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Animal movement has been identified as a key feature in un-
derstanding animal behavior, distribution and habitat use and
foraging strategies among others. At the same time, technolog-
ical improvements now allow for generating large datasets of
high sampled GPS data over a long period of time. However,
such datasets often remain unused or used only in part due to
the lack of practical models that can directly infer the desired
features from raw GPS locations and the complexity of existing
approaches. Some of them being disputed for their lack of ra-
tional or biological justifications in their design. We propose a
simple model of individual movement with explicit parameters
based on essential features of animal behavior. The main thrust
was to stick to empirical observations, rather than using black-
box models that could possibly perform very well while provid-
ing little insight from an ecological perspective. We used a sim-
ple model, based on a two-dimensional biased and correlated
random walk with three forces related to advection, attraction
and immobility of the animal. These forces can be directly esti-
mated using individual raw GPS data. The performance of the
model is assessed through 5 statistics that describe the spatial
features of animal movement. We demonstrate the approach by
using GPS data of 5 roe deer with high frequency sampling. We
show that combining the three forces significantly improves the
model performance. We also found that the model's parame-
ters are not affected by the sampling rate of the GPS, suggesting
that our model could also be used with low frequency sampling
GPS devices. Additionally, the practical design of the model
was verified for detecting spatial feature abnormalities (such as
voids) and for providing estimates of density and abundance of
wild animals. Our results show that a simple and practicable
random walk template can account for the spatial complexity
of wild animals. Integrating even more additional features of
animal movement, such as individuals’ interactions or environ-
mental repellents, could help to better understand the spatial
behavior of wild animals.
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Introduction
Animals live in an environment that is patchy and hierarchi-

cal, and the manner in which individuals search for spatially

dispersed resources is crucial to their success in exploitin
them (). At the same time, the tracking of animals using

the modern global positioning system (GPS) now allows for

the collection of important datasets on animal locatid)s (

They are often used for the analysis of the home range be

havior i.e., restrict their movements to self-limited portions

of space far smaller than expected from their sole locomotion
capacities §) and, more generally, to better understand the
spatial and temporal behavior of animads §). New, smaller
and reliable devices allow for gathering large dataseis. (
locations or activity data for instance) at a finer temporal and
spatial scale and offer a greater opportunity to investigate an-
imal movement at the individual scale. However, datasets of-
ten remain only partially used due to both the lack of practical
models that can directly infer the desired features from raw
GPS locations and the complexity of existing approaches.
Meanwhile, ecologists in particular are called to develop new
capabilities to deal with these large dataséts).

The modeling of animal movement includes a wide range
of methodologies: biased and/or correlated random walks
(BCR), the disputed Lévy Flight/wallg¢12), Stochastic Dif-
ferential Equation (SDE)13-16) including diffusion mod-

els based on the two-dimensional Ornstein-Uhlenbeck pro-
cess (7-21) and other more exotic algorithms usiag-hoc
rules to mimic movement features such as memagy 23).
Lévy Flight has convenient patterns but ecological motiva-
tions are scarcel(l). SDE -the continuous analog of BCR-

or the Brownian bridge and Movement Mod@4j may be
used to interpolate the trajectory between two observations.
SDE includes a drift (directional) and one or several random
diffusion processeslg, 25). BCRs are convenient tools to
model animal movement as the discrete time is well adapted
to regular GPS dat®p) and the parameters of the BCR can
be directly interpreted in terms of the behavior of the animal.
They correspond to the attraction of some locations, the in-
ertia and memory feature of the movement, time dependence
of the movement, local interactions with other individuals,
etc. Some key features of animal movement have already
been identified by previous studies, including diffusion (or
randomness) which corresponds to an isotropic random mo-
tion, where the individual has the same probability to go in
all directions; Attraction (directional bias) where the move-
ment of the animal is anisotropic and is confined in an area
or domain, according ta26) and other studies3}, while the
attraction may depend on the distance from the isobarycen-
ter of locations 27); Inertia where the movement of the ani-

gnal is also shaped by foraging tasks where the animal alter-

nates exploration periods -the path has high tortuosity- with
straightforward movement2®). These three features can be
implemented as parameters of a BCR.

This study aims at modeling animal movement of sedentary

Berthelotetal. | bioRxiv | March 11,2020 | 1-10


https://doi.org/10.1101/2020.03.11.986885
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.11.986885; this version posted March 12, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Table 1. Data summary . For each animal, the total number of observations n is given along with the period of collection (date and time), the sampling rate T (i.e. the
average time between 2 observations) (in min.) and corresponding standard deviation, total distance (in kilometers), total recording time (in days) and average speed s (in
1072 m.s?).

Animal n period of collection T +sd. (min.) tot. distance (km.) time (d.) s (10~2 m.s?)
Deer1l 29520 09/01/2010 00:00 - 11/08/2010 23:50 10.49+3.18 945.67 214.99 5.09
Deer2 27324 10/12/2009 00:00 - 24/06/2010 23:50 10.38+3.69 1030.97 196.99 6.06
Deer3 23301 16/03/201000:00 - 07/09/2010 23:41 10.88+8.67 876.33 175.99 5.76
Deer4 24735 22/01/2010 00:00 - 21/07/2010 23:51  10.5445.16 898.38 180.99 5.74
Deer5 21451 16/01/2010 00:01 - 24/06/2010 07:31 10.694+10.11 785.93 159.31 5.71

individuals over short period29), in a homogeneous land- present study focuses on female red deer for test model. A de-
scape using GPS data sets and a BCR. As a first approach, wailed overview of the landscape and surroundings is given in
consider one individual of a given species with no interaction(35). The GPS data had regular observation frequencies with
and simulate its movement in continuous space and discrethigh frequency sampling (Table 1). In the following text, we
time in 2 dimensions using a BCR with the aforementionednoteX; = [ X}, X?] the successive locations of the individual
parameters -diffusion, attraction, inertia- and one additionawith X; € R? andi =1,2,...,n. We uset; (t; = 0) as the
term: immobility. This late parameter takes into account thetime elapsed between two successive locati®ns; and X;

absence of movement between a pair of locatiors @is- and .

tance is 0). This can be accredited to technological limita- T 1 .

tions with the satellite telemetry due to a weak GPS signal - n“ . !
1=

strength {.e. due to natural elements: such as when the ani- N : .
mal was standing underneath a rock or due to dense cloud@s the average sampling time. The trajectory of the ani-

dust particles, mountains or flying objects, such as airplanesjial: or ‘path’, was interpolated using linear interpolation be-
However, this can also be part of the behavior of the ani-Ween each pair of recorded observations (Figure 1 and de-
mals, during specific times: sleep cycles for instance. Thdailed in Supplementary file 1 (eq. 18) and associated Graph
introduced model is general, simple and informative as the?)- It @pproximates the animal travels in straight lines at
three parameters are directly inferred from the GPS data sefOnstant velocity between each pair of locatiod€)( The

The model can be sophisticated by including more Comp"_home/attractorXF of one individual was estimated as the

cated environmental aspects of individual movement, such alSoParycenter of all recorded locations:

spatial memory30, 31), reinforcement and site fidelity3p), Lo n
environmental predictability33) including landscape effect Xp=X= {F,F} == ZXil’ l fo
(34), interacting individuals and prey-predator dynamics. We n = ni4

aso introduce five statistics that describe the spatial features
of animal movement, with a particular interest in censgies (
population estimation) using transects. These statistics alModeling framework. The movement of an animal was
low for estimating the ‘performance’ of the BCR model, or modeled by a two-dimensional BCR in discrete time and
in other words its ability to mimic the spatial characteristics continuous space which included 3 parameters coupled with
of an animal’s movement. Finally, we investigate how our isotropic diffusion:

model can address ecological questions including census and

spatial issues, using GPS data sets. « Diffusion: We considered a random direction with uni-

form spatial distribution in a 2D plane,

Material and Methods « Attraction (pz): A natural way to include this feature

Data. The locations of 5 GPS-collared red de€efvus ela- IS t_o tlncreaze ttr;e ptr Ogab"_'mto goléog flﬁefjftattrag?ve
phus) were gathered at La Petite Pierre National Hunting point named attracto 0. ;IS yielged a driit or &

and Wildlife Reserve (NHWR), in north-eastern of France vection parameter in the direction &y,

(48.8321 (Lat.) / 7.3514 (Lon.)). The reserve is an unfenced  « |nertia (p;): This parameter increased the probability
2670 ha forest area characteristics by deciduous trees (mostly  to move forward i(e. to perform one step in the direc-
Fagussylvatica) in the western part and by coniferous species tion of the previous step),

(mostlyPinus sylvestris andAbies alba) in the eastern part in

nature reserve surrounded by crops and pastures. Itis located * Immobility (ps): We included this as a specific param-
at a low elevation area of the Vosges mountain range, which eter and the movement was stopped for one step.
rises up to 400 m a. s. |. The climate is continental with COOIThus, the movement of the animal was modeled by a chain
summers and mild winters (mean January and July temperasg. .o acterized by a transition matrix:

tures of 1.4 and 19%, respectively, data from Phalsbourg = "’

weather station, Meteo France, from 2004 to 2017). Three 1 14+pr 1
ungulate species are present and mainly managed through 1 Ds 1 1)
hunting in the NHWR: wild boar, red deer and roe deer. The 14+pr 1 1
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Fig. 1. Individual paths of the five red deer. Individual paths of the five red deer. The individual paths are plotted for the five red deer (left panel, A) along with the
distribution of the relative turning angles (degrees) in polar plots (right panel, B). An angular value of 0 consists in a straight motion from the previous location, while a relative
turning angle of 180°C corresponds to a turn back.

Parameters simulations the log-normal law to model the distance covered by the indi-
L

Py P Py vidual between each time step. Thugif=p; =ps =0, the

[o3)
a
=

1 BCR resumes to a typical two-dimensional random walk with
direct alog-normal step size distributidn\ (11,02). The three pa-
inference rameters were accordingly tuned to the corresponding dataset

v using a straightforward estimation procedure (Supplementary
GPS data  |eeeesesseesneenennip]  Statistics file 1). We then simulated 1000 BCR and used 5 statistics that
and comparison describe the spatial features of an individual’s movement to
(L, distance) assess the BCR performance (framework detailed in Figure
_ _ 2). We additionally perform a sensitivity analysis by testing
Fig. 2. Framework used for testing the BCR model performance, for one an-

imal. Black lines detail the two operations processed from the GPS dataset. The the performance of the BCR but USing Only one or two pa-

3 parameters are estimated from the GPS data and -using these parameters- 1000 rameters instead of the three parameters.
simulations of the BCR model are computed. No particular operations are associ-
ated with the dotted black lines, but they show how the BCR and the GPS dataset
are evaluated and compared using the statistics. We use the same framework to

investigate the performance of the BCR with only one or two parameters. Statistics for describing animal movement The 5 statis-

tics were designed to assess the model reliability on spatial
renormalized by + pr + ps + pr to obtain the probability  features including:i] the distribution of relative turning an-
distribution of the next position compared to the current one.gles which provides information about the local movement of
In the presented case (et), the immediate past movement the animal, if) the home range which provides information
of the animal is coming from the down part of the matie(  about the spatial density of observations aifijl §bservation
upward vertical directiont) and the attractor is estimated to counts using still and mobile transects, providing information
be located southwest from the actual pOSitiOﬂ of the indiVid-on absolute observation abundan@@)( We did not keep
ual. track of locations during transect counts, thus ignoring spa-
We analyzed the distribution of the distances covered betial information, as it was already collected i) ( Additional
tween each pair of locations (Supplementary file 2) and usedietails are provided in Supplementary file 3.
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Fig. 3. Simulated animal motions over arbitrary parameter va lues. Fifty motions of length n, = 100 steps are simulated and originate from a common centroid
(downward-pointing triangle) with increased levels of inertia (pr), immobility (ps) and attractor (pr). Both the location of the attractor (black dot) and the log-normal
parameters controlling the step size distribution are fixed (u = 3, 02 = 1).

Distribution of turning angles. For each individual, the use dilation of both simulated and GPS paths for two reasons:
distribution of counter-clockwise relative turning angles to have areal -and comparable- number that accounts for how
(Xi—l/)(;(i-i-l) was gathered, providet{ X;_1, X;) > dmin a trajectory has explored space and because it is natural tool
andd(X;, Xit+1) > dmin With diniy the immobility threshold ~ from a census point of view (the dilated path corresponds to
distance between two locations. We dgt, < 10m, which  the area where the animal can be detected). Each simulated
corresponds to the magnitude of the error typically found in©r real path was plotted in binary format in a window and di-
GPS locations39). This means that we only kept the an- lated with a disk shape. The window size was set to a huge

gles from observations that were separated by an EuclideaMalue in order to encapsulate the dilated path while prevent-
distance greater thafnin. ing boundary effectd,e. the convex envelope of the dilated

area did not collide with any window border. We then esti-
Home range. We used an adaptive kernel density estimatormated the surface covered by the dilated path for 100 differ-
(matlab package kde2d - kernel density estimation versiorent sizes of the disk, from disk size 1 to disk size 100. We
1.3.0.0) as an estimator of the utilization distributid@)(to ~ compared each value of the data’s estimated surface against
represent the home range of the animal. The approach dhe simulated one.
Z.1. Botev provided an estimate of observation density using
a bivariate (Gaussian) kernel with diagonal bandwidth ma-Immobile transects. We used still transects that counted the
trix (41). The density was estimated over a grid2af x 210 number of times the animal was seen in their line of sight.
nodes and we computed the home range area{)rionvari- We arbitrary set the line-of-sight value at 200m. The num-
ous values: 100, 99, 95, 90, 80, ..., 20, 10% of the estimateder of sightings of each transect was gathered and ordered in
density. Similarly to the distribution of turning angles, we decreasing order, thus breaking the spatial dependence. We
compared each value of the data’s home range against th&en compared the bins of the resulting histogram in the data
simulated one. and in the simulated path.

Dilation. Dilation is generally used to account for the spatial Mobile transects. First, the movement of the animal was lin-
attributes of an object such as to measure an area around tlearly interpolated from the GPS data, meaning that between
path or the volume of a brownian motion (see Wiener sausagéwno recorded locations the individual followed a linear path.
(42) and Gromov—Hausdorff distance). In our approach, weThe speed of the animal between two locations was accord-
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Table 2. Estimated parameters. For each deer, the estimated parameters pr, pr,

|neg reconstructed using the recorded timﬁbetween each ps and the two parameters i, o that control the step size distribution are given.

location. Second, we used mobile transects as the ec:ologicodAmmal
i ‘ ) : Pr PF Ds M o

sampling method, where each transect ‘count’ the intersec- cerl 001 001 201 294 101
tion between its path and the animal’s one. The mobile tran- Deer? 006 013 144 315 0.97
sects followed a predefined path at a given constant speed 8Sheer3 012 005 1.70 3.07 1.04
time increased. The area of vision of each transect was de- eerd 010 006 152 310 098
fined as a circle of a given radius. Each time the path of an Deer5 022 024 166 3.03 106
individual collided with an area of vision, the count of the
corresponding transect increased by 1. Two types of move-

ments were used: linear and clockwise rotational transectsappjication: detecting anomalous voids. ~ The proposed

The initial locations of both types of transects af¢ and ~ model could be used to infer environmental and behavior in-
Xp. Both the animal and mobile transects started to movetormation from the dataset. For example, it was possible to
at the same time. At each of the two locatiokis, X7, 8  detect anomalous voids (or holes) in the spatial territory of
linear transects moved in the 8 cardinal directions, totalizingthe individual using Monte-Carlo simulations of the model.
16 transects. For the linear transects, every 10000 time stepanomalous means that the observed void is not related to
we set2 x 8 new transects starting at the same locations anghe randomness of the movement, but rather related to a ge-
following the same directions. Clockwise rotational transectspgraphical artifact. The three parametgfspr, ps and pa-
were rotated around; and X p using a 500m radius. When  yrameters of the log-normal distribution for step-size were ac-
we reached,,, we gathered the total couritg the countof  cordingly estimated from the data of each individual, simi-
all transects). For the two types of transects, we gathered th%my to previous experiments (Figure 2 and Table 2). A sim-
total count for 6 different lines of sight: 50, 100, 200, 400, ple heuristic was used to find voids in empirical and simu-
500, 1000m. and 4 speeds4, /2, s, 2.s with s the average  |ated paths for each individual: we computed the alpha shape
speed of the animal. We then aggregated the overall count igf a| locations using a fixed alpha radius of 60m. This al-
each of the two types of transects, and compared the resuligwed for determining the surface covered by all locations
from the data and the simulated path (Supplementary file dyhile preserving the voids. We then collected the area of
and 3). each void provided they had an area of at least 200w
focused on voids near the center of the alpha shape in orderto
avoid artificial voids, generated by the weak density of loca-
ions at the boundaries. We ran 10,000 iterations of the model
or each animal and estimated the probability of finding

) th . . . voids of different sizes in the simulated paths. This proba-
\{|dual. We only kept every™ observation starting with the bility was then compared to voids found in the GPS datasets
first one_a_ndk € [1,10}. I_:or k =1 the path corresponded _and available environmental information was used to deter-
to the orl_glnal one. The time _spent between each_successwleﬁine whether any geographical element(s) could explain the
observation was also accordingly reconstructed in order t%nexpected voids.

keep track ofl’ in subsampled movement paths. The time
between two location(; and X, was reconstructed as:

Scale invariance. We also studied how the scale affected
the BCR parameters. The movement path formed by the GP
observationsX; was subsampled (decimated) for each indi-

¢ = S it € (1,14 12k (b 1)), o
We then compared the resulting parametgre andp, as  The parameters estimated for each individual are given in Ta-
the subsampling parameteincreased. ble 2 for the model. We showed that the parametessd

o2 were close for all individuals, and estimates of the three

parameters for individuals 3 and 4 were similar. The values
Deterministic aspects of the statistics. =~ Whereas the of p; andpr showed that inertia and attractor play a greater
BCR is a stochastic process, the deterministic aspects of the fle in the movement of deer 5{ = 0.22, pr = 0.24), com-
statistics were tested with an increasing number of stgps  pared to the other individuals. The immobility was stable
The statistic associated with each realization of the modehcross the individuals whilg; andpx varied together (Table
(a simulated path) is a random variable. If the distribution 2). The latter is a mechanistic effect, as they act as opposite
of these random variables has low concentration (high variforces. We also detailed additional configurations of the BCR
ance) then it is not a convenient statistic as it cannot beyhere we used only some of the parameters (Supplementary
used as a reference for assessing the model's performanciies 8 and 9).
even when averaging over multiples realizations. On the op-
posite, if the statistic is deterministic it can provide a reli- Evaluation of the BCR model. The distribution of error of
able tool to assess the model’s performance. This was nueach of the model's 5 configurations in the 5 statistics is pro-
merically tested over a range of increasing values with  vided in Figure 4 for deer 5 (see Supplementary file 4 for the
ns = 10%2x10%,...,4 x 10°. For each of those step values, complete results). The mean error and standard deviation,
a set of 100 BCR was simulated with parameferspr and median error and interquartile range are also provided in Sup-
ps estimated from the first deer (see Table 2) and we studieghlementary file 9, for all deer and statistics. We showed that
the variance of the statistics. combining the parameters plays an important role in model-
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QGO’A- Distribution of —RW to movement randomness but to other spatial features, with
g“’mm‘“g angles L good probability. The distributions of errors for each config-
£ — R uration varied in each deer.
0353 023 o2 025 020 037 038
x10% . .
2 j’ B. Home range Discussion
§ | (kernel) P— ) ) o .
g ?M In this work we aim at providing valuable and reliable
T ‘ . N ecological information regarding the components of animal
0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2 . .
107 %108 movement. We introduce a simple and tractable model to deal
g 31 C. Dilation with animal movement, based on a two-dimensional BCR in
R discrete time and continuous space that allows for combining
[ L . . .
= (1) - the ecological forces in a simple way. The parameters of the
010 1 2 3 4 5 6 7 8 ><1(‘))" BCR are directly estimated using the GPS data recorded in
107 . . . . .
g ,| D. Immobile transects A a large herbivore and its performance is assessed in 5 spatial
5 / and ecologically-related statistics. Four of them differ from
gl 7 the typical signals or parameters calculated based on empiri-
00 Sh00 5500 6000 6007000 75008000 cal relocations43) and address the home range size, census
%1455113"’Mob“c transects ) issues and animal behavior. The framework is presented in
g 1} (linear) N\ Figure 2 and explains how synthetic (or simulated) paths pa-
= . - . .
Sos rameterized from empirical observations are ultimately com-
o ‘ ‘ e, N, pared to the empirical paths throughout the statistics. It de-
0 500 1000 1500 2000 2500 3000 3500 4000 . . .
10 scribes how any field dat&(), whatever the sampling rate
g "(F' I:/If.b“;* transects //\ and type, should be analyzed whenever possible. However,
Q rotatin; . B
Bosl £ we emphasize that the attributes of the data (such as the sam-
[T . . . .
=, : ‘ — e \ ‘ pling rate for instance) should be consistent amongst differ-
200030004000 50006000 7000 8000 ent individuals in order to allow for inter-individual compar-
ison (see 44) and subsequent discussion). It is also impor-
Fig. 4. Density of error e of all 5 configurations tested in each statistic for deer tant to have a sufficient number of locations (‘sample size’)

5. Densities are fitted by the Epanechnikov kernel function. A complete comparison

of results for all red deer is provided in Supplementary file 1. as precision in parameter estimation scales with the Sample

size, meaning that the more observations, the higher the pre-

ing deer behavior. Configurations with only one parametercision. We focus on three essential forces that may allow for
did not perform well on average while further investigations an efficient description of animal motion over large periods of
showed that combining;, pr andp, allows for a better de-  time: inertiap;, immobility p; and attractopr. Other per-
scription of movement, especially regarding the census statisturbations are encapsulated into a random noise. The BCR is
tics for both linear and rotational transects and home rangéhen designed to embed the main ecological features driving
estimates (Supplementary files 4 and 9). Four of the 5 statisthe movement of most terrestrial animals: exploratory or for-
tics became more and more deterministic and concentrate@ding behavior (inertia), patch exploitation or sleeping peri-
around their mean value (Supplementary file 5). On the con0ds (immobility), attractor (reference and working-memory).
trary, the variance of the dilation seemed to increase for thel he results display that by using those parameters, we get a
first n, steps. The trend observed in the linear mobile tran-much better description of animal movement compared to an
sects also seemed to increase, however the trend was not cleéibiased random-walk with a log-normal step size distribu-
and presented small fluctuations. tion.

The model reproduces the distribution of relative turn angles
Scale invariance. The resampling of movement paths observed in a large herbivore, provided the parameters are
showed thap, decreased as the subsampling rate increasetuned accordingly. This distribution of turning angles is sim-
in all five deer. The three other parameters remain roughhjlar in all five individuals and resemblesaoriented oval
constant (Supplementary file 6). (Figure 1). This oval pattern was already noted in many other

species such as the elkq), the brushtail possum (‘possum’:
Application: detecting spatial voids.  The resulting alpha  Trichosurus vulpecula) (44), the caribou 46), the Mediter-
shapes and detected voids (holes) are presented for each deanean mouflon@vis gmelini musimon Ovis) (47) and even
in Supplementary file 7. The probabilify; of observing in Cinereous AntshrikeThamnomanes caesius) flocks @48).
such voids is computed and showed in Figure 5. Many voidsGPS errors are known to possibly generate such directional
whose area fell in the interv$0,1.5 X 104] were related to  bias where a stationary animal is most likely to be mea-
boundary conditions, where the alpha shape produced artifisured as turning 18@ or moving towards49). We con-
cial voids due to less dense areas. However, the Monte Carlstructed turning angles using locations separated by at least
simulations show that 3 voids, located inside the alpha shapé€,,,;, and this pattern remains and carry additional analyses
(void 1 (deer 1) and voids 1 and 2 (deer 4)), should not ap-using the adehabitatHR package in 50)(to i compute the
pear. In other words, these voids are possibly not relatedesidence time as the time spent into a 100m. circular area
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Google Maps. (2018). [Réserve Nationale de Chasse et de Faune
Sauvage de La Petite Pierre (Northeast, France)] [Satellite Map]
Retrieved May 14, 2018, from
www.google.com/maps/place/48°49'52.1"N+7°19'31.7"E

Google Maps. (2018). [Réserve Nationale de Chasse et de Faune Sauvage de La Petite Pierre (Northeast, France)]
[Satellite Map] Retrieved May 14, 2018, from www.google.com/maps/place/48°47'58.0"N+7°19'18.0"E

Fig. 5. Using the framework and model to identify spatial void s in movement paths . In panel A the probability pg of finding voids of different sizes in the simulated paths
is given for each deer (black lines). All voids > 100m? detected in the empirical GPS location are given (black dots in x-axis). Selected voids (circled numbers) correspond
to voids that both are near the center of the alpha shape and have a low p (see alpha shape figures in Supplementary file 1). B Geographic location of the study area (black
dot). The three voids detected in deer 1 and 4 are detailed in panel C and D along with the environmental features. Image in B was created by TomKr and is distributed under
GNU Free Documentation License. It corresponds to the map of France with regions and departments in equirectangular projection and was realized with free IGN data base
GeoFla (www.ign.fr).
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for each localization and to study the relative turn angles feeding, resting cycles in red deer and labile di) (

associated W'tg 2|gh>{ 100m.) or small Kfll(:jOrr;].) ?'S' Site fidelity is the recurrent visit of an animal to a previously
tances covered during a movement. We find that reqlJenI)ccupied location. This is a well-known and wide-spread be-

turn backs are associated with high residence time. Wg . io:in the animal kingdonBQ). The animal favors loca-

also f'nq that turn angles are more evenly distributed in thetions that are ecologically valuable and related to a foraging
small distances and that small turn angles are more assocj;, explorative behavior. In our approach, we rather and sim-

ated w_ith small distances values. Thesg analyse; suggest tl“m, depict site fidelity using one single attracter. The fact
the animals have an exploratory / foraging behavior in a IocaIit improves the performance of the model when combined

patch. Exploratory or foraging behavior is often modeled US“with inertia and immobilism confirms that site fidelity (or a

ng stochast_lc processes satisfying the_ 'V'afko" property, S!Jd%implified estimation of it) should be taken into account when
as the bivariate Ornstein-Uhlenbeck diffusion process whic odeling deer movement

produces similar distribution patterns of relative turn angles _
(51, 52), in line with our BCR approach. Other analyzes were carried out to ensure the robustness and

Comparison of model configurations reveals that both thecon&stency of the BCR model, including the impact of the

two-dimensional random walk and the configurations with GPS sampling rate on the estimated parameters. Several

: authors pointed out that the temporal resolution of the dis-
only one parameter do not perform well in most cases. On

the contrary, combining all three parametgys(inertia), p cretization is of importance: it should be relevant to the con-
Ll 178 H H . m
(immobility) andp g (attractor) provides better results in the sidered behavioral mechanisni 44, 60, 61). Schiagel and

L2 X . | ewis focused on the quantification of movement models’ ro-
vast majority of cases (Figure 4 and Supplementary files Abustness under subsampled movement p ( They
and 9). This confirms that animal movement is a complex a1}

. . . found that increased subsampling leads to a strong devia-
process, driven by several forces instead of a single and dorq.— ; )
inant one ion of the central parameter in resource selection models

T o ) (61, 62). They also underlined that the parameter estimates
The inertia, describing the short-term memory effect, is theyary with sampling rate when movement models are fitted to
first force introduced in this approach. Whether the use ofyata. Postlethwaite and Dennis highlighted the difficulty of
land space by the animal is dependent on short-term or longeomparing model results amongst tracking-datasets that vary
term memory is a debated topic. It gave rise to a series Ofsubstantially in temporal graid{). We use data with a rel-
§tudies that emphasized.the importance of memory i”_anatively high sampling rate (roughly 10m.) and a period of
imal movement from a biological or modeling perspective syqy that is appropriate to the analysis of animal movement
(30, 31, 53-57). These studies also underlined that inferring 4t the year scale (Table 1). More importantly, the five animals
memory effects directly from relocations is not a trivial task. payve the same sampling rate (Table 1). We changed the sam-
Those relocations instead depend on a mixture of effects, inpling rate of the movement path to ensure that the parameters
cluding Ia_ndscape and territorial con_straint_s, resource patchggated to directional movement are scale invariant (Supple-
and possibly long-term memory. Using a single memory fea-mentary file 6). We found that they remain almost constant
ture p; might be a too simple approximation for efficiently \yith increased subsampling, thus strengthening their essen-
capturing the memory effect. In our approach itis possible totjg| role in animal movement (Supplementary file 6). On the
alterp; in order to include several previous steps instead ofpther hand, distance-related parameters sugh,as o2 are
Justone. highly sensitive to the subsampling rate, but it is a mechanis-
Immobility combines several features of animal movementtic effect of the subsampling procedure: as we progressively
including animal at rest, in vigilant state, and GPS noise.prune thei!" values, the distance between each GPS loca-
Multiple factors are known to affect GPS noise, including tion increases. The distribution of turning angles or the home
topographic exposure, canopy cover, vegetation height andange estimates can vary with the temporal scale of study and
the slow movement of the ionosphere. The latter changes bgampling rate of datasetd4, 63). Schlagel and Lewis fur-

a few centimeters during 30sec interva®y, (possibly intro-  ther underlined that important quantities derived from empir-
ducing up to 20 fold this bias in each of the recorded GPSical data ég. travel distance or sinuosity) can differ based
observations. However, this is small regarding the averag®n the temporal resolution of the da®il(62). This could

step size of non-immobile movements, ranging from 41mhave introduced bias in the aforementioned statistics and in
(red deer 1) to 46m (red deer 3 and 5). Thus, we assumparameter inference. However, both the sampling rate and
that the measured step lengths and turning angles reflect themporal scale of study are similar in all our datasets (Ta-
reality. Immobile {.e. < d,i,) Observations represent a large ble 1), thus allowing for unbiased inference, proper evalu-
proportion in our total datasets: 25.0% (red deer 1), 17.2%ation of the model’s performance and inter-individual com-
(red deer 2), 22.0% (red deer 3), 19.0% (red deer 4) angbarison. We also investigated the deterministic feature of the
23.6% (red deer 5), associated with specific behaviors sucb statistics and found that the variance decreases or does not
as on-site foraging, eating, resting, etc. The estimatgsiof  change as the number of simulated steps increases in most of
all five animals are greater than inertia or attractor (Table 2)the statistics. Thus, 4 of the 5 statistics are robust and add
underlining the importance of considering immobility when limited randomness to the results when the number of steps
analyzing the movement of red deer. This is in line with pre-increases. The long-term trend is not clear in the mobile tran-
vious experimental studies that showed the high frequency oects case as we investigated the variance ©wet0® steps
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and we may only observe a transient increase or stagnatiotyet to be investigated. Additional behavior features such as
This statistic is expected to be similar to the one of immo-the spatial reinforcement, memory ofprevious steps, ac-
bile transects but the speed of convergence to the null varitivity rhythms (such as the circadian cycle), distance from
ance may be very slow and it may take a much larger numbethe attractor, landscape/habitat effe®d)( interactions with

of steps. The variance of the estimated areas in the dilatiomther animals and topological issues are currently being in-
statistic increases with, because we dilated the simulated vestigated and will be included in a future work. Another
paths in a huge window, encapsulating the whole path includpoint of interest is the development of a continuous version of
ing a very large portion of empty space around it. This wasthe proposed model, where the direction of the step is drawn
done to prevent boundary effects when assessing the area &bm a specific distribution, whose parameters are yet to be
dilated pathsi.e. to make sure that dilated paths do not hit empirically characterized.

any of the window bounds. Otherwise this would produce

biased, underestimated areas. However, using a smaller Wir\{;\_/cngS\cl(:rs%?aEgtﬁ’\t‘;—?he French Biodiversity Office (Office Frangais de la Bio-

dow or, again, a much larger number of steps would result indiversité) for the data. We also thank Sylvain Billard, Jean-Michel Gaillard and

a null-variance. Clément Calenge for the discussions and Catherine Carter for her review of the

i i . . . . manuscript. This work was supported by the Chair ‘Modélisation Mathématique
Another leading rational of this work is to investigate the et Biodiversité’ of Veolia Environnement-Ecole Polytechnique-Museum National

model's ability to address ecological challenges such as el ite o te e e X oty | ABIM 26(ANR-LE-CE40-0001
timating the abundance of a given species (census) or detect-

ing anomalous spatial features. We use both mobile and im-

mobile simulated transects to illustrate how the model couldEthics approval and consent to participate

be used in the first problem. The probability of counting
the same animal multiple times can then be estimated usin

Monte Carlo simulations. The second issue is, for instance

Il procedures performed in studies involving human partic-
ants were in accordance with the ethical standards of the

to detect spatial voids in empirical movement paths. The lo_instltutlona_ll and/or national research committee and with the
964 Helsinki declaration and its later amendments or com-

cation of animals may present empty spatial voids (or holes . . S
of various sizes ThiZ rr:1ay be relarie}:j tg environme(ntal Con_parable ethical standards. All applicable institutional and/or
: ational guidelines for the care and use of animals were fol-

ditions such as urban areas, water, cliff, or other ecologica 4 Th h is hosted by the F h N
reasons (such as interactions with other individuals e.g. re.JWed. € research program IS hosted by the French Na-

pulsive marks) and other factors. Using numerical simula-tlonal Hunting and Wildlife Agency (Office National de la

tions of the model, we are able to detect anomalous voidsCI:1asse ettde la Faune fSattJr\]/a?_e?a Thlsk|r(1;st|tut|on htas granted
in the dataset, that are not related to randomness but to hd'jl cgnster(ljs_ necesszry or ('ethleE WOrK. ami C';’:lp ur(ra]slwere
man activity. The void 1 (deer 1) reveals that some environ-S0NduUCted In accordance wi uropean and French 1aws.

he experiment was designed to minimize animal stress and

mental changes took place between the recording time of th dling ti dt imal welf defined i
GPS location in 2010 and the satellite image in 2018. After andiing ime and 1o ensure animal wetlare, as defined in
guidelines for the ethical use of animals in research. A spe-

cross-checking with additional information from the OFB, =... N . . .
cific accreditation was also delivered for capturing animals

we learned that the identified area was a forest enclosuref. entifi d wildlif i Animal
This explains why the deer was not able to reach this are or sclentiic and wildiile management purposes. Anima

Both voids 1 and 2 of deer 4 also are related to human activ-Captures and experimental procedures were in line with the

s - s . French Environmental Code (Art. R421-15 to 421-31 and
ities: forest roads, buildings and one artificial reservoir. R422-92 t0 422-94-1).

Conclusions b h
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