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Abstract
Disease diagnosis and treatment is challenging in part due to the misalignment of
diagnostic categories with the underlying biology of disease. The evaluation of
large-scale genomic experimental datasets is a compelling approach to refining the
classification of biological concepts, such as disease. Well-established approaches, some
of which rely on information theory or network analysis, quantitatively assess
relationships among biological entities using gene annotations, structured vocabularies,
and curated data sources. However, the gene annotations used in these evaluations are
often sparse, potentially biased due to uneven study and representation in the literature,
and constrained to the single species from which they were derived. In order to
overcome these deficiencies inherent in the structure and sparsity of these annotated
datasets, we developed a novel Network Enhanced Similarity Search (NESS) tool which
takes advantage of multi-species networks of heterogeneous data to bridge sparsely
populated datasets.

NESS employs a random walk with restart algorithm across harmonized
multi-species data, effectively compensating for sparsely populated and noisy genomic
studies. We further demonstrate that it is highly resistant to spurious or sparse datasets
and generates significantly better recapitulation of ground truth biological pathways
than other similarity metrics alone. Furthermore, since NESS has been deployed as an
embedded tool in the GeneWeaver environment, it can rapidly take advantage of
curated multi-species networks to provide informative assertions of relatedness of any
pair of biological entities or concepts, e.g., gene-gene, gene-disease, or phenotype-disease
associations. NESS ultimately enables multi-species analysis applications to leverage
model organism data to overcome the challenge of data sparsity in the study of human
disease. Availability and Implementation: Implementation available at
https://geneweaver.org/ness. Source code freely available at
https://github.com/treynr/ness.

Author summary
Finding consensus among large-scale genomic datasets is an ongoing challenge in the
biomedical sciences. Harmonizing and analyzing such data is important because it
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allows researchers to mitigate the idiosyncrasies of experimental systems, alleviate study
biases, and augment sparse datasets. Additionally, it allows researchers to utilize animal
model studies and cross-species experiments to better understand biological function in
health and disease. Here we provide a tool for integrating and analyzing heterogeneous
functional genomics data using a graph-based model. We show how this type of analysis
can be used to identify similar relationships among biological entities such as genes,
processes, and disease through shared genomic associations. Our results indicate this
approach is effective at reducing biases caused by sparse and noisy datasets. We show
how this type of analysis can be used to aid the classification gene function and
prioritization of genes involved in substance use disorders. In addition, our analysis
reveals genes and biological pathways with shared association to multiple, co-occurring
substance use disorders.

Introduction 1

A fundamental problem in computational biology is the identification and 2

characterization of the biomolecular basis of complex disease. However, human genetic 3

and genomic studies are necessarily sparse due to the costs and the complexity of 4

studying the human population at a molecular level [1]. In contrast, model organism 5

studies are quite information rich due to the availability of specimens in controlled 6

experiments and the tremendous array of technologies available for acquisition of 7

genomic data [2]. Supplementation of human datasets with model organism experiments 8

represents a powerful means with which to study complex disease. However, 9

cross-species data integration presents a major technical challenge, both at the level of 10

identifying similarity among disease related features, and assessing the conservation of 11

biomolecular mechanisms, particularly gene regulatory relations. 12

Historically, characterization and comparison of biological concepts, such as disease 13

and gene products, has relied heavily on descriptive observations (e.g., 14

symptomatology). Modern approaches use controlled vocabularies and ontologies to 15

document observable phenotypic characteristics associated with the underlying 16

disease [3, 4]. This approach, coupled with semantic similarity methods for example, can 17

be used to compare diseases [5]. One difficulty in using solely curated or semantic data 18

sources, is the tendency for curatorial processes to produce annotations that are biased 19

toward well-studied species and processes, resulting in an uneven distribution of 20

annotations [6, 7]. Furthermore, gene annotations are affected by the idiosyncrasies of 21

experimental systems and assays [8] which may impact downstream analysis. 22

More recently, methodologies integrating genomic datasets and interaction networks 23

have been proposed, leading to refined comparison of biological entities based on 24

large-scale, experimentally derived data. Typically, these approaches utilize 25

protein-protein interactions (PPI) [9] and functional networks [10] as a supplement for 26

sparse gene annotation datasets. Network-based integration has been used to uncover 27

disease-disease relationships [11], identify gene-disease modules [12], and re-prioritize 28

putative, pathogenic genetic variants [13]. Among integrative network methods, random 29

walks and network propagation have been particularly useful for applications such as 30

gene-disease prioritization [14], inferring gene-phenotype relationships [15], and disease 31

classification [16]. For complex disorders such as autism [17] and cancer [18], these 32

network-based approaches have been successful at uncovering and prioritizing the 33

underlying genetic components. 34

Overall, integrative network analysis has shown great potential for identifying the 35

genetic mechanisms of disease. However, most approaches utilize datasets from a single 36

species, primarily humans, rather than exploiting the vast amount of extensive model 37

organism experiments that characterize the depth and breadth of intrinsic biological 38
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mechanisms of disease processes. Additionally, most approaches lean on highly curated 39

but sparse data sets representing only a specific data type, e.g., PPIs, co-expression 40

networks, curated gene-disease annotations, leaving a wealth of experimentally derived, 41

heterogeneous functional genomics data unused or under-utilized. 42

In the present study, we describe a methodological approach, Network Enhanced 43

Similarity Search (NESS), for improving the accuracy and sensitivity of similarity 44

comparisons among biological entities that leverages these additional data types. Briefly, 45

we aggregate and harmonize a number of heterogeneous graph types including 46

ontologies and their annotations, biological networks, and bipartite representations of 47

experimental study results across species. We employ diffusion metrics, specifically a 48

random walk with restart (RWR), to estimate the relations among entities in the graph 49

and to make data-driven comparisons. The advantage of this methodology is three-fold: 50

first, it enables the integration of heterogeneous data types, genomic data, and big data 51

stores to alleviate biases inherent in unevenly studied concepts and the idiosyncrasies of 52

experimental systems; second, human experimental results can be supplemented with 53

model organism studies by accounting for orthologous gene relations across many 54

species; and finally, a graph representation of genomic feature relations allow complex 55

biological mechanisms to be modeled, including gene regulatory mechanisms (e.g., 56

expression quantitative loci, epigenetic marks, and 3-D genomics). We show this 57

approach is resilient to sparse and noisy datasets, and outperforms other concept 58

comparison methodologies when using expert-curated resources such as the Gene 59

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) as a ground 60

truth. We assess the performance of this method at prioritizing genes involved in 61

complex disease–a subset of substance use disorders–and compare these results with the 62

state of the art. Additionally, NESS is coupled with a graph permutation framework 63

that can be used to empirically assess the statistical significance of any results. 64

We make NESS freely available as a software package which can be retrieved from 65

https://github.com/treynr/ness. We also provide an implementation of this tool 66

for use within the GeneWeaver resource (https://geneweaver.org) which allows 67

NESS to use a background of over 100,000 heterogeneous functional genomics datasets. 68

Materials and methods 69

Data integration and heterogeneous network assembly 70

In this work we provide a means to assess the similarity of biological concepts through 71

their genetic underpinnings. This is possible through cross-species data integration of 72

heterogeneous functional genomics data. First, graph-based structures are retrieved and 73

constructed from experimental, functional genomics and public resource data sets. A 74

cross-species heterogeneous graph is generated from these sources. (Fig 1). Currently 75

the network supports 15 different nodes (Table 1) and is amenable to new data types. 76

Nodes are connected to one another using edge relationships such as ontology 77

annotations, gene set contents, and genetic interactions. Edges are typically undirected 78

but in some cases, such as when embedding ontology graphs and their annotations 79

within the network, directed edges are used. The network is also amenable to 80

incorporation of edge weights; for simplicity, only unweighted edges are used in this 81

analysis. 82

Many of the data sources used by NESS are also available in GeneWeaver for derived 83

analyses. GeneWeaver (https://geneweaver.org) is a suite of services that function 84

as a multiple-species, heterogeneous data store and analysis platform [25]. It is designed 85

to integrate a variety of experimentally driven genomic data types including differential 86

expression profiling, genome-wide association studies (GWAS), literature curated data, 87
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Figure 1. NESS heterogeneous network construction and graph walk. A multi-species network
comprised of functional genomics and semantic data is built from several data graphs including ontological
relationships and annotations, biological networks, set-gene associations, and homology clusters (a). After
network construction, similarities between entities in the graph are enumerated using a random walk with
restart (b).

and gene coexpression results for ten different species. In addition to curated 88

experimental datasets in GeneWeaver, data available for analysis includes extensive 89

public resources such as pathway and network databases (e.g., Pathway Commons), 90

ontology annotations from the Mouse Genome Database (MGD), Rat Genome Database 91

(RGD), etc. (e.g., GO, HP). It also includes various curated sources (e.g., Comparative 92

Toxicogenomics Database, GWAS Catalog, Allen Brain Atlas). The inclusion of public 93

resource data, particularly those defining biological states, aids in the discovery of genes 94

shared between biological processes and disease phenotypes across species. NESS uses 95

GeneWeaver’s bipartite data model as one of many graph-based integrations. 96

Using the collected networks, curated gene sets, and public resource data, a large 97

graph of biological entities was constructed. Directed, heterogeneous networks were 98

built for Homo sapiens, Mus musculus, and Rattus norvegicus using species specific 99

data sets. An additional network incorporating homologous genes conserved across the 100

three species was also generated. 101

Preparation of integrated data resources 102

Gene Ontology annotations 103

GO structures and annotations were retrieved (November 2018) for H. sapiens, 104

M. musculus, and R. norvegicus. Relationships that were not “is a”, “part of”, or 105

“regulates” (including positvely and negatively subtypes) were removed from the GO 106

graph. All electronically inferred annotations (IEA) were excluded. Only experimental 107

(EXP, IDA, IEP, IGI, IMP, IPI), author statement (TAS), or curatorial statement (IC) 108

evidence is used. The exclusion of IEA evidence is done to remove inferred 109

orthology-based annotations and ensure only the highest quality annotations are 110

used—primarily those reviewed and validated by expert curators. 111
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Table 1. Node types within the heterogeneous network, their data source, and the number of
nodes for each type present in the final network. Abbreviations: Allen Brain Atlas (ABA),
Comparative Toxicogenomics Database (CTD), Gene Ontology (GO), GeneWeaver (GW), Kyoto
Encyclopedia of Genes and Genomes (KEGG), Molecular Signatures Database (MSIGDB).

Node Type Source Count

Chemical CTD 16353
Biological Process GO/GW/MSIGDB 29595

Molecular Function GO/GW 10897
Cellular Component GO/GW 4096

miRNA GW/MSIGDB 221
TF MSIGDB 615

Oncogenic Signatures MSIGDB 189
Immunologic Signatures MSIGDB 1910

Tissue ABA/GW 27
SNP GWAS Catalog/GW 2828

Pathway BioGRID/KEGG 844
Curated Experiments GW 1641

Gene All Sources 158935

Interaction networks 112

Interaction data from two biological network resources, the Kyoto Encyclopedia of 113

Genes and Genomes (KEGG) [26] and BioGRID [27], were retrieved (November 2018). 114

In total, 746 pathways from KEGG is used, spanning the following categories: 115

“Metabolism”, “Genetic Information Processing”, “Environment Information Processing”, 116

“Cellular Processes”, and “Organismal Systems”. Curated KEGG pathways are used as a 117

ground truth for metric comparison since pathways in these categories contain gene 118

networks for each species used in this study. Two categories, “Human Disease” and 119

“Drug Development” were excluded since these categories contain pathways specific to a 120

single organism or do not have any usable gene-gene associations. Protein-protein 121

interactions (PPI) from BioGRID for each of the three species were downloaded. PPI 122

networks were reconstructed and incorporated with the remaining network data sets. 123

GeneWeaver data sets 124

Curated, experimental gene sets were retrieved from GeneWeaver (November 2018). 125

Each of these sets met the following criteria: i) a size of less than 5000 genes and 126

greater than 1 gene, ii) derived from published, publicly available research, and iii) were 127

not positional candidate gene sets or the results of quantitative trait loci (QTL) analysis 128

and mapping. This provided an additional 1641 gene sets with an average of 88 genes 129

per set. In addition, GeneWeaver typically integrates several public resources which 130

were also included in this study: 16,353 curated chemical-gene interaction data sets 131

from the Comparative Toxicogenomics Database (CTD) [28], 27 gene sets from the 132

Allen Brain Atlas (ABA) [29] examining differential expression patterns in the adult 133

mouse brain, and 2844 human SNP-trait association gene sets collected from the GWAS 134

Catalog [30]. Also included were 221 sets of miRNA targets, 615 sets whose genes 135

contain regulatory motifs that function as transcription factor (TF) binding sites, 189 136

sets containing pathway genes disrupted in cancer, 1910 sets containing genes associated 137

with immune system processes, and 50 sets representing well defined biological processes, 138

all of which are integrated from the Molecular Signatures Database v.6.0 (MSigDB) [31]. 139
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Species integration 140

The data was partitioned by species and an additional group of sets incorporating 141

homologous genes between species was constructed using GeneWeaver’s store of 142

homology associations. GeneWeaver uses its own dynamic internal identifiers, known as 143

cluster IDs, to map multiple gene identifiers to a single canonical gene entity. Canonical 144

genes are defined by each model organism database (MOD) and used as the primary 145

gene reference for that species. In the absence of an established MOD, NCBI Entrez is 146

used. This allows GeneWeaver to unify protein isoforms, gene transcripts, genetic 147

variants, and alternate gene references or synonyms into a single unique identifier: a 148

GeneWeaver ID (GWID). After the generation of canonical gene groups, cross-species 149

associations are produced by mapping GWIDs (and by extension, gene groups) to 150

homology clusters retrieved from NCBI Homologene [32] and MGI [33]. During the data 151

collection and integration process, any genes that could not be confidently mapped to a 152

single GeneWeaver ID or ortholog cluster were excluded. 153

NESS: graph walks over heterogeneous networks 154

To determine similarity among terms and other entities, a random walk with restart 155

(RWR) is used [34]. The RWR iteratively traverses the graph from a start node or 156

nodes referred to as seed(s) and results in a probability distribution representing the 157

likelihood of visiting a particular node when originating from the seed(s). This metric 158

can be thought of as the affinity between nodes in the graph. At each iteration of the 159

walk, the algorithm will either a) randomly visit a new node selected from the neighbors 160

of the current node or b) restart (using a predefined restart probability) from the 161

seed(s). Higher restart probabilities force the walk to assess the local neighborhood 162

which surrounds the seed(s), while lower restart probabilities cause the algorithm to 163

examine the global topology of the graph. 164

G = (V,E) is a directed graph with a set of vertices, V = {1, 2, . . . , n} and a set of 165

edges, E ⊂ V × V . Given a directed graph G in the form of a column normalized 166

adjacency matrix A, the random walk among the graph and proximity values for a 167

specific node s can be defined as 168

ps = (1− α)Aps + αes (1)

where α is the restart probability; ps is the proximity vector of node u; es is the 169

initial proximity vector in which es(s) = 1 and all other values are 0 in the case of a 170

single seed node, or equal probabilities in the case of multiple start nodes. 171

This formulation of the walk allows ps to be iteratively calculated using matrix and 172

vector multiplications until a steady state is reached. The algorithm converges once the 173

L1 norm of the difference between proximity vectors at two successive iterations reaches 174

a sufficiently low value: 175∥∥pst−1
− pst

∥∥
1
< T (2)

where t is the iteration and T is a small number such as 10−8 which serves as a 176

convergence threshold. 177

The final result of the walk is a proximity vector containing affinities from some node 178

s to all other nodes in the graph. Unless otherwise specified, a restart probability of 0.35 179

and a convergence threshold of 10−8 was used for every random walk in this analysis. 180

A heterogeneous network, represented as an adjacency matrix, is built iteratively 181

from the various graphical data representations retrieved from GeneWeaver (Algorithm 182

1). The random walk is used to assess the affinity between two entities, ontology terms 183

for example, in the graph (Algorithm 2). NESS, the combined network construction and 184
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random walk, enable semantic comparisons infused with a rich set of functional 185

genomics data (Fig 1). 186

Algorithm 1: Heterogeneous network assembly
Data: a bipartite graph of gene-ontology annotations, A = (V,E)
a bipartite graph of gene set-ontology annotations, G = (V,E)
a bipartite graph of gene-homolog mappings, H = (V,E)
biological networks, N = (V,E)
a graph of ontology relationships, O = (V,E)
a bipartite graph of gene set-gene associations, S = (V,E)
Result: A heterogeneous network, HetNet = (V,E)
HetNet = (∅, ∅)
for G ∈ {A,G,H,N,O, S} do

for (v, e) | v ∈ GV ∧ e ∈ GE do
HetNetV ←− HetNetV + {v}
HetNetE ←− HetNetE + {e}

end
end

187

Algorithm 2: Random walk with restart over a heterogeneous network
Data: a heterogeneous network implemented as a column normalized adjacency

matrix, A
a start node, s
a restart probability, α
a convergence threshold, T
Result: A proximity vector, ps, containing proximity values from node s to all

other nodes in the graph
Let es be the initial proximity vector where es(s) = 1 and all other values are 0
Let T be the convergence threshold
ps ←− es
repeat

pt+1
s ←− (1− α)Aps + αes

until L1Norm(pt−1s − pts) < T

188

Similarity metric evaluation 189

To evaluate the performance of NESS in relation to other similarity methods for term 190

comparison, objective criteria is needed. However, as no gold standard criteria exists, 191

the best available option is to use prior knowledge as a ground truth for similarity 192

metric comparison. Curated functional genomic pathways provide a robust context for 193

this evaluation. Gene products are well characterized and annotated. These annotations 194

can be leveraged to compare the functional similarity of genes in order to develop an 195

unbiased metric with which to compare semantic and data-centric similarity 196

methodologies. 197

To determine the similarity among gene products, we adapt the functional similarity 198

methodology from [35]. The similarity between two genes is computed using maximum 199

semantic similarity scores from the annotation sets of both genes: 200

Sim(g1, g2) =

∑
t∈T1

Simterms(t, T2) +
∑
t∈T2

Simterms(t, T1)

|T1|+ |T2|
(3)
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where g1 and g2 are two genes; T1 and T2 are the set of terms annotated to genes g1 201

and g2, respectively. The similarity between a term and a set of terms, Simterms, is 202

defined as: 203

Simterms(t, T ) = max
t′∈T

Simsem(t, t′) (4)

where Simsem can be any known similarity measure. For our purposes, Simsem is 204

replaced with Resnik, Lin, Jaccard, and cosine measures. 205

Our criterion for assessing and comparing the accuracy of similarity metrics is based 206

on prior knowledge in the form of curated biological pathways. The biological function 207

of processes shared by genes within the same pathway exhibit greater cohesiveness than 208

that of genes in separate pathways. Therefore, gene similarities can be examined as a 209

ratio of intra-pathway and inter-pathway relatedness, resulting in a pathway score, PS: 210

PS(g, p, P ′) =

∑
g′∈G(p)

Sim(g, g′) ∗ 1
|G(p)|∑

p′∈P ′

∑
g′′∈p′

Sim(g, g′′)/|G(p′)| ∗ 1
|P ′|

(5)

where p is some pathway, P ′ is a set of pathways which does not contain p, and G(p) 211

is the set of genes in pathway p. To prevent bias, comparisons between two pathways 212

which share genes are not considered. 213

Prioritization of gene-disease associations and classification of 214

disease-associated gene function 215

To assess the utility of NESS in identifying and prioritizing genes associated with 216

complex disease, prioritized genes were compared to “gold standard” gene sets retrieved 217

(June 2019) from DisGeNET [36], a resource for curated and mined gene-disease 218

associations. Gene prioritization assessments were conducted for a subset of substance 219

use disorders: alcohol, heroin, morphine, and nicotine dependence. For each gene 220

prioritization test, the ground truth gene set from DisGeNET was divided evenly into 221

seed and test sets. Genes in the seed set were used to seed NESS, and its ability to 222

recapitulate genes in the test set was measured. Gene prioritization was also assessed 223

and compared with several other methods using this same approach. Other 224

state-of-the-art methods tested include a random walk using only interaction 225

datasets [14], a combinatorial approach based on the enumeration of maximal biclique 226

modules (HiSim) [25], and a disease module detection approach using the human 227

interactome (DIAMOnD) [12]. 228

Testing gene-disease associations produced by random walks 229

Gene-disease associations were prioritized using random walks over interaction datasets, 230

in a methodolgy similar to the one specified in [14]. Human interaction datasets from 231

KEGG and BioGRID were used as input. A restart parameter, α = 0.35, was used for 232

the random walk. Prioritized genes with a random walk score of at least 5%, 233

RWRscore >= 0.05, and p-value, p < 0.01, after graph permutation testing were 234

compared to ground truth datasets. 235

Testing gene-disease associations produced by maximal biclique modules 236

Genes were prioritized using GeneWeaver’s Hierarchical Similarity (HiSim) graph 237

tool [25]. The HiSim graph tool enumerates maximal bicliques from gene set-gene 238

bipartite graphs and constructs a directed acyclic graph (DAG) from overlapping 239
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bicliques. Maximal modules within the DAG (i.e., nodes lacking any parents) contain 240

prioritized genes shared among many gene sets. Although not a strict one-to-one 241

comparison with other methods, use of the HiSim graph tool tests state-of-the-art 242

combinatorial approaches to gene prioritization. 243

Input for the HiSim graph tool are collections of public gene sets derived from 244

published, functional genomics experiments. Two separate HiSim tests were performed 245

in GeneWeaver: one utilizing only human datasets, and another which makes use of 246

GeneWeaver’s cross-species analysis capabilities to include M. musculus and 247

R. norvegicus gene sets assessing chronic and acute drug use. Genes present in maximal 248

HiSim modules were compared to ground truth datasets from DisGeNET. 249

Testing gene-disease associations produced by disease module detection 250

A DIseAse MOdule Detection (DIAMOnD) algorithm [12] iteratively builds gene 251

modules associated with disease using gene interaction networks. Given a set of seed 252

genes, DIAMOnD grows the module by identifying significant connectivity patterns at 253

each iteration. Testing used default parameters except for the output module size which 254

was set to 250–slightly larger than the default setting to ensure all genes from the 255

testing sets could be recapitulated. Network inputs included BioGRID, KEGG, and 256

STRING. STRING-based interactions were added to replicate the curated, physical, 257

high-throughput, and literature-mined protein-protein associations used in the original 258

DIAMOnD study. Genes in DIAMOnD-produced modules were compared to ground 259

truth DisGeNET sets. 260

Implementation 261

A fast, scalable implementation of NESS is provided, written in Python 3.7, which 262

makes use of optimized numerical analysis libraries for better performance. Additionally, 263

this implementation is also designed for use with big data; NESS has built-in support 264

for high performance computing and cloud environments, and we demonstrate that its 265

performance scales with increased CPU cores (Fig S1). Finally, NESS has been 266

integrated into the GeneWeaver resource, which allows realtime analysis of functional 267

genomics datasets via a web interface. 268

Results 269

Network Enhanced Similarity Search performance evaluation 270

NESS performance was evaluated through two distinct characterizations: first, as a 271

metric for comparing biological entities modeled using ontologies, and second, via its 272

utility for prioritizing genes associated with complex disease. In both instances, expert 273

curated resources function as a ground truth. 274

Applying NESS to comparisons of biological entities 275

To evaluate the accuracy and precision of term similarity estimated by the NESS 276

heterogeneous graph and random walk model, we examined the performance of NESS in 277

comparison to well-established similarity measures and using KEGG as a ground truth 278

data set. Each term similarity metric was evaluated under several conditions. The 279

H. sapiens, M. musculus, and R. norvegicus datasets were evaluated separately to 280

measure the impact of the NESS RWR aspect of the analysis without the complication 281

of multiple species. An independent test using a full implementation of NESS, which 282
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includes an aggregated multi-species graph, was used to evaluate the impact of 283

heterogeneous data sets on similarity accuracy and precision. 284

Within individual species, and under conditions optimized for the Resnik, Lin, 285

Jaccard, and cosine similarity metrics, the walk-based NESS approach produced 286

significantly better results across species specific datasets than Resnik, Lin, Jaccard, or 287

cosine measures (Fig 2), with an AUC of 0.89, 0.74, and 0.68 for H. sapiens, 288

M. musculus, and R. norvegicus, respectively (Fig 3). Comparisons of the AUCs using 289

Mann-Whitney U indicates these results include a 25 percent increase over Resnik 290

(p < 0.001), a 30 percent increase over Lin (p < 0.001), a 19 percent increase over 291

Jaccard (p < 0.001), and a 19 percent increase over Cosine (p < 0.001) for H. sapiens; a 292

38 percent increase over Resnik (p < 0.001), a 47 increase over Lin (p < 0.001), a 38 293

percent increase over Jaccard (p < 0.001), and a 38 percent increase over cosine 294

(p < 0.001) metrics for M. musculus; and a 35 percent increase over Resnik (p < 0.001), 295

a 36 percent increase over Lin (p < 0.001), a 36 percent increase over Jaccard 296

(p < 0.001), and a 36 percent increase over cosine (p < 0.001) for R. norvegicus specific 297

data. Resnik produced slightly better results than Lin for each of the three species–a 298

result that is consistent with previous similarity comparisons [19]. 299

Discovery rates of the ground truth KEGG data demonstrates that the traditional 300

semantic similarity metrics of Resnik and Lin performed better when the data includes 301

homologous gene associations relative to a single species. The NESS approach 302

demonstrated a significant improvement over all single species data sets with an AUC of 303

0.93 compared to an AUC of 0.64 (p < 0.001) for Resnik, an AUC of 0.71 (p < 0.001) 304

for Lin, an AUC of 0.78 for Jaccard (p < 0.001), and an AUC of 0.76 for cosine 305

(p < 0.001) similarity (Fig 3d). Importantly, all methods that use aggregated 306

cross-species graph data perform better than single species data sets alone. F1 scores 307

(Fig S2) and a complete confusion matrix (Table S1) for each of these tests reiterate 308

that the performance of NESS generates greater accuracy, precision, recall and 309

specificity across each comparison. 310

Applying NESS to the classification of gene function in genomic studies of 311

disease 312

NESS was applied to a collection of cross-species functional genomics data (Table S2) to 313

assess its utility in recapitulating complex disease-related gene sets. This was 314

approached by evaluating the similarity of curated gene disease associations with those 315

derived from aggregated genome wide experimentation. Certain groups of complex 316

disease, such as substance use disorders (SUD), are difficult to classify and study due to 317

their heterogeneity, comorbidity, and symptom overlap with other conditions [20]. NESS 318

was used to refine and classify gene-disease associations by leveraging animal 319

experiments which assess dependence and consumption phenotypes, biological networks, 320

and curated data stores. Performance was compared to other approaches including 321

data-specific simple random walks [14], combinatorial prioritization using GeneWeaver’s 322

Hierarchical Similarity (HiSim) graph tool [25], and DIsease MOdule Detection 323

(DIAMOnD) [12]. On average, NESS exhibited increased performance at recapitulating 324

known disease-gene associations for SUDs than other prioritization approaches (Fig 4a - 325

d). Instances where few disease-specific datasets exist, and biological knowledge is 326

primarily relegated to gene interaction networks, DIAMOnD had comparable 327

performance to NESS (Fig 4b,c). Among the tested methods, HiSim was the only 328

combinatorial approach to prioritization. This approach relies on an abundance of input 329

datasets related to specific conditions, phenotypes, or diseases. These results indicate 330

that in cases where human data is sparse, animal model studies can aid the 331

prioritization of genes associated with human disease; in all test cases, the cross-species 332

HiSim (CS HiSim) results recapitulated more disease-gene associations than human 333
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A B

C D

Figure 2. ROC curves comparing similarity metric performance of Resnik, Lin, Jaccard, cosine,
and NESS based measures. Gene function in curated KEGG pathways for H. sapiens (a), M. musculus
(b), R. norvegicus (c), and cross-species (d) data sets were used as a ground truth.

A B C D

Figure 3. AUC scores for each similarity metric and species in the study. Plots show significant
differences in the AUC produced by NESS compared to Resnik, Lin, Jaccard, and cosine metrics.
Significance of differences among AUCs was determined using Mann-Whitney U (∗p < 0.001).

datasets alone. Additionally, NESS also demonstrated improved performance when 334

comparing SUD experimental studies to their respective “gold standard” gene sets (Fig 335

4e), and by assessing the proportion of significant similarity scores among SUD 336

experiments and curated annotations (Fig S3). 337
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Figure 4. Recapitulating known disease-gene associations from functional genomics data. A
single heterogeneous graph was built from substance use disorder (SUD) experimental studies from
GeneWeaver, the Disease Ontology (DO), BioGRID protein interactions, and KEGG pathways. Known
disease-gene associations from DisGeNET were witheld from the graph integration and used a “gold
standard” dataset for comparison. Disease-gene associations produced by NESS were only used if their
normalized NESS probability was at least 5% (pNESS >= 0.05) and the association was significant after
permutation testing (p < 0.01, n = 2500). NESS recapitulated a higher amount of curated substance use
disorder gene annotations than set overlap techniques (a - d). Additionally, NESS scores among SUD
experimental studies and their respective “gold standard” datasets were higher than Jaccard coefficients for
the same comparison (e). Abbreviations: DIseAse MOdule Detection (DIAMOnD), Hierarchical Similarity
(HiSim), Cross-species Hierarchical Similarity (CS HiSim), random walk with restart (RWR), Network
Enhanced Similarity Search (NESS).

Applying NESS to identify genes involved in multiple substance-use 338

disorders 339

To demonstrate one application of NESS, novel disease-gene associations were identified 340

and classified as multiple or single SUD from functional genomics data. Using a 341

two-fold threshold of a NESS probability score of 1% (pNESS >= 0.01) and a p-value 342

threshold of p < 0.01, 400 novel, putative SUD-gene associations were identified (Table 343

S3). Seven of these genes were associated with at least three SUDs, indicative of their 344

potential association with polysubstance abuse. Gene Ontology enrichment analysis 345

(Table S4) revealed these genes to be enriched in catecholamine metabolic processes 346

(GO:0006584, p = 2.4 · 10−6), arachidonic acid secretion (GO:0050482, p = 7.7 · 10−5) 347

and transport (GO:1903963, p = 7.7 · 10−5). Serotonin receptor (HTR2A) and transport 348

(SLC6A4 ) genes were also present among multiple SUD associations for alcohol, heroin, 349

and nicotine dependence. These genes are well studied for their roles in the development 350

of single substance use disorders [21] but only recently has their role in simultaneous 351

alcohol and heroin dependence been investigated [22]. Perturbations in archidonic acid 352

processes also represent an interesting avenue of study in drug addiction due to their 353

role in often co-occurring psychiatric disorders, namely bipolar disorder [23]. Overall, 354

these results illustrate the utility of NESS in gene function classification and elucidating 355

the genomic basis of complex disease. 356
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Resilience of Network Enhanced Similarity Search to sparse and 357

noisy data 358

A primary motivation for using a walk-based approach on heterogeneous networks to 359

augment similarity measurements is to prevent biases in results due to noisy or missing 360

data. This approach was tested by simulating missing data by removing random edges 361

from the graph. Using the same input and evaluation criteria as specified in the methods 362

for comparing ontology terms, 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, and 30% of 363

the graph’s total edges were removed and AUC was reevaluated. Results illustrate that 364

missing relationships did not substantially impact AUC scores up to 30% (1,358,520) of 365

the graph’s total edges (Fig 5a). Likewise, noisy data sets simulated by adding 366

percentages of random edges had similar effects on the final AUC scores (Fig 5b). These 367

results indicate that the NESS method works well in the case of sparse or noisy datasets. 368

A B

Figure 5. Evaluating graph walk robustness. Graphs are built using all available resources, the Gene
Ontology’s (GO) Biological Process (BP) ontology, and homology data sets. The restart probability,
α = 0.35 was used. Missing data was simulated by randomly removing 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%,
25%, and 30% of the graph’s total edges which accounts for 22642, 45284, 113210, 226420, 452840, 905680,
1132100 679260, and 1358520 edges respectively. Noisy data was simulated by randomly adding new edges
in 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, and 30% proportions of the graph’s total edges. Despite
missing or false associations, the performance of the graph walk remains constant as indicated by area under
the curve (AUC) measurements.

Optimization of Random Walk Restart Probability 369

We evaluated the NESS algorithm to determine the optimal restart probability for the 370

heterogeneous data sets used in this study. Higher restart probabilities force the walk to 371

analyze the local topology of the graph rather than its global layout. The same input 372

and evaluation criteria for comparing ontology terms was used to test restart parameters. 373

After examining eight different restart probabilities, r = 0.35 was determined to be 374

optimal and this parameter was used for each analysis in this study (Fig 6). 375

Discussion 376

In the present study we designed and tested a methodology to leverage large-scale 377

functional genomics data from GeneWeaver to improve concept-based similarity analysis. 378

We show this method is effective for comparing ontology terms, even among sparsely 379

annotated concepts, and we developed and examined the effectiveness of NESS, a 380
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A B

Figure 6. Evaluating optimal RWR restart parameters. Graphs are built using all available
resources, the Gene Ontology’s (GO) Biological Process (BP) ontology, and homology data sets. Eight
different restart probabilities are tested. AUC and pathway scores indicate that α = 0.35 is the optimal
restart probability given the data types used as input (a, b).

methodology for improving similarity metrics through the inclusion and analysis of 381

cross-species, functional genomics data. Results against known data illustrate that 382

NESS improves sensitivity and accuracy for assessing the similarity between ontology 383

concepts. For the GO, NESS demonstrated significantly better performance than 384

similarity measures. These measures were selected based on their performance in 385

previous comparative studies [19]. Our results illustrate that the harmonization of 386

functional genomics data and homologous relationships, coupled with the analysis of 387

graph properties, results in an improved similarity metric. Additionally, NESS is 388

effective at handling sparse or spurious datasets–useful for studying concepts lacking 389

annotations or those with noisy associations. These findings indicate that the 390

aggregation and use of data from multiple experimental assays, high-throughput studies, 391

and evolutionary relationships can be used to significantly improve concept comparison 392

and alleviate species or assay-specific biases from annotations. 393

Although NESS can be used as an enhanced similarity measure for biological 394

concepts, it is not restricted to concept-concept comparisons. The flexible graph model 395

and RWR algorithm allow any pair of biological entities to be associated, such as genes, 396

variants, or regulatory mechanisms. Node and edge types can be automatically inferred 397

based on metadata and annotations associated with the integrated data source. 398

Gene-based entities can be further refined using GeneWeaver’s internal representation of 399

gene types which includes support for SNPs, proteins, non-coding transcripts, and 400

regulatory elements. Any biological component that can be associated with or rolled up 401

to the gene level can be included in the graph. For example, variants that may reside in 402

or regulate a gene can be associated with that gene for analytical purposes. Such a tool 403

has applications in the interpretation of genomic data in light of model organism data 404

and the prioritization of genes and variants. Gene or variant prioritization can assess 405

the contribution of genetic effects to a particular disease process. Indeed, random walks 406

have previously seen success in both disease-gene discovery [14] and variant 407

prioritization [24], but have not been used for these purposes against the background of 408

complex datasets utilized by NESS. More recently, complex empirical datasets have 409

been used in conjuction with network mining techniques to prioritize gene-disease 410
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associations [12, 16, 17]. While effective, these recent improvements have only utilized a 411

single data type (e.g., gene networks) or species, despite an array of functional genomics 412

and animal model studies available for use. Our work confirms that additional empirical 413

evidence is useful for refining gene-disease associations and shows that data aggregation 414

from multiple disparate resources, systems, and model organism studies can be a 415

powerful component of gene-disease prioritization. 416

Finally, examining disease similarity using genomic data as a basis for comparison 417

can help elucidate the molecular mechanisms involved in seemingly disparate disease 418

processes. We illustrate examples in which NESS exhibited improved performance in 419

prioritizing disease-gene associations compared to other prioritization methods. We also 420

identified novel gene-SUD associations enriched in archidonic acid secretion and 421

transport. Changes in these biological processes have been well documented in other 422

co-occuring disorders [23]. Additionally, genes involved in serotonergic pathways were 423

identified across multiple dependence disorders. Although these genes are well studied 424

in alcohol dependence, these findings suggest they have a greater role in other SUDs. 425

Overall, these applications make NESS a useful tool for genome-level analysis. We make 426

this tool freely available for use within the GeneWeaver resource 427

https://geneweaver.org, and its source code available for download and use at 428

https://github.com/treynr/ness. 429
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Figure S1 Scalability of NESS for big datasets. NESS performance and 433

scalability was tested using a randomly generated, scale-free graph consisting of 10,000 434

nodes with a density, D = 0.1. The amount of time taken to calculate the proximity 435

matrix, PM (100,000,000 comparisons), was determined using the average of four 436

separate NESS runs. Average runtime, measured in seconds, decreases as additional 437

cores are used by NESS. All tests were conducted on identical systems containing Intel 438

Xeon E5-2695 CPUs @ 2.10GHz. 439

Figure S2 F1 scores evaluating the performance of Resnik, Lin, Jaccard, 440

cosine, and NESS measures for H. sapiens, M. musculus, R. norvegicus. 441

Curated KEGG pathways are used as a ground truth for similarity metric comparison. 442

Figure S3 Significant similarity scores among substance use disorder 443

(SUD) experimental studies and “gold standard” datasets comprised of 444

curated disease-gene associations. SUD experimental studies were compared to 445

gold standard datasets using NESS and Jaccard similarity. Curated disease-gene 446

associations were retrieved from DisGeNET. Significant Jaccard coefficients were 447

determined by generating a null distribution of coefficients using premutation testing (n 448

= 2500). NESS score significance was assessed by permuting graph labels and 449

recalculating the walk statistic (n = 2500). Overall, the proportion of significantly 450

similar experimental SUD studies to their respective gold standard dataset was higher 451

when using NESS. 452

Table S1 Confusion matrices assessing the performance of Resnik, Lin, 453

Jaccard, cosine, and NESS measures at recapitulating ground truth data 454

from KEGG. 455

Table S2 Experimental gene sets from substance dependence studies 456

curated in GeneWeaver and used to assess the performance of NESS at 457

classifying complex disease. 458

Table S3 Novel substance dependence associated genes prioritized using 459
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dependence genes prioritized using NESS. 462
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