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Abstract 14 

The breadth of a species’ climatic niche is an important ecological trait that allows adaptation 15 

to climate change, but human activities drive niche erosion. Life-history traits, such as 16 

dispersal ability and reproductive speed, instead allow species to cope with climate change. 17 

But how do these characteristics act in combination with human pressure to determine niche 18 

change? Here we investigate the patterns and drivers of change in the realised climatic niche 19 

of 589 terrestrial mammal species. Our goal is to disentangle the impacts of humans, climate 20 

change, and life history. We calibrated the past and present climatic niches of each species by 21 

considering past climatic conditions (Mid Holocene) within their pre-human impact 22 

distributions, and current climatic conditions within the current distributions. Depending on 23 

the relationship between past and current niche, we defined four categories of change: 24 

“shrink”, “shift”, “stable”, and “expand”. We found over half of the species in our sample 25 

have undergone niche shrink, while only 15-18% of species retained a stable niche. After 26 

controlling for biogeography, climatic factors were the strongest correlates of species niche 27 

change, followed by anthropogenic pressure and species’ life history. Factors that increased 28 

the probability of niche shrink include: overall climatic instability in the area (both 29 

intermediate or high), large body mass, long gestation time, highly carnivorous or 30 

herbivorous diets, historical land-use change, and current human population density. We 31 

identified the conditions under which species are less likely to maintain their niche breadth, 32 

potentially losing adaptation capacity under climate change. Species with these 33 

characteristics require interventions that facilitate natural dispersal or assisted colonisation, to 34 

survive to rapidly changing climates.  35 

 36 
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Introduction 37 

The breadth of a species’ niche - the set of environmental conditions in which the species can 38 

persist (Peterson et al. 2011) - is an important ecological trait that allows adaptation to 39 

environmental change (Thuiller et al. 2005; Pacifici et al. 2015). Niche breadth is a key 40 

correlate of species sensitivity to future climate change (Swihart et al. 2003; Thuiller et al. 41 

2005; Chown et al. 2010), and is usually assessed by relating the observed occurrences of 42 

species to their respective climate. This implies looking at species’ realised niches, rather 43 

than their fundamental ones (Peterson et al. 2011). In fact, analysing realised niches is a well-44 

established technique to identify differences in species’ ecology (Olalla-Tárraga et al. 2011; 45 

Mahon et al. 2016), predict the potential spread of invasive species (Liu et al. 2017), and 46 

project past and future changes in species distributions (Maiorano et al. 2013; Visconti et al. 47 

2016). 48 

While the roles of human threats as drivers of species decline and extinction have been often 49 

demonstrated (Johnson et al. 2017; Pacifici et al. 2017; Di Marco et al. 2018), their role as 50 

drivers of niche erosion has proven more difficult to quantify (Pearman et al. 2008). Yet this 51 

is a critical element to consider, because disregarding the effect of human modifications of 52 

species realized niches might result in biased estimates of the future impact of climate change 53 

(Faurby & Araújo 2018). Some evidence of how humans have altered species niche is already 54 

available, despite uncertainty in past information on species distribution, climatic conditions, 55 

and human pressure (Walther et al. 2005). For example, analyses on the distribution range of 56 

the giraffe (Giraffa Camelopardalis) and African elephant (Loxodonta Africana) in the last 57 

150 years show a reduction in their climatic niche as a consequence of poaching, 58 

fragmentation, and conflicts (Martínez‐Freiría et al. 2015). 59 

Threats such as overexploitation, habitat loss and fragmentation, or invasive species have 60 

been recognised as global drivers of species decline in recent centuries (Hoffmann et al. 61 
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2010; Maxwell et al. 2016). More recently, substantial attention has been devoted to the 62 

emerging threat of climate change, with effects that might become soon predominant over 63 

those of already established threats (Newbold 2018; Di Marco et al. 2019). Climate change is 64 

recognised to have potential magnifying effects on biodiversity decline in the absence of 65 

adaptation and coping mechanisms (Bellard et al. 2012; Mantyka-Pringle et al. 2015; 66 

Visconti et al. 2016). Yet species might be able to tolerate changing climates to some extent, 67 

depending on their characteristics (Adrian et al. 2006; Jiguet et al. 2007; Urban et al. 2014; 68 

Santini et al. 2016; Pacifici et al. 2017). Life-history traits, such as dispersal ability and 69 

reproductive speed for example, have been hypothesized to play a central role in determining 70 

the sensitivity of species to climate change and their ability to cope with it (Dawson 2011). 71 

Evolutionary adaptation might also allow species to cope with changing climate (Hoffmann 72 

& Sgró 2011), even if it is unclear whether this mechanism is compatible with the pace of 73 

current climate change (Loarie et al. 2009). But how do these mechanisms act in combination 74 

with human pressure to determine change in species climatic niches? 75 

Here we investigate the patterns and drivers of change in the realised climatic niche of 76 

terrestrial mammals. Our goal is to disentangle the impacts of humans, climate change, and 77 

life history on species climatic niches. Separating intrinsic and extrinsic vulnerability of 78 

species to niche change, as well as the role of direct and indirect human pressure, is essential 79 

to understand which species are unlikely to adapt to future climatic conditions. We focus our 80 

analysis on terrestrial mammals, a data-rich group compared to other taxa, given the 81 

availability of distribution data for all species, both at present (IUCN 2018) and before 82 

human impact took place (Faurby & Svenning 2015). Terrestrial mammals make fundamental 83 

contributions to key ecological processes such as predation, herbivory, and seed dispersal, but 84 

are facing high risk of extinction (Fragoso et al. 2003; Soulé & Estes 2003; Pringle et al. 85 

2007; Hoffmann et al. 2011). Their ability to adapt to rapidly changing climate (or lack 86 
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thereof) is an essential element to consider when forecasting future extinction rates and 87 

defining appropriate conservation measures (Pacifici et al. 2017). 88 

 89 

 90 

Methods 91 

Species data 92 

We focused our analyses on 589 terrestrial mammal species (Table S1), representing all 93 

species which are known to have changed their geographic distribution in response to human 94 

pressure, and have been assessed in the Red List of the International Union for Conservation 95 

of Nature (IUCN). Selecting these species allowed us to disentangle the relative impact of 96 

climate change (within species’ natural ranges) from that of direct human influence on 97 

species’ distributions (Faurby & Svenning 2015). We used species distributions referring to 98 

the present day, and those assumed to represent species’ natural ranges (i.e. before human 99 

impact modified them). We retrieved present distributions from the IUCN Red List (IUCN 100 

2018) and pre-impact distributions from the PHYLACINE dataset (Faurby & Svenning 2015; 101 

Faurby et al. 2018). All ranges were considered at a spatial resolution of 1 degree (roughly 102 

110 km x 110 km at the equator), which is the native resolution in the PHYLACINE 103 

database.  104 

We collected life-history and ecological traits of species that are potentially correlated to 105 

change in their realised climatic niches. We considered the following variables: species 106 

biogeographic domains (Olson et al. 2001), percentage of vertebrate/invertebrate/plat diet 107 

(Faurby et al. 2018), body mass (Faurby et al. 2018), gestation length (Jones et al. 2009; 108 

Tacutu et al. 2013), and interbirth interval (Jones et al. 2009; Tacutu et al. 2013). Missing 109 

data for gestation length and interbirth interval were imputed from other life-history traits and 110 
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phylogeny, using the R package “missForest” (Stekhoven & Bühlmann 2012) and following 111 

the procedure of Penone et al. (2014). During imputation process, we represented species 112 

phylogeny by extracting phylogenetic eigenvectors (Diniz-Filho et al. 1998) from the 113 

PHYLACINE dataset (Faurby et al. 2018). That phylogeny was derived using a hierarchical 114 

Bayesian approach with a posterior distribution of 1,000 trees, which represent uncertainties 115 

in topology and branch lengths. We extracted 10 random trees from the phylogeny and re-ran 116 

our data imputation process using each of the trees, to test the sensitivity of our imputation to 117 

phylogenetic uncertainty. We also verified whether directly including phylogenetic 118 

relationships improved the performance of our niche models, using phylogenetic eigenvectors 119 

as model predictors (see below).  120 

We also included anthropogenic drivers of change in species niches. We quantified the levels 121 

of human pressure to which species were exposed through time, by accounting for past and 122 

current levels of human encroachment within species’ natural ranges (pre-impact 123 

distributions). We measured both human population density and the amount of agricultural 124 

land within each species’ range. We derived population densities and land-use data for the 125 

years 4,000 BC and 2017 AD, from the HYDE dataset at their original 5 arc-minutes 126 

resolution (Goldewijk et al. 2017). This corresponds to the Mid Holocene climatic period 127 

from Worldclim (Hijmans et al. 2005), which we used for representing past species niches 128 

(see below). We measured different percentiles of the distribution of these pressures within 129 

species ranges, and selected the percentile leading to highest predictive importance of the 130 

variables (Di Marco et al. 2015): 95% for past land use, 50% for current land use, 75% for 131 

past human density, and 25% for current human density. 132 

 133 
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Representing species climatic niches 134 

We calibrated the past and present climatic niches of each species by considering the past 135 

climatic conditions within their pre-impact range and the current conditions in the current 136 

range. We considered past climatic conditions in the Mid Holocene (MID; ca. year 4,000 BC) 137 

as obtained by the IPSL-CM5A-LR and the MPI-ESM-P general circulation models (GCMs). 138 

We averaged the results based on those two GCMs to account for uncertainty in past climatic 139 

projections. We also considered conditions at an earlier period, the Last Inter-Glacial (LIG; 140 

ca. 130,000 years ago) as a sensitivity test. A set of 10 bioclimatic variables were extracted 141 

from the Worldclim dataset (Hijmans et al. 2005), previously identified for their ability to 142 

model mammal species’ climatic preferences (Visconti et al. 2016): Annual Mean 143 

Temperature, Mean Temperature of Wettest Quarter, Mean Temperature of Driest Quarter, 144 

Mean Temperature of Warmest Quarter, Mean Temperature of Coldest Quarter, Annual 145 

Precipitation, Precipitation of Wettest Quarter, Precipitation of Driest Quarter, Precipitation 146 

of Warmest Quarter, Precipitation of Coldest Quarter. We extracted climatic conditions 147 

within the pre-impact and current distribution range of each species at a resolution of 30 arc-148 

seconds (approximately 1 km at the equator), which is the common resolution among the 149 

various climatic datasets we analysed. We represented fine-scale climatic conditions 150 

throughout each species’ range, by sampling the centroid of each 2.5 arc-minutes grid cell 151 

(approximately 5 km x 5 km at the equator) within the coarse species ranges, as a 152 

compromise between spatial coverage and computational feasibility. We extracted the 153 

climatic characteristics for all sampled pixels and analysed them using a principal component 154 

analysis (PCA) approach. This way we represented the combination of relatively fine-scaled 155 

climatic conditions that a species experienced within its broad distribution range through 156 

time. 157 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.985374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.985374
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 
 

The delineation of species niches was done using the software R (R Core Team 2018) and the 158 

package “ecospat” (Di Cola et al. 2017). We treated the pre-impact and current species 159 

distributions in a similar way to how native and non-native distributions are treated when 160 

investigating niche change for invasive species. We followed Broennimann et al. (2012) in 161 

defining a gridded ecological niche space for each species, delimited by the two major axes 162 

of a PCA built on the above-listed bioclimatic variables. We defined such environmental 163 

space by using past and present climate within each species’ biogeographic domain as the 164 

reference climatic regions, and the climate registered within pre-impact and current species 165 

distribution as proxy of species realised niches. This implies each species is associated to a 166 

“study region” that represents its biogeographical domain. We projected the PCA scores of 167 

the past and current climate experienced by the species onto the gridded ecological space, to 168 

define smoothed density of occurrences using a kernel density function. 169 

We represented the past and current niches as the polygons encompassing 95% of the gridded 170 

occurrences, respectively around the pre-impact occurrences and the current occurrences. We 171 

classified categories of change in the realised climatic niches of terrestrial mammal species 172 

by considering the relative size and position of the niche polygons in the gridded 173 

environmental space (Fig. 1). In particular, we defined four categories of niche change: 174 

“shrink”, when a species’ niche has reduced over time; “shift”, when a species niche has 175 

changed position without substantial reduction in its variability; “stable”, when a species 176 

niche has not substantially reduced or shifted; “expand”, when a species’ niche has increased 177 

in size over time. 178 

 179 
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 180 

Figure 1 Categories of change in the realised climatic niches of terrestrial mammal species, 181 
derived by comparison of past climate in pre-human impact distribution (black solid line) 182 
and current climate in current distribution (red dashed line). The density of species 183 
distribution within the past niche is represented as an orange-to-green gradient. The four 184 
panels represent: a) an example of niche “shrink”, the Ethiopian wolf (Canis simensis); b) 185 
an example of niche “stability”, the Spectacled Bear (Tremarctos ornatus); c) an example of 186 
niche “shift”, the Eastern Red Forest Rat (Nesomys rufus); d) an example of niche 187 
“expansion”, the Coyote (Canis latrans).  188 

 189 

We defined thresholds of tolerance below which niche changes were considered minimal, and 190 

the species classified as “stable”; this way we prevented the model from being over-sensitive 191 

to data uncertainty (e.g., in terms of past climate and species distributions). We tested 192 

tolerance thresholds of 5%, 10%, and 20% to separate niche stability from niche change, both 193 

in terms of position shift and in terms of shrink/expansion, and to separate niche shift from 194 

niche expansions and shrinks. 195 
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 196 

Modelling change in species climatic niche 197 

We run multinomial logistic regression models to predict the probability of species to be 198 

assigned to a given class of niche change, using the R package ‘nnet’ (Venables & Ripley 199 

2002). The same model structure was repeated under different past climate scenarios (in 200 

terms of GCM and time period). We used the class “shrink” as the reference level in the 201 

models. We included all the above-described intrinsic and extrinsic variables as model 202 

predictors, after verifying that these are not collinear with each other (Pearson’s r < 0.7). All 203 

continuous variables were scaled to improve comparability of model’s coefficients. In order 204 

to disentangle the effect of regional climate change from that of other drivers influencing the 205 

dynamics of a species’ niche, we also measured the overall climatic stability within species 206 

pre-impact ranges. We did so by measuring the proportion of past climatic space that is 207 

retained in the present, within the same PCA gridded ecological space used to define species 208 

niches. We used this metric of overall climate stability as one of the predictors in our model. 209 

We measured the model’s fit using Nagelkerke pseudo-R2, and evaluated the model’s 210 

performance using a leave-one-out validation approach. The validation routine was 211 

performed by iteratively excluding one species at a time, and then using the model calibrated 212 

on all other species to predict the probability that the left-out species belongs to each of the 213 

four classes of niche change. We compared the predicted class probabilities with the original 214 

(observed) class of each species. We measured the model’s classification accuracy with three 215 

different metrics. First, we defined a “predicted class” for each species, as the class with the 216 

highest assigned probability by the model. Second, for each species we ranked the predicted 217 

niche classes from the most probable to the least probable, and measured the rank of the 218 

observed class. Third, for each species we measured the difference between the predicted 219 

probability of the observed category and that of the most probable category according to the 220 
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model (δ-prediction). This value would be zero if the observed class is also the one with the 221 

highest predicted probability, and >0 otherwise; as an example, a species with a “stable” 222 

niche for which the models assigns a 50% chance of niche “shift” and a 40% chance of niche 223 

“stable” has a δ-prediction of 10%. We estimated both the overall classification accuracy, 224 

across all species, and the accuracy for species in each separate category of niche change. 225 

We estimated the models’ coefficients and their statistical significance, and we represented 226 

the relationship between key predictors in our model and the probability of being in a given 227 

class of niche change. To represent the latter relationships, we produced partial effect plots 228 

that represent the effect of one variable (e.g. body mass) on the response (e.g probability of 229 

the species to belong to the category “stable niche”) while holding all other variables 230 

constant. Finally, we compared our results from the multinomial model to those obtained 231 

with a Random Forest model (a non-parametric machine-learning technique), using the R 232 

package ‘randomForest’ (Liaw & Wiener 2002).  233 

 234 

Results 235 

Model’s ability to classify change in species niche 236 

The combination of MID climate (under the IPSL-CM5A-LR General Circulation Model) 237 

and 20% tolerance threshold, resulted in the best model’s performances (Table S2). Under 238 

those settings, the model had good overall classification accuracy (59% species correctly 239 

assigned to their observed niche classes) and a lower class-averaged accuracy (43%), which 240 

was still the highest value across all model settings. In fact, under any climatic scenario, 241 

using higher tolerance thresholds led to an increase in the variance explained by the model, a 242 

decrease in the overall prediction accuracy (across all species), and an increase in the class-243 

averaged prediction accuracy. The mean prediction rank of the observed class was 1.64, 244 
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while the average δ-prediction value was 15% (Table S3). The most numerous class, niche 245 

shrink, had very high validation performance, followed by the second most-numerous class, 246 

niche shift (Fig. 2). Species in the “stable” class were often misclassified as shifts. The main 247 

validation problem though occurred for species undergoing niche expansion, the least 248 

numerous class (representing just 8% of species), which were typically misclassified. This 249 

outcome is in part related to the level of tolerance of 20%, which does not classify niche 250 

increases as expansions (or niche contractions as shrinks) unless these are substantial. In fact, 251 

with a tolerance level of 5% there would be more than twice as many species classified as 252 

niche expansions, and the model is slightly better able at classifying them (but much less able 253 

at classifying shifting species).  254 

 255 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.985374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.985374
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

 256 

Figure 2 Probability to belong to different classes of niche change, for species in different 257 
observed categories, as predicted by the model based on Mid Holocene climate (under global 258 
circulation model IPSL-CM5A-LR) and a tolerance of 20% to separate niche change from 259 
niche stability. Each set of boxplots reports the probability of species within an observed 260 
niche category (reported in the plot title) to belong to any of the 4 categories. 261 

 262 

We did not use phylogenetic relationships as predictors in our final model, after verifying that 263 

including phylogenetic eigenvectors did not improve the AIC of our best performing model 264 

based on IPSL-CM5A-LR MID climate and a tolerance of 20% (Table S4). The two imputed 265 

variables in our model, gestation length and inter-birth interval, had acceptable performances 266 

during imputation, in terms of normalised root mean square error (NRMSE), with gestation 267 

length (NRMSE = 0.22) performing better than inter-birth interval (NRMSE = 0.32). We 268 

only used one imputation (out of ten imputations run), as the effect of phylogenetic 269 

uncertainty on data imputation was negligible when predicting species niche classes. In fact, 270 
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for 98% of the species the predicted class (i.e. the one with the highest probability from the 271 

multinomial model) did not change when using intrinsic traits imputed from 10 alternative 272 

phylogenies (Table S5). 273 

 274 

Drivers of change in species climatic niches  275 

After averaging the result of niche predictions based on the two GCMs for the MID climate, 276 

we found that different niche categories were best predicted by different sets of variables 277 

(Fig. 3). As expected, we found overall climatic stability was a strong discriminant of stable 278 

vs shrinking niche, with a less strong effect on the prediction of other classes (Fig. 3, Table 279 

S6). Invertebrate diet and current land use are relatively strong predictors of niche shift, 280 

together with body mass and interbirth interval. These latter two variables are also relatively 281 

important predictor of niche expansion. Past human population density and current land-use 282 

are relatively important predictors of niche stability and shift, respectively. Variable 283 

importance measured in a random forest model for classification reflected the overall patterns 284 

of the multinomial model, with the most important variables being climatic stability, 285 

biogeographic realm, past human population, current land-use, and body mass (Fig. S1). 286 
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 287 

Figure 3 Averaged model’s coefficients for the prediction of species niche change categories, 288 
using Mid Holocene as the reference past climate and two alternative GCMs. For each 289 
quantitative predictor variable used in the multinomial models, the scaled coefficient is 290 
reported representing the odds of being in the categories “shift”, “stable”, or “expand” 291 
rather than the class “shrink” (used as a reference).  292 

 293 

 294 

When considering diet, we found species consuming higher percentage of invertebrate food 295 

had a lower probability of undergoing niche shrink and higher probability of niche expansion 296 

or shift (Fig. 4a,c,e). Species consuming more vertebrate or plant food showed the opposite 297 

pattern. When considering life-history traits instead, we found species were more likely to 298 

undergo niche shrink as their body mass increases, with the exception of very large species 299 

(pachyderms) which are less likely to undergo niche shrink (Fig. 4b). Larger species were 300 

also much more likely to expand their niche, and less likely to show niche shift or stability. 301 
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Species with longer gestation time – i.e. low reproductive output, sensu Bielby et al. (2007) - 302 

were much more likely to undergo niche shrink and less likely to belong to any other class of 303 

niche change (Fig. 5d). Species with longer interbirth intervals - slow reproductive timing, 304 

sensu Bielby et al. (2007) - instead were less likely to have a shrink or stable niche, but more 305 

likely to shift their climatic niche (Fig. 4f). This same pattern was observed when replacing 306 

interbirth interval with other variables representing reproductive timing, such as weaning age 307 

or age at sexual maturity (Fig. S2). However these variables had even lower performance 308 

during data imputation routine (NRMSE was 0.42 and 0.36 respectively). 309 

 310 
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 311 

Figure 4 Average partial effect plots of the relationship between species intrinsic 312 
characteristics (scaled for the multinomial model) and probability of species to be assigned 313 
to one of four categories of niche change (shrink, stable, shift, expand), using Mid Holocene 314 
as the reference past climate and two alternative GCMs. Panels a,c,e represents species diets 315 
as proportion of plant, vertebrate, and invertebrate food consumed. Panels b,d,f represents 316 
species’ body mass, gestation length, and inter-birth interval. 317 

 318 

When looking at human pressure, we found past and current variables have somewhat 319 

different relationships with niche class probabilities (Fig. 5). Higher probability of niche 320 

shrink is associated with past agricultural land-use, while current land-use is associated with 321 

higher probability of niche shift. Human population density instead shows different patterns, 322 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.985374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.985374
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 
 

as past density is associated with higher probability of niche stability and current density is 323 

associated with higher probability of niche shrink. 324 

 325 

 326 

Figure 5 Average partial effect plot of the relationship between human pressure (scaled for 327 
the multinomial model) and probability of species to be assigned to one of four categories of 328 
niche change (shrink, stable, shift, expand), using Mid Holocene as the reference past climate 329 
and two alternative GCMs. Panels a,c represents  historic and current human land use, 330 
panels b,d represents  historic and current human population.  331 

 332 

 333 

 334 

Discussion 335 

Overall, half of the species we analysed have faced a shrinkage in their realised climatic 336 

niche of more than 20%, in response to human alteration of their distribution, global climatic 337 

change, and life history traits. At the same time, only 15-18% of species retained a stable or 338 
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nearly stable niche. We used 20% as a threshold to separate stability from change, both in 339 

terms of change in niche position and change in overall niche variability. This is a quite 340 

conservative threshold, which was chosen for practical and statistical reasons. Practically, 341 

given the coarse resolution of past species distribution data, choosing a relatively high 342 

threshold minimised the risk of identifying changes that were an artefact of data uncertainty. 343 

Statistically, this choice resulted in the best performance of the model, which was higher with 344 

threshold of 20% especially when looking at category-level classification accuracy. 345 

We found species with certain biological characteristics were more likely to undergo niche 346 

shrink. Large-bodied species for example were more likely to undergo niche shrink compared 347 

to smaller species, and less likely to show niche shift or stability. There was an exception 348 

however for very large species, i.e. pachyderms, which might be due to the large conservation 349 

attention that some of these species receive nowadays. A correlation between niche shrink 350 

and large body mass might depend on the large mammals’ vulnerability to human impact, 351 

which determines low resistance to niche erosion. Larger species have the biological potential 352 

to extend their distribution range via dispersal mechanisms (Santini et al. 2013), but are also 353 

typically characterised by slower life histories compared to smaller species (Bielby et al. 354 

2007) and are more sensitive to human impact (Cardillo et al. 2005). In fact, this result is 355 

reflected when looking at gestation length, a proxy of reproductive output (Bielby et al. 356 

2007), with longer values associated with higher probability of niche shrinkage. Instead 357 

interbirth interval, a proxy of reproductive timing (Bielby et al. 2007), was positively 358 

associated with niche shift and negatively associated with niche shrink. However there was 359 

limited available data on this trait (and other reproductive timing traits), and the data 360 

imputation procedure had lower performance for this variable compared to gestation length. 361 

Improved information would be needed before drawing conclusions on this variable.  362 
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Species’ diet was not an overall dominant driver of niche change in our model, but showed 363 

fairly clear relationship with niche categories. We found the main effect was determined by 364 

invertebrate food items, with higher percentage of invertebrate diet leading to lower 365 

probability of niche shrink and higher probability of expansion. This might imply highly 366 

insectivorous species have higher adaptability compared to both highly carnivorous and 367 

highly herbivorous ones, similar to omnivores.  368 

We found species responded to past and current levels of human pressure in different ways. 369 

Higher levels of historical land-use change within a species’ natural distribution determined 370 

higher probability of niche shrink. Current levels of land-use change instead determined 371 

higher probability of shift. This result might have emerged because part of the current human 372 

influence is realized over portions of the natural species distributions which have been lost. 373 

Species might be able to adapt to human pressure inside their present-day distributions, which 374 

already resisted to some level of historical pressure. When low levels of climate change affect 375 

these core distribution areas, species might show some adaptation capacity via niche shift 376 

mechanisms. The relationship with human population density showed the opposite pattern 377 

instead, with past density positively correlated with the probability of stable niche and 378 

negatively correlated with the probability of shrinking niche. This scenario of past co-379 

existence between human and other mammal species might be a reflection of both human and 380 

animal communities settling in productive natural environments, but also a possible 381 

facilitation of human-wildlife coexistence in those areas when human colonization started 382 

earlier (Carter & Linnell 2016). This result however is also in part dependent on the threshold 383 

of 20% that was used to distinguish between niche stability and niche change. In fact, we 384 

verified that a lower threshold of 5% would result in a positive correlation between past 385 

human density and probability of niche shrink; this means past human density resulted in 386 

either niche stability or very low levels of niche shrink. Instead we found current human 387 
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population density within natural species distributions was positively associated with niche 388 

shrink, regardless of the threshold. This shows the risk faced by species living in highly 389 

anthropogenic areas (Di Marco et al. 2018), which might become more vulnerable to the 390 

additive effect of climate change (Mantyka-Pringle et al. 2012, 2015). 391 

Our model has demonstrated good overall performance during validation, except for the 392 

‘expand’ category. This is due to the limited number of species which showed a substantial 393 

(>20%) increase in their niche breadth over time. This implies our understanding of the 394 

mechanisms of niche expansion is still limited, until additional species examples are 395 

identified. A promising field of research in this case is represented by invasive species 396 

(Broennimann et al. 2012). Invasive species might maintain their original climatic niche in 397 

the invaded region (Petitpierre et al. 2012), or exploit a wider variety of climatic conditions 398 

and shift or expand their realised niche (Lauzeral et al. 2011). Understanding more of the 399 

dynamics and drivers of niche change for these species can shed light on the past dynamics of 400 

niche change. 401 

We identified the conditions under which species are unlikely to maintain a varied climatic 402 

niche, potentially losing their climate adaptive potential. Areas which will experience 403 

substantially different climates in the future should be given special attention to prevent 404 

threatened and restricted-range species from rapid decline. Interventions that facilitate natural 405 

dispersal, or assisted colonisation, should be carefully evaluated for these species, as part of 406 

international strategies to combat the effects of climate change on biodiversity such as the 407 

Convention on Biological Diversity and the United Nation Framework Convention on 408 

Climate Change. 409 

 410 

 411 
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