VSV pseudotypes) were measured as a proxy for viral entry. Data analysis
645	was done using FlowJo software (v. 8.8.7).

646

Analyses of receptor expression by flow cytometry. Nectin-1 was detected on the surface of cells
by staining them with anti-nectin-1 antibody CK41 conjugated to PE (BD Biosciences). HVEM
was detected on the surface of cells using the anti-HVEM polyclonal antibody, R140, a gift from
Gary Cohen (University of Pennsylvania), and a FITC-conjugated anti-rabbit secondary antibody
(ThermoFisher). Briefly, 1x10⁶ cells were plated into 10 cm dishes. The next day, cells were
lifted from the dishes with 1X-PBS containing 5 mM EDTA. Cells were then pelleted,

653	resuspended in 300 μ l FACS buffer (1X-PBS, 2% FBS, 1 mM EDTA), and divided evenly
654	between microfuge tubes for mock, PE-isotype, or PE-anti-nectin-1 treatment. Cells were
655	incubated with 1 μ g of antibody for 30 minutes on ice with agitation every 10 minutes. Similarly,
656	cells were divided for mock, isotype (anti-gB R68 polyclonal antibody), or R140 anti-HVEM
657	treatment. Cells were incubated with 5 μ g of antibody. Mock, isotype, and R140-labeled cells
658	were then incubated with a FITC-conjugated anti-rabbit secondary antibody (ThermoFisher).
659	After 30 minutes, cells were pelleted and washed three times with FACS buffer, re-suspended,
660	then immediately analyzed by flow cytometry (FACSCalibur).
661	
662	Virus purification and densitometry analysis. HSV-1 and VSVAG-BHLD virions were purified
663	and subjected to immunoblot for gB, gH, gL, and gD. Briefly, five T-175 flasks of Vero cells
664	were infected with HSV-1 (MOI 0.01). HSV-1 was crudely purified as previously described
665	(105). HSV-1 particles were then purified over a continuous 15-50% sucrose gradient (106). The
666	purified band of HSV-1 was collected by puncture and aspiration. VSV Δ G-BHLD virions were
667	generated as previously mentioned (see <i>Viruses</i> section of Materials and Methods). VSV Δ G-
668	BHLD particles were then pelleted at 20,000 RPM. VSVAG-BHLD virions were then
669	resuspended and purified over a continuous 15-35% Optiprep gradient [protocol adapted from
670	(107, 108)] and collected by puncture and aspiration. HSV-1 and VSV Δ G-BHLD virions were
671	pelleted at 20,0000 RPM. Western blots for gB, gH, gL, and gD were done using the rabbit
672	polyclonal R68 antibody (gB), the rabbit polyclonal R137 antibody (gH), the mouse monoclonal
673	antibody L1 (gL), and the rabbit polyclonal antibody R7 (gD). Secondary antibodies from LI-
674	COR were used in order to perform densitometry analysis using the Image Studio Lite software

675 (IRDye[®] 680RD goat anti-rabbit and IRDye[®] 800CW goat anti-mouse). Raw densitometry

values for gH, gL, and gD blots were normalized to their respective raw densitometry values forgB and reported as fold-differences to gB.

679	Confocal microscopy. 1x10 ⁵ cells (C10 and CHO-HVEM) were seeded onto 12 mm glass
680	coverslips (Chemglass) in 24 well plates. Prior to labeling cells with specific markers of different
681	endocytosis pathways, cells were pretreated with inhibitors for one hour at 37 °C. Post pre-
682	treatment, cells were chilled to 4 °C for 10-15 minutes and were subsequently incubated with
683	specific endocytic markers: Transferrin-Alexa Fluor 488 (50 µg/ml, Thermo Fisher Scientific),
684	70-kD dextran-rhodamine B (1 mg/ml, Thermo Fisher Scientific), or Lysotracker (1 μ M, Thermo
685	Fisher Scientific). Cells were incubated with endocytic markers for 10 minutes at 4° C. After the
686	10-minute incubation, C10 cells were shifted to 37° C for 10 minutes and CHO-HVEM cells
687	were shifted to 37° C for 30 minutes (Transferrin-Alexa Fluor 488 and Lysotracker) or 40
688	minutes (70 kDa dextran) (109). After incubation at 37° C, cells were washed 3 times with 1X-
689	PBS and fixed in 4% paraformaldehyde for 15 minutes at room temperature. Cells were washed
690	three times with 1X-PBS and incubated with 2.5 μ g/ml of DAPI (ThermoFisher Scientific)
691	diluted in 1X-PBS for 15 minutes at room temperature. Cells were washed again three times with
692	1X-PBS and mounted onto Prolong Gold Antifade (Life Technologies) on glass slides (Thermo
693	Fisher Scientific). Coverslips were sealed with clear nail polish and analyzed by confocal
694	microscopy using a Leica SPE microscope. Images were analyzed in Fiji (110). For 70-kDa
695	dextran and VSV Δ G-BHLD co-localization experiments, C10 and CHO-HVEM cells were
696	incubated with 1 mg/ml 70 kDa dextran and VSV Δ G-BHLD (MOI = 1) for 1 hour at 4° C to
697	allow for virion attachment. Cells were then shifted to 37° C for 20 minutes. After 20 minutes,

698 cells were prepared for confocal microscopy by fixing with 4% paraformaldehyde, permeabilized 699 and blocked with 1X PBS containing 5% normal goat serum and 0.3% Triton X-100. Cells were 700 then incubated with anti-gB antibody (R68) overnight at 4° C. The next day, cells were incubated 701 with a secondary antibody labeled with FITC for 1 hour at room temperature. Slides were then 702 prepared as described above.

703

siRNA-mediated knockdown. Mouse caveolin-1 siRNA, and a control siRNA were purchased from Santa Cruz Biotechnologies. 50 pmol of siRNA (0.625 μ g) (cav-1 or scramble [scr]) were diluted into 100 μ l of Optimem. In another tube, 3.125 μ l of PEI (1 mg/ml) was diluted into 100 μ l of Optimem. The diluted PEI was mixed with the diluted siRNA to a final ratio of 5:1 (w:w) of PEI to siRNA and incubated at room temperature for 30 minutes. The complex was added dropwise to CHO-HVEM cells plated in 35 mm dishes (3 x 10⁵ cells/dish). Cells were incubated at 37° C for 48 hours before infection and subsequent flow cytometry analysis.

712 Acknowledgments

713 We thank Stephen Kwok and Allen Parmelee at the Tufts Laser Cytometry Core facility for their

help with FACS experiments; Gary Cohen (University of Pennsylvania) for the gifts of

antibodies and cell lines; Sean Whelan (Washington University) for the gift of VSVAG-PIV5

716 pseudotype; Anthony Nicola (Washington State University) for the gift of CHO-K1 and CHO-

717 HVEM cells; Richard Longnecker (Northwestern University) for the gift of CHO-nectin-1 cells;

John Coffin (Tufts University) for the gift of HEK293T cells; Stephen Moss (Tufts University)

for the gift of SH-SY5Y cells; Jonathan Garlick (Tufts University) for the gift of HaCaT cells;

720 Michael Forgac (Tufts University) for the gift of Lysotracker reagent; Gregory Smith

721	(Northwestern University) for the gift of HSV-1 GS3217 strain, and Michael Whitt (University			
722	of Tennessee) and Judith White (University of Virginia) for the gift of the VSV Δ G-GFP			
723	pseudotyping platform. FACS experiments were performed at the Tufts Laser Cytometry Core			
724	facility.			
725				
726	Competing Interests			
727	The authors declare no competing interests.			
728				
729	Data sharing plan			
730	All data is included in the manuscript and supporting information.			
731				
732	Funding information			
733	This work was funded by the NIH grant R21AI140711 (E.E.H.), a Faculty Scholar grant			
734	55108533 from Howard Hughes Medical Institute (E.E.H.), and the NIH training grant			
735	T32AI007329 (A.T.H.).			
736				
737	References			
738	1. Steiner I, Benninger F. 2013. Update on herpes virus infections of the nervous system.			
739 740	 Curr Neurol Neurosci Rep 13:414. Bradley H, Markowitz LE, Gibson T, McQuillan GM. 2014. Seroprevalence of herpes 			
741	simplex virus types 1 and 2United States, 1999-2010. J Infect Dis 209:325-33.			
742	3. Agelidis AM, Shukla D. 2015. Cell entry mechanisms of HSV: what we have learned in			
743	recent years. Future Virol 10:1145-1154.			
744	4. Miranda-Saksena M, Denes CE, Diefenbach RJ, Cunningham AL. 2018. Infection and			
745	Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses			
746	10.			
747	5. Nicola AV, Hou J, Major EO, Straus SE. 2005. Herpes simplex virus type 1 enters human			
748	epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol			
749	79:7609-16.			

750	6.	Cai WH, Gu B, Person S. 1988. Role of glycoprotein B of herpes simplex virus type 1 in
751	0.	viral entry and cell fusion. J Virol 62:2596-604.
752	7.	Roop C, Hutchinson L, Johnson DC. 1993. A mutant herpes simplex virus type 1 unable
753	<i>.</i>	to express glycoprotein L cannot enter cells, and its particles lack glycoprotein H. J Virol
754		67:2285-97.
755	8.	Ligas MW, Johnson DC. 1988. A herpes simplex virus mutant in which glycoprotein D
756	01	sequences are replaced by beta-galactosidase sequences binds to but is unable to
757		penetrate into cells. J Virol 62:1486-94.
758	9.	Heldwein EE, Krummenacher C. 2008. Entry of herpesviruses into mammalian cells.
759	2.	Cell Mol Life Sci 65:1653-68.
760	10.	Connolly SA, Jackson JO, Jardetzky TS, Longnecker R. 2011. Fusing structure and
761	101	function: a structural view of the herpesvirus entry machinery. Nat Rev Microbiol 9:369-
762		81.
763	11.	Muggeridge MI. 2000. Characterization of cell-cell fusion mediated by herpes simplex
764		virus 2 glycoproteins gB, gD, gH and gL in transfected cells. J Gen Virol 81:2017-27.
765	12.	Turner A, Bruun B, Minson T, Browne H. 1998. Glycoproteins gB, gD, and gHgL of
766		herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a
767		Cos cell transfection system. J Virol 72:873-5.
768	13.	Atanasiu D, Saw WT, Cohen GH, Eisenberg RJ. 2010. Cascade of events governing cell-
769		cell fusion induced by herpes simplex virus glycoproteins gD, gH/gL, and gB. J Virol
770		84:12292-9.
771	14.	Eisenberg RJ, Atanasiu D, Cairns TM, Gallagher JR, Krummenacher C, Cohen GH.
772		2012. Herpes virus fusion and entry: a story with many characters. Viruses 4:800-32.
773	15.	Spear PG, Eisenberg RJ, Cohen GH. 2000. Three classes of cell surface receptors for
774		alphaherpesvirus entry. Virology 275:1-8.
775	16.	Krummenacher C, Supekar VM, Whitbeck JC, Lazear E, Connolly SA, Eisenberg RJ,
776		Cohen GH, Wiley DC, Carfi A. 2005. Structure of unliganded HSV gD reveals a
777		mechanism for receptor-mediated activation of virus entry. EMBO J 24:4144-53.
778	17.	Lazear E, Carfi A, Whitbeck JC, Cairns TM, Krummenacher C, Cohen GH, Eisenberg
779		RJ. 2008. Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor
780		binding from fusion initiation and viral entry. J Virol 82:700-9.
781	18.	Cairns TM, Ditto NT, Atanasiu D, Lou H, Brooks BD, Saw WT, Eisenberg RJ, Cohen
782		GH. 2019. Surface Plasmon Resonance Reveals Direct Binding of Herpes Simplex Virus
783		Glycoproteins gH/gL to gD and Locates a gH/gL Binding Site on gD. J Virol 93.
784	19.	Atanasiu D, Cairns TM, Whitbeck JC, Saw WT, Rao S, Eisenberg RJ, Cohen GH. 2013.
785		Regulation of Herpes Simplex Virus gB-Induced Cell-Cell Fusion by Mutant Forms of
786		gH/gL in the Absence of gD and Cellular Receptors. Mbio 4.
787	20.	Gianni T, Amasio M, Campadelli-Fiume G. 2009. Herpes simplex virus gD forms
788		distinct complexes with fusion executors gB and gH/gL in part through the C-terminal
789		profusion domain. J Biol Chem 284:17370-82.
790	21.	Atanasiu D, Whitbeck JC, de Leon MP, Lou H, Hannah BP, Cohen GH, Eisenberg RJ.
791		2010. Bimolecular complementation defines functional regions of Herpes simplex virus
792		gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol
793		84:3825-34.

794 22. Chowdary TK, Cairns TM, Atanasiu D, Cohen GH, Eisenberg RJ, Heldwein EE. 2010. 795 Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat 796 Struct Mol Biol 17:882-8. 797 23. Cooper RS, Heldwein EE. 2015. Herpesvirus gB: A Finely Tuned Fusion Machine. 798 Viruses 7:6552-69. 799 Loret S, Guay G, Lippe R. 2008. Comprehensive characterization of extracellular herpes 24. 800 simplex virus type 1 virions. J Virol 82:8605-18. 801 Karasneh GA, Shukla D. 2011. Herpes simplex virus infects most cell types in vitro: 25. 802 clues to its success. Virol J 8:481. 803 Hilterbrand AT, Heldwein EE. 2019. Go go gadget glycoprotein!: HSV-1 draws on its 26. sizeable glycoprotein tool kit to customize its diverse entry routes. PLoS Pathog 804 805 15:e1007660. 806 27. Whitt MA. 2010. Generation of VSV pseudotypes using recombinant DeltaG-VSV for studies on virus entry, identification of entry inhibitors, and immune responses to 807 808 vaccines. J Virol Methods 169:365-74. 809 28. Fukushi S, Mizutani T, Saijo M, Matsuyama S, Miyajima N, Taguchi F, Itamura S, 810 Kurane I, Morikawa S. 2005. Vesicular stomatitis virus pseudotyped with severe acute 811 respiratory syndrome coronavirus spike protein. J Gen Virol 86:2269-2274. 812 29. Fukushi S, Watanabe R, Taguchi F. 2008. Pseudotyped vesicular stomatitis virus for 813 analysis of virus entry mediated by SARS coronavirus spike proteins. Methods Mol Biol 814 454:331-8. 815 30. Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. 2020. Establishment and validation of a 816 817 pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 9:680-686. 818 31. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, 819 Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, 820 Brummelkamp TR. 2011. Ebola virus entry requires the cholesterol transporter Niemann-821 Pick C1. Nature 477:340-3. 822 32. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven 823 RM, Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van 824 Bokhoven H, Brummelkamp TR. 2013. Deciphering the glycosylome of 825 dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479-83. 826 33. Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS, Soh TK, Stubbs SH, 827 Janssen H, Damme M, Saftig P, Whelan SP, Dye JM, Brummelkamp TR. 2014. Virus 828 entry. Lassa virus entry requires a trigger-induced receptor switch. Science 344:1506-10. 829 34. Raaben M, Jae LT, Herbert AS, Kuehne AI, Stubbs SH, Chou YY, Blomen VA, 830 Kirchhausen T, Dye JM, Brummelkamp TR, Whelan SP. 2017. NRP2 and CD63 Are 831 Host Factors for Lujo Virus Cell Entry. Cell Host Microbe 22:688-696 e5. 832 35. Kleinfelter LM, Jangra RK, Jae LT, Herbert AS, Mittler E, Stiles KM, Wirchnianski AS, 833 Kielian M, Brummelkamp TR, Dye JM, Chandran K. 2015. Haploid Genetic Screen 834 Reveals a Profound and Direct Dependence on Cholesterol for Hantavirus Membrane 835 Fusion. mBio 6:e00801. 836 36. Riblett AM, Blomen VA, Jae LT, Altamura LA, Doms RW, Brummelkamp TR, 837 Wojcechowskyj JA. 2016. A Haploid Genetic Screen Identifies Heparan Sulfate 838 Proteoglycans Supporting Rift Valley Fever Virus Infection. J Virol 90:1414-23.

839 37. Tani H, Komoda Y, Matsuo E, Suzuki K, Hamamoto I, Yamashita T, Moriishi K, 840 Fujiyama K, Kanto T, Hayashi N, Owsianka A, Patel AH, Whitt MA, Matsuura Y. 2007. 841 Replication-competent recombinant vesicular stomatitis virus encoding hepatitis C virus envelope proteins. J Virol 81:8601-12. 842 843 38. Tani H, Morikawa S, Matsuura Y. 2011. Development and Applications of VSV Vectors 844 Based on Cell Tropism. Front Microbiol 2:272. 845 39. Rogalin HB, Heldwein EE. 2016. Characterization of Vesicular Stomatitis Virus 846 Pseudotypes Bearing Essential Entry Glycoproteins gB, gD, gH, and gL of Herpes 847 Simplex Virus 1. J Virol 90:10321-10328. 848 Robinson LR, Whelan SP. 2016. Infectious Entry Pathway Mediated by the Human 40. 849 Endogenous Retrovirus K Envelope Protein. J Virol 90:3640-9. 850 Krummenacher C, Baribaud F, Ponce de Leon M, Baribaud I, Whitbeck JC, Xu R, Cohen 41. 851 GH, Eisenberg RJ. 2004. Comparative usage of herpesvirus entry mediator A and nectin-852 1 by laboratory strains and clinical isolates of herpes simplex virus. Virology 322:286-99. 853 Henaff D, Radtke K, Lippe R. 2012. Herpesviruses exploit several host compartments for 42. 854 envelopment. Traffic 13:1443-9. 855 43. Hollinshead M, Johns HL, Sayers CL, Gonzalez-Lopez C, Smith GL, Elliott G. 2012. 856 Endocytic tubules regulated by Rab GTPases 5 and 11 are used for envelopment of 857 herpes simplex virus. EMBO J 31:4204-20. 858 Koyama AH, Uchida T. 1987. The mode of entry of herpes simplex virus type 1 into 44. 859 Vero cells. Microbiol Immunol 31:123-30. 860 Milne RS, Nicola AV, Whitbeck JC, Eisenberg RJ, Cohen GH. 2005. Glycoprotein D 45. 861 receptor-dependent, low-pH-independent endocytic entry of herpes simplex virus type 1. 862 J Virol 79:6655-63. 863 46. Nicola AV, McEvov AM, Straus SE. 2003. Roles for endocytosis and low pH in herpes 864 simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77:5324-32. 865 47. Dutta D, Donaldson JG. 2012. Search for inhibitors of endocytosis: Intended specificity and unintended consequences. Cell Logist 2:203-208. 866 867 48. Carpentier JL, Sawano F, Geiger D, Gorden P, Perrelet A, Orci L. 1989. Potassium depletion and hypertonic medium reduce "non-coated" and clathrin-coated pit formation, 868 869 as well as endocytosis through these two gates. J Cell Physiol 138:519-26. 870 49. Bose S, Zokarkar A, Welch BD, Leser GP, Jardetzky TS, Lamb RA. 2012. Fusion 871 activation by a headless parainfluenza virus 5 hemagglutinin-neuraminidase stalk 872 suggests a modular mechanism for triggering. Proc Natl Acad Sci U S A 109:E2625-34. 873 50. Matlin KS, Reggio H, Helenius A, Simons K. 1982. Pathway of vesicular stomatitis virus 874 entry leading to infection. J Mol Biol 156:609-31. 875 51. Superti F, Seganti L, Ruggeri FM, Tinari A, Donelli G, Orsi N. 1987. Entry pathway of 876 vesicular stomatitis virus into different host cells. J Gen Virol 68 (Pt 2):387-99. 877 52. Johannsdottir HK, Mancini R, Kartenbeck J, Amato L, Helenius A. 2009. Host cell 878 factors and functions involved in vesicular stomatitis virus entry. J Virol 83:440-53. 879 53. Marsh M, Helenius A. 2006. Virus entry: open sesame. Cell 124:729-40. 880 54. Mercer J, Schelhaas M, Helenius A. 2010. Virus entry by endocytosis. Annu Rev 881 Biochem 79:803-33. 882 Kirchhausen T. 2000. Clathrin. Annu Rev Biochem 69:699-727. 55. 883 56. Singh M, Jadhav HR, Bhatt T. 2017. Dynamin Functions and Ligands: Classical 884 Mechanisms Behind. Mol Pharmacol 91:123-134.

885 57. Quan A, McGeachie AB, Keating DJ, van Dam EM, Rusak J, Chau N, Malladi CS, Chen 886 C, McCluskey A, Cousin MA, Robinson PJ. 2007. Myristyl trimethyl ammonium 887 bromide and octadecyl trimethyl ammonium bromide are surface-active small molecule 888 dynamin inhibitors that block endocytosis mediated by dynamin I or dynamin II. Mol 889 Pharmacol 72:1425-39. 890 58. Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP. 2009. Vesicular 891 stomatitis virus enters cells through vesicles incompletely coated with clathrin that 892 depend upon actin for internalization. PLoS Pathog 5:e1000394. 893 59. Mayor S, Parton RG, Donaldson JG. 2014. Clathrin-independent pathways of 894 endocytosis. Cold Spring Harb Perspect Biol 6. 895 Pelkmans L, Kartenbeck J, Helenius A. 2001. Caveolar endocytosis of simian virus 40 60. 896 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 3:473-83. 897 61. Xu Q, Cao M, Song H, Chen S, Qian X, Zhao P, Ren H, Tang H, Wang Y, Wei Y, Zhu 898 Y, Qi Z. 2016. Caveolin-1-mediated Japanese encephalitis virus entry requires a two-step 899 regulation of actin reorganization. Future Microbiol 11:1227-1248. 900 62. Williams TM, Lisanti MP. 2004. The caveolin proteins. Genome Biol 5:214. 901 63. de Almeida CJG. 2017. Caveolin-1 and Caveolin-2 Can Be Antagonistic Partners in 902 Inflammation and Beyond. Front Immunol 8:1530. 903 64. Bender FC, Whitbeck JC, Ponce de Leon M, Lou H, Eisenberg RJ, Cohen GH. 2003. 904 Specific association of glycoprotein B with lipid rafts during herpes simplex virus entry. J 905 Virol 77:9542-52. 906 65. Chinnapen DJ, Chinnapen H, Saslowsky D, Lencer WI. 2007. Rafting with cholera toxin: 907 endocytosis and trafficking from plasma membrane to ER. FEMS Microbiol Lett 908 266:129-37. 909 66. Danthi P, Chow M. 2004. Cholesterol removal by methyl-beta-cyclodextrin inhibits 910 poliovirus entry. J Virol 78:33-41. Dou X, Li Y, Han J, Zarlenga DS, Zhu W, Ren X, Dong N, Li X, Li G. 2018. Cholesterol 911 67. 912 of lipid rafts is a key determinant for entry and post-entry control of porcine rotavirus 913 infection. BMC Vet Res 14:45. 914 Mercer J, Helenius A. 2009. Virus entry by macropinocytosis. Nat Cell Biol 11:510-20. 68. 915 69. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn 916 KM, Grinstein S. 2010. Amiloride inhibits macropinocytosis by lowering 917 submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 188:547-63. 918 70. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y. 2004. Rational design and 919 characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci 920 USA 101:7618-23. 921 71. Hansen CG, Nichols BJ. 2009. Molecular mechanisms of clathrin-independent 922 endocytosis. J Cell Sci 122:1713-21. 923 72. Cureton DK, Massol RH, Whelan SP, Kirchhausen T. 2010. The length of vesicular 924 stomatitis virus particles dictates a need for actin assembly during clathrin-dependent 925 endocytosis. PLoS Pathog 6:e1001127. 926 73. Spearman P. 2018. Viral interactions with host cell Rab GTPases. Small GTPases 9:192-927 201. 928 74. Sieczkarski SB, Whittaker GR. 2003. Differential requirements of Rab5 and Rab7 for 929 endocytosis of influenza and other enveloped viruses. Traffic 4:333-43.

930	75.	Langemeyer L, Frohlich F, Ungermann C. 2018. Rab GTPase Function in Endosome and
931	15.	Lysosome Biogenesis. Trends Cell Biol 28:957-970.
932	76.	Bohdanowicz M, Balkin DM, De Camilli P, Grinstein S. 2012. Recruitment of OCRL
933		and Inpp5B to phagosomes by Rab5 and APPL1 depletes phosphoinositides and
934		attenuates Akt signaling. Mol Biol Cell 23:176-87.
935	77.	Choudhury A, Dominguez M, Puri V, Sharma DK, Narita K, Wheatley CL, Marks DL,
936		Pagano RE. 2002. Rab proteins mediate Golgi transport of caveola-internalized
937		glycosphingolipids and correct lipid trafficking in Niemann-Pick C cells. J Clin Invest
938		109:1541-50.
939	78.	Tebaldi G, Pritchard, S.M., Nicola, A.V. 2020. Herpes simplex virus entry by a non-
940		conventional endocytic pathway. J Virol doi:10.1128/JVI.01910-20.
941	79.	Van Acker T, Tavernier J, Peelman F. 2019. The Small GTPase Arf6: An Overview of Its
942		Mechanisms of Action and of Its Role in Host(-)Pathogen Interactions and Innate
943		Immunity. Int J Mol Sci 20.
944	80.	Garcia-Exposito L, Barroso-Gonzalez J, Puigdomenech I, Machado JD, Blanco J,
945		Valenzuela-Fernandez A. 2011. HIV-1 requires Arf6-mediated membrane dynamics to
946	0.4	efficiently enter and infect T lymphocytes. Mol Biol Cell 22:1148-66.
947	81.	Heikkila O, Susi P, Tevaluoto T, Harma H, Marjomaki V, Hyypia T, Kiljunen S. 2010.
948		Internalization of coxsackievirus A9 is mediated by {beta}2-microglobulin, dynamin, and
949	00	Arf6 but not by caveolin-1 or clathrin. J Virol 84:3666-81.
950	82.	Mercer J, Helenius A. 2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry
951 052	02	to enter host cells. Science 320:531-5.
952 052	83.	Yoo JH, Shi DS, Grossmann AH, Sorensen LK, Tong Z, Mleynek TM, Rogers A, Zhu
953 054		W, Richards JR, Winter JM, Zhu J, Dunn C, Bajji A, Shenderovich M, Mueller AL,
954 955		Woodman SE, Harbour JW, Thomas KR, Odelberg SJ, Ostanin K, Li DY. 2016. ARF6 Is
955 956		an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma. Cancer Cell 29:889-904.
950 957	84.	Jackson CL, Walch L, Verbavatz JM. 2016. Lipids and Their Trafficking: An Integral
958	04.	Part of Cellular Organization. Dev Cell 39:139-153.
959	85.	Musarrat F, Jambunathan N, Rider PJF, Chouljenko VN, Kousoulas KG. 2018. The
960	05.	Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB
961		Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with
962		Plasma Membranes. J Virol 92.
963	86.	Foster TP, Rybachuk GV, Kousoulas KG. 2001. Glycoprotein K specified by herpes
964		simplex virus type 1 is expressed on virions as a Golgi complex-dependent glycosylated
965		species and functions in virion entry. J Virol 75:12431-8.
966	87.	Tal-Singer R, Peng C, Ponce De Leon M, Abrams WR, Banfield BW, Tufaro F, Cohen
967		GH, Eisenberg RJ. 1995. Interaction of herpes simplex virus glycoprotein gC with
968		mammalian cell surface molecules. J Virol 69:4471-83.
969	88.	Komala Sari T, Gianopulos KA, Weed DJ, Schneider SM, Pritchard SM, Nicola AV.
970		2020. Herpes Simplex Virus Glycoprotein C Regulates Low-pH Entry. mSphere 5.
971	89.	Rahn E, Petermann P, Hsu MJ, Rixon FJ, Knebel-Morsdorf D. 2011. Entry pathways of
972		herpes simplex virus type 1 into human keratinocytes are dynamin- and cholesterol-
973		dependent. PLoS One 6:e25464.
974	90.	Clement C, Tiwari V, Scanlan PM, Valyi-Nagy T, Yue BY, Shukla D. 2006. A novel role
975		for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol 174:1009-21.
		20

976	91.	Devadas D, Koithan T, Diestel R, Prank U, Sodeik B, Dohner K. 2014. Herpes simplex
977		virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated
978		kinases but neither clathrin- nor caveolin-mediated endocytosis. J Virol 88:13378-95.
979	92.	Praena B, Bello-Morales R, Lopez-Guerrero JA. 2020. Hsv-1 Endocytic Entry into a
980		Human Oligodendrocytic Cell Line is Mediated by Clathrin and Dynamin but Not
981		Caveolin. Viruses 12.
982	93.	Bid HK, Roberts RD, Manchanda PK, Houghton PJ. 2013. RAC1: an emerging
983		therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther
984		12:1925-34.
985	94.	Fretz M, Jin J, Conibere R, Penning NA, Al-Taei S, Storm G, Futaki S, Takeuchi T,
986		Nakase I, Jones AT. 2006. Effects of Na+/H+ exchanger inhibitors on subcellular
987		localisation of endocytic organelles and intracellular dynamics of protein transduction
988		domains HIV-TAT peptide and octaarginine. J Control Release 116:247-54.
989	95.	Gekle M, Drumm K, Mildenberger S, Freudinger R, Gassner B, Silbernagl S. 1999.
990		Inhibition of Na+-H+ exchange impairs receptor-mediated albumin endocytosis in renal
991		proximal tubule-derived epithelial cells from opossum. J Physiol 520 Pt 3:709-21.
992	96.	Margiotta A, Bucci C. 2019. Coordination between Rac1 and Rab Proteins: Functional
993		Implications in Health and Disease. Cells 8.
994	97.	Huotari J, Helenius A. 2011. Endosome maturation. EMBO J 30:3481-500.
995	98.	Gianni T, Campadelli-Fiume G, Menotti L. 2004. Entry of herpes simplex virus mediated
996	, 0,	by chimeric forms of nectin1 retargeted to endosomes or to lipid rafts occurs through
997		acidic endosomes. J Virol 78:12268-76.
998	99.	Zhang J, Feng Y, Forgac M. 1994. Proton conduction and bafilomycin binding by the V0
999		domain of the coated vesicle V-ATPase. J Biol Chem 269:23518-23.
1000	100.	Cheshenko N, Pierce C, Herold BC. 2018. Herpes simplex viruses activate phospholipid
1000	100.	scramblase to redistribute phosphatidylserines and Akt to the outer leaflet of the plasma
1001		membrane and promote viral entry. PLoS Pathog 14:e1006766.
1002	101.	Zheng K, Chen M, Xiang Y, Ma K, Jin F, Wang X, Wang X, Wang S, Wang Y. 2014.
1003	1011	Inhibition of herpes simplex virus type 1 entry by chloride channel inhibitors tamoxifen
1005		and NPPB. Biochem Biophys Res Commun 446:990-6.
1005	102.	Scott CC, Vacca F, Gruenberg J. 2014. Endosome maturation, transport and functions.
1000	102.	Semin Cell Dev Biol 31:2-10.
1007	103.	Krummenacher C, Baribaud I, Sanzo JF, Cohen GH, Eisenberg RJ. 2002. Effects of
1000	105.	herpes simplex virus on structure and function of nectin-1/HveC. J Virol 76:2424-33.
1010	104.	Stults AM, Smith GA. 2019. The Herpes Simplex Virus 1 Deamidase Enhances
1010	104.	Propagation but Is Dispensable for Retrograde Axonal Transport into the Nervous
1011		System. J Virol 93.
1012	105.	Marconi P, Manservigi R. 2014. Herpes simplex virus growth, preparation, and assay.
1013	105.	Marcolin 1, Marsolvigi K. 2014. helpes simplex virus growin, preparation, and assay. Methods Mol Biol 1144:19-29.
1014	106.	Dai X, Zhou ZH. 2014. Purification of Herpesvirus Virions and Capsids. Bio Protoc 4.
1015	100.	Kim DS, Dastidar H, Zhang C, Zemp FJ, Lau K, Ernst M, Rakic A, Sikdar S, Rajwani J,
1010	107.	Naumenko V, Balce DR, Ewanchuk BW, Tailor P, Yates RM, Jenne C, Gafuik C,
1017		Mahoney DJ. 2017. Smac mimetics and oncolytic viruses synergize in driving anticancer
1018		T-cell responses through complementary mechanisms. Nat Commun 8:344.
1019	108.	Beug ST, Beauregard CE, Healy C, Sanda T, St-Jean M, Chabot J, Walker DE, Mohan A,
1020	100.	Earl N, Lun X, Senger DL, Robbins SM, Staeheli P, Forsyth PA, Alain T, LaCasse EC,
1021		
		39

1022 1023		Korneluk RG. 2017. Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun 8.
1024	109.	Li L, Wan T, Wan M, Liu B, Cheng R, Zhang R. 2015. The effect of the size of
1025		fluorescent dextran on its endocytic pathway. Cell Biol Int 39:531-9.
1026	110.	Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
1027		Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K,
1028		Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image
1029		analysis. Nat Methods 9:676-82.
1030		•

1031 Figure Legends

1032 Fig. 1. VSV Δ G-BHLD pseudotype narrow cellular tropism is not due to differences in 1033 relative glycoprotein ratios or receptor expression levels. HSV-1 (A) and VSV Δ G-BHLD (B) 1034 entry was assessed on nine cell lines, B78H1, C10, CHO-K1, CHO-nectin-1, CHO-HVEM, 1035 HeLa, Vero, HaCaT, and SH-SY5Y. Cells were infected at a MOI of 1. Entry was quantitated by 1036 flow cytometry at 6 hours post infection. C) Cell surface expression of nectin-1 (C) and HVEM 1037 (D) was analyzed by flow cytometry. Surface levels of nectin-1 were quantitated by staining 1038 cells with an anti-nectin-1 monoclonal antibody CK41 conjugated to phycoerythrin (PE) (green 1039 histograms). Surface levels of HVEM were quantitated by staining cells with an anti-HVEM 1040 polyclonal antibody R140 and a FITC-labeled secondary antibody (cyan). Blue histograms are 1041 isotype controls. Red histograms are mock (no antibody) controls. E and F) Relative ratios of 1042 gB:gH:gL:gD for HSV-1 and VSVAG-BHLD particles. HSV-1 and VSVAG-BHLD virions 1043 were purified either through a continuous sucrose gradient (HSV-1) or continuous Optiprep 1044 gradient (VSV Δ G-BHLD), pelleted, and analyzed for their glycoprotein content (gB, gH, gL, 1045 and gD) by western blot (anti-gB pAb R68, anti-gH pAb R137, anti-gL mAb L1, and anti-gD 1046 pAb R7). A representative western blot is shown. The amounts of gB, gH, gL, and gD in three 1047 different virion preparations were determined by densitometry. Levels of gH, gL, and gD were 1048 normalized to gB levels from their respective virions. A Student's T-test with Welch's correction was used to determine the significance of differences between relative amounts of gH, gL, or gD between HSV-1 and VSV Δ G-BHLD virions (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

1052

1053 Fig. 2. HSV-1 and VSVAG-BHLD enter cells by endocytosis. C10 (A and B) and CHO-

- 1054 HVEM (C and D) cells were pretreated with a hypertonic solution of sucrose (0.3 M) and
- 1055 infected with HSV-1 and VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow
- 1056 cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-
- 1057 test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).
- 1058

1059 Fig. 3. Both HSV-1 and VSVΔG-BHLD require dynamin but only HSV-1 requires clathrin

1060 for entry . C10 (A and C) and CHO-HVEM (B and D) cells were pretreated with dynamin

1061 inhibitors Dynasore (80 μM), Dyngo-4a (25 μM), MiTMAB (5 μM), or the CME inhibitor,

1062 Pitstop-2 (30 μ M) and infected with HSV-1 or VSV Δ G-BHLD at MOI = 1. Infectivity was

1063 quantitated by flow cytometry at 6 hours post infection. CHO-HVEM cells treated with Dyngo-

1064 4a or MiTMAB used the same DMSO control, as indicated by the same bar graph appearing

1065 twice each in panels C and D. Significance was calculated using a two-tailed Student's T-test

1066 with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

1067

1068 Fig. 4. HSV-1 and VSVAG-BHLD entry requires cellular cholesterol but not caveolin-1.

- 1069 C10 (A and B) and CHO-HVEM (C and D) cells were pretreated with a cholesterol-removal
- 1070 drug methyl-β-cyclodextran, MβCD (5 mM) and infected with HSV-1 (A and C) or VSVΔG-
- 1071 BHLD (B and D) at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post

1072 infection. E) CHO-HVEM cells were transfected with a caveolin-1 siRNA (cav-1) or a 1073 scrambled control siRNA (scr) (both 50 pm) and infected with HSV-1 or VSVAG-BHLD at 1074 MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. Significance 1075 was calculated using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.051076 0.01 = **; p < 0.001 = ***). F) Western blot analyses, using antibody clone 4H312 (Santa Cruz 1077 Biotechnology), of caveolin-1 knockdown in CHO-HVEM cells (representative of three western 1078 blots, one from each biological replicate). G) Western blot analyses, using antibody clone 4H312 1079 (Santa Cruz Biotechnology), of caveolin-1 levels in C10, CHO-HVEM, and 3T12 cells. 1080 1081 Fig. 5. Neither HSV-1 nor VSVAG-BHLD entry requires macropinocytosis. C10 (A and B) 1082 and CHO-HVEM (C and D) cells were pretreated with macropinocytosis inhibitors cytochalasin 1083 D (2 μ M), EIPA (25 μ M), or NSC23766 (200 μ M) and infected with HSV-1 or VSV Δ G-BHLD 1084 at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. Significance 1085 was calculated using a two-tailed Student's T-test with Welch's correction (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).1086 1087 1088 Fig 6: Roles of Rabs 5 and 7 and Arf6 in HSV-1 and VSVAG-BHLD entry. The roles of the

small GTPases Rab5, Rab7 (A, C, E, G), and Arf6 (B, D, F, H) were assessed for HSV-1 (A, B,
E, F) and VSVΔG-BHLD (C, D, G, H) entry into C10 (A, B, C, D) and CHO-HVEM (E, F, G,
H) cells. C10 (A and C) and CHO-HVEM (E and G) cells were transfected with either an empty
vector control (eGFP or mCherry), eGFP or mCherry-tagged Rab5 dominant negative (DN), or
eGFP or mCherry-tagged Rab7DN. Cells were infected at an MOI = 1 with either HSV-1 or
VSVΔG-BHLD. Entry was assessed by flow cytometry at 6 hpi. The percent of infected cells

1095 was determined by dividing the number of virus(+)eGFP/mCherry(+) cells by the total number

1096 of eGFP/mCherry(+) cells. C10 (B and D) and CHO-HVEM cells (F and H) were treated with

1097 the Arf6 inhibitor NAV-2729 (25 μ M) and infected with either HSV-1 or VSV Δ G-BHLD at an

1098 MOI = 1. Significance was calculated using a two-tailed Student's T-test with Welch's

1099 correction (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

1100

```
1101 Fig. 7. VSVΔG-BHLD entry requires endosomal acidification in a cell-dependent manner.
```

1102 C10 (A and B) and CHO-HVEM (C and D) cells were pretreated with inhibitors of endosomal

1103 acidification BFLA (100 nM), NH₄Cl (50 mM), or monensin (15 μM) and infected with HSV-1

1104 or VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post

1105 infection. Significance was calculated using a two-tailed Student's T-test with Welch's

1106 correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

1107

1108 Fig. 8. gC increases entry efficiency into CHO-HVEM and HaCaT cells. A) Incorporation of

1109 gC was verified by western blot of pelleted and washed virions. B) VSVΔG-BHLD-pCAGGS

1110 and VSV∆G-BHLD-C entry was assessed on nine cell lines, B78H1, C10, CHO-K1, CHO-

1111 nectin-1, CHO-HVEM, HeLa, Vero, HaCaT, and SH-SY5Y. Cells were infected at a MOI of 1.

1112 Entry was quantitated by flow cytometry at 6 hours post infection. Significance was calculated

- 1113 using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.01 = **;
- $1114 \quad 0.001 = ***).$

1115

Fig. 9. Entry model of VSVΔG-BHLD and HSV-1. A) Entry of VSVΔG-BHLD and HSV-1

1117 entry into C10 and CHO-HVEM cells occurs by endocytosis and requires dynamin and

1118	cholesterol. VSV Δ G-BHLD entry into C10 and CHO-HVEM cells additionally requires NHE
1119	and Rac1 activity whereas HSV-1 does not. VSV Δ G-BHLD entry into C10 cells, but not CHO-
1120	HVEM cells also requires Rab5 and endosomal acidification. HSV-1 does not require either
1121	Rab5 or endosomal acidification for entry into either cell type. B) Table summarizing the cellular
1122	molecules important for HSV-1 and VSV Δ G-BHLD entry into C10 and CHO-HVEM cells.
1123	Green check marks indicate that the virus requires that cellular component for entry. Red X-
1124	marks indicate that the virus does not require that cellular component for entry.
1125	
1126	Supplemental Figure Legends
1127	Fig. S1. Infecting cells with VSV Δ G-BHLD at a higher MOI does not increase entry to an
1128	appreciable extent. A)Receptor null (B78H1 and CHO-K1) and receptor bearing cells (C10,
1129	CHO-HVEM, HeLa, Vero, HaCaT, and SH-SY5Y) were infected at MOI =1 (red) or MOI = 10
1130	(purple). Entry efficiency was assessed by flow cytometry at 6 hours post infection. B and C)
1131	Receptor null (B78H1 and CHO-K1) and receptor bearing cells (C10, CHO-HVEM, HeLa, Vero,
1132	<u>HaCaT</u> , and SH-SY5Y) were infected at MOI = 1 with either VSV Δ G-G (B) or VSV Δ G-PIV5
1133	(C). Entry was assessed by flow cytometry at 6 hours post infection.
1134	
1135	<u>Fig. S2. VSVΔG-G and VSVΔG-PIV5 entry in the presence of hypertonic sucrose.</u> C10 (A,
1136	B) and CHO-HVEM (C, D) cells were pretreated with a hypertonic solution of sucrose (0.3 M)
1137	and infected with VSV Δ G-G or VSV Δ G-PIV5 at MOI = 1. Infectivity was quantitated by flow
1138	cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-
1139	test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). E) C10 and CHO-
1140	HVEM cells were pretreated with 0.3 M sucrose and incubated with 50 ug/ml of AF488-labeled

- 1141 transferrin (Tf). Cells were fixed, counterstained with DAPI, and imaged by confocal
- 1142 microscopy. Scale bar = $25 \,\mu$ m.
- 1143

1144 Fig. S3 VSVAG-G and VSVAG-PIV5 differ in their dependence on dynamin and clathrin

- 1145 for entry. C10 (A and C) and CHO-HVEM (B and D) cells were pretreated with dynamin
- 1146 inhibitors Dynasore (80 μM), Dyngo-4a (25 μM), MiTMAB (5 μM), or the CME inhibitor
- 1147 Pitstop-2 (30 μM) and infected with VSVΔG-G or VSVΔG-PIV5 at a MOI of 1. Infectivity was
- 1148 quantitated by flow cytometry at 6 hours post infection. CHO-HVEM cells treated with Dyngo-
- 1149 <u>4a or MiTMAB used the same DMSO control as indicated by the same bar graph appearing</u>
- 1150 twice each in panels C and D. Significance was calculated using a two-tailed Student's T-test
- 1151 with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). E and F) C10 and CHO-
- 1152 <u>HVEM cells were pretreated with dynamin inhibitors Dynasore, Dyngo-4a, MiTMAB, or</u>
- 1153 Pitstop-2 at the same concentrations as in panels A-D and then incubated with 50 µg/ml of
- 1154 AF488-labeled transferrin. Cells were fixed, counterstained with DAPI, and imaged by confocal
- 1155 <u>microscopy. Scale bar = $25 \mu m$.</u>
- 1156

1157 Fig. S4. VSVΔG-G entry does not require cholesterol whereas VSVΔG-PIV5 entry

1158 requires cholesterol in a cell-type-dependent manner. C10 (A and B) and CHO-HVEM (C

1159 and D) cells were pretreated with a cholesterol-removal drug methyl-β-cyclodextran, MβCD (5

- 1160 mM) and infected with VSVAG-G or VSVAG-PIV5 at a MOI of 1. Infectivity was quantitated
- 1161 by flow cytometry at 6 hours post infection. E) C10 and CHO-HVEM cells were treated with
- 1162 either a solvent control ($H_2O/EtOH$) or methyl- β -cyclodextrin (M β CD), then incubated with
- 1163 cholera toxin subunit B labelled with Alexa Fluor 488. Confocal microscopy was performed on

1164 the solvent control and methyl- β -cyclodextrin treated cells. Cells were fixed, counterstained with 1165 DAPI, and imaged by confocal microscopy. Scale bar = $25 \mu m$. (F) CHO-HVEM cells were 1166 transfected with a caveolin-1 siRNA (cav-1) or a scrambled control siRNA (scr) (both 50 pm) 1167 and infected with VSV Δ G-G or VSV Δ G-PIV5 at a MOI of 1. Infectivity was quantitated by 1168 flow cytometry at 6 hours post infection. Significance was calculated using a two-tailed 1169 Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). 1170 1171 Fig. S5. VSVAG-BHLD does not co-localize with the fluid-phase marker 70 kDa dextran in 1172 C10 cells. C10 cells were incubated with 1 mg/ml of rhodamine-B labelled 70 kDa dextran and 1173 VSV Δ G-BHLD (MOI = 1) for one hour at 4° C. Cells were then shifted to 37° C for 20 minutes. 1174 Cells were fixed, counterstained with DAPI, and imaged by confocal microscopy. gB was 1175 detected by immunofluorescence using the rabbit pAb R68 and anti-rabbit IgG conjugated to 1176 FITC. Green = gB (marker for VSV Δ G-BHLD particles); Red = 70 kDa dextran. Scale bar = 25 1177 μm. 1178 1179 Fig. S6. VSV Δ G-BHLD, in large, does not co-localized with the fluid-phase marker, 70 kDa 1180 dextran, in CHO-HVEM cells. CHO-HVEM cells were incubated with 1 mg/ml of rhodamine-1181 B labelled 70 kDa dextran and VSV Δ G-BHLD (MOI = 1) for one hour at 4°C. Cells were then 1182 shifted to 37° C for 20 minutes. Cells were fixed, counterstained with DAPI, and imaged by 1183 confocal microscopy. gB was detected by immunofluorescence using the rabbit pAb R68 and 1184 anti-rabbit IgG conjugated to FITC. Green = gB (marker for VSV Δ G-BHLD particles); Red = 70 1185 kDa dextran. Scale bar = $25 \,\mu m$. 1186

46

1187 Fig. S7. VSVAG-G and VSVAG-PIV5 entry does not require macropinocytosis. C10 (A and

1188 B) and CHO-HVEM (C and D) cells were pretreated with macropinocytosis inhibitors

1189 cytochalasin D (2 μ M), EIPA (25 μ M), or NSC23766 (200 μ M) and infected with VSV Δ G-G or

- 1190 VSVAG-PIV5 at a MOI of 1. Infectivity was quantitated by flow cytometry at 6 hours post
- 1191 infection. Significance was calculated using a two-tailed Student's T-test with Welch's

1192 correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). E) C10 and CHO-HVEM cells were

1193 pretreated with macropinocytosis inhibitors cytochalasin D, EIPA, or NSC23766 at the same

1194 concentrations as in panels A-D and then incubated with 1.0 mg/ml of Rhodamine-B-labeled 70-

- 1195 kDa dextran (Dex). Cells were fixed, counterstained with DAPI, and imaged by confocal
- 1196 microscopy. Scale bar = $25 \mu m$.
- 1197

1198 Fig. S8: Roles of Rab5, Rab7, and Arf6 in VSVAG-G and VSVAG-PIV5 entry. The roles of 1199 the small GTPases Rab5, Rab7 (A, C, E, G), and Arf6 (B, D, F, H) were assessed for VSVAG-G 1200 (A, B, E, F) and VSVAG-PIV5 (C, D, G, H) entry into C10 (A, B, C, D) and CHO-HVEM (E, F, 1201 G, H) cells. C10 (A and C) and CHO-HVEM (E and G) cells were transfected with either an 1202 empty vector control (eGFP or mCherry), eGFP or mCherry-tagged Rab5 dominant negative 1203 (DN), or eGFP or mCherry-tagged Rab7DN. Cells were infected at an MOI = 1 with either 1204 VSV Δ G-G or VSV Δ G-PIV5. Entry was assessed by flow cytometry at 6 hpi. The percent of 1205 infected cells was determined by dividing the number of virus(+)/eGFP/mCherry(+) cells by the 1206 total number of eGFP/mCherry(+) cells. C10 (B and D) and CHO-HVEM cells (F and H) were 1207 treated with the Arf6 inhibitor NAV-2729 (25 μ M) and infected with either VSV Δ G-G or 1208 VSV Δ G-PIV5 at an MOI = 1. Significance was calculated using a two-tailed Student's T-test 1209 with Welch's correction (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

1210

1211	Fig. S9. VSV Δ G-G but not VSV Δ G-PIV5 entry requires endosomal acidification. C10 (A
1212	and B) and CHO-HVEM (C and D) cells were pretreated with inhibitors of endosomal
1213	acidification BFLA (100 nM), NH ₄ Cl (50 mM), or monensin (15 μ M) and infected with
1214	VSV Δ G-G or VSV Δ G-PIV5 at MOI = 1. Infectivity was quantitated by flow cytometry at 6
1215	hours post infection. Significance was calculated using a two-tailed Student's T-test with
1216	Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). E) C10 and CHO-HVEM
1217	cells were pretreated with inhibitors of endosomal acidification at the same concentrations as in
1218	panels A-D (BFLA, NH ₄ Cl, or monensin) and then incubated with Lysotracker (1 μ M). Cells
1219	were fixed, counterstained with DAPI, and imaged by confocal microscopy. Scale bar = 25 μ m.
1220	
1221	Table S1. Sensitivity of HSV-1, VSV Δ G-BHLD, VSV Δ G-G, and VSV Δ G-PIV5 to specific
1222	inhibitors. Green check marks indicate that virus entry is sensitive to that particular inhibitor.

1223 Red X marks indicate that the virus is not sensitive to that particular inhibitor.

1224

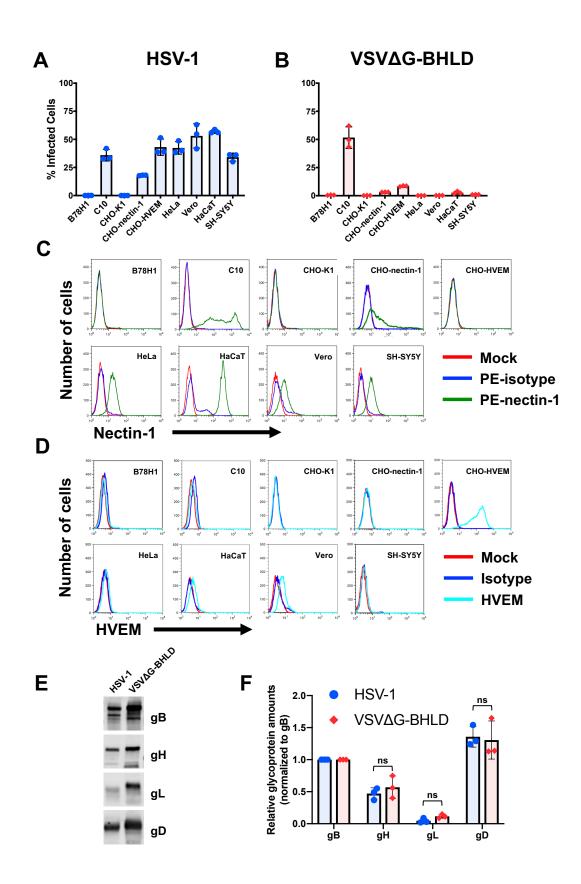


Fig. 1. VSV Δ G-BHLD pseudotype narrow cellular tropism is not due to differences in relative glycoprotein ratios or receptor expression levels. HSV-1 (A) and VSVAG-BHLD (B) entry was assessed on nine cell lines, B78H1, C10, CHO-K1, CHO-nectin-1, CHO-HVEM, HeLa, Vero, HaCaT, and SH-SY5Y. Cells were infected at a MOI of 1. Entry was quantitated by flow cytometry at 6 hours post infection. C) Cell surface expression of nectin-1 (C) and HVEM (D) was analyzed by flow cytometry. Surface levels of nectin-1 were quantitated by staining cells with an anti-nectin-1 monoclonal antibody CK41 conjugated to phycoerythrin (PE) (green histograms). Surface levels of HVEM were quantitated by staining cells with an anti-HVEM polyclonal antibody R140 and a FITClabeled secondary antibody (cyan). Blue histograms are isotype controls. Red histograms are mock (no antibody) controls. E&F) Relative ratios of gB:gH:gL:gD for HSV-1 and VSV Δ G-BHLD particles. HSV-1 and VSVAG-BHLD virions were purified either through a continuous sucrose gradient (HSV-1) or continuous Optiprep gradient (VSV Δ G-BHLD), pelleted, and analyzed for their glycoprotein content (gB, gH, gL, and gD) by Western blot (anti-gB pAb R68, anti-gH pAb = R137, anti-gL mAb L1, and anti-gD pAb R7). A representative Western blot is shown. The amounts of gB, gH, gL, and gD in three different virion preparations were determined by densitometry. Levels of gH, gL, and gD were normalized to gB levels from their respective virions. A Student's T-test with Welch's correction was used to determine the significance of differences between relative amounts of gH, gL, or gD between HSV-1 and VSV Δ G-BHLD virions (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

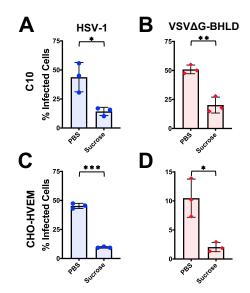


Fig. 2. HSV-1 and VSV Δ G-BHLD enter cells by endocytosis. C10 (A and B) and CHO-HVEM (C and D) cells were pretreated with a hypertonic solution of sucrose (0.3 M) and infected with HSV-1 and VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

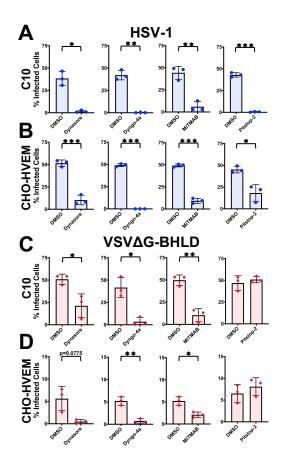
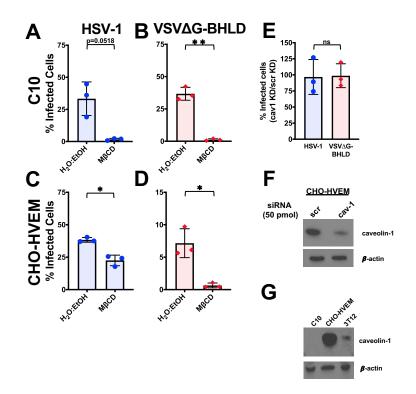



Fig. 3. Both HSV-1 and VSV Δ G-BHLD require dynamin but only HSV-1 requires clathrin for entry . C10 (A and C) and CHO-HVEM (B and D) cells were pretreated with dynamin inhibitors Dynasore (80 μ M), Dyngo-4a (25 μ M), MiTMAB (5 μ M), or the CME inhibitor, Pitstop-2 (30 μ M) and infected with HSV-1 or VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. CHO-HVEM cells treated with Dyngo-4a or MiTMAB used the same DMSO control, as indicated by the same bar graph appearing twice each in panels C and D. Significance was calculated using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

Fig. 4. HSV-1 and VSV Δ **G-BHLD entry requires cellular cholesterol but not caveolin-1.** C10 (A and B) and CHO-HVEM (C and D) cells were pretreated with a cholesterol-removal drug methyl- β -cyclodextran, M β CD (5 mM) and infected with HSV-1 (A and C) or VSV Δ G-BHLD (B and D) at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. E) CHO-HVEM cells were transfected with a caveolin-1 siRNA (cav-1) or a scrambled control siRNA (scr) (both 50 pm) and infected with HSV-1 or VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***). F) Western blot analyses, using antibody clone 4H312 (Santa Cruz Biotechnology), of caveolin-1 knockdown in CHO-HVEM cells (representative of three western blots, one from each biological replicate). G) Western blot analyses, using antibody clone 4H312 (Santa Cruz Biotechnology), of caveolin-1 levels in C10, CHO-HVEM, and 3T12 cells.

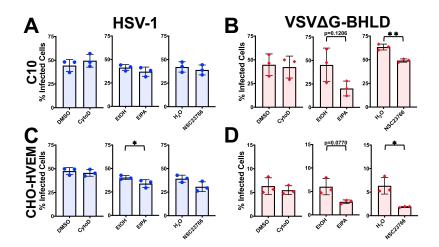
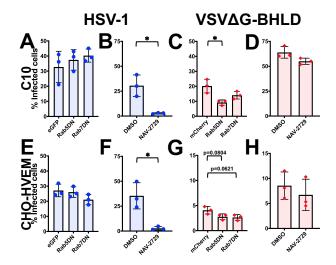
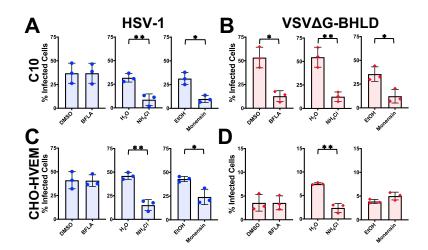




Fig. 5. Neither HSV-1 nor VSV Δ G-BHLD entry requires macropinocytosis. C10 (A and B) and CHO-HVEM (C and D) cells were pretreated with macropinocytosis inhibitors cytochalasin D (2 μ M), EIPA (25 μ M), or NSC23766 (200 μ M) and infected with HSV-1 or VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-test with Welch's correction (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

Fig 6: Roles of Rabs 5 and 7 and Arf6 in HSV-1 and VSV Δ G-BHLD entry. The roles of the small GTPases Rab5, Rab7 (A, C, E, G), and Arf6 (B, D, F, H) were assessed for HSV-1 (A, B, E, F) and VSV Δ G-BHLD (C, D, G, H) entry into C10 (A, B, C, D) and CHO-HVEM (E, F, G, H) cells. C10 (A and C) and CHO-HVEM (E and G) cells were transfected with either an empty vector control (eGFP or mCherry), eGFP or mCherry-tagged Rab5 dominant negative (DN), or eGFP or mCherry-tagged Rab7DN. Cells were infected at an MOI = 1 with either HSV-1 or VSV Δ G-BHLD. Entry was assessed by flow cytometry at 6 hpi. The percent of infected cells was determined by dividing the number of virus(+)eGFP/mCherry(+) cells by the total number of eGFP/mCherry(+) cells. C10 (B and D) and CHO-HVEM cells (F and H) were treated with the Arf6 inhibitor NAV-2729 (25 μ M) and infected with either HSV-1 or VSV Δ G-BHLD at an MOI = 1. Significance was calculated using a two-tailed Student's T-test with Welch's correction (ns = not significant; p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

Fig. 7. VSV Δ **G-BHLD entry requires endosomal acidification in a cell-dependent manner.** C10 (A and B) and CHO-HVEM (C and D) cells were pretreated with inhibitors of endosomal acidification BFLA (100 nM), NH₄Cl (50 mM), or monensin (15 μ M) and infected with HSV-1 or VSV Δ G-BHLD at MOI = 1. Infectivity was quantitated by flow cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

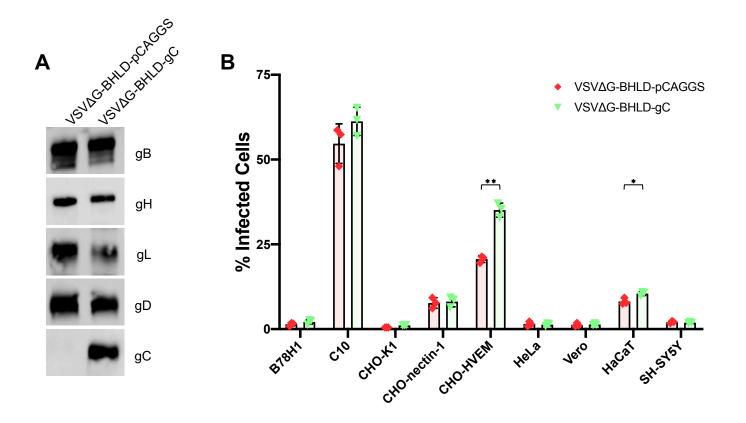
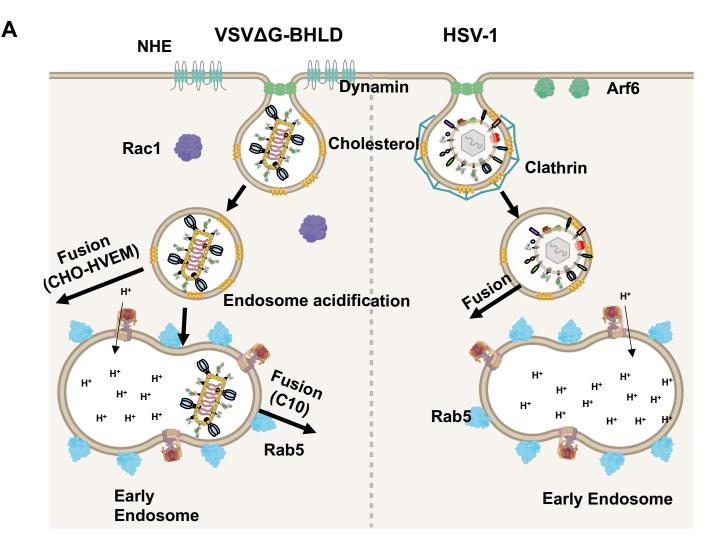



Fig. 8. gC increases entry efficiency into CHO-HVEM and HaCaT cells. A) Incorporation of gC was verified by western blot of pelleted and washed virions. B) VSV Δ G-BHLD-pCAGGS and VSV Δ G-BHLD-gC entry was assessed on nine cell lines, B78H1, C10, CHO-K1, CHO-nectin-1, CHO-HVEM, HeLa, Vero, HaCaT, and SH-SY5Y. Cells were infected at a MOI of 1. Entry was quantitated by flow cytometry at 6 hours post infection. Significance was calculated using a two-tailed Student's T-test with Welch's correction (p < 0.05 = *; p < 0.01 = **; p < 0.001 = ***).

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

		Endocytosis	Dynamin	Clathrin	Cholesterol	Caveolin	Macropino -cytosis	Small GTPases	Low pH
CHO- HVEM C10	HSV-1	\checkmark	~	~	~	x	x	Arf6 √ Rab5/7 X	x
	VSV∆G- BHLD	✓	~	x	✓	x	x	<mark>Arf6 X</mark> Rab5/7 √	~
	HSV-1	~	✓	~	✓	x	x	Arf6 √ Rab5/7 X	x
	VSVAG- BHLD	✓	~	x	✓	x	x	Arf6 X Rab5/7 X	x

Β

Fig. 9. Entry model of VSV Δ G-BHLD and HSV-1. A) Entry of VSV Δ G-BHLD and HSV-1 entry into C10 and CHO-HVEM cells occurs by endocytosis and requires dynamin and cholesterol. VSV Δ G-BHLD entry into C10 and CHO-HVEM cells additionally requires NHE and Rac1 activity whereas HSV-1 does not. VSV Δ G-BHLD entry into C10 cells, but not CHO-HVEM cells also requires Rab5 and endosomal acidification. HSV-1 does not require either Rab5 or endosomal acidification for entry into either cell type. B) Table summarizing the cellular molecules important for HSV-1 and VSV Δ G-BHLD entry into C10 and CHO-HVEM cells. Green check marks indicate that the virus requires that cellular component for entry. Red X marks indicate that the virus does not