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ABSTRACT 

 

Changes to mitochondrial architecture are associated with various adaptive and 

pathogenic processes. However, quantification of changes to mitochondrial 

structures are limited by the yet unmet challenge of defining the borders of each 

individual mitochondrion within an image. . Here, we describe a novel method for 

segmenting Brown Adipose Tissue (BAT) images. We describe a granular 

approach to quantifying subcellular structures, particularly mitochondria in close 

proximity to lipid droplets, peri-droplet mitochondria. In addition, we lay out a 
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novel machine-learning-based mitochondrial segmentation method that 

eliminates the bias of manual mitochondrial segmentation and improves object 

recognition compared to conventional thresholding analyses. By applying these 

methods, we discovered a significant difference between cytosolic and 

peridroplet BAT mitochondrial H2O2 production, and validated the machine 

learning algorithm in BAT via norepinephrine-induced mitochondrial 

fragmentation and comparing manual analyses to the automated analysis. This 

approach provides a higher-throughput analysis protocol to quantify ratiometric 

probes in subpopulations of mitochondria in adipocytes. 
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INTRODUCTION 

 Image acquisition and analysis are critical tools for the quantification of 

mitochondrial parameters. Imaging data can provide not only morphological 

measurements (Joshi, Crouser, Julian, Schanbacher, & Bauer, 2000), but can 

also be used to quantify membrane potential (ΔΨ), mitochondrial mass, ROS 

production, and calcium concentrations, among others. A challenge facing the 

microscopist is the quantification of imaging data without biasing the results of 

the study. Automated image analysis provides an unbiased, repeatable, and 

high-throughput method to quantify high-resolution micrographs. The use of 

macros (a set of instructions for a computer to perform repeatedly) is the most 

amenable way to increase image analysis throughput with current tools (Mutterer 

& Rasband, 2012). A macro reduces the amount of time to analyze a single 

image while ensuring that subsequent images are analyzed in an identical 

manner.  

Brown Adipose Tissue (BAT) provides a unique model for the study of 

mitochondria interaction with lipid droplets due to its high density of frequently 

overlapping mitochondria in the cytosol packed tightly around lipid droplets. 

Brown adipose tissue (BAT) is specialized to utilize energy to produce heat upon 

activation by norepinephrine (Wikstrom et al., 2014; Zingaretti et al., 2009). This 

specialization depends on changes to mitochondrial dynamics. Cell biologists 

have hypothesized (Wikstrom et al., 2007) that mitochondria may specialize into 
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different populations within a cell, but evidence for this hypothesis is rare due to 

the difficulty of segmentation for analysis. Previous publications has supported 

this hypothesis in muscle, (Glancy et al., 2015) but other cell types remain to be 

analyzed in such a way. For instance, a question of interest is: How different are 

peridroplet mitochondria from their cytosolic counterparts? Recent work has 

shown that peri-droplet mitochondria are distinct from cytosolic mitochondria 

(Benador et al., 2018). Previous work in other cell types has focused on 

quantifying the entire network or manual classification of network morphology 

(Chaudhry, Shi, & Luciani, 2019; Cribbs & Strack, 2009; Leonard et al., 2015; 

Mahdaviani et al., 2017; Valente, Maddalena, Robb, Moradi, & Stuart, 2017). In 

contrast, our study focuses on direct quantification of individual mitochondria. 

Improvements in computer processing power and graphical handling enable a 

novel solution to this difficult problem: machine learning. Machine learning is the 

process by which humans train a computer program to perform a particular task. 

The machine learning algorithm utilized a random forest model and is one of 

many iterative machine learning algorithms (Breiman, 2001).  

Due to considerations of cost and transparency, the open-source 

programs ImageJ (https://imagej.nih.gov/ij/) and its plugin-rich counterpart FIJI 

(Schindelin et al., 2012) (http://fiji.sc/) are utilized for these analysis protocols and 

data. FIJI provides several plugins not available in stock ImageJ that greatly 

expedite analysis. Chief among these tools is the WEKA trainable segmentation 

plugin (Arganda-Carreras et al., 2017), which enables rapid training and 
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deployment of machine-learning segmentation protocols. Tools of this nature are 

incredibly resource intensive and, as such, must be used on computers with 

sufficient processing and graphical power. Both ImageJ and FIJI are open-source 

and widely documented, providing ideal tools for scientific use. 

Similar tools have previously been utilized to quantify mitochondria, albeit 

in a more limited manner. Koopman et al. introduced the concept of using a 

machine learning classifier to morphologically characterize and bin mitochondria 

(Koopman, Visch, Smeitink, & Willems, 2006). This technique has been further 

refined by other groups (Leonard et al., 2015; Valente et al., 2017). Both of these 

approaches did not fully quantify mitochondrial morphology, but rather quantified 

the population of each type of mitochondrion, e.g. tubular vs. punctate. Previous 

work has also described what parameters best define mitochondrial morphology 

(Joshi et al., 2000). While the conventional approach of manual thresholding for 

segmentation is valid, it is subject to the analysts’ bias (Cribbs & Strack, 2009). 

Combining these above approaches – using machine-learning to segment 

mitochondria which are then individually quantified using established parameters 

– provides the most robust and accurate quantification to date. Software exists to 

perform a similar segmentation routine (Harwig et al., 2018), but it is not easily 

adaptable as an ImageJ script, while the methods provided here are cross-

platform and usable within ImageJ or FIJI. Additionally, the data outputs from 

these two methods are not identical and may in fact complement each other. 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985929doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985929


MATERIALS AND METHODS   

Primary brown adipocytes culture 

Primary brown adipocytes (BA) were generated by differentiating pre-

adipocytes isolated from BAT as described in detail previously(Assali et al., 2018; 

Benador et al., 2018; Cannon & Nedergaard, 2001; Wikstrom et al., 2014). BAT 

was harvested from 3 to 4-weeks-old WT and NCLX KO mice. In brief, The tissue 

was dissected from interscapular, subscapular, and cervical regions, minced, and 

transferred to a collagenase digestion buffer (2 mg/mL Collagenase Type II in 

100 mM HEPES, 120 mM NaCl, 4.8 mM KCl, 1 mM CaCl2, 4.5 mM Glucose, 

1.5% BSA, pH 7.4) at 37°C under constant agitation for 30 min. Collagenase 

digestion was performed in 37°C water incubator under constant agitation for 25 

min with vortex agitation every 5 min. Digested tissue was homogenized and 

strained through 100 mm and 40 mm strainers. Cold DMEM was added to tissue 

digest and centrifuged twice (the last included washing and resuspension in new 

DMEM at 200 x g speed for 12 min at 4°C). Finally, cell pellets (preadipocytes) 

were re-suspended 5 mL growth medium (DMEM supplemented with 20% 

newborn calf serum (NCS), 4 mM Glutamine, 10 mM HEPES, 0.1 mg/mL sodium 

ascorbate, 50 U/mL penicillin, 50 mg/mL streptomycin) and plated in 6-well plates 

(Corning). Cells were incubated in 37°C 8% CO2 incubator. 24 h after isolation, 

the cells were washed to remove debris and medium was replaced. 72 h after 

isolation the cells were lifted using STEMPro Accutase, counted, and re-plated in 
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differentiation media (growth media supplemented with 1 mM rosiglitazone 

maleate and 4 nM human recombinant insulin). Cells were differentiated for 7 

days and medium was changed every other day. For transduction experiments, 

cells were transduced with the roGFP virus in differentiation day 0-3. 

. 

Viral Transduction of ROS reporters 

Mitochondrially-targeted Orp-1 roGFP (Morgan, Sobotta, & Dick, 2011) 

was adenovirally transduced into primary BAT isolated from 12-16 week old 

C57BL/6J mice overnight at a MOI of 2000 particles per cell. This resulted in 

>90% transduction. After an overnight incubation at 37°C and 8% CO2, the cells 

were given fresh media without viral particles and cultured for 72 hours prior to 

imaging. 

Microscopy 

Images of BAT were obtained on a Zeiss LSM 710 or LSM880 microscope 

equipped with a plan-apochromat 100X (NA=1.4) oil immersion objective. Images 

were taken with a digital zoom of 1 or above. Images were at least 1024 x 1024 

px.  

RESULTS 
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Validation of machine learning classifier 

The WEKA segmentation classifier was validated for BAT against human 

recognition of objects. Briefly, a human created ROIs manually around each 

mitochondrion in a cell, with 50-200 mitochondria per cell. These individual 

regions were quantified identically to the WEKA-generated or threshold-

generated ROIs of the same cells. All three analyses were performed by the 

same individual, who manually thresholded at a level that facilitated object 

recognition, typically 10% of the maximum fluorescence intensity.  All images 

were high resolution images of single cells cropped from a larger field of view. 

This cell-level analysis facilitates granular analysis of the data and examination 

thereof on a cell by cell basis. 

Training images used for WEKA training set 

Images used for training of the classifier were high resolution and super 

resolution micrographs. Training was performed on manually cropped individual 

cells from different fields of view, more than 4 independent experiments, and on 

2 different fluorescence markers of mitochondria: mitotracker green and 

Tetramethylrhodamine, Ethyl Ester, Perchlorate TMRE. This broad training set 

increased accuracy and flexibility of segmentation. Input images for 

segmentation should be of as high resolution as possible, but maximum pixel 

size utilized for analysis was 0.07 µm per px. Some enhancements can improve 

poor quality images for analysis, such as a previously published filtering method 
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utilizing a median filter (Smith, Kovats, Lee, & Cano, 2006) or utilizing built in 

background subtraction in ImageJ, such as the rolling ball algorithm. Regardless 

of quality of input images, Figures 3 and 4 illustrate lower-quality, lower-

resolution (0.165 µm per px) can still be used for this analysis. 

 

Mitochondria morphological parameters that describe mitochondrial networking 

Multiple sources (Joshi et al., 2000; Koopman et al., 2006; Leonard et al., 

2015; Molina et al., 2009; Nguyen, Beyersdorf, Riethoven, & Pannier, 2016; Twig 

et al., 2006; Wikstrom et al., 2007) have demonstrated that mitochondrial 

morphology can be described by various shape descriptors (Table 1). Chief 

among these shape descriptors is the circularity measurement (Circ), which 

compares the perimeter of the region of interest to the perimeter of a perfect 

circle of the same area. This measurement is primarily used to describe 

branching of the network, because it equals 1 when measuring a perfect circle, 

and < 1 for a starfish shape. Form factor (FF) is another frequently used shape 

descriptor, and is simply the inverse of circularity, meaning a starfish shape has a 

FF much greater than 1, while a perfect circle still has a FF of 1. Another frequent 

shape descriptor used for analysis of mitochondrial morphology is the aspect 

ratio (AR). AR measures the ratio of the long axis length of the ROI to the short 

axis length, and is a measure of elongation of the object. Solidity measures the 

concavity of the ROI, which can also be interpreted as branching or connectivity. 
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Utilizing these parameters, mitochondria may be described in morphological as 

well as fluorescent detail. 

Segmentation of cytosolic mitochondria versus peridroplet mitochondria reveals 

significant differences in H2O2 production 

The analysis of these images proved to be challenging – how does one 

segment mitochondria in the cytosol apart from mitochondria immediately 

surrounding lipid droplets? By selectively labeling lipid, we can visualize the 

droplets in order to segment the mitochondria around them. While this approach 

is somewhat limited in its morphological analysis, an additional level of sub-

segmentation could be added in order to separate each mitochondrion from its 

neighbors and measure each one’s morphology in addition to measuring the 

average fluorescence intensity of the whole population. Here, we demonstrate a 

novel segmentation method for BAT mitochondria using a lipid label for the 

analysis.  

The original image contains 4 channels: Nile red (lipid), ORP1-roGFP 

(redox status, 2 channels), and bright field (BF). The BF channel is immediately 

discarded upon beginning analysis; it is a quality control channel included for 

manual review. The roGFP probe is a redox sensitive GFP fused to ORP1, which 

is itself a H2O2-specific antioxidant enzyme from yeast, making this probe a tool 

to measure H2O2 production in the mitochondrial matrix (Morgan et al., 2011). 
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Nile Red is a lipophilic dye that marks lipid compartments selectively; it is used to 

locate and segment lipid droplets within BAT cells.  

In order to evaluate cytosolic versus peridroplet mitochondria, the first step 

is to segment the lipid regions (Fig 1), which is accomplished with a basic 

automated thresholding step (Otsu method). This binarized image is then used 

for several other operations within the analysis. First, it is used to subtract the 

small amount of fluorescence bleed-through from Nile red into the reduced 

roGFP channel. Second, it is used as the seed for peridroplet-mitochondria 

recognition. This segmentation is accomplished by dilation of the lipid region n 

times, where n is user-defined at the outset of analysis. This step is user-defined 

because of several considerations, primarily due to artifacts resulting from 

diverse input images. Because images may be taken at different magnifications 

and metadata is not always present to convert pixel units to SI units, allowing the 

user to define the peridroplet region in pixel units removes potential bias and 

bugs from the analysis itself while providing extensive customization for various 

inputs. After dilation and automated segmentation, the region immediately 

surrounding the lipid droplet is measured. 

After the peridroplet region is measured, the dilated lipid image is used to 

subtract all peridroplet fluorescence from the cytosolic image, leaving only 

objects not analyzed in the previous step. This cytosolic image is then 

automatically thresholded using the MinError method in FIJI, then segmented 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.10.985929doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.985929


using the “analyze particles” tool. This segmented image is then measured for 

the cytosolic data. Once these measurements are saved as a .csv file, they can 

be handled like other data arrays in various programs. 

When BAT images were segmented to separate subcellular populations of 

mitochondria, we found that cytosolic mitochondria produce significantly more 

H2O2 than peridroplet mitochondria (Fig 2). The addition of menadione, a 

mitochondrial toxicant that induces ROS formation via redox cycling (Criddle et 

al., 2006) was used as a positive control and elicited a significant increase in 

H2O2 production in treated cells.  

Trainable WEKA segmentation is significantly more effective at mitochondrial 

segmentation compared to conventional thresholding methods 

Trainable WEKA segmentation is a plugin for FIJI that enables machine-

learning-based image segmentation. Previously, work has focused on classifying 

and counting mitochondria using machine learning (Leonard et al., 2015).  

Frequently, these approaches only provide counts of objects contained in each 

class. With these known limitations, we set out to 1) improve mitochondrial 

segmentation for analysis and 2) utilize machine learning in a novel way to that 

end. 

Machine learning is a complex field with multiple algorithmic approaches, 

each with tradeoffs between speed, accuracy, processor utilization, and other 

system requirements. The FastRandomForest (Breiman, 2001) algorithm 
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attempts to mitigate some of the system requirements and speed up 

computation, which is part of why it is commonly used in this context. To the 

user, the algorithm is mostly a backend affair, and once selected is not seen 

again during training. WEKA provides a graphical user interface (GUI) useful for 

training a classifier. Within this GUI, the user defines the number and names of 

each class to be trained (in this example, the two classes are “mitochondria” and 

“background”). After defining and naming classes, the user trains the classifier, 

which entails using any of FIJI’s selection tools (line, rectangle, circle, etc.) to 

define regions of an image belonging to a certain class. In Figure 3, this iterative 

process is demonstrated while training the classifier to distinguish mitochondrial 

signal from background noise. Figure 3F represents the final classification of the 

image, showing mitochondria in red and background in green. The final set of 

instructions for segmentation are stored in a file called a classifier with extension 

“.model” This published classifier is the product of over 100 training images 

containing tens to hundreds of discrete data points and used for subsequent 

analysis of new image sets (Fig 4). 

Because manual analysis of hundreds of images is time consuming, the 

WEKA classifier needed to be incorporated into a high-throughput analysis 

method. The analysis workflow into which it was incorporated is shown in Figure 

4. WEKA segmentation provided segmentation of mitochondria with closer ROIs 

to the real objects (with less effect of background signal), as well as better 

separation of almost-touching objects compared to conventional filtering and 
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thresholding methods. The output of the classifier is a probability map: an image 

where the pixel intensity value represents the computer’s certainty from 0 to 1 

that a specific pixel belongs to a certain class (in Figure 4, the “mitochondria” 

class is shown). This probability map can be manually or automatically 

thresholded for certainty level, but adding a manual step at this point ensures 

data quality with a human checkpoint evaluating the classifier output. 

When INS-1 cells were segmented with WEKA segmentation, the number 

of detected mitochondria increases twofold (Figure 5A). This increase is 

attributable to the more sensitive and specific detection of background between 

proximal mitochondria compared to conventional thresholding, resulting in fewer 

mitochondria being combined when in fact they are discreet objects. Because of 

the increased separation of mitochondria, mitochondrial perimeter is significantly 

decreased in WEKA-segmented measurements (Figure 5B). This decreased 

perimeter is the result of WEKA segmenting mitochondria while ignoring much of 

the airy fluorescent haze surrounding the mitochondria. Due to this improved 

segmentation, aspect ratio is increased (Figure 5C), circularity is decreased 

(Figure 5D), and solidity is decreased (Figure 5E). As an analogy, if outlining an 

object left a 1mm gap between the object and its outline, the object would be 

measured as being more round (circularity approaching 1, aspect ratio 

approaching 1, and solidity approaching 1). However, if the outline is more 

accurate and leaves only a 0.1mm gap between the object and the outline, the 

outline’s shape will more closely match the shape of the object, and its 
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measurements would diverge from 1 because the object would be measured as 

less round. This increased accuracy of segmentation is illustrated in Figure 4 by 

comparing the traditionally thresholded image to the WEKA-segmented image. 

Detection of NE-induced mitochondrial fragmentation in BAT validated WEKA 

segmentation 

 BAT mitochondria fragment upon stimulation with NE (Wikstrom et al., 

2014).  We used this model to validate WEKA segmentation. WEKA 

segmentation was compared to the thresholding approach and to manual 

segmentation of mitochondria by ROI drawing. While manual analysis exhibited 

the largest dynamic range (1.3 AR, 0.31 Circ for Manual vs 0.008 AR, 0.08 Circ 

for thresholding) and provided the most robust results (Fig 6), which is to be 

expected, thresholding provided the least robust results – it is hampered by the 

background-increasing airy haze surrounding objects inherent to confocal 

microscopy. WEKA segmentation yielded a large decreases in mitochondrial 

connectivity (Circ and solidity), while also demonstrating a decreasing trend in 

AR upon fragmentation, with an AR of 2.0 (elongated) reducing to 1.7 

(fragmented). This trend in AR is mitigated by an artifact inherent to the WEKA 

classifier included herein. Due to the inherent difficulty in mitochondrial 

segmentation, the classifier splits larger objects into smaller ones, such as the 

very elongated filamentous mitochondria in non-stimulated BAT. However, this 

bias toward splitting is necessary to retain mitochondrial recognition, as 

evidenced by WEKA segmentation’s trend to detect more mitochondrial objects. 
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While it may be possible to reduce the impact of this over-segmentation artifact 

by utilizing a BAT image training set rather than a mixed image training set, it 

would also decrease the flexibility of the classifier. Alternatively, due to the higher 

throughput of analysis enabled by the WEKA classifier and macro, larger sample 

sizes would also offset this artifact. 

DISCUSSION 

 Due to the increasing size (terabytes), quantity, and quality of data 

produced by digital microscopy in science, rapid, repeatable, and novel methods 

for processing these data are required. Given the difficulty of accurate image 

segmentation in service of unbiased measurements, we have created a novel 

segmentation method to observe subpopulations of mitochondria within cells. 

Segmentation of images in creative ways provides additional granular 

approaches in existing and newly and formerly acquired images, providing 

additional ways to extract as much data as possible from micrographs. This 

peridroplet analysis methodology may be expanded by others to address similar 

hypotheses: for instance, are lysosomes near the nucleus distinct from those at 

the cell periphery? By adapting the above approach to dilate the nuclear region 

instead of a lipid region, such an investigation is possible. Such investigations 

are rare (Leonard et al., 2015), partly because light microscopes only recently 

achieved sufficient resolution to facilitate this type of analysis (Weisshart, 2014). 

While the biological implications of this ROS formation we discovered remains to 

be elucidated, a recent publication suggests that cytosolic mitochondria are more 
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oxidative, while the peridroplet mitochondria are essential for lipid droplet 

formation (Benador et al., 2018). The increased ROS formation observed here 

suggests that the enhanced oxidative capacity comes at the cost of potential 

oxidative damage. Additionally, a novel machine learning segmentation method 

for mitochondria more accurately segments mitochondria than traditional 

methods. By combining this segmentation protocol with a high-throughput 

approach to image analysis, we have designed a workflow that expedites an 

unbiased analysis of mitochondrial parameters. These tools will not only enable 

more time-and cost- effective research, but also provide a platform from which 

other scientists may improve and build better analysis protocols. 

Subcellular objects pose a unique challenge in advanced light microscopy, 

partly due to the refraction limit of light microscopes (Abbe, 1873). Some tools, 

including the Airyscan detector from Zeiss (Weisshart, 2014), provide novel ways 

to approach super resolution light microscopy and further enhance the quality of 

micrographs. With these improvements in imaging technology, image analysis is 

becoming more approachable and more necessary. While the above WEKA 

method largely utilized super resolution micrographs, the recognition of 

subpopulations of mitochondria was performed on images acquired without super 

resolution techniques. In fact, the WEKA classifier is sufficiently accurate to 

segment mitochondria from non-super resolution micrographs, as demonstrated 

in Fig. 4. Indeed, the images analyzed in Fig. 6 were not super-resolution 
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images; WEKA segmentation accurately detected mitochondrial fragmentation 

from these images.  

The method contained herein has been validated on images from several 

different microscopes but primarily from a Zeiss LSM 880 Airyscan. All images 

were in focus and sufficiently magnified that a human could recognize individual 

mitochondria within the cytoplasm of the cell. This level of detail is generally 

acquired by an objective lens of 63X magnification or higher, with a NA of 1.4. All 

images were initially acquired with at least 1024 x 1024 pixels. The high 

resolution images permit detailed manual cropping of the cell from its field of 

view, a necessary step to ensure robust segmentation of mitochondria. 

These tools are significantly more effective when the input micrographs 

are of high quality and resolution. Poor signal-to-noise ratio, low fluorescence in 

samples, and many other caveats of fluorescent microscopy influence the 

efficacy of image analysis. A recent publication details the ideal input image 

quality and common problems and artifacts encountered with analyses of this 

type (Harwig et al., 2018). For instance, out of focus images and images with 

resolutions less than 0.165 µm per px may not yield accurate results – the 

algorithms have not been validated at lower resolutions. Because the macro and 

protocol published here are designated for use with images collected by our lab, 

some tweaking may be required to use with images composed of different 
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channel orders. Other common issues and their simple solutions have been 

published recently by another group (Harwig et al., 2018). 

The protocols here provide tools to segment and quantify lipid droplet 

number, morphology, and intensity in brown adipocytes. We also describe a 

novel approach to segment mitochondria within these same cells in order to 

investigate mitochondria immediately adjacent to lipid droplets versus 

mitochondria in the rest of the cytosol. While such granulated approaches have 

been performed in the past (Glancy et al., 2015), they were undertaken in muscle 

tissue and revealed a novel energy conduction pathway along a mitochondrial 

network. Here we show a phenotypic difference between mitochondria 

immediately adjacent to the lipid droplet and the mitochondria distributed within 

the cytosol. Moreover, we provide a method for improved mitochondrial 

segmentation and measurement via the WEKA trainable segmentation plugin. 

Not only is this approach different from previous mitochondrial machine learning 

classification schemes (Leonard et al., 2015), but it provides an open and 

transparent tool with the potential to be refined and improved. The development 

of a WEKA classifier for mitochondrial segmentation expands the available input 

images significantly; a WEKA classifier is much better at segmenting poorly-

acquired images than most conventional methods, preventing the issues 

mentioned above from excluding images from analysis. More importantly, input 

images from lower quality microscopes are generally accepted and properly 

segmented, assuming sufficient quality. 
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More detailed metadata of the images used in this method are contained 

in the methods.   Brown adipocytes provide an ideal test case for these tools. Not 

only do the mitochondria in the cytosol differ from those surrounding lipid droplets 

(Benador et al., 2018), but also BAT mitochondria fragment upon norepinephrine-

induced thermogenesis (Wikstrom et al., 2014), meaning accurate quantification 

of these phenomena can demonstrate the validity of our analysis protocols.  This 

provides a new tool to analyze and accurately quantify mitochondrial parameters 

from images of insufficient resolution to apply conventional thresholding 

techniques, again as illustrated in Fig. 4. This increased flexibility and accuracy 

will provide more robust analyses within the field going forward.
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Parameter Information Units Notes 

Fluorescence 
Intensity (FI) 

Brightness of 
fluorophore 

A.U. Can be sum or average of all 
intensity for entire region. 
Ratios of multiple fluorophores 
are possible 

Area (A) Cross-sectional 
area of region 

 Pixels 
(px), 
μm2 

 

Perimeter (P) Distance around 
region 

Pixels 
(px), 
μm 

 

Circularity 
(Circ) 

Branching 

4𝜋(𝐴𝑟𝑒𝑎) 

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2
 

A.U. 0 <  𝐶𝑖𝑟𝑐 ≤  1; 
 Circ is 1 for a perfect circle; 
less than 1 for branched 
structures 
Circ = FF-1 

Form Factor 
(FF) 

Branching 

(𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟)2 

4𝜋(𝐴𝑟𝑒𝑎)
 

A.U. 1 ≤ 𝐹𝐹 <  ∞; 
 FF is 1 for a perfect circle; 
more than 1 for branched 
structures 
FF = Circ-1 

Aspect Ratio 
(AR) 

Elongation 

𝐿𝑜𝑛𝑔 𝐴𝑥𝑖𝑠 

𝑆ℎ𝑜𝑟𝑡 𝐴𝑥𝑖𝑠
 

A.U. AR measures elongation, not 
branching 

Solidity Concavity 

𝑂𝑏𝑗𝑒𝑐𝑡 𝐴𝑟𝑒𝑎 

𝐶𝑜𝑛𝑣𝑒𝑥 𝐻𝑢𝑙𝑙 𝐴𝑟𝑒𝑎
 

A.U. Creates a fully convex shape 
(hull) surrounding the object 
and measures the ratio of the 
object area to the convex hull 
area 

 

Table 1. Common mitochondrial morphology parameters. 
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Figure 1. Schematic representation of quantification of peridroplet and 

cytosolic mitochondria in Brown Adipose Tissue.  

The original mutli-channel image is split into its component channels, which are 

then filtered for analysis. The lipid droplet is labeled with Nile Red dye, and this 

image region is used for recognition and segmentation throughout the analysis. 

The Nile red image is binarized and used multiple times in the analysis. First, it is 

used to subtract fluorescence bleed-through in the roGFP channel from the Nile 

Red. Then, the lipid droplet region is dilated n times, with n being empirically 

determined by the user to encompass peridroplet mitochondria. This dilated lipid 

region is then used to quantify the mitochondrial signal contained within. The 

cytosolic analysis builds on the previous steps, utilizing the dilated lipid region to 

remove any mitochondrial fluorescence in that region from the cytosolic image. 

The cytosolic image is then binarized, segmented, and measured similarly to the 

peridroplet image. Scale bar shown in original image is 10μm and is intentionally 

left out during analysis. Manual steps are outlined in red.
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Figure 2. BAT mitochondria produce different amounts of H2O2 depending 

on their localization in relation to lipid droplets.  

BAT cytosolic mitochondria (CM) produce significantly more H2O2 than their 

peridroplet (PDM) counterparts. Addition of menadione increased ROS 

production significantly in both mitochondrial populations. 
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Figure 3. Representation of iterative training of the machine learning classifier 

using the WEKA trainable segmentation plugin for FIJI.  

Once an image is opened in FIJI, WEKA trainable segmentation can be called from the 

plugins menu. WEKA is capable of using several machine learning algorithms, with the 

most fitting being FastRandomForest considering time and processor utilization. 

Options set within the WEKA GUI can control the parameters used for machine 

learning, though several of these require additional plugins. Once open, the user 

defines the number and name of each class of object. Once the classes are defined, the 

user can use any selection tool available in FIJI (line, rectangle, circle, etc.) to define 

what image objects belong to which class. Upon clicking “train classifier,” the computer 

then calculates the best segmentation algorithm and returns a map of the classes 

overlaid over the training image which can be used to refine the class segmentation with 
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subsequent rounds of assignment and training. Once WEKA returns a satisfactory 

segmentation of the image, the user can finalize the classifier to be used on new data 

sets. Scale bar shown in original image is 10μm and is intentionally left out during 

analysis. Manual steps are outlined in red.  
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Figure 4. Workflow for a WEKA-based mitochondrial segmentation and analysis.  
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The original image is initially filtered to remove uneven background using the rolling ball 

algorithm with a diameter of 50 pixels. This facilitates better recognition of mitochondria 

by the WEKA classifier. Shown at this branch point for comparison is traditional 

threshold-based segmentation of mitochondria in the same image. Once the image is 

classified with the WEKA classifier, it returns a probability map. A probability map is the 

algorithm’s best guess at which class each pixel in an image belongs to, in this case 

mitochondria or background, with a probability from 0 to 1. The user manually 

thresholds the certainty of the classification for best mitochondrial segmentation (though 

this step may be automated with validation). After the thresholding step, the image is 

binarized, the mitochondrial objects segmented for measurement, and then measured. 

Scale bar shown in original image is 10μm and is intentionally left out during analysis. 

Manual steps are outlined in red.  
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Figure 5. Comparison of mitochondrial morphological measurements segmented 

with WEKA segmentation versus traditional thresholding.  

WEKA segmentation is significantly better at recognizing, separating, and quantifying 

individual mitochondria (A). Because of this more accurate segmentation, the 
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mitochondrion is measured much more closely to its actual boundaries instead of the 

airy haze surrounding it. As a result, the Perimeter readout is significantly reduced (B). 

This more accurate segmentation provides more accurate measurements of Aspect 

Ratio (C), Circularity (D), and Solidity (E), and cross-sectional area (F). Better object 

recognition leads to improved dynamic range of measurements. Each point represents 

an individual image, error bars SEM. * p≤0.05 by t-test. 
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Fig 6. WEKA segmentation detects mitochondrial fragmentation in NE-activated 

BAT  
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A clear trend was exhibited by traditional thresholding to detect fewer mitochondrial 

objects per cell due to background fluorescence and airy haze surrounding 

mitochondrial objects in the images (A). WEKA segmentation detected significantly 

more mitochondrial objects than traditional thresholding but was not significantly 

different from manual ROI creation. The WEKA classifier more aggressively splits long 

filaments than a human analyst, leading to a trend of increased mitochondrial objects in 

the basal (nonstimulated) condition compared to manual analysis (A). This largely 

unavoidable bias is also evidenced by the significant decrease of AR with WEKA 

segmentation when compared to manual analysis (B). This artifact inherent to the 

algorithm necessitates a larger sample size for observed trends to be significant. 

However, Circ (C) and Solidity (D) exhibit significant increases with NE-activation of 

brown fat, suggesting reduced mitochondrial connectivity upon activation and validating 

the WEKA-based segmentation approach. WEKA segmentation increases dynamic 

range of measurements in both circularity and AR, error not shown because dynamic 

range was calculated from the averages shown in panels (A)-(D). (E) Each bar is the 

mean of >10 cells per condition from 3 separate experiments with error bars 

representing SEM; p≤0.05 by one-way ANOVA: (*) significant difference between basal 

vs NE conditions of same analysis method; (@) significant difference vs threshold 

analysis of same condition; (#) significant difference vs WEKA analysis of same 

condition; ($) significant difference vs manual analysis of same condition. 
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