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Abstract 36 

Epithelial and stromal tissue are components of the tumor microenvironment and play 37 

a major role in tumor initiation and progression. Distinguishing stroma from epithelial 38 

tissues is critically important for spatial characterization of the tumor 39 

microenvironment. We propose an image analysis pipeline based on a Convolutional 40 

Neural Network (CNN) model to classify epithelial and stromal regions in 41 

whole-slide images. The CNN model was trained using well-annotated breast cancer 42 

tissue microarrays and validated with images from The Cancer Genome Atlas 43 

(TCGA) project. Our model achieves a classification accuracy of 91.02%, which 44 

outperforms other state-of-the-art methods. Using this model, we generated 45 

pixel-level epithelial/stromal tissue maps for 1,000 TCGA breast cancer slide images 46 

that are paired with gene expression data. We subsequently estimated the epithelial 47 

and stromal ratios and performed correlation analysis to model the relationship 48 

between gene expression and tissue ratios. Gene Ontology enrichment analyses of 49 

genes that were highly correlated with tissue ratios suggest the same tissue was 50 

associated with similar biological processes in different breast cancer subtypes, 51 

whereas each subtype had its own idiosyncratic biological processes governing the 52 

development of these tissues. Taken all together, our approach can lead to new 53 

insights in exploring relationships between image-based phenotypes and their 54 

underlying genomic data and biological processes for all types of solid tumors. 55 

 56 

KEYWORDS: Whole-slide tissue image; Deep learning; Integrative genomics; Breast 57 

cancer. 58 
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Introduction 59 

Most solid tumors are composed of many tissue types including cancer cells, stroma, 60 

and epithelium. The interaction of tissues within such complex neoplasms defines the 61 

tumor microenvironment and this variably contributes to cancer initiation, 62 

progression, and therapeutic responses. For example, breast cancer epithelial cells of 63 

the mammary ducts are commonly the site of tumor initiation, while stromal tissue 64 

dynamics drive invasion and metastasis [1]. Tumor-to-stroma ratios of H&E stained 65 

images are therefore an important prognostic factor [2,3], and distinguishing stromal 66 

from epithelial tissue in histological images constitutes a basic, but crucial, task for 67 

cancer pathology. Classification methods (i.e. pre-processing, training classifiers with 68 

carefully selected features, and patch-level classification) are the most common 69 

automated computational methods for tissue segmentation [4,5]. For instance, Bunyak 70 

et al. [6] combined traditional feature selection methods and classification methods to 71 

perform segmentation of epithelial and stromal tissues on a tissue microarray (TMA) 72 

database. While this approach is viable, it can be time-consuming and inefficient 73 

given the feature selection process. Convolutional Neural Networks (CNN) models 74 

have the potential to improve analysis time and performance. Recently, deep CNN 75 

models have greatly boosted the performance of natural image analysis techniques 76 

such as image classification [7], object detection [8] and semantic segmentation 77 

[9,10], and biomedical image analysis [11–13]. Additionally, Ronneberger et al. [14] 78 

proposed implementation of a U-Net architecture to capture context and a symmetric 79 

expanding path that enables precise localization in biomedical image segmentation. 80 

CNN models have also been combined with traditional approaches to enhance the 81 

segmentation performance of epithelial and stromal regions [11,12].    82 

Despite breakthroughs in the application of CNN models to medical image analysis, 83 

automated classification of epithelial and stromal tissues in Whole Slide Tissue 84 

Images (WSI) remains challenging due to the large size of WSI. WSI contain billions 85 

of pixels, and machine learning methods are limited by the technical hurdles of 86 
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working with large datasets [13]. Several solutions based on deep learning for 87 

classification of WSI have been proposed. A context-aware stacked CNN was 88 

proposed for the classification of breast WSI into multiple categories, such as 89 

normal/benign, ductal carcinoma in situ and invasive ductal carcinoma [15]. Saltz et 90 

al. presented a patch-based CNN to classify WSI into glioma and non-small-cell lung 91 

carcinoma subtypes [16,17]. 92 

Additionally, commercial software has been developed to aid in quantitative and 93 

objective analyses of tissue WSI. Among them is GENIE (Leica/ Aperio), a tool with 94 

proprietary algorithms which incorporate deep learning. While many of its 95 

functionalities are designed to handle specific biomarkers using immunohistochemical 96 

(IHC) or fluorescent images, for H&E images, tissue segmentation requires 97 

user-defined regions of interests (ROI). Similarly, HALO (Indica Labs) and 98 

Visiopharm (Hoersholm) provide a toolbox for histopathological image analysis. The 99 

toolbox includes unsupervised algorithms for tissue segmentation that require manual 100 

configuration of parameters and usually underperform supervised methods. The 101 

AQUA system (HistoRx) focuses on estimating tissue scores on TMA based on IHC 102 

staining by measuring protein expression within defined ROI. Therefore, reliable 103 

systems that enable both fully-automatic tissue segmentation and quantified analysis 104 

for H&E whole-slide images are still in great demand. 105 

In this work, we propose a WSI processing pipeline that utilizes deep learning to 106 

perform automatic segmentation and quantification of epithelial and stromal tissues 107 

for breast cancer WSI from The Cancer Genome Atlas (TCGA). The TCGA data 108 

portal provides both clinical information and paired molecular data [18,19]. This 109 

offers the opportunity to identify relationships between computational histopathologic 110 

image features and the corresponding genomic information, which greatly informs 111 

research into the molecular basis of tumor cell and tissue morphology [20–22], as well 112 

as important issues such as immune-oncology therapy [17].  113 
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We first trained and validated a deep CNN model on annotated H&E stained 114 

histologic image patches, then successfully applied the WSI processing pipeline to 115 

process 1,000 TCGA breast cancer WSI to segment and quantify epithelial and 116 

stromal tissues. Spatial quantification and correlations with genomic data of both 117 

tissue types for three breast cancer subtypes (ER-positive, ER-negative and triple 118 

negative) were estimated based on the high-resolution global tissue segmentation 119 

maps. Gene Ontology (GO) enrichment can indicate when such tissues are associated 120 

with similar biological processes in different breast cancer subtypes, whereas each 121 

subtype has its own idiosyncratic biological processes governing the development of 122 

these tissues. These results are consistent with underlying biological processes for 123 

cancer development, which further affirms the robustness of our image processing 124 

method. 125 

Spatial characterization of different tissues in histopathological images has shown 126 

significant diagnostic and prognostic value, but human assessment of these features is 127 

time-consuming and often infeasible for large-scale studies. This study contributes an 128 

innovative automated deep-learning analysis pipeline that will enable rapid, accurate 129 

quantification of epithelial and stromal tissues from WSI of cancer samples. Such 130 

approaches are useful because they may be used for the quantification of tissue-level 131 

epithelial/stromal/cancer phenotypes, which in turn may be integrated with other 132 

biomedical data. For this reason, we demonstrate how model-generated outputs may 133 

be correlated with gene expression and how this may lead to new insights about 134 

genetic mechanisms that contribute to tumor microenvironment variability in breast 135 

cancer. Additional contributions of this manuscript are that the approach, data, and 136 

demonstrated use of the pipeline could be applied to other cancers to improve tissue 137 

quantification. To the best of our knowledge, this is the first study to provide 138 

pixel-level tissue segmentation maps of TCGA image data. 139 

Method 140 

Datasets 141 
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Two breast cancer image sets were used in this study: (1) The Cancer Genome Atlas 142 

(TCGA) portal; (2) the Stanford Tissue Microarray Database (sTMA) [2]. The sTMA 143 

database consisted of a total of 157 H&E stained rectangular image regions (1128 × 144 

720 pixels) using 20X objective lens, which were acquired from two independent 145 

cohorts: 106 samples from Netherlands Cancer Institute (NKI) and 51 samples from 146 

Vancouver General Hospital (VGH). Each image of sTMA was manually annotated 147 

with epithelial and stromal tissues by pathologists. The TCGA cohort samples include 148 

matched H&E stained WSI, gene expression data, and clinical information. Patients 149 

with missing expression data or images with cryo-artifacts deemed too severe were 150 

excluded, leaving a selected set of 1,000 samples. Since the TCGA clinical 151 

information includes subtyping information, we further categorized the selected 152 

samples into three breast cancer subtypes for more specific biological analysis: 153 

ER-positive, ER-negative and triple negative. Demographic and clinical information 154 

for both sTMA and TCGA cohorts are summarized in Table 1. 155 

Overview of the workflow 156 

Figure 1 outlines our workflow for both image processing and biological analysis. 157 

Figure 1A shows the detailed structure of our deep CNN model for tissue 158 

segmentation. Figure 1B is the whole-slide image processing pipeline. Figure 1C 159 

shows an overview of the biological analysis of gene expression data and image 160 

features. Details of each part are described in the following subsection. 161 

CNN model for tissue segmentation 162 

Given an RGB image of height �, width �, and color channels �, the goal of 163 

segmentation is to predict a label map with size � � � where each pixel is labeled 164 

with a category. CNN-based framework for segmentation fundamentally consists of 165 

encoding and decoding counterparts. 166 

The encoding block is derived from classification models which perform 167 

down-sampling operators to capture global information from input images. 168 

Max-pooling is the most commonly adopted operations in encoding, which integrates 169 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985887doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985887


neighbouring pixels to learn invariance from local image transformation. More 170 

recently, dilated convolution was proposed to control spatial resolution, and thus 171 

enable dense feature extraction. Given a 1-D input signal ���� with a filter 	�
� of 172 

length �, the output of dilated convolution is defined as: 173 

���� � ∑ ��� 	 
 · ������
���                                                    (1) 174 

where � is the stride in the sampling input signal, referred to as ���. By filling zeros 175 

between pixels in the filter, dilated convolution can enlarge receptive fields without 176 

substantially increasing computational cost.  177 

We carefully constructed our deep hierarchical segmentation model using specific 178 

strategies in both encoder and decoder, as shown in Figure 1A. The ResNet-101 179 

structure [7], which contains 101 convolution layers, was adopted as the backbone of 180 

our proposed model. Since dilated convolution inserts zeros between pixels in the 181 

filter, it can enlarge receptive fields without substantially increasing computational 182 

cost. The encoder of our model inherited the first three blocks of ResNet-101, while 183 

the rest were modified into six dilated convolution blocks, each of which further 184 

contained four ResUnits with different dilation rates. This configuration was inspired 185 

by the success of the atrous spatial pyramid pooling (DeepLab-ASPP) approach from 186 

Chen et al. [10], which captures objects as well as image context at multiple scales, 187 

and thus robustly improves the segmentation performance. In our work, the 188 

modification of convolution layers was conducted to ensure that our encoder learned 189 

both tissue structures and contextual information for the next phase of processing. In 190 

the decoding step, we adopted a multi-channel convolution approach to generate 191 

high-resolution segmentation maps. Given a feature map of dimension � � 	 � �, 192 

multi-channel convolution first generated features of � � 	 � ��� � ��, where � is the 193 

upsampling rate. Then the features were reshaped to obtain upsampled features of 194 

�� � �� � �, 	���� �� � � � �, �� � 	 � �.  To this end, we stretched each individual 195 

pixel in the small feature map to the channel of �� � � so that it corresponded to a 196 

fixed area (� � �) in the upsampled output map. We applied four parallel dilated 197 
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multi-channel convolutions with a range of dilation rates and added all of their 198 

outputs pixel by pixel in order to further exploit multi-scale contextual information 199 

from the encoding feature map.  200 

We next used sTMA to train our CNN model in a five-folder-cross-validation. The 201 

proposed model was implemented using MXNet toolbox. Parameters in the encoder 202 

were initialized with pre-trained weights from Deep-Lab V2 [10], while the decoder 203 

layers were randomly initialized by Xavier method. Due to GPU memory limitations 204 

(8 GB for GeForce GTX 1080), we randomly cropped 600 � 600 patches from the 205 

raw images and performed random mirror and random crop as data augmentation in 206 

the training stage.  207 

WSI processing pipeline 208 

During biopsy slide examination, pathologists search for a region-of-interest (ROI) 209 

that contains cancer cells and conduct diagnostic assessment. Inspired by these human 210 

analysis steps, we built an automatic pipeline to perform tissue segmentation on WSI, 211 

as shown in Figure 1B. Our WSI processing pipeline consists of two parts: 1) 212 

automatic identification of ROI, and 2) epithelial and stromal tissue segmentation on 213 

the ROI. Given a WSI �, we first downsampled � into � ′ at a factor of 16 in both 214 

horizontal and vertical directions. Then we converted �′ from RGB color space to 215 

CIELAB color space (������), denoted as ����′ . Since the �� channel in ������ 216 

color space represents the brightness, we extracted the ��  and ��  values 217 

representing color components in ����′  and obtained a new image ���′ . Each pixel in 218 

���′  is then a 2-dimentional vector. Next, we applied K-means clustering algorithm 219 

(K=2) to divide the pixels of ���′  into two groups. Considering that corners of 220 

pathology images are usually unstained, we classified pixels in the same cluster as the 221 

upper-left pixel in ���′  as background, while the other pixels were classified as 222 

foreground. In this way, we generated a binary mask ��, where 0 and 1 in �� 223 

correspond to background and foreground pixels in ���′ , respectively. Denoting the 224 

smallest rectangle region that contains the largest connected component in �� as 225 
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�	 , we identified the ROI �
 by mapping the coordinates of �	 onto �. Finally, �
  226 

was cropped from � for downstream processing. 227 

We split �
 into patches of 1128 × 720 pixels to fully utilize the proposed CNN 228 

model for tissue segmentation. Patches with more than 80% background were 229 

discarded. The retained patches were then fed into the CNN model and all the 230 

patch-level predictions were combined to generate a global tissue mask �� for �
 .  231 

Tissue quantification and biological analysis 232 

We applied our WSI processing pipeline on 1,000 TCGA breast cancer WSI for 233 

further biological analysis, as shown in Figure 1C. For each WSI �, we performed 234 

tissue spatial quantification based on its tissue mask �� derived from our method. 235 

The two tissue ratios, �������  and ��������� , that characterize the ratio of 236 

epithelial tissue areas and stromal tissue areas to overall tissue areas were estimated 237 

as: 238 

������� � ∑ ���
� ∑ ���

�

� ,  ��������� � ∑ ���
� ∑ ���

�

�                          (2) 239 

where �� , ��  and ��  represent the number of pixels classified as foreground, 240 

epithelial and stromal in the ��� valid patch in �
  respectively, and   represents 241 

the total number of valid patches in �
 .         242 

To explore the relationships between gene expression data and tissue ratios in 243 

different breast cancer subtypes, we divided all TCGA samples into three types: 244 

ER-positive, ER-negative, and triple negative, as seen in Table 1. Then, we computed 245 

the Spearman correlation coefficients between gene expression data and the two tissue 246 

ratios ������� and ���������  for each breast cancer subtype. Next, we sorted all 247 

the Spearman coefficients and selected the gene symbols which were in the top 1% of 248 

correlation coefficients with ������� and ���������  for each breast cancer subtype. 249 

For the selected gene symbols, we performed Gene Ontology (GO) enrichment 250 

analysis on them using WebGestalt [23]. Meanwhile, the Overrepresentation 251 

Enrichment Analysis (ORA) with Bonferroni adjustment methods was also used to 252 
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determine statistical significance of the enrichment. Genes presented by the 253 

“Genome” platform were used as the reference gene. Finally, the top 10 enriched 254 

biological process categories were selected to reveal the biological process underlying 255 

the development of epithelial and stromal tissues for each breast cancer subtype. 256 

Results 257 

Validation of CNN model  258 

We evaluated the effectiveness of our proposed deep CNN model on segmentation of 259 

epithelial and stromal tissues by testing and comparing our model with several 260 

state-of-the-art methods [11,12,24,25]. Our model outperformed all of these methods 261 

based on a comparison of classification accuracies and achieved an average accuracy 262 

of 91.02% on the whole sTMA dataset (NKI + VGH), as shown in Table 2 and Table 263 

3. Visual segmentation results also demonstrated that our model could accurately 264 

classify epithelial and stromal tissues (Figure 2). Note that in the ground truth data, 265 

some areas belonging to epithelia have been overlooked and incorrectly annotated as 266 

background (an example is shown in the third row of Figure 2). However, our model 267 

still yielded correct predictions on this area (marked by a black circle in Figure 2). 268 

This indicates that our model is robust enough to make the right judgment, even under 269 

misleading supervision. We believe this is valuable for future work in biomedical 270 

image tasks with only partial or inaccurate annotations. 271 

Tissue segmentation and quantification on WSI 272 

We validated the trained CNN model on 171 image patches each from the TCGA 273 

breast cancer slide images annotated with epithelial/stromal tissues by two domain 274 

experts. The validation results indicated that our model was robust enough to predict 275 

credible tissue mask for the TCGA dataset (Table T1 and Figure S1). We then applied 276 

the trained CNN model to the tissue segmentation of 1,000 whole-slide images from 277 

three TCGA breast cancer subtypes. Visual results showed that our pipeline could 278 

robustly identify epithelial/stromal tissues in whole-slide images (Figure 3).  279 
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Ratios of epithelial and stromal tissue areas to overall tissue areas were estimated 280 

based on the WSI segmentation results. Wide differences in tissue ratios were seen 281 

among different breast cancer subtypes (Figure 4). ER-positive images were 282 

predominantly enriched with stromal tissues with a mean stromal ratio of 72.8%, 283 

while triple negative images were abundant in epithelial tissues with a mean epithelial 284 

ratio of 63.56%. Epithelial and stromal tissues were nearly equivalent for ER-negative 285 

images with mean ratios of 49.35% and 50.65%, respectively. 286 

Tissue-specific functional analysis 287 

We explored which genes contributed to the development of different tissues in 288 

various subtypes of breast cancers by computing pairwise Spearman correlation 289 

coefficients between gene expression data and both tissue ratios. Genes in the top 1% 290 

of correlation with tissue ratios in each subtype of breast cancer were selected for 291 

further analysis. We then performed functional Gene Ontology (GO) analysis for the 292 

selected gene-sets. Genes correlated with the epithelial tissues were enriched in 293 

biological processes during the cell cycle, among which sister chromatid segregation, 294 

nuclear division, and mitotic cell cycle are the most commonly enriched GO terms 295 

shared by the three breast cancer subtypes. However, we also observed specifically 296 

enriched GO terms and genes for each subtype that correspond to different cell cycle 297 

stages. The Growth phase related genes including G1 phase and G2 phase were 298 

specifically enriched for the ER-positive subtype, whereas Mitotic phase genes were 299 

specifically enriched for the triple negative subtype, and S phase related genes were 300 

specific for the ER-negative subtype. 301 

Similarly, such patterns of shared high-level biological processes with specific 302 

functions were also observed for the stromal tissues. For the stromal tissue, the most 303 

significantly enriched GO biological process terms were all related to the 304 

development of the tumor microenvironment, including vasculature development, 305 

cellular component movement, and growth factor stimuli-related GO functions which 306 

were shared among the three breast cancer subtypes. For the ER-positive subtype, 307 
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angiogenesis-related genes were specifically enriched, while for the triple negative 308 

subtype, muscle structure genes (especially the ones related to actin fibers and 309 

cytoskeleton) were specifically enriched. In addition, for the ER-negative subtype, 310 

growth factor genes were enriched. Altogether, our results (Figure 5) suggest that 311 

even though the same tissue was associated with similar biological processes in 312 

different subtypes, each subtype still had its idiosyncratic biological processes 313 

governing the development of these tissues. 314 

Other applications 315 

Our WSI processing pipeline can be easily applied to histological images of other 316 

types of cancers. The global tissue segmentation maps we have presented could also 317 

be used for other more specific computational analysis. For example, global 318 

morphological features of different tissues could be estimated for better survival 319 

prediction [22,26], and lymphocytes in different tissues could be distinguished for 320 

observation of more detailed immune response. Imaging data resources have not been 321 

exploited to the degree of the other TCGA molecular and clinical outcome resources, 322 

likely because automatic image annotation is still impeded by data volume challenges. 323 

In this manuscript we presented global tissue maps of all the TCGA breast cancer 324 

WSI, and it is our aspiration that they will facilitate further exploration and utilization 325 

of these imaging data for various cancers. 326 

Conclusions 327 

Epithelial and stromal regions of tumors, as well as their spatial characterizations in 328 

histopathology images, play a very important role in cancer diagnosis, prognosis, and 329 

treatment. Recently, some research studies have focused on developing systems for 330 

automatically analyzing H&E stained histological images from tissue microarrays in 331 

order to predict prognosis [26,27]. In contrast, our approach is aimed at whole slide 332 

images (WSI) rather than manually extracted regions since WSI provide much more 333 

comprehensive information, including heterogeneity. Mackie et al. [28] summarized 334 

the research progress and challenges facing the application of big data quantitative 335 
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imaging to cancer treatment, focusing on 3D imaging modalities including CT, PET, 336 

and MRI. Our quantitative analysis of histopathology images complements and 337 

extends this work in terms of data modality and size, application areas, and 338 

computational challenges. 339 

Based on our global tissue quantification, distinct differences were observed in the 340 

enriched GO terms for epithelial and stromal tissues [29]. At the same time, highly 341 

overlapping biological properties were observed in the same tissue across different 342 

subtypes, all tied to cancer progression in one way or another. For example, in 343 

epithelial tissue, genes from cell cycle-related processes were significantly enriched. 344 

Previous studies have addressed that sustaining proliferative signaling is one of the 345 

hallmarks of cancer, during which cell cycle plays quite an important role [30]. In 346 

addition, CDK4/6 inhibitors (such as Palbociclib and ribociclib) target this biological 347 

process [31,32]. For stromal tissue, genes related to the tumor microenvironment were 348 

significantly enriched (e.g., vasculature and locomotion). Vasculature is vital for 349 

inducing angiogenesis, which is another important hallmark of cancer. 350 

Additionally, we observed differences in biological processes between different 351 

subtypes resulting from tumor heterogeneity. Specific biological process features for 352 

each subtype were also identified among the same tissue. For epithelial tissue, genes 353 

associated with different stages of the cell cycle were specifically enriched for 354 

different subtype. For ER-positive breast epithelia, we found that G1 and G2 355 

phase-related GO terms were enriched, among which G2/M transition is an important 356 

element. Wang et al. [27] have highlighted the importance of G2/M transition in 357 

ER-positive breast cancer. For the triple negative subtype, we found that M phase 358 

related GO terms were enriched, during which chromosome segregation plays a key 359 

role. Witkiewicet et al. [33] have shown the close relationship between chromosome 360 

segregation (PLK1) with triple negative Breast Cancer. Similarly, angiogenesis 361 

related biological processes were significantly associated with the stroma of the 362 

ER-positive subtype. Previous studies have indicated that vasculature is one of the 363 
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important components for tumor stroma [34], as stromal cells can build blood vessels 364 

to supply oxygen and nutrients [35]. 365 

While the correlation analysis of this study reveals clear pairwise relationships 366 

between morphological and genomic features, there are two major limitations to our 367 

approach. First, correlation cannot reveal highly nonlinear relationships or 368 

multivariate complication relationships. For instance, Wang et al. [36] demonstrated 369 

that complicated morphological features might need to be modeled using multiple 370 

genomic features, implying contributions from multiple genetic factors. Similarly, 371 

with our data, more sophisticated analysis such as nonlinear correlation analysis can 372 

be applied to reveal deeper relationships. Secondly, correlation is not causation. The 373 

genes that are strongly correlated with the stromal or epithelial content may not be the 374 

underlying driver genes for the development of the tissues. Identification of such key 375 

genes requires further incorporation of biological knowledge, as well as future 376 

experimental validation. 377 

In summary, our framework provides not only fully automatic and detailed analysis 378 

for large H&E stained images based on a state-of-the-art deep learning model, but 379 

also integrated analysis of image features and molecular data. The proposed 380 

framework enables us to effectively explore the underlying relationships between 381 

gene expression and tissue quantification, free from the extensive labelling and 382 

annotation that is laborious even to skilled pathologists.383 
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The details about code and data in this manuscript is provided on Github with the link 384 

at https://github.com/Serian1992/ImgBio.       385 
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Figure legends 517 

Figure 1  Workflow for image processing and biological analysis 518 

A. Detailed structure of our deep CNN model for segmentation. B. Whole-slide image 519 

processing pipeline. C. Overview of biological analysis of gene expression data and 520 

image features. 521 

Figure 2  Segmentation results on TMA   522 

Column (a) are raw images; column (b) are annotations by pathologists; column (c) 523 

are predictions of the proposed model. Red, green and black areas in column (b) and 524 

(c) represent epithelial, stromal and background regions in raw images, respectively. 525 

Note that in the last row, the overlooked tumor area (Marked with black circle) is still 526 

well recognized by our model. 527 

Figure 3  Segmentation results on TCGA WSIs  528 

For each TCGA whole-slide image A, B, C: Step 1 represents the WSI; Step 2 529 

represents the background map of WSI; Step 3 represents the region of interest (ROI) 530 

in the WSI of raw resolution; Step 4 represents the tissue segmentation result of ROI. 531 

Red, green and black areas in Step 4 represent the predicted epithelial, stromal and 532 

background regions, respectively. 533 

Figure 4  Tissue distribution on different breast cancer subtypes 534 

The Variable Epithelial_ratio, Stromal_ratio represent the ratios of epithelial tissue 535 

areas and stromal tissue areas to overall tissue areas, respectively. 536 

Figure 5  Results of GO enrichment analysis 537 

Dots represent most significantly enriched Biological Process term for each cancer 538 

subtype with color coding: purple indicates high enrichment, red indicates low 539 

enrichment. Sizes of dots represent the ratio of enrichment (GO category). FDR is the 540 

method used for multiple comparison correction.541 
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Tables 542 

Table 1  Demographic and clinical characteristics 543 

Note: For TCGA cohort, samples in Triple Negative subgroup also belong to 544 

ER-negative subgroup. 545 

Table 2  Evaluation of CNN model on NKI and VGH    546 

Note: From the third to the last column are the ten evaluations metrics. Value in bold 547 

represents the best result under each metric among different models.  548 

* TPR (True positive rate) = TP / (TP + FN); TNR (True negative rate) = TN / (FP + 549 

TN); PPV (Positive Predictive Value) = TP / (TP + FP); NPV (Negative Predictive 550 

Value) = TN / (FN + TN); FPR (False positive rate) = FP / (FP + TN); FDR (False 551 

Discovery Rate) = 1 - TP / (TP + FP); FNR(False Negative Rate) = FN / (FN + TP); 552 

ACC (Accuracy) = (TP + TN) / (TP + FP + TN + FN); F1_score = 2!TP / (2!TP + FP 553 

+ FN); MCC (Mattews Correlation Coefficient) = (TP ! TN - FP ! FN) / 554 

"TP 	 FP& ! 'TP 	 FN& ! 'TN 	 FP& ! 'TN 	 FN& . TP, FP, TN and FN represent 555 

the true positive, false positive, true negative and false negative, respectively. 556 

Table 3  Quantitative evaluation on the whole TMA dataset557 
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Supplementary material 558 

Figure S1  Qualitative segmentation results on TCGA dataset 559 

The first column are the raw TCGA images; the second column are annotations by 560 

pathologists; the third column are predictions of the proposed model. Red, green and 561 

black areas in the annotations and predictions represent epithelial, stromal and 562 

background regions in raw images, respectively. 563 

Table T1  Quantitative evaluation on TCGA dataset 564 

* TPR (True positive rate) = TP / (TP + FN); TNR (True negative rate) = TN / (FP + 565 

TN); FPR (False positive rate) = FP / (FP + TN); FNR(False Negative Rate) = FN / 566 

(FN + TP); ACC (Accuracy) = (TP + TN) / (TP + FP + TN + FN); F1_score = 2!TP / 567 

(2!TP + FP + FN). TP, FP, TN and FN represent the true positive, false positive, true 568 

negative and false negative, respectively.  569 
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Table 1  Demographic and clinical characteristics 570 

Cohort SubGroup Image Type Image Number Total 

TMA 
NKI H&E stained image 

region (1128 * 720) 

106 
157 

VGH 51 

TCGA 

ER-positive 

Whole-slide image 

773 

1000 ER-negative 227 

Triple negative 112 

Note: For TCGA cohort, samples in Triple Negative subgroup also belong to 571 
ER-negative subgroup.  572 
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Table 2  Evaluation of CNN model on NKI and VGH 573 

Datasets Models TPR TNR PPV NPV FPR FDR FNR ACC F1 MCC 

NKI 

 

 

 

VGH 

Xu.et [12] 

CNN only [11] 

CNN+HFCM [11] 

Our model 

Xu.et [12] 

CNN only [11] 

CNN+HFCM [11] 

Our model 

86.31 

81.34 

89.48 

90.71 

88.29 

90.32 

91.96 

91.37 

82.15 

82.89 

85.96 

89.83 

88.40 

88.15 

92.21 

91.49 

84.11 

84.11 

85.94 

90.81 

89.93 

92.98 

95.45 

92.37 

84.60 

80.05 

89.50 

89.72 

86.55 

83.97 

86.59 

90.38 

17.85 

17.11 

14.04 

10.17 

11.60 

11.85 

7.79 

8.51 

15.89 

15.89 

14.06 

 9.19 

10.07 

7.02 

4.55 

7.63  

13.66 

18.57 

10.52 

 9.29 

11.71 

9.68 

8.04 

8.63 

84.34 

81.69 

87.19 

90.29 

88.34 

89.14 

91.04 

91.42 

85.21 

82.75 

87.68 

90.76 

89.10 

91.63 

93.67 

91.87 

68.60 

64.24 

75.44 

80.54 

76.59 

77.70 

83.10 

82.80 

Note: From the third to the last column are the ten evaluations metrics. Value in bold 574 

represents the best result under each metric among different models.  575 

*TPR (True positive rate) = TP / (TP + FN); TNR (True negative rate) = TN / (FP + 576 

TN); PPV (Positive Predictive Value) = TP / (TP + FP); NPV (Negative Predictive 577 

Value) = TN / (FN + TN); FPR (False positive rate) = FP / (FP + TN); FDR (False 578 

Discovery Rate) = 1 - TP / (TP + FP); FNR(False Negative Rate) = FN / (FN + TP); 579 

ACC (Accuracy) = (TP + TN) / (TP + FP + TN + FN); F1_score = 2!TP / (2!TP + FP 580 

+ FN); MCC (Mattews Correlation Coefficient) = (TP ! TN - FP ! FN) / 581 

"TP 	 FP& ! 'TP 	 FN& ! 'TN 	 FP& ! 'TN 	 FN& . TP, FP, TN and FN represent 582 

the true positive, false positive, true negative and false negative, respectively. 583 
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Table 3  Quantitative evaluation on the whole TMA dataset 584 

Dataset Model ACC F1_score 
NKI +VGH Du.et [24] 89.7 89.7 

Vu.et [25] 90.315 90.51 

Our model 91.02 91.59 

 585 
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Whole-slide image Foreground maskCohort 
(n=1000)

Region 
of interest

Patches fed into
CNN model 

Global tissue mask Patch-level prediction 

Patch-level prediction
by CNN

Merge patch-
level masks

Tissue ratios on three    
breast cancer types

Expression 
data ER-Positive

ER-Negative

Triple Negative 

Sorted correlations Highly correlated genes Enrichment 
analysis

C

B
Kmeans clustering on
16X downsampled
image

Separate 
background

…

(a) Dilated conv block. The 3x3
convolution in each ResUnit is
with different dilation rate.

(b)  ResUnit with dilated convolution

Prediction

(c)  Multi-channel dilated conv. Each 
Multi-channel dilated conv is a 3x3 

convolution with different dilation rate.

𝑐𝑐

ℎ

𝑤𝑤 …ℎ
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Input ResNet Dilated conv
block
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block
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Input 1x1 conv 3x3 
Dilated conv 1x1 conv
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conv block Reshape
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Step2
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