
 

 
1 

Emergent properties in microbiome networks reveal the anthropogenic disturbance 1 

of farming practices in vineyard soil fungal communities 2 

 3 

Rüdiger Ortiz-Álvarez1, Hector Ortega-Arranz1, Vicente J. Ontiveros2, Charles Ravarani1, 4 

Alberto Acedo1*, Ignacio Belda1* 5 

1 Biome Makers Inc, 95605-West Sacramento, CA, USA 6 

2 Theoretical and Computational Ecology, Centre for Advanced Studies of Blanes (CEAB), Spanish 7 

Research Council (CSIC), 17300-Blanes, Spain 8 

 9 

 10 

*Corresponding authors:  11 

Alberto Acedo 12 

Biome Makers Inc, 890 Embarcadero Drive, 95605-West Sacramento, CA, USA 13 

Tel.: +1 415-795-7469 14 

E-mail address: acedo@biomemakers.com 15 

 16 

Ignacio Belda 17 

Current address: Department of Biology, Geology, Physics & Inorganic Chemistry. Unit of Biodiversity 18 

and Conservation. Rey Juan Carlos University, 28933-Móstoles, Spain 19 

Tel.: +34 914887033 20 

E-mail address: ignacio.belda@urjc.es  21 

 22 

  23 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.983650doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.983650
http://creativecommons.org/licenses/by-nc/4.0/


 

 
2 

Abstract 24 

Agro-ecosystems are human-managed natural systems, and therefore are subject to generalized 25 

ecological rules. A deeper understanding of the factors impacting on the biotic component of ecosystem 26 

stability is needed for promoting the sustainability and productivity of global agriculture. Here we 27 

propose a method to determine ecological emergent properties through the inference of network 28 

properties in local microbial communities, and to use them as biomarkers of the anthropogenic impact 29 

of different farming practices on vineyard soil ecosystem functioning. In a dataset of 350 vineyard soil 30 

samples from USA and Spain we observed that fungal communities ranged from random to small-world 31 

network arrangements with differential levels of niche specialization. Some of the network properties 32 

studied were strongly correlated, defining patterns of ecological emergent properties that are influenced 33 

by the intensification level of the crop management. Low-intervention practices (from organic to 34 

biodynamic approaches) promoted densely clustered networks, describing an equilibrium state based 35 

on mixed (generalist-collaborative) communities. Contrary, in conventionally managed vineyards, we 36 

observed highly modular (niche-specialized) low clustered communities, supported by a higher degree 37 

of selection (more co-exclusion proportion). We also found that, although geographic factors can 38 

explain the different fungal community arrangements in both countries, the relationship between 39 

network properties in local fungal communities better capture the impact of farming practices regardless 40 

of the location. Thus, we hypothesize that local network properties can be globally used to evaluate the 41 

effect of ecosystem disturbances in crops, but also in when evaluating the effect of clinical interventions 42 

or to compare microbiomes of healthy vs. disturbed conditions.  43 

 44 

 45 

 46 

 47 

 48 
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Introduction 50 

Biota on Earth interacts. Organisms from the entire tree of life have different types of relationships 51 

with one another to ensure survival through genetic evolution and adaptation. These interactions have 52 

consequences for the whole ecosystem where these organisms thrive. Ecological communities can be 53 

defined by properties that result from the prediction of constituent taxa, properties known as 54 

Community Aggregated Traits (CATs)1,2. However, ecosystems can also be defined not through their 55 

constituent taxa, but from the emergent properties (EPs) that arise from specific community 56 

arrangements3,4. Emergent properties are directly related to the functionality of plant communities (i.e, 57 

seed survival rate), animal communities (i.e., animal behaviour; human societal interactions) and 58 

microbial communities (i.e, biofilm density, as a cause of composition behaviour), or all together as a 59 

whole (i.e., competition, predation strength). Both aggregated traits and emergent properties are 60 

characteristics that directly determine ecological processes, which further determine species pools or 61 

trophic fluxes 5. 62 

Currently, most studies, particularly in microbial ecology, focus on correlative evidence between 63 

specific taxa abundance or diversity metrics and environmental factors or community phenotypes, as 64 

an attempt to understand the underlying mechanisms and resulting ecological processes6. Although 65 

valuable, it has been argued that this strategy is incomplete to understand the underlying mechanisms 66 

by which communities actually perform a function or process5. We argue that through the 67 

contextualization of emergent properties into ecological mechanisms, it would be possible to make 68 

predictions of how communities would behave under concrete circumstances. Additionally, translating 69 

those idiosyncratic community behaviours into a measurable metric can be a critical step for future 70 

microbiome monitoring applications, such as in sustainable farming7, food production or human health.  71 

Smart farming harbours a demand of new biomarkers of soil health (see USDA definition at: 72 

https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/), since comprehensive information is 73 

often inaccessible to land managers8 and a single universal methodology to measure soil quality based 74 

on the microbiome does not exist yet9,10, despite notable efforts11,12. In particular, developing a strategy 75 

to mechanistically understand the fungal component of the soil microbiome, has implications in 76 

monitoring management of crops in risk of drought (i.e. vineyards or olive trees), since fungal-based 77 
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food webs adapt better to drought than bacterial-based food-webs13,14. In this context, inferring 78 

emergent properties that relate to microbial functional processes and community stability becomes a 79 

priority of global interest. Unfortunately, these emergent properties are typically hard to measure, 80 

particularly in microbial ecology, given the high variety of microbes that are still being unveiled and 81 

contextualized into potential functional roles 15,16. 82 

Here we aimed to implement new biomarkers of ecological disturbance based on ecological 83 

emergent properties by combining metacommunity theory and co-occurrence networks, regardless of 84 

the knowledge available on the different taxa comprising the metacommunity. A metacommunity is 85 

defined as a group of communities within the same habitat/region/pool that usually display multiple 86 

possible arrangements according to environmental filters, dispersal restrictions, priority effects and the 87 

latter established interactions 17. Co-occurrence networks derived from a metacommunity, which 88 

comprises the whole number of potential associations between all the taxa in the pool18, have been 89 

adequately used to understand taxa affinities to distinct ecological niches or geographic clusters 19. 90 

However, these hardly give an idea of the variety of potential arrangements of local communities, since 91 

each local community likely comprises only a fraction of taxa. We argue that merging the 92 

metacommunity-inferred associations into each of the local communities, will allow the estimation of 93 

network properties in all the local communities within the metacommunity, individually, obtaining local 94 

information on microbial ecosystem functioning (Box 1). Yet, at the same time, it will allow direct 95 

comparison among network properties of individual samples, even in the absence of common taxa 96 

among them, as all samples are mapped back to the metacommunity which serves as a normalization 97 

step. Thus, these emergent properties can be utilized as universal biomarkers of ecological disturbance. 98 

To exemplify the utility of these metrics of ecological disturbance, we used them to infer the 99 

footprint of farming practices at different levels of intensification (conventional, organic and 100 

biodynamic) on the fungal community structure in vineyard soils. Our study showed that taxonomic 101 

patterns of fungal communities are influenced by geography and climate factors. However, biotic 102 

factors, as captured by the local network properties, were crucial at understanding community assembly 103 

patterns and the variations derived from the anthropogenic practices, showing global patterns 104 

independently of the country 20. In this sense, we were able to decipher the different ecological strategies 105 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.983650doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.983650
http://creativecommons.org/licenses/by-nc/4.0/


 

 
5 

that fungal communities adopt in face of different levels of farming intensification, and this can be used 106 

for further explorations on the health status of soils and their response to external stresses (i.e. global 107 

change, pathogens invasion, etc). We observed a more generalist-collaborative biota in the soils with 108 

less anthropogenic activity (defined by high clustered-low modular networks), and a more niche-109 

specialized biota in those soils with more intensified management (defined by low clustered-high 110 

modular networks). We also observed influence of farming practices on the richness of fungal plant 111 

pathogens in the soil, where conventional vineyards slightly lower values. However, the role and 112 

development of these pathogens in generalists- vs. specialists-based communities should be further 113 

studied for estimating the real risk of harbouring plant diseases. 114 

Given the key role that microorganisms play in agri-food systems in general, and in the wine 115 

industry in particular, these findings are useful for establishing monitoring programs of crop-associated 116 

microbial diversity, supporting the work of alliances such as the global initiative of crop microbiome 117 

and sustainable agriculture (https://www.globalsustainableagriculture.org) promoting soil healthiness 118 

through agriculture sustainable strategies. We anticipate that this methodological framework could be 119 

widely applied to infer ecological disturbances in other natural or anthropic systems, in other fields of 120 

interest such as food production or human health, when understanding the effect of practices such as 121 

antibiotic and antifungal use, or the microbial origin of healthy vs. pathogenic conditions. 122 

  123 
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Box 1. Constructing local community networks from metacommunities 124 
Metacommunity co-occurrence networks have been successfully applied to understand the organization 125 
and environmental preferences of microbes 19, a fraction of positive trophic interactions 21, or defining 126 
generalist vs. specialist strategies of particular microbes 22. This approach is a common strategy in 127 
global or regional studies to give general insights of particular metacommunity structures. However, 128 
metacommunity networks do not inform about the actual arrangements of species in local communities, 129 
where species may be loosely or densely connected, or display local adaptations to niches or functional 130 
guilds. Inferring the local network properties of individual samples characterizes the microbiome of a 131 
given sample in terms of its association structure, providing a unique layer of information when 132 
studying the biodiversity and stability of a sample, or monitoring its evolution in time and during 133 
environmental disturbances. Here, we combine the metacommunity set of associations with local 134 
species arrangements to retrieve properties related to particular association arrangements. Considering 135 
n local communities within a metacommunity, we infer significantly associated pairs of species (both 136 
positively and negatively associated). These pairs are later sorted for each local arrangement, so only 137 
pairs present in each individual sample are considered, to construct local networks, with particular 138 
network properties requiring an ecological interpretation. The ecological interpretation varies according 139 
to the positive or negative nature of the associations used to construct the networks, and inferring the 140 
emergent properties from these data, may lead to quantifying and understanding the effect of ecological 141 
disturbance in natural or anthropic ecosystems. Now we define the most important network properties 142 
considered in this study: 143 
Connected components: subnetwork in which any two nodes connect to each other by edges, that lack 144 
connection to other nodes in the full network. 145 
Clustering coefficient: the ratio of triangles and connected triples in the network23,24. 146 
Average path length: mean of the minimal number of required edges to connect any two nodes23,24. 147 
Modularity: the quality of a partition into modules (groups of nodes) using a quantity. A good network 148 
partition harbors a higher proportion of edges inside modules compared to the proportion of edges 149 
between them25.  150 
Assortativity: measures the homophyly of the graph, according to node properties or labels (i.e., node 151 
degree, which quantifies the number of edges associated to a node). If the coefficient is high, connected 152 
nodes tend to have similar values of a given property 26. 153 

 154 

 155 

 156 
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Results and Discussion 157 

Fungal community assembly in vineyard soils is affected by biogeography and management factors 158 

Vineyards are human-managed ecosystems and, as one of the most long-lived crops, they are preserved, 159 

managed and exploited for centuries in the same soil. Therefore, vineyard soils can be assumed as 160 

stabilized and bounded ecosystems, with its biodiversity moulded for decades by the influence of 161 

geography, climate, plant-microbe interactions, and farming practices.  162 

Vineyard soils from USA and Spain showed similar alpha- and beta-diversity ranges (Fig. 1a), and 163 

similar proportions of dominant fungal classes (Fig. S1). However, the multivariate ordination of OTU 164 

composition showed origin-dependent clusters (Fig. 1b), also present in the multivariate ordination of 165 

network properties (Fig. S2). In a global study from natural ecosystems27, fungal communities also 166 

exhibited strong biogeographic patterns that appear to be driven by dispersal limitation and climate. 167 

Our data partially supports this idea, as the strong geographical distance determined significantly 168 

different metacommunities between USA and Spain. Here we also show that the use of different farming 169 

practices for vineyard management (conventional, organic and biodynamic) has an impact in fungal 170 

community composition (Fig. 1c,d), as previously observed by Hartman et al20.  171 

 172 
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Fig. 1. Fungal diversity levels and composition of USA and Spain vineyard soil samples. 173 
a) comparison of alpha diversity (H’) and beta diversity (betadispersion) of samples between 174 
countries; b) non-metric multivariate ordination (nMDS) of OTU composition, and definition 175 
of country-dependent clusters (ANOSIM R = 0.31, p = 0.001); c) multivariate ordination of samples from 176 
Spain, and definition of management-dependent clusters (ANOSIM R = 0.18, p = 0.001); d) multivariate 177 
ordination of samples from USA, and definition of management-dependent clusters (ANOSIM R = 178 
0.17, p = 0.001); e) co-occurrence/co-exclusion fungal network of the Spanish metacommunity 179 
(fraction with the most abundant OTUs) with coloured modules; f) co-occurrence/co-exclusion 180 
fungal network of the USA metacommunity  (fraction with the most abundant OTUs) with 181 
coloured modules. 182 
 183 

It is important to highlight that, although Spain has the largest organic grape cultivar  worldwide (with 184 

100’000 hectares of organic grapes) 28, the fungal diversity of organic vineyards, when compared to 185 

conventional vineyards, is actually undetectable (Fig. 1c). However, in the case of USA, with a smaller 186 

organic vineyards production, we observed a more evident effect of this type of management on the soil 187 

fungal diversity, a half way between conventional and biodynamic managed vineyards (Fig. 1d).  Given 188 

this different continental effects, both datasets were analysed separately, and two different 189 

metacommunities were defined based on co-occurrences/co-exclusions patterns: one for USA samples 190 

and one for Spain samples (Fig. 1e,f). The study of co-occurrence metacommunity networks, revealed 191 

a single connected component with high modularity (ES=0.36, US=0.28), high clustering coefficient 192 

(ES=0.31, US=0.57), variable assortativity (ES=0.85, US=0.11), short average path length (ES=1.91, 193 

US=1.96), and a higher observed proportion of co-occurrence (ES=0.0696, US=0.0305) and lower co-194 

exclusion (ES=0.0030, US=0.0028) edges out of the total combinations. 195 

 196 

Local network properties explain fungal community composition and structure  197 

Metacommunity networks combined with multivariate techniques and correlative evidence is often used 198 

to interpret overall properties of a study system, and although it is a useful approach to catalogue 199 

diversity 29, to seek for potential associations 19,30 and to infer community types within the whole system 200 

31, it may be insufficient to advance knowledge on the underlying mechanisms behind some aspects of 201 

ecosystem processes or, as in our case, behind different management practices. For the purpose of 202 

having a more mechanistic understanding of microbiomes, we evaluated network properties (interpreted 203 

as emergent properties) for each local composition of microorganisms individually (Box 1). As 204 
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expected, local network properties have wider ranges than the overall value of the metacommunity 205 

networks of co-occurrences and co-exclusions, for instance modularity (ES=0.003-0.42, US=0.08-206 

0.31), or clustering coefficient (ES=0.44-0.93, US=0.34-0.66) (See full list of ranges in Table S1). 207 

Despite the geographic differences, most of the network metrics and their interrelationships followed 208 

similar trends in the two metacommunities (Fig. 3), but also if when merging the two metacommunities 209 

in a single global one (see Fig. 3 footnote). The consistency observed between the USA and Spain 210 

metacommunities may indicate that emergent properties of local fungal networks could serve as 211 

universal biomarkers of ecological disturbance in soil ecosystems.  212 

To evaluate the relative and combined influence on community assembly of geography, weather 213 

and network properties, we conducted a variation partitioning analysis in the two metacommunities. 214 

Different community arrangements from USA and Spain were well explained by meteorological 215 

factors, geography, and the network properties (from lower to higher variation explanatory power) (Fig. 216 

2c).   217 

 218 
Figure 2. NMDS ordination of soil fungal communities based on Bray-Curtis 219 

dissimilarities of OTU composition in (a) Spain (stress = 0.17) and (b) United States (stress = 220 
0.23). The arrows indicate the direction at which the meteorological factors, geography and 221 
network properties fit the best (using envfit function) onto the nMDS ordination space (only 222 
shown p < 0.01). The size of the arrow is proportional to the strength of the correlation of each 223 
variable. The right panel (c) shows the percentages of variation in the nMDS ordinations (Spain 224 
and USA) explained by the three metadata types through variation partitioning. Not explained 225 
(residuals) and shared variation between the three metadata types are also shown.  226 

 227 

In the case of Spain, variability due to weather was explained by an axis of wind speed / altitude; 228 

and in the USA an axis of temperature vs. cloud cover (Fig. 2a). These were the strongest predictors in 229 

an environmental PCA (Fig. S3). The effect of geography in each country was also significant and 230 

explained a substantial proportion of the community variation. However, in Spain a large proportion of 231 
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the effect of geography is also shared by network properties (Fig. 2a). The remaining unexplained 232 

variation (25% in Spain, 33% in USA) could likely be explained by soil organic matter or pH, typical 233 

variables reported in a myriad papers32,33, which unfortunately we did not measure. However, here we 234 

demonstrated that measuring local network properties substantially increased the proportion of 235 

community arrangement variations explained by the other abiotic factors (Fig. 2c). These results point 236 

out to the crucial relevance of emergent mechanistic processes on community assembly based on 237 

species associations, as previously suggested34. 238 

 239 

Emergent properties inferred from fungal networks can be used as biomarkers of ecological 240 

disturbance in soil samples 241 

 To better understand the emergent mechanisms of community structure behind community 242 

assembly, we analysed relationships between the network properties and contextualized the ranges of 243 

variation into emergent properties from vineyard soils (Fig. 3). A Principal Components Analysis 244 

(PCA) (Fig. S2), showed that the first two axes explained 54% of the variance: the first axis (36%) 245 

correlated to positive properties, and the second axis (18%) to negative properties (mostly, the co-246 

exclusion proportion). The inverse relationship in the first axis between clustering coefficient and 247 

average path length (Fig. 3) indicates the networks can adopt two different structures: a random network 248 

(low clustering, high path length) or a small-world structure (high clustering, low path length)35 . These 249 

two properties indicate how densely connected is the network, and thus the degree of activity or 250 

interactions between nodes. A densely connected network of co-occurrences may represent organisms 251 

preferring the same environmental conditions or be representative of organisms that could have 252 

cooperative activities (such as facilitation, syntrophy or/and cross-feeding)21. In such small-world 253 

networks, random loss of species is unlikely to affect the overall properties of the network, therefore, 254 

these are expected to harbour a certain degree of resistance towards perturbations36. Furthermore, 255 

modularity (+) was inversely associated to the clustering coefficient (+) (Fig. 3). In this context, 256 

modularity indicates the degree of separation of the modular components of the networks, and in our 257 

results we observe that mycobiomes from vineyard soils can be either densely connected with low niche 258 

specialization (generalist), or loosely connected with high niche specialization (specialist) (Box 2). A 259 
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low niche specialization may drive mixed communities, that take advantage of metabolic byproducts 260 

by cross-feeding or facilitation 37. 261 

 262 
Fig. 3. Relationships between network properties. Positive (green) and negative (red) 263 

relationships between network properties were obtained based on Spearman’s r correlations > 264 
|0.5| in at least one country and p < 0.01. Co-occurrences are depicted (+) and co-exclusions (-265 
). Relationships within metacommunities for Spain samples have r values in (blue) and for 266 
USA in (yellow). Interpretation of the properties and their associations is indicated in boxes: 267 
small-world vs. random networks; niche specialization vs mixed communities; and high vs. 268 
low competitive exclusion. Values for relationships between properties in a global 269 
metacommunity (merging USA and Spain databases) follow similar trends with the following 270 
values (Spearman’s r correlations > |0.5| and p < 0.01): Ave.p.lenght(+)--Clustering(+)= -0.88; 271 
Ave.p.lenght(+)--Modularity(+)= 0.78; Clustering(+)--Modularity(+)= -0.59; Coex. 272 
proportion (-)--Ave.p.lenght(-)= -0.50; Coex. proportion (-)--Modularity(-)= -0.58; 273 
Modularity(-)--Ave.p.lenght(-)= 0.74) 274 
 275 

On the other hand, competition seems to be central in regulating community assembly over time 276 

38,39. Indeed, we observed that highly modular co-occurrence networks, sustain a higher proportion of 277 

co-exclusions (Fig. 3), which may be quantifying competition processes. It is important to note that co-278 

exclusion related properties, such as modularity (-), average path length (-) or assortativity (-), are 279 

estimated by considering pairs of OTUs that occur together less than expected at random. But since 280 

these occur, we may interpret them as potential competitors, whose pairs can often coexist 40. Indeed, 281 

in highly competitive environments, niche partitioning by resource affinity separation or spatial 282 

separations, is one of the main strategies that organisms can pursue to survive over time 38. In fact, this 283 

type of community would harbour metabolic specialist species with reduced overlap38, which in the 284 

case of fungi may be part of functional guilds that are competing for the same limiting resource through 285 
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interference competition (such as in mycorrhizal fungi vs. saprotrophs) 41. Our results also indicate that 286 

more modular specialized communities, with a higher proportion of co-exclusions, harbour lower alpha 287 

diversity (H’) (r=-0.41, p<0.001) than densely connected communities. Indeed, competition–288 

colonization tradeoffs can sustain the landscape-scale diversity of microbes that compete for a single 289 

limiting resource 34. A widely accepted mantra, says that “A higher biodiversity tends to promote a 290 

better ecosystem sustainability, through community resistance and resilience promotion”. This 291 

statement came not only from the empirical knowledge of soil microbiome by farmers or gut 292 

microbiomes by health practitioners, but it is demonstrated by the connection between certain aspects 293 

of biodiversity and community structure in the stability of an ecosystem 42–45. We argue that in the case 294 

of fungi, interference competition and functional specialization are key in regulating soil community 295 

diversity34, assembly38 and the microbiome interaction with vineyards 46. Given all these observations, 296 

we could state that compositional data combined with a co-occurrence/co-exclusion network approach 297 

has allowed us to predict ecological emergent properties such as: i) community stability, ii) niche 298 

overlap and iii) fungal competition.  299 

 300 

Farming practices determine fungal ecosystem composition and structure 301 

Our results indicate that management strategies (particularly conventional vs. biodynamic approaches) 302 

affect network properties of fungal soil communities, similarly in the two countries studied: USA and 303 

Spain. We observed that soils under a biodynamic management had higher clustering coefficient (+), 304 

lower modularity (+) and lower co-exclusions proportion than the conventionally managed soils, with 305 

organic managed samples tending to show intermediate values between conventional and biodynamic 306 

samples (Fig. 4) (for full ANOVA results see Supplementary Table S2). This differential action of 307 

conventional and biodynamic vineyard management types, with organic practices showing an 308 

intermediate effect, has also been recently reported based on soil fertility, nutrient availability, enzyme 309 

activity, and earthworm abundance47. 310 
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 311 
Fig. 4. Impact of farming practices in fungal network properties. Boxplot of network 312 

properties, (a) Modularity (+), (b) Clustering (+), (c) Co-exclusion proportion (-); under 313 
different management practices and countries (Spain-Conventional n=78, Spain-Organic n=79, 314 
Spain-Biodynamic n=15; US-Conventional n=65, US-Organic n=39, US-Biodynamic n=20). 315 
For each property it is indicated if there is a statistically significant difference, according to a 316 
two-way ANOVA (n.s: not significant, *: p < 0.01). 317 

 318 

In this context, biodynamic-farmed vineyards showed microbial communities closer to: i) small-319 

world networks (higher clustering coefficient (+)); and ii) mixed (generalist-collaborative) communities 320 

(lower modularity (+)) (Fig. 4a,b), which are related with enhanced systems homeostasis38 , reinforcing 321 

previous observations of Banerjee et al48 in root-associated fungal networks. Conversely, 322 

conventionally managed soils gave rise to low clustered, highly modular fungal networks (Fig. 4a,b) 323 

with a larger proportion of co-exclusions compared to other management types (Fig. 4c), reducing, as 324 

stated before, the alpha diversity (H’) of the fungal communities. In addition, the use of punctual 325 

fertilization programs with high doses of specific nutrients, as in conventional farming, drive a 326 

metabolic specialization that may lead to an arrangement of niches37, as we observed for conventionally 327 

managed samples; in contrast to the more generalist, densely connected communities under biodynamic 328 

managements. In parallel, the co-exclusions proportion was associated with lower pathogen richness 329 

(r=-0.28, p<0,001) (Fig. S4a). Indeed, it is possible to predict that with the lowest co-exclusion 330 

proportion values, the probability of having presence of a plant pathogen raises to 80% (Fig. S4b). 331 

However, it is important to note that a higher richness or abundance of pathogens doesn´t always means 332 

a higher risk of disease development. Apart from the environmental conditions, and the direct 333 

consequences of phytosanitary programs, the whole community context is also determinant for the 334 

vulnerability of the ecosystem, that are likely to be higher in high modular (niche specialized) networks 335 
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than in those closer to small-world networks36. Thus, the community network structure should be taken 336 

into account in future in-field studies of ecosystem invasibility by plant pathogens (Box 2). 337 

  338 

Conclusions 339 

Ma et al. (2019)49 identified the need of systems-level approaches, based on ecological networks, for 340 

understanding agro-ecosystems functioning and for studying their sustainability in terms of resilience; 341 

for that purpose, the inference of ecological emergent properties5 seems a successful strategy to follow. 342 

Based on our findings, we can conclude that even in a single ecosystem, human intervention can 343 

determine two alternative fungal community assembly strategies: a generalists-based habitat in soils 344 

under biodynamic management, or a specialists-based habitat in soils under conventional management. 345 

We interpret these situations as alternative equilibrium states of communities (Box 2), with those from 346 

biodynamic managements closer to small-world networks, potentially related with wild environments. 347 

Scaling up to the broader picture, several authors have proposed that two of the major forces driving 348 

the current global change in ecosystems functioning - habitat modification and climate change - are 349 

expected to select habitat generalists instead of those habitat specialists with lower biodiversity levels 350 

and a higher niche partitioning50,51. Under this framework (Box 2), our results may lead future 351 

theoretical or in-field studies on the biodiversity-stability hypothesis, its relevance for agriculture 352 

sustainability, and how human intervention may drive a better future for agro-ecosystems. In addition, 353 

the defined ecological emergent properties may be used as biomarkers to measure the effect of farming 354 

practices or global change consequences in the health status of soils, but also in other fields such as 355 

human health to evaluate the impact of clinical interventions (use of antibiotics/antifungals) or for 356 

complement the efforts of connecting human microbiome with health or disease status.  357 

 358 

Box 2. Theoretical framework of fungal community structure and functioning in vineyard 359 
soils. 360 

Based in our results, the use of contrasting agricultural management systems (conventional vs. 361 
biodynamic) may lead to different emergent properties and community structures in vineyard soils. 362 
Specialist vs. generalist habitats appear as the two alternative options that a natural ecosystem could 363 
impart, and the level of niche specialization has implications not only on its taxonomic composition, 364 
but also on its functionality and in the way that it will respond to external stresses. Following the 365 
definition of soil health in agricultural systems given by Kibblewhite et al. (2008)52, it can be considered 366 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.983650doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.983650
http://creativecommons.org/licenses/by-nc/4.0/


 

 
15 

as an “integrative property that reflects the capacity of soil to respond to agricultural intervention, so 367 
that it continues to support both the agricultural production and the provision of other ecosystem 368 
services”. They also highlight the necessity of optimizing agriculture yields while keeping ecosystem 369 
services, as the only way to guarantee the sustainability of the global agriculture system. Thus, the 370 
biological sustainability of agro-ecosystems comes from the interaction of the biological processes 371 
provided by a diversity of interacting soil organisms and the influence of the abiotic soil environment, 372 
with human intervention playing a key role in this interaction. 373 

 374 

 375 
 376 
As we report here, the fungal communities favoured under biodynamic management may resemble 377 

a community structure close to that in wild cooperation-based environments, as opposed to the highly 378 
specialized environment found in conventionally farmed vineyards. As highlighted in a recent 379 
consensus paper53, the niche specialization found in global soil fungal and bacterial communities and 380 
their sensitivity to environmental changes may compromise the future delivery of agro-ecosystem 381 
services. This affirmation is based in the demonstrated effect that climate change consequences, such 382 
as aridity, have in the reduction in the microbial diversity and abundance of soils. This problem may be 383 
higher in highly specialized niche-partitioned environments where functional redundancy and cross-384 
feeding phenomena seems to be lower than in mixed-collaborative systems, where generalist species 385 
can be lost with minimal impact on ecosystem processes. Based on that, we can hypothesize that fungal 386 
communities that give rise to small-world and collaborative networks, as it is found in biodynamic 387 
managed soils, can be more resistant to the continuously changing environment imposed by climate 388 
change and land use. 389 

  390 
 391 

Methods 392 

Sample collection, DNA extraction and sequencing 393 

This study is a microbial amplicon-based survey that includes a total of 350 soil samples from 394 

vineyards from USA (175 samples; mostly California and southern states) and Spain (175 samples) 395 
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collected in the period 2015-2018. A general description of the protocol can be delineated as follows: 396 

All the samples were of topsoil taken within a depth between 5-10 cm. Each sample from a single block 397 

was made pooling together top soil from three random spots in each block and extracting the DNA from 398 

this composite sample. Soil samples were stored at -80ºC until DNA extraction. DNA extraction was 399 

performed using the DNeasy PowerLyzer PowerSoil Kit (Qiagen). A complete overview of all the 400 

samples used in this study and their origin is reported in Table S4 and in BioProject PRJNA590645 401 

metadata. Libraries were prepared following the two-step PCR protocol from Illumina and sequenced 402 

on an Illumina MiSeq using pair end sequencing (2x300bp). Libraries were prepared by amplifying the 403 

16s rRNA V4 region and the ITS1 region using Biome Makers® custom primers (Patent 404 

WO2017096385). Raw files are available under BioProject PRJNA590645. Raw sequences were 405 

analyzed using Vsearch using default parameters 54. Briefly, raw paired-end fastq sequences were 406 

merged, filtered by expected error 0.25, dereplicated, and sorted by size. We filtered out chimera 407 

sequences and clustered the remaining sequences into 97% identity OTUs, considering in further 408 

analyses only groups with at least two sequences. Combined sequences were then mapped to the list of 409 

OTUs with at least 97% identity, resulting in an OTU table with OTU sequences quantified per 410 

biological sample. OTUs were classified with the SILVA 123 database through the SILVA-NGS 411 

pipeline 55. 412 

 413 

Sample selection and environmental data  414 

 A total of 350 samples were taken from two regions with vineyards: United States of America and 415 

Spain. These samples were required to have the following available metadata: geographic location 416 

(latitude, longitude and altitude); and climatic information (precipitation intensity, precipitation 417 

probability, maximum temperature, minimum temperature, dew point, humidity, environmental 418 

pressure, wind speed, wind bearing, wind gust, cloud cover and UV index) obtained from the Dark Sky 419 

API site (https://darksky.net/poweredby/). Crop management system (farming practice: conventional, 420 

organic or biodynamic) was only available on a subset of samples (124 from USA; 172 from Spain). 421 

 422 

Estimation of emergent properties 423 
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For the estimation of network properties, we inferred co-occurrence and co-exclusion probabilities 424 

for USA and Spain metacommunities. We checked for a potential effect of not using all the species of 425 

the metacommunity by means of Mantel test of Bray Curtis dissimilarities, showing that the filtered 426 

communities represent adequately the full local communities. To seek for significant pair-wise patterns 427 

of species co-occurrences and co-exclusions, we used a probabilistic method 56. This model gives the 428 

probability of two species co-occurring or co-excluding each other, at a frequency less or greater than 429 

the observed frequency if the two species were distributed independently among sites. The full list of 430 

positive and negative significantly associated pairs represents the potential for interactions in the 431 

complete metacommunity and/or equivalent environmental distributions. The two lists of positive and 432 

negative pairs, were transformed into two species matrices representing the possibility of co-433 

occurrence/co-exclusion in the whole metacommunity. To estimate network properties in each local 434 

sample, the two metacommunity-based species matrices were subsequently subset into 350 matrices 435 

containing only the species occurring in each of the individual samples. Each of these matrices were 436 

transformed into undirected networks using the R package igraph57 , where nodes represent species, and 437 

edges statistically significant co-occurrences/co-exclusions. For each network we estimated the 438 

following properties as implemented in igraph: the number of connected components, modularity using 439 

the cluster walktrap algorithm 25, clustering coefficient defined as average transitivity 23,57, average path 440 

length24 and assortativity26 (a global metacommunity network, considering both USA and Spain 441 

samples, was punctually used to calculate the relationship between network properties in a unique 442 

global context; results reported in the footnote of Figure 3). We also calculated the proportion of co-443 

occurrences and co-exclusions observed, out of the total number of combinations of all the OTUs in the 444 

sample. A full representation of the process followed is displayed in Box 1 (part of this methodology is 445 

patent pending (US Patent Application, Serial Number 62947493). All networks were drawn with gephi 446 

58. 447 

 448 

Statistical analyses 449 

To look for relationships between network properties and plant pathogens, we used Spearman-rank 450 

correlations and a principal component analysis (PCA). We assessed if climate or management had an 451 
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effect on network properties through Spearman correlations and Kruskal-Wallis tests respectively. To 452 

estimate the relative contribution of weather, geographic location and network properties in explaining 453 

the heterogeneity in the fungal metacommunities, we performed a variation partitioning analysis using 454 

the non-metric multidimensional scaling (nMDS) two-dimension scores as the response variables. The 455 

three sets of variables were subject to a forward selection procedure, removing collinear variables, prior 456 

to their use as explanatory groups of variables 59. We further studied if we could predict the presence or 457 

absence of plant pathogens (using a curated list of vineyard pathogens), by quantifying the total number 458 

of plant pathogens. We further used a model to calculate predicted probabilities of presence of 459 

pathogens, by fitting variables (Transitivity (+), Modularity (+), Ave.p.length (-) and co-exclusion 460 

proportion) into a generalized linear model (GLM) using a binomial distribution. Statistics were 461 

calculated in the R environment using packages base, vegan60; and drawn in ggplot2 61. 462 
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