
 
 

Conditional repeatability and the variance explained by 
reaction norm variation in random slope models 

Holger Schielzeth1, Shinichi Nakagawa2 
1Institute of Ecology and Evolution, Friedrich Schiller University Jena, Germany 
2Evolution & Ecology Research Centre and School of Biological, Earth and Environmental 
Sciences, University of New South Wales, Sydney, Australia 

 

Data deposition: There is no data to be deposited. R scripts for simulations are available on 
Github (https://github.com/hschielzeth/RandomSlopeR2). 

 

Address for correspondence 

Holger Schielzeth, Institute of Ecology and Evolution, Friedrich Schiller University Jena, 
Dornburger Str. 159, 07743 Jena, Germany, holger.schielzeth@uni-jena.de 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 11, 2020. ; https://doi.org/10.1101/2020.03.11.987073doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.11.987073
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 

Individuals differ in average phenotypes, but also in sensitivity to environmental variation. 
Such variation is biologically relevant, because it reflects variation in reaction norms. 
Between-individual variation in average phenotypes is typically quantified as random-
intercept variation in linear mixed-effects models or as intra-class correlations (also known 
as repeatability). Similarly, context-sensitivity can be modelled as random-slope variation. 
However, random-slope variation implies that between-individual variation varies across the 
range of a covariate (environment, context, time or age) and has thus been called 
‘conditional’ repeatability. While studies fitting random-slope models are on a rapid 
increase, there is a lack of a general concept for the quantification of context-sensitive 
between-individual variation. We here propose to put reaction-norm (random-slope) 
variation in perspective of the total phenotypic variance and suggest a way of 
standardization that we call random-slope coefficient of determination 2

SR . Furthermore, 
we illustrate that instead of the random-intercept variance, the average repeatability across 
an environmental gradient will be a biologically more relevant description of between-
individual variation and we call this the marginalized repeatability marR . We provide simple 
equation to calculated key descriptors of conditional repeatabilities, clarify the difference 
between random-intercept variation and average between-individual variation and make 
recommendations for comprehensive reporting. Most importantly, reporting should include 
means and variances of covariates. While we introduce the concept with individual-variation 
in mind, the framework is equally applicable to other type of between-group/cluster 
variation that varies across some (environmental) gradient.  

Keywords: intra-class correlation, between-individual variation, context-sensitivity, random-
slope mixed effects models, conditional repeatability, reaction norm variation, standardized 
reporting 
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Introduction 

Repeatabilities R and coefficients of variation R2 allow a decomposition of the sources of 
biological variance in some response, feature or trait of interest. Repeatabilities (also known 
as intra-class correlations, ICC) are mostly concerned with a decomposition of random-
effect variances (Nakagawa & Schielzeth 2010; Wolak et al. 2012). Repeatabilities have 
become particularly relevant in the study of labile and repeatedly expressed phenotypes 
(Bell et al. 2009). Coefficients of determination R2 are used to quantify the variance 
explained in the fixed part of the model (marginal R2; sensu (Nakagawa & Schielzeth 2013)). 
Repeatabilities and coefficients of variation are thus complementary quantities, one 
focusing on the random the other on the fixed part of the model. 

Both, repeatabilities and coefficients of determination, quantify sources of variation in 
relation to the total variance in a response. To make this more concrete, we want to focus 
on variance decomposition in a context of the study of phenotypic variation, although the 
concepts are easily transferred to other systems. Imagine some flexible phenotype of some 
organism (this may be some physiological, endocrinological or behavioral trait, see e.g. 
(Nespolo & Franco 2007; Bell et al. 2009) that has been measured across multiple 
individuals with repeated observation per individual. Observed phenotypes ijy are thus 
clustered within individuals i with repeated observations j per individual. The phenotypic 
equation represents a variance decomposition model that consists of a mechanistic (fixed 
effects) and idiosyncratic (random effects) part (Allegue et al. 2017): 

ijiijijij euxxy +++⋅+⋅+= ,22,11 ββα  

Where i  indexes individuals, j  indexes observations, the terms x⋅β  represent fixed effect 
predictors x  and their slopes β  with numbers indexing different predictors (of which there 
may be more than the two shown here). The sum of the terms x⋅β  may be summarized as 
the linear predictor ∑ ⋅= kkij xβη and represents the fixed part of the model. The terms u  
and e  are the random components, where u  represents deviations of individuals from the 
population mean and e  represents deviations of observations from individual means. 
Individual-level deviations u  and observation-level deviations e  are typically assumed to be 
normally distributed with mean of zero and variance estimated from the data. Since the 
linear predictor also explains some phenotypic variance, there are three variance 
components, 2

ησ , 2
uσ  and 2

eσ , that can be interpreted as sources of biological variation.  

We had previously discussed the various options for estimating ratios of these variance 
components (Nakagawa & Schielzeth 2010, 2013). Here we are concerned with another 
element, random-slope variation that blurs the distinction between the random and the 
fixed part of the model. Random slopes are interactions between fixed-effect covariates and 
random-effects: Slopes that vary by random-effect level (Gelman & Hill 2007; Dingemanse & 
Dochtermann 2013). Random-slopes are often important, because they allow to control for 
pseudoreplication in the estimation of the population slope (Schielzeth & Forstmeier 2009; 
Gurka et al. 2011). More importantly, however, they represent phenotypically plastic 
responses to an environment and are therefore relevant in the study of reaction norms 
(Nussey et al. 2007; Dingemanse et al. 2010). Random-slope models have become popular 
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in the study of ecology and evolution, because they reflect phenotypic plasticity such as an 
organisms’ ability to cope with environmental changes. 

Random-slope variation disrupts the concept of “the repeatability” (Biro & Stamps 2015). 
With random-slopes, the amount of between-individual variation, for example, depends on 
levels of the covariate, thus on context, environment, age or time. We have therefore 
introduced the term “conditional repeatability” for repeatabilities that vary by covariates 
(Nakagawa & Schielzeth 2010). Although random-slope models have become popular, we 
are not aware of any universal standardized measure of random-slope variation. And since 
meta-analyses on the magnitude of random-slope variation are missing, we also know very 
little about the magnitude of random-slope variation in natural systems. It therefore needs 
a system for estimating random-slope variation in a manner that is comparable across study 
system: It needs a method of standardization. 

Johnson (2014) has introduced equations to estimate repeatabilities form random slope 
models. Johnson’s method is based on the multiplication of the random-intercept random-
slope variance-covariance matrix Σwith the design matrix X  for the fixed effects (called Z  
in (Johnson 2014)). Effectively, Johnson’s repeatability estimates average repeatabilities 
across the range of the covariate. As such, Johnston’s repeatability is different from and 
typically larger than then random-intercept variation estimated in the model. In other 
words: With random-slope variation, the random-intercept variation is no longer a 
comprehensive parameter that describes the magnitude of individual differences (or 
differences among other types of groups). Random-intercept variation merely describes 
individual-differences at a single point of the environment. 

Rights and Sterba (Rights & Sterba 2019a, b) have introduced a neat, comprehensive system 
for calculating various R2 measures from mixed-effects models. Unlike Johnson (2014), they 
use the variances and covariances of fixed effects rather than the design matrices for the 
estimation. This offers a more concise version for reporting and it is therefore the approach 
that we adopt below. However, although Rights and Sterba (Rights & Sterba 2019a, b) 
strongly argue for single-source R2 as the main focus of reporting and interpretation, we 
think that this does not capture the most biologically relevant estimates. An inherent 
feature of reaction norms that vary across contexts is that the between-individual variance 
is variable across contexts and an additive decomposition (as shown in (Rights & Sterba 
2019a, b)) is no longer most efficient. 

We here discuss the concept of conditional repeatabilities in some details. We start with 
theoretical considerations and the proceed to application. In particular, we introduce a 
calculation for variance-standardized random-slope variances and make recommendations 
for comprehensive reporting. 

Theory 

We first consider a phenotypic equation expressed as a mixed effect regression model and 
assume that all parameters are known with certainty. 

ijiijiij euxvy +++⋅++= φβα )(  
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Where ijy  is the response of interest, α  is the global intercept (an estimate of the 
population mean if covariates are centered), ijx  is a covariate (context, environment, age or 
time) that varies within individuals (an observation-level predictor), β  is the population 
mean response to the covariate, iu  is the deviation of mean individual trait values from the 
population mean, iv  is the deviation of individual slopes from the population mean slope 
and ije  are residual deviations. φ  is merely introduced as a placeholder for other additive 
variance components such as additional fixed or random effects. The variance explained by 
φ  is φV . ije  are normally distributed with a variance RV  and iu  as well as iv  are 
multivariate normal distributed with variances of uV  and vV , respectively, and a covariance 
of uvC . The covariate ijx  is arbitrarily distributed (as symbolized by D) with mean µ  and 
variance of xV . We will first assume that covariances are grand-mean centered, such that 

0=µ  and lift the constraint later. 

The equation translates into the following variance components (Allegue et al. 2017; Rights 
& Sterba 2019b): 

Variance explained by fixed effects: xF VV ⋅= 2β  
Variance explained by individual: xvuI VVVV ⋅+=  
Other variance components: φV  

Residual variance: RV  
Phenotypic variance: RIFP VVVVV +++= φ  

IV  refers to the total variance explained by individual identity, including random intercept 
and random slope variance. This is an interesting quantity that summarizes individual 
differences, an important topic of current research (Réale et al. 2007; Stamps 2016), but it is 
different from (generally larger than) uV  if random-slope variation is non-zero.  

We note that the phenotypic variance PV  as we calculate it here as the sum of additive 
variance components might differ slightly from the variance in response values as estimated 
from the raw data (Rights & Sterba 2019a). The difference is that the sum of the variance 
components aims to estimate the population variance while the variance in raw response 
values represents to variance in the sample. Since the population variance is what is 
relevant to biological interpretation (de Villemereuil et al. 2018), the sum of additive 
components is usually preferable. However, if components are not fully additive, this may 
lead to misestimation. It is therefore important to specify the variance decomposition 
correctly.  

One component of the total between-individual variation IV  is the variance uniquely 
explained by random slopes: 
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xvS VVV ⋅=  

Note that we so far assume 0=µ , which can be easily achieved by centering covariates 
prior to the analysis. Covariate centering is generally advisable when in random-slope 
models, because uncentered covariates tend to produces large covariation between 
random-slopes and random-intercepts, which often leads to convergence problems. If the 
covariate was not centered, then 

vxvS VVVV ⋅+⋅= 2µ  

vxvuI VVVVV ⋅+⋅+= 2µ  

The between-individual variation in average phenotypes is a little more difficult, because as 
a conditional repeatability it varies across the range of the covariate. We can calculate the 
amount of between-individual variation for any point x  as (figure 1): 

vuvuxI VxCxVV ⋅+⋅+= 2
, 2 . 

The minimum value of xIV ,  (from where it increases in either direction) is reached at: 

v

uv

V
Cx −

=min . 

It follows that the minimum value of xIV ,  is: 

v

uv
uxI V

CVV
2

, )min( −= . 

With context-sensitive responses, it is difficult to conceptualize a pure among-individual 
variation in elevation across the entire gradient. We think that IV  is the best descriptor of 
overall individual differences (figure 1). One might be tempted to use uSII VVVV =−=*  as 
an estimator of elevation, but this is just the between-individual variance at the point where 
the covariate is zero. Whether this is a meaningful value, depends on how the covariate is 
centered. The value might be representative for an average covariate value with mean-
centered covariates (Schielzeth 2010). However, whether or not this is also the minimum 
value of between-individual variation depends on the intercept-slope covariance that, as a 
property of the population, is usually beyond experimental control. 

Standardization 

The above equations offer obvious ways of variance-standardization for both average 
between-individual variation IV and random-slope variation SV . We propose to call the 
variance-standardized average between-individual variation IV  the marginalized 
repeatability marR , because it marginalizes (averages) across the environmental gradient: 

RIF

vxvu
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I
mar VVVV
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This value is typically larger than the variance-standardized random-intercept variation. We 
propose to call the variance-standardized random-slope variation the random-slope 
coefficient of determination 2

SR  (cf. 𝑅𝑅𝑡𝑡
2(𝑣𝑣); (Rights & Sterba 2019b)). 

RIF

vxv

P

S
S VVVV

VVV
V
V

R
+++
⋅+⋅

==
φ

µ 2
2  

Variance-standardization puts the variance explained by individual components in 
perspective of the total phenotypic variance, which, in our experience, is what ecologists 
and evolutionary biologists are usually interested in (see (de Villemereuil et al. 2018) for a 
discussion). However, it has been argued that variance-standardization may produces 
different values not because of differences in the numerator, but because of differences in 
the denominator (Houle 1992). An alternative way of standardization is therefore 
standardization by the square of the mean trait value, if the trait is ratio-scale and the 
assumption that the variance explained increases with the square of the mean is reasonable 
(Houle et al. 2011). For mean-standardization, PV  has to be replaced by 2y  (or α  if all 
covariates are mean-centered) in the equations above.  

Reporting 

We write this article partly to encourage complete reporting for future meta-analyses of 
phenotypic plasticity. A first important message is that the mean of and variance in the 
covariate are important quantities that allow putting reaction norms and reaction norm 
variation in perspective of the phenotypic variance. One way to standardize random slopes 

is the use of variance-standardized covariates 
x

xxx
σ
−

=' , in which case 0'=x  and 1' =XV . 

Alternatively, or better additionally, raw mean x and variance xV  should be reported. 
Furthermore, as we show below, it is important to report covariation among fixed effect. A 
second important message is that the correlation among random slopes and random 
intercepts is an important parameter that can be biologically interpreted and should be 
reported. Negative correlations show that between-individual variation is lower at high 
covariate values and vice versa. 

For meta-analysis, it would also need some measures of uncertainty in all relevant 
estimates. This could be easily achieved by applying our equations to samples from the 
posterior distributions of models fit in a Bayesian framework (Gelman et al. 2004). In a 
likelihood framework, it could be achieved by parametric bootstrapping (Faraway 2014). 
However, some of the sampling variances are small in comparison to others and might not 
need to be available with full uncertainty estimates. For example, estimates of covariate 
means and variances are estimated with far higher precision than estimates of random 
effect variances. In fact, it might sometimes be useful to use means and variances for 
environmental covariates form independent data if the data were collected in an 
experimental setting where variance in the covariate was manipulated. (However, beware 
of out-of-sample predictions, see e.g. (Morrissey & Ruxton 2018))  
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Praxis 

We now relax the assumption that quantities are known with certainty and focus on 
estimation. We have implemented simple simulation to illustrate some critical issues. We do 
not aim to present a full exploration of the full parameter space, that is potentially vast and 
varies between applications. For simulations that explored the power of different sampling 
designs for estimating for estimating random-slope variation we refer to (Martin et al.) and 
(van de Pol).  

In brief, we implemented a data generating function for a simple random-slope model with 
a single grouping factor and two covariates. Random-slopes act on an observation-level 
predictor x . Furthermore, a group-level covariate φ  was introduced with an associated 
slope γ . Random-slopes and random-intercepts were generated from a multivariate normal 
distribution with means of zero and covariance matrix Σ . The generating phenotypic 
equation was: 

ijijiijiij euxvy +⋅++⋅++= φγβα )(  
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We used the following parameter settings: 3=α , 5.0−=β , 5.0=γ , 1=RV , 1=uV , 
5.0=vV , 3.0=uvC , 2.1=xV , 1=φV , 5.0=xµ , 5.0−=φµ . Covariate values x  were drawn 

from uniform distributions. These values were relatively arbitrarily chosen and effects are 
purposefully rather strong in order to demonstrate general patterns. The broad patterns are 
largely insensitive to the detailed choice of values. We simulated a population of 60 
individuals with an average of 10 observations per individual, which we consider a moderate 
sample size. For each of 200 simulation runs we fitted the regression model, estimated the 
parameters and used the above equations to quantify important parts of conditional 
repeatability. Data were generated in R 3.6.2 (R Core Team 2020) and analyzed using 
random-slope models fitted in lme4 1.1-21 (Bates et al. 2015). 

The basic setting showed that the conditional repeatability was quite accurately estimated, 
with only minor bias in minx  and slight downward bias in IV  (figure 2a). The accuracy in the 
estimation of model parameters and derived quantities is unequally distributed with some 
(like α , xµ , xV  and RV ) being estimated with high accuracy while others (like uvC , FV  φV  

and minx ) being estimated with much less accurately (figure 3). We also simulated a reduced 
sample size of 30 individuals and an average of 3 observations per individual. The small-
sample simulation resulted in more pronounced biased in minx  and IV  as comparted to the 
moderate sample size scenario and also a downward bias in the estimate of uV  (figure 2b). 

We then assessed estimates when only random intercepts and no random slopes were 
fitted to the same data (note that data were generated with random-slope variation). These 
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models do not estimate conditional repeatabilities, but rather an overall repeatability. 
Interestingly, the random-intercept variance was close to (and only a little lower than) the 
total individual variance IV  as determined by the phenotypic equation (figure 4a). Evidently, 
this value was substantially larger than the uV  that was simulated, hence random-slope 
variation in the data was converted to between-individual variation in intercepts in the 
model. Yet, total individual variation as defined in our framework was not overestimated.  

We further explored the effect of measurement error in the covariate on estimates of 
individual components. Linear models assume that covariates are measured without error 
(Snijders & Bosker 2011), hence this might sound like a non-sensible attempt. However, 
measurement error is inevitable, for example when within-subject centering is used to 
separate within and between-individual responses to some covariate (Raudenbush & Bryk 
2002; van de Pol & Wright 2009). Simulations with the same moderate sample size as above 
and a rather large measured error of 30% in the covariate resulted in an underestimation of 
reaction norm variation SV  and underestimation of total between-individual variation IV , 
but an overestimation of uV  (figure 4b). Hence, some of the reaction norm variation was 
converted to random-intercept variation. This is sometimes unavoidable as in the case of 
within-subject centering. If the amount of error can be estimated, it could, in principle, be 
corrected for.  

Multiple and correlated predictors 

We have above introduced equations that use means and variances of covariate x  to 
quantify conditional repeatabilities. Johnson (Johnson) had introduced a different approach 
that uses the specific design matrices for the fixed effects instead. This approach will be 
particularly useful when fixed effect predictors are correlated, since positive correlations 
will inflate the contribution of a predictor to the phenotypic variance beyond xV⋅β . 

nTrVI /)'( XXΣ=  

Where X  is the model matrix for the intercept and the fixed effect of interest (typically a 
column of 1s for the intercept and a column of covariate values x  for all observations), 'X  
is the transpose of X , n  is the total number of observations and Σ  is the random 
intercept-slope covariance matrix as defined above and as estimated from the data, Tr  
signifies the trace (the sum of the diagonal elements) of the resultant square matrix. To put 
it simply, IV  is calculated as the predicted amount of between-individual varaition 
associated with all observations and averaged across the dataset. 

Johnson‘s (2014) approach can be useful for computation, but the use of means and 
variances of covariates makes reporting much easier. Our simulations show that means and 
variances are no less accurate, and yield unbiased estimates in most cases. Furthermore, it 
is also possible to estimate the variance in the fixed part explained by correlated predictors 
as: 

2121 ,21
2
2

2
1 2 xxxxF CVVV ⋅⋅⋅+⋅+⋅= ββββ  
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where 1x  and 2x  are two fixed effect predictors with variances of 
1xV  and 

2xV , respectively, 

and predictor covariance of 
21 ,xxC  and 1β  as well as 2β  are the respective slopes. The 

correlation among predictors is summarized in the predictor variance-covariance matrix Ω . 
The predictor varaince-covariance matrix Ω  is suitable for concise reporting. 

Conclusions 

We present equations that allow the description of conditional between-individual 
variances. Most importantly, we introduce a way of standardized reporting of reaction norm 
variation, clarify the difference between random-intercept variation and average 
(marginalized) between individual variation and make recommendations for comprehensive 
reporting. By putting reaction norm variation in perspective of the phenotypic variance, we 
aim to promote comprehensive variance decomposition of natural variation in traits of 
interest. We hope that these tools will stimulate more research on context-sensitivity of 
individual (or other group-level) variation and will allow data for future meta-analyses to 
accumulate.  
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Figure legends 

Figure 1. Conceptual display of conditional repeatabilities. The figure shows the between 
individual variance as it depends on the value of the covariate. The random-intercept 
variance uV  is always estimated at a covariate value of zero. The minimum between-
individual variance )min( ,xIV  is reached at minx . The average between-individual variance is 

IV  and is usually larger than uV  if there is random-slope variation. 

Figure 2. Estimation error in conditional repeatabilities with (a) moderate ( 60=indN , 
600=obsN ) and (b) small ( 30=indN , 90=obsN ) sample size. The figure shows the same 

quantities as Figure 1 with the data-generating (true) values shown black. Predicted 
conditional repeatabilities from 200 replications are shown in grey. Estimated IV , uV  and 

minx / )min( ,xIV  are shown in orange, blue and green, respectively, with thin lines 
representing single iterations and bold lines average values. 

Figure 3. Proportional bias in estimates for various model estimates and derived parameters 
for a base simulation setting (see main text) with 200 replicates. Results are broadly similar 
for a range of parameter values when the analysis equation matches with the data 
generation process. The interquartile range is shown in dark shading, the 95% envelope in 
moderate shading and the total range in light shading. Dots represent individual estimates 
from 200 replicates and red lines show mean values. Sim = Expectations based on simulation 
settings, Est = Estimation based on model fit.  

Figure 4. Estimation error in conditional repeatabilities (a) when there is error in the 
covariate x  (30% in this case) and (b) when the analysis model is fitted without random 
slopes. The figure shows the same quantities as Figure 1 with the data-generating (true) 
values shown black. Predicted conditional repeatabilities from 200 replications are shown in 
grey. Estimated IV , uV  and minx / )min( ,xIV  are shown in orange, blue and green, 
respectively, with thin lines representing single iterations and bold lines average values. The 
case of missing random-slopes does not estimate conditional repeatabilities, but the 
estimated between-individual variance uV  closely approaches the simulated average 
between-individual variance IV . 
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Figure 1 
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