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Abstract: High-throughput sequencing technologies have rapidly developed during the past years 11 
and became an essential tool in plant sciences. However, the analysis of genomic data remains 12 
challenging and relies mostly on the performance of automatic pipelines. Frequently applied 13 
pipelines involve the alignment of sequence reads against a reference sequence and the 14 
identification of sequence variants. Since most benchmarking studies of bioinformatics tools for this 15 
purpose have been conducted on human datasets, there is a lack of benchmarking studies in plant 16 
sciences. In this study, we evaluated the performance of 50 different variant calling pipelines, 17 
including five read mappers and ten variant callers, on six real plant datasets of the model organism 18 
Arabidopsis thaliana. Sets of variants were evaluated based on various parameters including 19 
sensitivity and specificity. We found that all investigated tools are suitable for analysis of NGS data 20 
in plant research. When looking at different performance metrices, BWA-MEM and Novoalign were 21 
the best mappers and GATK returned the best results in the variant calling step. 22 

Keywords: Single Nucleotide Variants (SNVs), Single Nucleotide Polymorphisms (SNPs), 23 
Insertions/Deletions (InDels), Population Genomics, Re-sequencing, Mapper, Benchmarking, Next 24 
Generation Sequencing (NGS), Bioinformatics, Plant Genomics 25 

 26 

1. Introduction 27 

As the basis of biological properties and heredity, the genome of a species is a valuable resource 28 
for numerous studies. However, there are subtle differences between individuals of the same species, 29 
which are of academic and economic interest as these determine phenotypic differences. Dropping 30 
sequencing costs boosted high-throughput sequencing projects, thus facilitating the analysis of this 31 
genetic diversity. Variations within the A. thaliana population were studied in the 1001 genomes 32 
project [1]. As the number of high-quality reference genome sequences rises continuously, the 33 
number of re-sequencing projects increases as well [2]. There are pan-genome projects for various 34 
species focusing on the genome evolution [3–5] and mapping-by-sequencing projects which focus on 35 
agronomically important traits of crops [6–9]. 36 

An accurate and comprehensive identification of sequence variants between a sample and the 37 
reference sequence is the major challenge in many re-sequencing projects [10]. The large amount and 38 
diverse nature of NGS-data types (as reviewed in [11]), the diversity of bioinformatics algorithms, 39 
and the quality of the reference genome sequence render the choice of the best approach challenging. 40 

Variant calling pipelines often start with (I) the preprocessing of sequence reads, followed by 41 
(II) the alignment (mapping) of these reads to a reference sequence. Finally, the (III) identification 42 
(calling) of sequence variants is performed based on alignments. Each of these three steps can be 43 
carried out by various alternative programs using different algorithms, which influence the accuracy 44 
and sensitivity of the resulting variant set. 45 

First, read processing can be required if the read quality is at least partially low. Some 46 
downstream tools require that sequence reads come with quality scores in a certain system, namely 47 
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phred33 or phred64. The conversion between different systems is allowed by some read processing 48 
tools. Popular read processing tools are FastQC [12], htSeqTools [13], NGSQC [14], SAMStat [15], and 49 
Trimmomatic [16]. 50 

As the read mapping determines the quality of the alignment, it is arguably the most important 51 
step [10]. Sequence reads are aligned to a suitable, but not necessarily the best place in the genome 52 
sequence. Often, there is a trade-off between mapping speed and the quality of the resulting 53 
alignment [17]. Numerous mappers are available, which utilize different algorithms and criteria to 54 
generate alignments [18,10]. Consequently, the choice of tool and parameters can have a large 55 
influence on the outcome of the mapping [19,20]. Reads originating from PCR duplicates should be 56 
remove from the mapping prior to the variant calling to improve reliability of the results [20]. 57 
Moreover, the quality of the reference genome sequence plays an important role for the performance 58 
of the mapper. Particular challenges are low-complexity sequences, repetitive regions, collapsed 59 
copies of sequences, contaminations, or gaps in the reference genome sequence [10]. Frequently 60 
applied read mappers are Bowtie2 [21], BWA-MEM [22], CLC Genomics Workbench (Quiagen), 61 
GEM3 [23], Novoalign (http://novocraft.com/), and SOAP2 [24]. While most of these tools are freely 62 
available for academic use as command line versions, CLC Genomics Workbench is a proprietary 63 
software suit for genomics with a graphical user interface. Detailed characteristics and algorithms of 64 
each mapper have been described elsewhere [25,26,20,18]. 65 

Finally, genomic variants like single nucleotide variants (SNVs) or small insertions/deletions 66 
(InDels) can be inferred by variant callers based on sequence read alignment. Popular variant callers 67 
like SAMtools/BCFtools [27], CLC Genomics Workbench (Quiagen), FreeBayes [28], GATK [29–32], 68 
LoFreq [33], SNVer [34], VarDict [35], and VarScan [36] use a variety of different approaches to call 69 
variants. Consequently, resulting variant sets differ depending on the employed methods (e.g. 70 
Bayesian), which come with strengths and weaknesses concerning the identification of specific 71 
variant types [10,37]. Several factors that contribute to high accuracy of variant callings are: (I) a high 72 
coverage of the variant position resulting in support for SNVs by several overlapping reads [38], (II) 73 
a careful study design [20], (III) joint variant calling for multiple samples to allow mutual support of 74 
genotypes [39]. 75 

The initial set of putative sequence variants is usually filtered to remove unreliable variant calls. 76 
Possible reasons for the identification of these variants in the first place are incorrect alignments, 77 
sequencing errors, or low-quality scores [10]. Read depth, mapping quality, and bias in the alignment 78 
to both strands are central criteria used in the filtering step. While this filter step aims to reduce the 79 
number of false positives, it simultaneously increases the number of false negatives. The best trade-80 
off between sensitivity and specificity depends on the purpose of the respective study. 81 

Many underlying algorithms of variant calling pipelines were developed for the analysis of 82 
variants in the human genome, e.g. to investigate genetic disorders or to study tumor samples [20,40–83 
43]. Although the applications in biomedical research and plant sciences differ substantially, plant 84 
scientists have largely followed benchmarking studies derived from research on human samples 85 
assuming similar performances. Moreover, many plant genomes possess unique challenges for 86 
variant calling, namely high amounts of repetitive sequences [44], large structural variations [45], 87 
broad range of heterozygosity and polyploidy [46]. Therefore, the diversity of plant genomes reveals 88 
the necessity of a benchmarking study using plant data sets. However, no comprehensive 89 
benchmarking study of read mapping and variant calling tools for plant genome sequences is 90 
described in the literature. Due to substantial differences in the nucleotide composition, a dedicated 91 
benchmarking on plant genome sequences is advised. A recent study compared the performance of 92 
BWA-MEM [22], SOAP2 [24], and Bowtie2 [21] with the two variant callers GATK [29–32] and 93 
SAMtools/BCFtools [27] on simulated and real tomato datasets [47]. To expand the sparse knowledge 94 
about the performance of other read mapping and variant calling tools on plant data, we set out to 95 
perform a systematic comparison. Due to the availability of excellent genomic resources, we selected 96 
the well-established plant model organism Arabidopsis thaliana for our study. While A. thaliana is not 97 
perfectly representing all plants, the genome shows the characteristic high proportion of AT. Despite 98 
limitations in heterochromatic and centromeric regions [48], many plant repeats are resolved in the 99 
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high quality genome sequence of A. thaliana. Our study evaluated the performance of 50 variant 100 
calling pipelines, testing combinations of five read mappers (Bowtie2, BWA-MEM, CLC-mapper, 101 
GEM3, Novoalign) and eight different variant callers (SAMtools/BCFtools, CLC-caller, FreeBayes, 102 
GATK v3.8/v4.0/v4.1, LoFreq, SNVer, VarDict, VarScan) that are frequently applied in re-sequencing 103 
studies. Many combinations perform almost equally well on numerous datasets of the plant model 104 
organism A. thaliana. Illumina sequence reads were used for the detection of variants and provide the 105 
foundation for the comparison of these pipelines. Independent PacBio long reads were harnessed for 106 
the validation of identified variants based on an orthogonal sequencing technology. 107 
 108 

2. Results 109 

2.1. General stats about mapping of reads 110 
Six Illumina paired-end sequence read datasets [49,50] from A. thaliana Nd-1 and one control 111 

sample of Col-0 [49] were processed using all combinations of five read mapping and eight different 112 
variant calling tools (including three different versions of one tool) to evaluate the mapping 113 
percentage as well as precision, sensitivity, and specificity of each variant calling pipeline. Due to 114 
these combinations (7×5×10), 350 variant calling sets were generated in this study. Overall, the 115 
sequence read quality of the processed datasets was high ranging from an average Phred score of 35 116 
to 38 (Table S1). 117 

We observed only minor differences between the different sequence read datasets with respect 118 
to percentage of properly aligned read pairs (Figure S1). In general, a higher proportion of the 2×300 119 
nt paired-end reads was mapped ranging from 94.8% to 99.5%, while the 2×250 nt and the 2×100 nt 120 
paired-end reads resulted in mapping proportions ranging from 92.7% to 99.6% and 90.0% to 99.1%, 121 
respectively. 122 

The comparison of mapping performance revealed that GEM3 had the highest average 123 
percentage of aligned read pairs (99.4%), followed by Novoalign (98.8%), Bowtie2 (98.5%), 124 
BWA-MEM (98.1%), and the read mapping function within CLC Genomics Workbench 125 
(CLC-mapper) (92.9%) (Figure 1). 126 

 127 

Figure 1. Ratio of mapped sequence read pairs per mapper. Sequence reads of six A. thaliana Nd-1 128 
datasets were mapped to the Col-0 reference genome sequence TAIR10. The average ratio of aligned 129 
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read pairs was calculated for Bowtie2, BWA-MEM, the mapping function in CLC Genomics 130 
Workbench (CLC), GEM3, and Novoalign based on all six datasets through the flagstats function of 131 
SAMtools. The width of the violin plots is proportional to the density of the data points. The boxplots 132 
inside the violin plots indicate quantiles and the white dot indicates the median. 133 

2.2. Initial variant calling results & validation results 134 
The initial variant calling revealed between 32,939 (Bowtie2 / CLC-caller) and 1,009,163 (BWA-135 

MEM / VarDict) unfiltered SNVs, while the number of unfiltered InDels ranged from 2,559 (BWA-136 
MEM / VarScan) to 240,879 (GEM3 / VarDict) (Table S2). Based on the three variant callers, which 137 
were able to call and classify MNVs (CLC-caller, VarDict, and FreeBayes), MNVs ranged from 1,394 138 
(Bowtie2 / CLC-caller) to 168,100 (CLC-mapper / FreeBayes) (Table S2). 139 

The quality of a variant call set is determined by the transition/transversion ratio, as a worse 140 
variant call set tends to have a lower transition/transversion ratio [49]. While most variant callers 141 
showed a similar transition/transversion ratio with a median ranging from 1.256 (LoFreq) to 1.288 142 
(VarDict), SNVer revealed a lower median of 1.2 and especially FreeBayes performed worst, showing 143 
a median of 1.15 (Figure 2). In addition, FreeBayes revealed the greatest variation ranging from 0.92 144 
to 1.31. 145 

 146 

Figure 2. Ratio of transitions/transversions in the variant call sets per variant caller. Evaluation of call 147 
set quality was harnessed by analyzing the transition/transversion ratio. The orange line represents 148 
the median, the green triangle represents the mean. 149 

In order to analyze whether a variant caller identifies relatively more SNVs than InDels, the ratio 150 
of SNVs to SNVs and InDels was calculated per variant caller (Figure 3). BCFtools identified the 151 
highest proportion of SNVs (median = 0.90), while VarDict and GATK 4.1 called the lowest 152 
proportion of SNVs (median = 0.824). Moreover, all GATK versions performed similar and revealed 153 
low variance when compared to the other variant callers. Interestingly, BWA-MEM / VarScan using 154 
the SRR3340910 dataset yielded the highest SNVs/InDels ratio with almost 1 (0.996). 155 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 30, 2020. ; https://doi.org/10.1101/2020.03.10.986059doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.986059
http://creativecommons.org/licenses/by/4.0/


 5 of 15 

 

 156 

Figure 3. Proportion of SNVs to all variants per variant caller. Performance of each variant caller was 157 
assessed based on 30 mappings of A. thaliana Nd-1 reads against the Col-0 reference genome sequence 158 
TAIR10. Evaluation of the proportion of SNVs to all variants in the results of each applied variant 159 
caller was analyzed. MNPs were excluded because not all variant callers identified MNPs. The orange 160 
line represents the median, the green triangle the mean. 161 

To infer whether a variant caller is more prone to call small or large InDels, the distribution of 162 
InDel lengths was inspected (Figure 4). Especially VarDict called very large insertions (up to 981 bp) 163 
and very large deletions (up to 998 bp), which are likely to be artifacts since they are filtered out in 164 
the corresponding validated call set (Figure S2). VarScan (134 to -93), SNVer (134 to -95), CLC-caller 165 
(156 to -95), LoFreq (168 to -109), and BCFtools (216 to -108) showed a narrower range of InDel 166 
lengths. 167 
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Figure 4. Distribution of InDel lengths per variant caller. Performance of variant callers was assessed 168 
based on 30 mappings of A. thaliana Nd-1 reads against the Col-0 reference genome sequence TAIR10. 169 
The length distribution of all InDels identified by each applied variant caller was analyzed. The 170 
orange line represents the median, the green triangle represents the mean. 171 

A gold standard comprising variants which have been validated through orthogonal data was 172 
used for benchmarking (see methods for details). In order to compare the performance of different 173 
variant calling pipelines, we calculated the sensitivity, specificity, accuracy, precision, and F1 score 174 
(Table 1, Table S2). GATK revealed the highest accuracy in combination with most mappers. The only 175 
exception is the combination of GEM3 and VarScan, which performed better than any GATK version 176 
(Figure 5). GATK worked best on alignments produced by BWA-MEM and Novoalign. All three 177 
evaluated GATK versions (v3.8, v4.0, and v4.1) showed an almost identical performance. In general, 178 
Novoalign reached the best (median) results with respect to accuracy. The only exceptions are CLC-179 
caller and VarScan based on alignments produced by CLC-mapper and GEM3, respectively. While 180 
Bowtie2 was identified to yield high specificity with most variant callers, it showed a low accuracy 181 
with most variant callers except for FreeBayes and VarDict. 182 
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 183 

Figure 5. Accuracy of variant calling pipelines. The accuracy for each variant calling pipeline is shown 184 
with mean (dashed line) and median (straight line) calculated based on the results of the six analyzed 185 
datasets. 186 

In general, the sensitivity of the variant caller pipelines ranged from 0.0219 (Bowtie2 / CLC-187 
caller) to 0.6038 (BWA-MEM / VarDict) and the specificity from 0.99450 (CLC-mapper / FreeBayes) 188 
to 0.999961 (Bowtie2 / CLC-caller) (Figure S3, Figure S4). Moreover, we observed a negative 189 
correlation of -0.8 between specificity and sensitivity, indicating that a pipeline with a high sensitivity 190 
showed a low specificity and vice versa. Almost every variant caller, except for VarDict, showed the 191 
lowest specificity when used in combination with CLC-mapper, while in parallel these combinations 192 
had one of the highest sensitivities. VarDict showed the highest specificity, but lowest sensitivity with 193 
Bowtie2 and performed inferior to GEM3 in terms of specificity, while BWA-MEM reached the best 194 
results in sensitivity. 195 

All tested GATK versions (v3.8, v4.0, and v4.1) showed a very high sensitivity and were only 196 
outperformed by specific VarDict samples, namely the 2×100 nt paired-end dataset independent of 197 
the choice of the mapper, which reached up to 0.6038 sensitivity (BWA-MEM / VarDict-SRR2919279). 198 
However, the specificity of GATK was inferior to some other variant callers. Only minor differences 199 
were observed between the three evaluated GATK versions regarding both sensitivity and specificity. 200 
The use of different mappers had a substantially higher impact than the applied GATK version. 201 

Followed by GATK, FreeBayes showed a good performance in terms of sensitivity and robust 202 
results across all mappers, whereas the other variant callers showed a low performance in 203 
combination with Bowtie2. CLC-caller, VarScan, and LoFreq revealed a great variation with respect 204 
to sensitivity across all mappers, while GATK and especially VarDict displayed very low variance in 205 
their results. When focusing on median sensitivity, the following combinations showed the best 206 
results: CLC-mapper / CLC-caller, GEM3 / VarScan, CLC-mapper / SNVer, CLC-mapper / LoFreq, 207 
CLC-mapper / GATK v3.8, CLC-mapper / GATK v4.0, CLC-mapper / GATK v4.1, CLC-mapper / 208 
BCFtools, GEM3 / FreeBayes, and BWA-MEM / VarDict. However, in terms of median specificity all 209 
variant callers revealed the best results in combination with Bowtie2, except for FreeBayes, which 210 
worked best with Novoalign. Moreover, FreeBayes showed the lowest performance and largest 211 
variation across all mappers (Figure S3). 212 

Finally, the harmonic mean of precision and sensitivity, namely the F1 score, was analyzed 213 
(Figure S5). Novoalign in combination with GATK revealed the best mean performance with respect 214 
to the F1 score. Again, different GATK versions showed almost identical performance (Table 1). 215 
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Table 1. Performance statistics of variant calling pipelines. For each variant calling pipeline the 216 
statistics to infer performance are listed. sen = sensitivity, spe = specificity, pre = precision, acc = 217 
accuracy, F1 = F1 score. 218 

 219 

3. Discussion 220 

The major challenge in many pangenome and re-sequencing projects is the accurate and 221 
comprehensive identification of sequence variants. Due to the high diversity and complexity of plant 222 
genomes and their differences to animal (e.g. human) genomes, variant callings in plant research 223 
differ substantially from those in human and biomedical research. Most human benchmarking 224 
studies focus on calling SNVs of certain tumor cells in a highly diverse cell set [20,41,42]. In contrast, 225 
plant studies usually use the whole cell set derived from one plant without genomic differences 226 
between cells. However, sequencing of pooled DNA from multiple plants aims at the identification 227 
of low frequency SNVs. Large amounts and different NGS data types (as reviewed in [11]), the 228 
diversity of bioinformatic algorithms, and the quality of the reference genome sequences render the 229 
choice of the best approach challenging. Hence, we performed a benchmarking study to provide 230 
comparable data showing the performance of combinations of frequently applied mappers and 231 
variant callers (variant calling pipelines) on plant datasets. A previous report [47] is extended by 232 
providing data about the performance of additional tools both for the mapping and variant calling 233 
step. 234 

To allow for a consistent comparison of baseline performance, we used default parameters for 235 
all tools as these parameters are frequently chosen in plant science applications [4,5,9]. Sequence read 236 
datasets from different sequencing platforms, with different read lengths, and different sizes were 237 
processed to ensure a realistic benchmarking of tools. Since all evaluated tools can process a real plant 238 
dataset within a day, we refrained from assessing the computational costs of the analysis. There is 239 
usually a trade-off between quality of the results and computational costs. In our experience, many 240 
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plant scientists select the workflow leading to the best results independent of computational costs 241 
[52]. 242 

The first step in a variant calling pipeline is the alignment (mapping) of reads to a reference 243 
sequence. While the mapping of 2×250 nt paired-reads resulted in a higher mapping percentage, the 244 
performance difference to 2×100 nt reads is only about 10%. As different sequencing platforms were 245 
used for the data generation, per base quality might contribute to this difference. It is expected that 246 
longer reads are aligned with higher specificity and hence improve the following variant calling. 247 

The quality of the variant calling sets was assessed by the transition/transversion (ti/tv) ratio 248 
which was previously described as a quality indicator [51]. Overall, the quality of almost all analyzed 249 
call sets was similar. A previous benchmarking study with SAMtools and GATK reported similar 250 
ti/tv ratios for all pipelines [53]. A filtering step increased the ti/tv ratios, indicating that the filtering 251 
increased the quality of the call sets [53]. This observation is in line with our findings, which revealed 252 
an increased ti/tv for the filtered call sets reduced to variants present in the gold standard (Figure S6, 253 
Table S3). As FreeBayes showed a substantial increase in the quality through filtering, we recommend 254 
checking the transition/transversion ratio when applying FreeBayes. This effect might be dataset 255 
specific. 256 

The choice of the variant caller is crucial for the number of called SNVs, MNVs, and InDels. For 257 
example, only CLC-caller, VarDict and FreeBayes were able to call MNVs, thus being more suitable 258 
for the identification of structural differences. Furthermore, variant caller results differ with respect 259 
to the ratio of SNVs to InDels, which should be considered depending on the specific requirements 260 
of the respective sequencing project. BCFtools called relatively more SNVs than InDels, while GATK 261 
revealed relatively more InDels. A unique property of VarDict was the detection of InDels up to 262 
almost 1 kb which exceeds the read length. Since the accurate identification of such large variants, 263 
which are longer than the average read length, is still a challenging task [54], many of these variants 264 
are likely false positives. Moreover, the reduced amount of large insertions in the validated call sets 265 
of VarDict supports this assumption. 266 

Depending on the application, a pipeline with a high sensitivity or high specificity is desired. In 267 
terms of sensitivity, GATK in combination with CLC-mapper, Novoalign and BWA-MEM yielded 268 
the best and most consistent results across all evaluated datasets. These results are in line with a 269 
recent study showing that GATK often outperformed SAMtools in terms of sensitivity, precision, and 270 
called raw InDels [47]. Similar results had been shown in rice, tomato, and soybean [47] indicating 271 
that GATK is also suitable for various crop species with complex genomes. A high sensitivity is 272 
essential when a high number of true positives variations accelerates the power of the analyses, e.g. 273 
when looking for a detrimental variation between two samples. In this study, a pipeline comprising 274 
Bowtie2 and LoFreq resulted in the highest specificity and can thus be recommended. In contrast, a 275 
high specificity is desired in mapping-by-sequencing (MBS) projects, as a high proportion of true 276 
positives can keep the signal to noise ratio high. Combining both performance metrics by analyzing 277 
the accuracy, best results were obtained with Novoalign and GATK. The same pipeline yielded the 278 
best results regarding the harmonic mean of precision and sensitivity (F1 score). Differences observed 279 
between the three evaluated GATK versions (v3.8, v4.0, and v4.1) were negligible. However, 280 
functionalities and computational performance might differ between these versions. 281 

In summary, this benchmarking study provides insights into the strengths and weaknesses of 282 
different variant calling pipelines when applied on plant NGS datasets. Although the performance 283 
of all evaluated tools will differ between samples depending on properties of the read datasets and 284 
the genome sequence, we hope that our findings serve as a helpful guide. 285 

 286 

4. Materials and Methods  287 

Sequence read datasets 288 
We used paired-end Illumina reads from two different A. thaliana accessions, namely 289 

Columbia-0 (Col-0) and Niederzenz-1 (Nd-1) (Table S1). The read quality was checked via FastQC 290 
[12] (Table S1). Trimmomatic [16] was applied for light trimming and quality conversion to a Phred 291 
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score of 33 if applicable. These datasets cover different Illumina sequencing platforms including 292 
GAIIX, MiSeq, and HiSeq 1500. While two datasets are the paired-end proportions of mate pair 293 
sequencing libraries (SRR2919288 and SRR3340911), these samples are 2×250 nt paired-end libraries. 294 

 295 
Sequence read mapping 296 
We chose five popular read mappers, namely Bowtie2 v2.3.4.3 [21], BWA-MEM v0.7.17 [22], 297 

CLC v11 Genomics Workbench (Quiagen), GEM3 v3.6 [23], and Novoalign v3.09.01 298 
(http://novocraft.com/) for this analysis. While most of these mappers are freely available for 299 
academic use, CLC is a proprietary software suit for genomic analyses. Paired-end reads were 300 
mapped against the TAIR10 reference genome sequence [55]. The executed commands for each tool 301 
can be found in table S4. SAMtools v.1.8 [27] was deployed for sorting of the BAM files. Reads 302 
originating from PCR duplicates where removed via MarkDuplicates in Picard-bf40841 303 
(https://broadinstitute.github.io/picard/). Read groups or InDel qualities were assigned as these are 304 
required by some tools for downstream processing. While the plastome and chondrome sequences 305 
were included during the mapping step, variant caller performance was only assessed for the five 306 
nucleome sequences. 307 

 308 
Variant calling 309 
All mapping results were subjected to variant calling via CLC v11 Genomics Workbench 310 

(Quiagen), FreeBayes v1.2.0 [28], Genome Analysis Tool Kit v3.8/v4.0/v4.1 HaplotypeCaller (GATK-311 
HC) [29–32], LoFreq v2.1.3.1 [33], SAMtools v1.9 [27] in combination with BCFtools v1.9 (alias 312 
BCFtools in the following), SNVer [34], VarDict [35], and VarScan [36]. We evaluated three different 313 
versions of GATK in order to analyze whether the applied version has a high impact on the variant 314 
calling pipeline performance. The executed commands for each tool can be found in table S4. 315 

 316 
Performance measure of variant calling pipelines 317 
The overall workflow of our benchmarking study is presented in Figure 6. We applied a 318 

previously described pipeline to validate sequence variants against the Nd-1 de novo assembly based 319 
on PacBio reads (https://github.com/bpucker/variant_calling) [56], which is crucial in order to assess 320 
the performance of each variant calling pipeline. This Nd-1 genome sequence assembly is of high 321 
quality due to a high PacBio coverage of about 112-fold and additional polishing with about 120-fold 322 
coverage of accurate short reads [52]. A gold standard was generated from all validated variants by 323 
combining them into a single VCF file (https://docs.cebitec.uni-bielefeld.de/s/GG4CYJ7PcEwMFAF). 324 
Afterwards, the numbers of true positives, true negatives, false positives, and false negatives were 325 
calculated based on the gold standard and the initial VCF files for each variant calling pipeline and 326 
dataset. Next, performance statistics including sensitivity, specificity, precision, accuracy, and F1 327 
score were calculated per combination of mapper, variant caller, and dataset (Table 1). 328 
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 329 

Figure 6. Workflow for the performance analysis of variant calling pipelines. First, reads within 330 
supplied FASTQ files were mapped against the TAIR10 A. thaliana reference genome sequence. Next, 331 
variants were called and saved in VCF files. All variants were subjected to a previously described 332 
validation process based on the Nd-1 genome sequence [56]. A gold standard was generated based 333 
on all validated variants. The initial variants called by each combination of mapper and variant caller 334 
were evaluated by analyzing whether they are present or absent in the gold standard. The numbers 335 
of SNVs, MNVs, and InDels were retrieved from the validated and from the initial VCF files (Table 336 
S2, Table S3). Next, true positives (TP), false positives (FP), false negatives (FN), and true negatives 337 
(TN) were calculated for SNVs, MNVs, and InDels identified by each combination of mapper and 338 
variant caller. Finally, performance statistics, such as F1 score, sensitivity, specificity, precision, and 339 
accuracy were calculated. 340 

Supplementary Materials: Table S1: Overview of used datasets with SRR identifiers. Table S2: Variant calling 341 
results of the initial VCF files. Table S3: Variant calling results of the validated VCF files. Table S4: Executed 342 
commands for each variant calling pipeline. Figure S1: Ratio of mapped read pairs per dataset. Figure S2: 343 
Distribution of InDel lengths in the validated call sets per variant caller. Figure S3: Specificity of variant calling 344 
pipelines. Figure S4: Sensitivity of variant calling pipelines. Figure S5: F1 score of variant calling pipelines. Figure 345 
S6: Ratio of transitions to transversions in the validated variant call sets per variant caller. 346 
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