Major stages of vertebrate adaptive radiation are assembled from a disparate spatiotemporal landscape

Authors: Emilie J. Richards^{1,2}, Joseph A. McGirr³, Jeremy R. Wang⁴, Michelle E. St. John^{1,2},
 Jelmer W. Poelstra⁵, Maria J. Solano³, Delaney C. O'Connell³, Bruce J. Turner⁶, Christopher H.
 Martin^{1,2*}

7

16

1

2 3

8 Affiliations:

- ⁹ ¹Department of Integrative Biology, University of California, Berkeley, CA
- ²Museum of Vertebrate Zoology, University of California, Berkeley, CA
- ³Department of Biology, University of North Carolina, Chapel Hill, NC
- ⁴Department of Genetics, University of North Carolina, Chapel Hill, NC
- ⁵Department of Biology, Duke University, Durham, NC
- ⁶Department of Biological Sciences, Virginia Tech, VA
- 15 *Correspondence to: <u>chmartin@berkeley.edu</u>
- 17 **Abstract:** To investigate the origins and stages of vertebrate adaptive radiation, we reconstructed
- 18 the spatial and temporal histories of genetic variants underlying major phenotypic axes of
- 19 diversification from the genomes of 202 Caribbean pupfishes. Ancient standing variation from
- 20 disparate spatial sources was reassembled into new combinations which are under strong
- 21 selection for adaptation to novel trophic niches on only a single island throughout the Caribbean.
- 22 This occurred in three stages: first, standing variation associated with feeding behavior swept,
- 23 then standing variation regulating craniofacial development and pigmentation, and finally de
- 24 novo variation for craniofacial development. Our results provide clear support for two
- 25 longstanding hypotheses about adaptive radiation and demonstrate how ancient alleles
- 26 maintained for millennia in distinct environmental refugia can be assembled into new adaptive
- 27 combinations.
- 28

One Sentence Summary: Ancient origins of adaptive radiation

- 29
- 30
- 31

32	Main Text: Adaptive radiations are fundamental to understanding the biodiversity of life. These
33	bursts of phenotypic and ecological diversification may occur in response to ecological
34	opportunity provided by unoccupied niche space $(1, 2)$. However, the origins and major features
35	of this process are still controversial. For example, ecological opportunity does not explain why
36	only some lineages radiate $(3-6)$. One hypothesis is that introgression from disparate source
37	populations might be necessary to trigger diversification $(7, 8)$. Despite substantial evidence of
38	adaptive introgression during radiation $(9-12)$, no previous studies have compared adaptive
39	introgression between closely related radiating and non-radiating lineages to distinguish
40	introgression as a trigger. A parallel debate centers on whether adaptive diversification proceeds
41	in three distinct temporal stages: shifts in habitat preference first, followed by trophic
42	morphology, and finally sexual communication (13). This 'behavior-first' view is also
43	commonly proposed for initiating adaptive trait evolution (14–16). However, existing evidence
44	for the temporal stages hypothesis comes from ancestral state reconstructions of rapidly
45	diversifying traits which are unreliable without fossil data (17–19).
46	Here we provide strong support for these two major hypotheses of adaptive radiation
47	using multiple lines of genomic, transcriptomic, and phenotypic evidence in a nascent adaptive
48	radiation of Caribbean pupfishes. This sympatric radiation contains a widespread generalist algae
49	and detritus-eating species (Cyprinodon variegatus) and two trophic specialists endemic to 10 ky
50	old hypersaline lakes on San Salvador Island (SSI), Bahamas: a molluscivore C. brontotheroides

with a unique nasal protrusion and a scale-eater *C. desquamator* with striking two-fold longer
oral jaws. This clade exhibits hallmarks of adaptive radiation. First trait diversification rates are

⁵³ up to 1,400 times faster than non-radiating generalist populations on neighboring Bahamian

54	islands in nearly identical hypersaline lake environments. Second, craniofacial diversity within
55	the radiation is comparable to all other Cyprinodontidae species combined $(5, 20)$.
56	To investigate the spatiotemporal history of adaptive variants unique to trophic specialists
57	on SSI we first constructed a high quality de novo hybrid assembly for C. brontotheroides (1.16
58	Gb size; scaffold N50 = 32 Mb; L50 = 15; 86.4% complete Actinopterygii BUSCOs) and
59	resequenced 202 genomes (7.9x median coverage) from across the range of Cyprinodon and the
60	two closest outgroups Megupsilon and Cualac (Fig. 1A;Table S1; Data S1). Population structure
61	across the Caribbean was largely explained by geographic distance (Fig. 1) and the SSI radiation
62	did not contain higher overall genetic diversity than the rest of the Caribbean (Fig. S1). All
63	Caribbean populations experienced similar declines in effective population size following the
64	last glacial maximum 15 kya when an order of magnitude more Caribbean coastal habitat was
65	above sea level (Fig. 1D).

66 67

Fig. 1. Genetic diversity of pupfishes across the Caribbean. A) Sample locations of 68 *Cvprinodon* pupfishes (n = 202) with eight focal populations ($n \ge 10$ per population) marked 69 70 with symbols and single individuals from other locations in the Bahamas (light green), Caribbean (orange), continental North and South America (maroon), and *Megupsilon* and *Cualac* outgroups 71 to Cyprinodon (black). B) Maximum clade credibility phylogeny estimated with SNAPP from 72 10K SNPs for focal populations and the outgroup Cyprinodon artifrons overlaying 500 gene 73 trees randomly sampled from the posterior distribution and visualized with Densitree. C) 74 Principal component analysis of Cyprinodon pupfishes. D) Changes in effective population size 75

76	over time for focal populations in the Caribbean inferred using MSMC. E) Ancestry proportions
77	across individuals in San Salvador and 5 other Caribbean populations. Proportions estimated
78	from a LD-pruned dataset in ADMIXTURE with $k=11$.

80	We scanned 5.5 million variants across 202 Caribbean-wide pupfish genomes to identify
81	3,464 scale-eater and 1,491 molluscivore candidate adaptive variants, respectively, showing
82	evidence of both strong genetic differentiation between trophic specialists ($F_{st} \ge 0.95$) and a hard
83	selective sweep (Fig. 2A; Fig S2; Data S2 and S3). 28% of these candidate adaptive variants
84	were found in cis-regulatory regions, 12% in intronic regions, and 2% in coding regions,
85	resulting in a total of 176 candidate genes for adaptive radiation (Table S2-S3). These genes
86	were enriched (FDR < 0.05) for developmental processes associated with the major axes of
87	phenotypic diversification in this radiation, including feeding behavior, muscle tissue, and
88	craniofacial development (Fig. 2C; Table S4). 45% of these genes were also differentially
89	expressed between trophic specialists (FDR < 0.05; Data S4-S5) in whole embryos at 2 and/or 8
90	days post fertilization (dpf) (21).

Fig. 2. All candidate adaptive genetic variants underlying trophic specialist pupfishes. A) 92 Origins of all candidate adaptive variants for trophic specialists ($F_{st} > 0.95$; hard selective sweep 93 $CLR \ge 4.47$; see supplementary methods for more details) divided into three categories: SSI only 94 (de novo: red), introgression from a specific source population (introgressed: orange), or 95 observed in multiple Caribbean populations as standing genetic variation (standing: grey). 96 Introgressed variation is further broken down by focal source population (Tables S9-S12). B) 97 Heatmaps of linkage disequilibrium among all pairwise combinations of candidate adaptive 98 99 variants for scale-eaters (S; top row) and molluscivores (M; bottom row) on SSI in comparison to linkage patterns among these SNPSs in generalists on SSI (G) and three other focal generalist 100 populations across the Caribbean (Venezuela removed from comparison due to its unique 101 102 bottleneck history among the populations). Note the breakdown in linkage disequilibrium among candidate adaptive variants outside of trophic specialist populations. C) Top 15 GO categories in 103

104	which scale-eater candidate adaptive variants were significantly enriched, with relevant terms
105	corresponding to major axes of divergence in this radiation highlighted in bold (FDR < 0.01 ; full
106	list of terms with FDR < 0.05 in Table S4).

107

108 Even though both trophic specialists are endemic to SSI, we also found nearly all their candidate adaptive variants to occur as standing genetic variation across the Caribbean 109 (molluscivore: 100%; scale-eater: 98%; Fig. 2A). Furthermore, nearly half these variants were 110 ancient and also found in *Cualac* or *Megupsilon* outgroups to *Cyprinodon* (41% and 55% of 111 scale-eater and molluscivore adaptive variants, respectively), which diverged over 5 Mya (22). 112 113 However, most adaptive variants did not show any evidence of selection in five other focal high-114 coverage Caribbean generalist populations (only 2% and 6% of scale-eater and molluscivore variants, respectively; Fig. S3) and strong linkage disequilibrium among adaptive variants in SSI 115 116 trophic specialists was not observed in these focal populations (Fig. 2B). Thus, novel trophic specialists within a microendemic adaptive radiation were almost entirely assembled from 117 118 ancient standing genetic variation through strong selection for new adaptive combinations of 119 alleles.

Multiple lines of evidence suggest that more hybridization and adaptive introgression took place in SSI populations than other Caribbean island populations, consistent with the hypothesis that hybridization triggered adaptive radiation. First, the strongest signal of introgression across the Caribbean was into the root node of the SSI radiation (Fig. 3B). Second, trophic specialists on San Salvador experienced at least twice as much adaptive introgression as other generalist populations across the Caribbean (P < 0.006; Fig. 3C). Third, based on

- 126 differences between the distribution of tract lengths for neutral and adaptively introgressed
- regions, we infer that adaptive introgression only resulted from older hybridization events with
- generalist source populations, despite evidence of recent and continuous introgression to the
- 129 present (Fig 3D-E).

Fig. 3. A history of hybridization across the Caribbean. A) A summary map of adaptive introgression into SSI trophic specialists from focal generalist populations across the Caribbean, with thickness of arrows proportional to the number of outlier regions of the f_d statistic. B)

Genome-wide population graph inferred from *Treemix* with the 3 strongest signals of admixture. 134 Note that the strongest signal is into the root node of the SSI radiation. C) The total number of 135 candidate adaptive introgression regions from outgroup generalist populations is often larger in 136 specialists (triangle: scale-eater and square: molluscivore) than in other outgroup generalist 137 populations (circle, color matches population legend in panel A). The bootstrapped mean and 138 139 confidence interval for the number of adaptive introgression events into the molluscivore and scale-eater populations compared to other Caribbean generalist populations are shown to the 140 right of the panel (triangle: scale-eater introgression regions and square: molluscivore 141 142 introgression regions). D-E) Density plots of the size distribution of adaptive introgression regions (dashed line) and neutral introgression regions (solid line) across the genomes of D) 143 scale-eaters and E) molluscivores, divided into the four focal generalist source populations. Tick 144 marks on the bottom of density curves indicate the number of introgression regions observed. 145

146

We also observed distinct temporal stages of adaptive radiation based on divergence time 147 148 estimates of candidate loci and timing of selective sweeps. SSI pupfish diversified along the 149 three major axes of vertebrate adaptive radiation (13), including their trophic environment 150 (mediated through foraging behavior: scale-eating or snail-eating), trophic morphology, and 151 sexual communication signals. Based on both GO annotations of genes near candidate adaptive 152 variants and genome-wide association mapping (GWAS) in Caribbean pupfishes for these trait 153 axes, we found that the divergence times of loci associated with these three major stages of adaptive radiation exhibited a significant temporal signal overall (ANOVA, P = 0.03; Fig. 4A), 154 155 driven by a 'behavior-first' pattern (permutation test; P=0.0041). Independent adaptive variants

156	in the cis-regulatory regions of two genes associated with feeding behavior (prlh, cfap20; (23,
157	24)) were the oldest estimated sweeps out of all adaptive loci associated with these axes and
158	swept from standing genetic variation ten times older than the radiation itself (Fig. 4A,C; 95%
159	HPD sweep ages: 6,747-8,490 and 6,594-9,210 years, respectively). Cfap20 and prlh were also
160	both differentially expressed between trophic specialists at early developmental stages,
161	consistent with a <i>cis</i> -regulatory function of these variants (Data S4-S5;(21)).
162	Consistent with the second stage of trophic morphological divergence, adaptive variants
163	in the regulatory regions of genes associated with eye development (gnat2, tbc1d20, zhx2),
164	muscle development (fhod3, smyd1, kcnk2, fhl2, pdim5), and craniofacial morphology (bcor,
165	itga5, tfap2a, med1) swept from both standing genetic variation and adaptive introgression from
166	three different focal populations across the Caribbean (Fig. 4). We also observed a final stage of
167	novel refinement in which two de novo variants associated with craniofacial morphology arose
168	on SSI and swept in scale-eating populations (Fig 4). One of these variants is a non-synonymous
169	substitution in the second exon of <i>twist1</i> , a transcription factor known to influence cleft palate
170	and oral jaw size (25), which was significantly associated with SSI pupfish oral jaw size in a
171	genome-wide association scan (99th PIP percentile GWAS; Fig 4B), is highly conserved across
172	ray-finned fishes (GERP score: 2.19; Fig S4), and is one of the most recent sweeps of any
173	adaptive variant detected in our analyses (95% HPD: 1,636-3,413 ya). The second variant is in
174	the regulatory region upstream of the gene galr2, which produces a transmembrane receptor for
175	galanin, a peptide known to facilitate bone formation (26). This gene was significantly associated
176	with SSI pupfish oral jaw size (99th PIP percentile GWAS; Fig 4B; Data S6) and lies within a
177	significant QTL that accounts for 15% of the variation in oral jaw size in an F2 intercross
178	between SSI specialist species (Table S5; (27)). Molluscivores displayed similar temporal stages

with craniofacial variation sweeping recently (Fig. S5), but contained no de novo variants. 85% 179 of candidate adaptive regions under selection in molluscivores were also under selection in scale-180 eaters but contained different fixed variants (Fig. S3), consistent with previously observed 181 patterns of parallel metabolic pathway gene expression in trophic specialists but divergent 182 genotypes (21). 183 184 There was no evidence for a temporally distinct third stage of diversification in sexual signals, despite the striking divergence in male reproductive pigmentation between SSI trophic 185 specialists. Instead, pigmentation diverged throughout the process of adaptive radiation. 186 Adaptive variants in two genes known to affect pigmentation (*tfap2a*, *th*; Fig 4A) and two 187 additional candidate variants associated with pupfish caudal fin pigmentation (99th PIP 188 percentile GWAS; Fig. 4B; Data S7) indicate that diversification in male reproductive coloration 189 spans a range of divergence times, with some variants more ancient than the radiation itself (Fig 190 4B). For example, two nearly fixed adaptive variants in the regulatory region of card8, a 191 homolog of *nlrp1* which is associated with vitiligo and pigmentation loss in humans [(28); 99th 192 PIP percentile GWAS; differentially expressed at 2 and 8 dpf; Fig 4B; Data S4-S5,S7], swept at 193 194 the same time as many variants associated with craniofacial morphology during the second stage 195 of adaptive radiation. Divergence estimates of loci associated with pigmentation also span a large range: from variants in the regulatory region of *card8*, which is ten times older than the radiation, 196 197 to a single variant fixed in scale-eaters and in the neighboring Rum Cay generalist population 198 found in the regulatory region of *pmel* (known to affect melanosome development (29); differentially expressed between specialists at 8 dpf ;Data S5), which is as young as the radiation 199 200 itself (Fig. 4A). This broad range of divergence times and sweep ages may indicate that the 201 distinctive light/dark reproductive coloration associated with trophic specialists diverged

throughout the process of adaptive radiation using existing standing genetic variation, rather thanonly during a final stage.

204	Intriguingly, along with distinct temporal patterns of adaptive divergence, we also find
205	distinct spatial patterns to the sources of adaptive introgression. Introgression from different
206	regions of the Caribbean brought in adaptive variation for different major axes of phenotypic
207	diversification within the radiation. Adaptive variants associated with feeding behavior (prlh; Fig
208	4A) and nasal protrusion (tcf12; 99th PIP percentile GWAS;Fig 4B;Data S8) originated in the
209	northwestern Bahamas (New Providence Island, Exumas, and Cat Island) whereas adaptive
210	introgression of variants associated with muscle development arrived from the southeastern
211	Caribbean in the Dominican Republic (cenpf, eya2; Fig 4A). This suggests that the extant SSI
212	radiation of trophic specialists was reassembled from pools of ancient genetic variation contained
213	in at least two distinct environmental refugia in other regions of the Caribbean, perhaps due to
214	previous ephemeral adaptive radiations within these regions, thus connecting micro- and
215	macroevolutionary-scale processes (30, 31).

217	Fig. 4. The spatiotemporal landscape of adaptive radiation in pupfish. Time to most recent
218	common ancestor (TMRCA) of candidate adaptive variants based on Dxy for 50-kb region
219	containing candidate adaptive variants. Variants are separated by spatial distribution: SSI only
220	(de novo), introgression, and standing genetic variation. Gray lines highlight the approximate age
221	of the radiation: from the peak of the last glacial maximum (approximately 20 kya; (32)) to the
222	youngest age estimate for filling of hypersaline lakes on SSI (~3 kya: (33)). A) Variants are
223	colored by their adaptive relevance to this system. Black: adaptive variants annotated for non-
224	focal GO terms or unannotated; Gray: nearly fixed neutral variants between specialists with no
225	signal of hard selective sweep; and triangles represent variants associated with pigmentation. All
226	variants annotated for the GO categories of feeding behavior (red), muscle (purple), eye, mouth
227	development (blue), and craniofacial development (mouth and eye and/or muscle(teal)) are
228	highlighted. Genes highlighted in the text are labeled by their associated variant. B) Variants are
229	colored by significant association (99th percentile of PIP) in GWAS with a larger lower oral jaw
230	size, darker caudal fin pigmentation, and smaller nasal protrusion distance. Dot sizes scale with
231	PIP score. C) 95% HPD interval of the posterior distribution for selective sweep ages for focal
232	gene regions. Regions are colored by GO and/or GWAS annotations relevant to the three major
233	stages of adaptive radiation: habitat preference (feeding behavior), trophic morphology
234	(craniofacial and muscle), and sexual communication (pigmentation).

235

In conclusion, the SSI adaptive radiation was triggered by the formation of a hybrid swarm of largely ancient alleles maintained within different pools of standing variation in Caribbean and mainland outgroups. Distinct temporal stages of adaptation observed in this nascent radiation are consistent with a behavior-first stage of vertebrate radiation. Much of the

240	adapt	ive variation contributing to major phenotypic axes of diversification in this radiation		
241	origin	nated over longer timescales preceding the divergence of trophic specialist species on SSI,		
242	and a	cross large spatial scales. Our results show that adaptive radiations can occupy expansive		
243	evolu	tionary spaces: spanning the existing radiation itself and the multitude of both past and		
244	prese	nt ephemeral pools of genetic variation that contributed to rapid diversification. Research		
245	into tl	he broader spatiotemporal landscape of vertebrate radiations, including the hominin		
246	radiat	radiation (31), can provide clear answers regarding longstanding hypotheses about their origins		
247	and contributions to global patterns of biodiversity.			
248				
249	Refer	rences and Notes:		
250	1.	G. G. Simpson, Tempo and mode of evolution (Columbia University Press, ed. 15, 1944).		
251 252	2.	J. T. Stroud, J. B. Losos, Ecological Opportunity and Adaptive Radiation. <i>Annu. Rev. Ecol. Evol. Syst.</i> 47 , 507–532 (2016).		
253 254	3.	D. H. Erwin, Novelty and innovation in the history of life. <i>Curr. Biol.</i> 25 , R930–R940 (2015).		
255 256	4.	C. E. Wagner, L. J. Harmon, O. Seehausen, Ecological opportunity and sexual selection together predict adaptive radiation. <i>Nature</i> . 487 , 366–369 (2012).		
257 258 259	5.	C. H. Martin, The cryptic origins of evolutionary novelty: 1,000-fold-faster trophic diversification rates without increased ecological opportunity or hybrid swarm. <i>Evolution</i> (<i>N. Y</i>)., 1–16 (2016).		
260 261	6.	D. L. Rabosky, Diversity-Dependence, Ecological Speciation, and the Role of Competition in Macroevolution. <i>Annu. Rev. Ecol. Evol. Syst.</i> 44 , 481–502 (2013).		
262 263	7.	O. Seehausen, Hybridization and adaptive radiation. <i>Trends Ecol. Evol.</i> 19 , 198–207 (2004).		
264 265 266	8.	D. A. Marques, J. I. Meier, O. Seehausen, A Combinatorial View on Speciation and Adaptive Radiation. <i>Trends Ecol. Evol.</i> (2019), doi:https://doi.org/10.1016/j.tree.2019.02.008.		
267 268 269	9.	E. J. Richards, C. H. Martin, Adaptive introgression from distant Caribbean islands contributed to the diversification of a microendemic adaptive radiation of trophic specialist pupfishes. <i>PLoS Genet.</i> 13 , 1–35 (2017).		
270 271	10.	J. I. Meier, D. A. Marques, S. Mwaiko, C. E. Wagner, L. Excoffier, O. Seehausen, Ancient hybridization fuels rapid cichlid fish adaptive radiations. <i>Nat. Commun.</i> 8 , 14363 (2017).		

11. The Heliconius Genome Consortium, K. K. Dasmahapatra, J. R. Walters, A. D. Briscoe, J. 272 W. Davey, A. Whibley, N. J. Nadeau, A. V. Zimin, D. S. T. Hughes, L. C. Ferguson, S. H. 273 274 Martin, C. Salazar, J. J. Lewis, S. Adler, S.-J. Ahn, D. a. Baker, S. W. Baxter, N. L. Chamberlain, R. Chauhan, B. a. Counterman, T. Dalmay, L. E. Gilbert, K. Gordon, D. G. 275 Heckel, H. M. Hines, K. J. Hoff, P. W. H. Holland, E. Jacquin-Joly, F. M. Jiggins, R. T. Jones, 276 277 D. D. Kapan, P. Kersey, G. Lamas, D. Lawson, D. Mapleson, L. S. Maroja, A. Martin, S. Moxon, W. J. Palmer, R. Papa, A. Papanicolaou, Y. Pauchet, D. A. Ray, N. Rosser, S. L. 278 Salzberg, M. a. Supple, A. Surridge, A. Tenger-Trolander, H. Vogel, P. a. Wilkinson, D. 279 280 Wilson, J. a. Yorke, F. Yuan, A. L. Balmuth, C. Eland, K. Gharbi, M. Thomson, R. A. Gibbs, Y. Han, J. C. Jayaseelan, C. Kovar, T. Mathew, D. M. Muzny, F. Ongeri, L.-L. Pu, J. Qu, R. L. 281 Thornton, K. C. Worley, Y.-Q. Wu, M. Linares, M. L. Blaxter, R. H. ffrench-Constant, M. 282 283 Joron, M. R. Kronforst, S. P. Mullen, R. D. Reed, S. E. Scherer, S. Richards, J. Mallet, W. Owen McMillan, C. D. Jiggins, Butterfly genome reveals promiscuous exchange of 284 285 mimicry adaptations among species. Nature. 487, 94–98 (2012).

- S. Lamichhaney, J. Berglund, M. S. Almén, K. Maqbool, M. Grabherr, A. Martinez-Barrio,
 M. Promerová, C.-J. Rubin, C. Wang, N. Zamani, B. R. Grant, P. R. Grant, M. T. Webster, L.
 Andersson, Evolution of Darwin's finches and their beaks revealed by genome
 sequencing. *Nature*. **518**, 371–375 (2015).
- T. J. Streelman, P. D. Danley, The stages of vertebrate evolutionary radiation. *Trends Ecol. Evol.* 18, 126–131 (2003).
- 29214.J. B. Losos, T. W. Schoener, D. A. Spiller, Endurance trials Dietary effects on ontogenic293consistency and second analysis of natural selection. Lett. to Nat. 432, 505–508 (2004).
- I. Diamond, Evolution of ecological segregation in the New Guinea montane avifauna.
 Community Ecol., 98–125 (1986).
- 29616.R. B. Huey, P. E. Hertz, B. Sinervo, Behavioral drive versus behavioral inertia in evolution:297A null model approach. *Am. Nat.* **161**, 357–366 (2003).
- 29817.L. C. Sallan, M. Friedman, Heads or tails: Staged diversification in vertebrate evolutionary299radiations. Proc. R. Soc. B Biol. Sci. 279, 2025–2032 (2012).
- 30018.R. E. Glor, Phylogenetic Insights on Adaptive Radiation. Annu. Rev. Ecol. Evol. Syst. 41,301251–270 (2010).
- S. Duchêne, R. Lanfear, Phylogenetic uncertainty can bias the number of evolutionary transitions estimated from ancestral state reconstruction methods. J. Exp. Zool. Part B Mol. Dev. Evol. **324**, 517–524 (2015).
- 20. C. H. Martin, P. C. Wainwright, Trophic novelty is linked to exceptional rates of
 morphological diversification in two adaptive radiations of cyprinodon pupfish. *Evolution* (N. Y). 65, 2197–2212 (2011).
- J. A. Mcgirr, C. H. Martin, Parallel evolution of gene expression between trophic
 specialists despite divergent genotypes and morphologies. *Evol. Lett.* 2, 62–75 (2018).
- 310 22. A. A. Echelle, E. W. Carson, A. F. Echelle, D. Bussche, T. E. Dowling, Historical

Biogeography of the New-World Pupfish Genus Cyprinodon (Teleostei: Cyprinodontidae). 311 Copeia. 2005, 320-339 (2005). 312 23. T. M. Maia, D. Gogendeau, C. Pennetier, C. Janke, R. Basto, Bug22 influences cilium 313 morphology and the posttranslational modification of ciliary microtubules. Biol. Open. 3, 314 138-151 (2014). 315 316 24. Y. Takayanagi, H. Matsumoto, M. Nakata, T. Mera, S. Fukusumi, S. Hinuma, Y. Ueta, T. 317 Yada, G. Leng, T. Onaka, Endogenous prolactin-releasing peptide regulates food intake in rodents. J. Clin. Invest. 118, 4014-4024 (2008). 318 25. C. S. Teng, M. C. Ting, D. T. Farmer, M. Brockop, R. E. Maxson, J. G. Crump, Altered bone 319 growth dynamics prefigure craniosynostosis in a zebrafish model of Saethre-Chotzen 320 syndrome. Elife. 7, 1–23 (2018). 321 322 26. H. W. McGowan, J. A. Schuijers, B. L. Grills, S. J. McDonald, A. C. McDonald, Galnon, a 323 galanin receptor agonist, improves intrinsic cortical bone tissue properties but exacerbates bone loss in an ovariectomised rat model. J. Musculoskelet. Neuronal 324 Interact. 14, 162–172 (2014). 325 27. C. H. Martin, P. A. Erickson, C. T. Miller, The genetic architecture of novel trophic 326 specialists: higher effect sizes are associated with exceptional oral jaw diversification in a 327 pupfish adaptive radiation. Mol. Ecol. 26, 624–638 (2017). 328 28. A. D. Osualdo, J. C. Reed, NLRP1, a regulator of innate immunity associated with vitiligo. 329 Pigment Cell Melanoma Res., 5–8 (2011). 330 29. H. B. Schonthaler, J. M. Lampert, J. Von Lintig, H. Schwarz, R. Geisler, S. C. F. Neuhauss, A 331 mutation in the silver gene leads to defects in melanosome biogenesis and alterations in 332 333 the visual system in the zebrafish mutant fading vision. Dev. Biol. 284, 421–436 (2005). 30. E. B. Rosenblum, B. A. J. Sarver, J. W. Brown, S. Des Roches, K. M. Hardwick, T. D. Hether, 334 J. M. Eastman, M. W. Pennell, L. J. Harmon, Goldilocks Meets Santa Rosalia: An 335 336 Ephemeral Speciation Model Explains Patterns of Diversification Across Time Scales. Evol. Biol. 39, 255-261 (2012). 337 338 31. C. H. Martin, E. J. Richards, The Paradox behind the Pattern of Rapid Adaptive Radiation: 339 How Can the Speciation Process Sustain Itself through an Early Burst? Annu. Rev. Ecol. Evol. Syst. (2019). 340 P. U. Clark, A. S. Dyke, J. D. Shakun, A. E. Carlson, J. Clark, B. Wohlfarth, J. X. Mitrovica, S. 341 32. W. Hostetler, A. M. McCabe, The Last Glacial Maximum. Science (80-.). 325, 710-714 342 (2009). 343 B. J. Turner, D. D. Duvernell, T. M. Bunt, M. G. Barton, Reproductive isolation among 344 33. endemic pupfishes (Cyprinodon) on San Salvador Island, Bahamas: Microsatellite 345 346 evidence. Biol. J. Linn. Soc. 95, 566–582 (2008). 347

348	Acknowledgments: We thank Rebecca Tarvin for helpful comments on the manuscript; the
349	Gerace Research Centre and Troy Day for logistical support; the governments of the Bahamas,
350	Dominican Republic, the National Park Service and U.S. Fish and Wildlife Service for
351	permission to collect and export samples; the Vincent J. Coates Genomics Sequencing Center
352	and Functional Genomics Laboratory at UC Berkeley for performing whole-genome library
353	preparation and sequencing (supported by NIH S10 OD018174 Instrumentation Grant), and the
354	University of North Carolina at Chapel Hill for computational resources. Funding: This work
355	was funded by the National Science Foundation DEB CAREER grant #1749764, National
356	Institutes of Health grant 5R01DE027052-02, the University of North Carolina at Chapel Hill,
357	and the University of California, Berkeley to CHM. Author contributions: Conceptualization –
358	EJR,CHM; Data Curation: EJR,JRW,MJS, DCOC; Formal Analyses: EJR,JAM,MSJ; Resources:
359	CHM, BJT; Visualization: EJR,CHM; Writing – original draft: EJR; Writing – review & editing:
360	EJR, CHM, JAM, MSJ, JRW, JWP, MJS. Competing interests: The authors declare no
361	competing interests. Data and materials availability: Genomic and RNA sequence data are
362	archived at the National Center for Biotechnology Information BioProject Database (Accession:
363	XXX; PRJNA394148, PRJNA391309; and PRJNA305422); and additional data and scripts are
364	on the Dryad Digital Repository (XXX) and Github (https://github.com/joemcgirr).

- **Supplementary Materials:**
- 366 Materials and Methods
- 367 Figures S1-S13
- 368Tables S1-S14
- 369 External Databases S1-S9
- 370 References (*34-86*)
- 371
- 372
- 373

374 Materials and Methods

375 <u>Sampling</u>

375 376	Sampling Pupfishes were collected from across the complete Atlantic and Caribbean range of <i>Cyprinodon</i>
377	from Massachusetts to Venezuela. For the three species of the SSI radiation, individual pupfish
378	were collected from 15 isolated hypersaline lakes on San Salvador Island (Table S1;Data S1) and
379	one estuary (Pigeon Creek) using hand and seine nets between 2011 and 2018. 36 Cyprinodon
380	variegatus, 47 C. brontotheroides, and 39 C. desquamator were sampled across these lakes,
381	including six lakes in which one or two specialist species occur in sympatry with the generalists
382	(Crescent Pond, Storr's Lake, Little Lake, Oyster Pond, Osprey Lake, Moon Rock Pond). The
383	sampling of outgroup high-coverage focal populations of generalist pupfish included 17
384	individuals from C. laciniatus from Lake Cunningham, New Providence Island, Bahamas; 18 C.
385	variegatus from Lake George, Rum Cay, Bahamas; 12 C. higuey from Laguna Bavaro,
386	Dominican Republic; 14 C. variegatus from Fort Fisher estuary, North Carolina, United States;
387	and 14 C. dearborni from Isla Margarita, Venezuela. 37 individuals were also collected from
388	other islands and localities spanning the range of Cyprinodon across the Caribbean and Atlantic
389	coasts, including captive-bred individuals from the extinct species Megupsilon aporus and
390	threatened species Cualac tessellatus, the most closely related outgroup genera to Cyprinodon
391	(Fig. 1A; Table S1;Data S1;(1)).
392	Fishes were euthanized in an overdose of buffered MS-222 (Finquel, Inc.) following
393	approved protocols from the University of California, Davis Institutional Animal Care and Use
394	Committee (#17455), the University of North Carolina at Chapel Hill Animal Care and Use
395	Committee (#18-061.0), and the University of California, Berkeley Animal Care and Use
396	Committee (AUP-2015-01-7053) and preserved in 95-100% ethanol.
397	

398 <u>Genomic library preparation</u>

399	DNA was extracted from muscle tissue using DNeasy Blood and Tissue kits (Qiagen, Inc.) and
400	quantified on a Qubit 3.0 fluorometer (Thermofisher Scientific, Inc.). Genomic libraries were
401	prepared using the automated Apollo 324 system (WaterGen Biosystems, Inc.) at the Vincent J.
402	Coates Genomic Sequencing Center (QB3). Samples were fragmented using Covaris sonication,
403	barcoded with Illumina indices, and quality checked using a Fragment Analyzer (Advanced
404	Analytical Technologies, Inc.). Nine to ten samples were pooled per lane for 150PE sequencing
405	on four lanes of an Illumina Hiseq4000 and an additional 96 individuals were sequenced on one
406	150PE lane of Illumina Novaseq with S4 chemistry. This included 42 individuals from a
407	previous genomic study (2).
408	
409	De novo genome assembly and annotation
410	We constructed a hybrid de novo assembly for an inbred lab-raised individual of C.
411	brontotheroides using three different sequencing technologies. Oxford Nanopore sequencing was
412	performed at UNC's High Throughput Sequencing Facility, a 10X Genomics synthetic long-read
413	library was prepared and sequenced by Hudson Alpha, and Chicago and HiC libraries were
414	prepared and sequenced by Dovetail Genomics. Genomic DNA was extracted from an inbred F4
415	male C. brontotheroides individual, an offspring from three generations of full-sib mating in the
416	lab, starting with an F0 generation collected from Crescent Pond, SSI. 10X sequencing was
417	performed on this individual according to 10X Genomics' recommended protocol, sequenced on
418	a HiSeq4000, resulting in 460 million 2x150 bp reads. DNA was extracted from this same
419	molluscivore individual for Nanopore sequencing using modified a phenol:chloroform extraction
420	protocol (3). Two libraries were sequenced on R9.4 flow cells on GridION – one using the Rapid

421 Sequencing Kit (RAD004) and one Ligation Kit (LSK109), producing 4.9 Gbp of sequences
422 with a read length N50 of 4.7 Kbp.

423	10X Genomics sequences were first assembled using Supernova (v2.0.0, 10X Genomics)
424	to produce a preliminary "pseudohap" assembly. Nanopore reads were corrected using FMLRC
425	(4). The Supernova assembly was scaffolded with corrected nanopore reads using LINKS (5)
426	using the recommended iterative approach (34 rounds). The nanopore-scaffolded assembly was
427	further scaffolded using HiC and Chicago sequences; we predicted Hi-C contacts using Juicer
428	(v1.6.2; (6)), followed by scaffolding with 3D-DNA (v180922) (7). We performed a final
429	polishing with four rounds of Racon (v1.3.1; (8)) using corrected nanopore reads. The final
430	assembly consists of 1.16 Gbp in 15,698 scaffolds with an N50 of 32,013,756 bp.
431	To further validate our assembly, we ran BUSCO (v3.0.1) (9) to identify known single-
432	copy conserved genes. We found 86.4% of BUSCOs in the Actinopterygii class assembled
433	completely, and 83.4% in a single copy. We annotated this assembly using the Maker pipeline
434	(v3.01.02)(10), providing alternate ESTs and protein evidence for ab-initio gene prediction from
435	C. variegatus (11), which is expected to have very similar genic structure and codon usage.
436	Predicted genes were assigned putative function by aligning (BLASTp) to the UniProt database.
437	
438	Population genotyping
439	Raw reads were mapped from 222 individuals to a de-novo assembly of Cyprinodon
440	<i>brontotheroides</i> reference genome (v 1.0; total sequence length = $1,162,855,435$ bp; number of
441	scaffold = 15,698, scaffold N50 = 32 Mbp) with bwa-mem (v $0.7.12$;(12)). Duplicate reads were
442	identified using MarkDuplicates and BAM indices were created using BuildBamIndex in the
443	Picard software package (http://picard.sourceforge.net(v.2.0.1)). We followed the best practices

444	guide recommended in the Genome Analysis Toolkit (v 3.5;(13)) to call and refine our single
445	nucleotide polymorphism (SNP) variant dataset using the program HaplotypeCaller. We filtered
446	SNPs based on the recommended hard filter criteria (i.e. $QD < 2.0$; FS < 60; MQRankSum < -
447	12.5; ReadPosRankSum $<$ -8;(13, 14)) because we lacked high-quality known variants for these
448	non-model species. Variants for San Salvador Island individuals were additionally filtered to
449	remove SNPs with a minor allele frequency below 0.05, genotype quality below 20, or
450	containing more than 20% missing data across all individuals at the site using vcftools
451	(v.0.1.15;(15)). This set of 9.3 million variants was then further filtered for variants that had
452	minor allele frequencies above 0.05 and less than 50% missing data across all Caribbean
453	outgroup individuals with population level sampling. Variants in poorly mapped regions were
454	then removed using a mask file generated from the program SNPable (http://bit.ly/snpable; k-
455	mer length =50, and 'stringency'=0.5). Our final dataset after filtering contained 5.5 million
456	variants.

457

458 <u>Population genetic analyses</u>

459	This dataset was first pruned for SNPs in strong linkage disequilibrium using the LD pruning
460	function (indep-pairwise 50 5 0.5) in plink (v1.9)(16), leaving 2.6 million variants. To visualize
461	population structure in our dataset, we ran a principle component analysis using the eigenvectors
462	outputted by plink's pca function (pca). The first two principal components were plotted in R
463	(R Core Team 2018 v3.5.0). To visualize admixture among the species we estimated the
464	proportion of shared ancestry among individuals in our dataset using ADMIXTURE
465	(v.1.3.0)(17). The number of populations (K) was decided upon using ADMIXTURE's cross-
466	validation method (cv) across 1-20 population values of K. A K of 11 populations was then

467	chosen using the broken-stick method. Ancestry proportions estimated by ADMIXTURE were
468	plotted in R. Four individuals that appeared to exhibit recent hybrid ancestry between C.
469	variegatus and C. brontotheroides and two individuals that appeared to exhibit recent hybrid
470	ancestry between C. variegatus and C. desquamator were removed from downstream analyses.
471	We also excluded 15 individuals that appeared as strong outliers in the PCA and ADMIXTURE
472	analyses (3 C. variegatus from San Salvador Island, 1 C. brontotheroides, 3 C. laciniatus, 2 C.
473	higuey, 3 C. variegatus from North Carolina, and 3 C. dearborni from Venezuela), resulting in
474	32 Cyprinodon variegatus, 44 C. brontotheroides, and 26 C. desquamator individuals from San
475	Salvador Island, 16 individuals from C. laciniatus from Lake Cunningham, New Providence
476	Island in the Bahamas, 17 C. variegatus from Lake George, Rum Cay, 10 C. higuey from Lake
477	Bavaro, Dominican Republic, 12 C. variegatus from Fort Fisher estuary North Carolina, and 11
478	C. dearborni from Isla Margarita, Venezuela (Fig 1E). None of the 37 single individuals from
479	other locations were removed. The final dataset used in downstream analyses included 202
480	individuals.
481	Within-population nucleotide diversity (π) was calculated in 50-kb windows across the

Within-population nucleotide diversity (π) was calculated in 50-kb windows across the 481 genome for each of eight focal populations with more than 10 individuals sampled. To ensure an 482 483 equal comparison among populations, we downsampled individuals from each population to the number of individuals in the focal population with the lowest sampling (n=10). We did this by 484 randomly selecting 10 individuals for each population before calculating π in sliding windows. 485 We repeated this 100 times and averaged π across the replicates (Fig. S1). Due to the large 486 sample size of windows for each population (n=30,762), slight differences in mean genome-wide 487 within-population genetic diversity resulted in statistically significant differences in genome-488 wide diversity among populations (ANOVA, $P > 2.2 \times 10^{-16}$). However, the effect sizes of the 489

490	difference in these means was small in all comparisons except San Salvador Island generalists
491	and North Carolina and Venezuela generalist populations (Cohen's d=0.87 and 1.38
492	respectively). The much lower within-population genetic diversity in Venezuela than other
493	generalist populations could be explained by the fact that this population seems to have
494	undergone a recent bottleneck in the past that was not observed in the other populations sampled
495	(Fig. 1C and S1).
496	Genome-wide F_{st} for pairwise San Salvador Island species comparisons was calculated
497	for each variant site and in 50-kb windows with at least 100 variant sites across the genome
498	using the python script popGenWindows.py available from
499	https://github.com/simonhmartin/genomics_general (18). Allowing for some admixture among
500	these recent species, we considered divergent SNPs to be those that were nearly fixed between
501	specialist species ($F_{st} \ge 0.95$; Fig. S2; Table S2-S3; Data S2-S3). All divergent variants that were
502	also in a region of a hard selective sweep (see section below) were also in the 90 th percentile of
503	D_{xy} across all genomic windows, as calculated for the same 50-kb windows using the python
504	script popGenWindows.py.
505	A window size of 50-kb for sliding window tests was based on the extent of linkage
506	disequilibrium (LD) along a scaffold. We calculated LD decay from pairwise calculations of LD
507	between all SNPs within 100-kb of each other along the largest scaffold in the genome using
508	PLINK's LD function (r^2). Linkage disequilibrium decayed to background rates after 50-kb at a
509	threshold of $r^2 \ge 0.1$ (Fig. S6).
510	

511 <u>Mutation rate estimation</u>

512	The spontaneous mutation rate for Caribbean pupfishes was estimated from high coverage
513	sequencing (15-69x) of parents and offspring from two independent pedigreed crosses of San
514	Salvador Island species: one cross between a second generation inbred lab-reared generalist and
515	third-generation inbred lab-reared molluscivore individual from Little Lake and another between
516	a second-generation lab-reared generalist and second-generation lab-reared scale-eater from
517	Little Lake. Using the same pipeline for alignment to the reference genome and variant calling
518	with GATK as above, we obtained 9 million variants across 7 individuals from these two crosses
519	after using GATK's recommend hard filter criteria (i.e. $QD < 2.0$; FS < 60; MQRankSum < -
520	12.5; ReadPosRankSum < -8). We independently called variants for these same individuals again
521	using samtools mpileup (v1.9) with the command line arguments bcftools mpileup -Ou bcftools
522	call -m -Ob -f GQ, GP. For both sets of variants (GATK and samtools), poorly mapped regions
523	were then removed using a mask file generated from the program SNPable (http://bit.ly/snpable;
524	k-mer length =50, and 'stringency'=0.5). We further excluded sequences in which indels were
525	called in any sample, as well as 3 bp of sequence around the indel.
526	After variant calling, we searched for new mutations in the offspring: sites where an
527	offspring is heterozygous for an allele not found in either of the parents. To determine a set of
528	filters for new mutation sites in the offspring, we first looked for variants which were
529	heterozygous in the offspring and alternatively homozygous in the parents (i.e. known
530	heterozygous sites). Eleven measures of variant quality scores for these known heterozygous
531	sites in the offspring were then used to filter sites for new mutations in the offspring (e.g. depth,
532	genotype quality, mapping quality; see Table S6 for full details) following similar pipelines and
533	filters from several previous studies ($(19-21)$). For example, only new mutation sites that had a
534	depth within 2 standard deviations of the mean depth of the known heterozygous sites in the

535	offspring were kept (all thresholds reported in Table S6). Additionally, new mutations in the
536	offspring were determined from sites in which parents were homozygous for the reference allele
537	and the offspring were heterozygous with quality scores within those of the known heterozygote
538	sites (Table S6) and had an allele balance score between 0.3 and 0.7. This set of variants was
539	then filtered for those independently called in both GATK and samtools runs (Table S6) with no
540	known segregating sites in the larger Caribbean population dataset (i.e. not sites where the
541	alternative new allele in the offspring was found in four or more copies in the larger dataset).
542	Using the GATK function callable loci, we then determined the 'accessible genome': the
543	total number of base pairs from the genome in which mutations could be confidently called for
544	each cross. This number was estimated using similar variant quality filters as for the new
545	mutation estimate, excluding those filters that were only applicable to the new mutations and
546	heterozygous sites (i.e. filters assessing quality of alternative allele calls). This meant excluding
547	genomic regions where 1) read map depth in any member was not within two standard deviations
548	of the average read map depth (varies by sample; Table S6), 2) regions with mapping quality
549	scores less than 50, and 3) regions with base quality scores less than 30.
550	Since the new mutations observed could have originated on either chromosome, the point
551	estimate of per site mutation rate is the number of new mutations observed divided by two times
552	the size of the accessible genome. The mutation rates were then averaged across individual

offspring for each cross (Table S6) to obtain a mean mutation rate estimate of 1.56×10^{-8} mutations per site per generation. This is faster than mutation rate estimates for other teleosts (20, 22, 23); however, short-lived smaller species with higher metabolism rates like pupfishes are expected to exhibit faster mutation rates (24). We estimate generation times in the field to be approximately one year based on laboratory and field (25) longevity studies.

558

559 Demographic Inferences

560	Various demographic histories can shift the distribution of low- and high-frequency derived
561	variants to falsely resemble signatures of hard selective sweeps. In order to account for
562	demography in downstream analyses, we used the MSMC (v. 1.0.1; 24) to infer historical
563	effective population size (Ne) changes in seven focal populations. We ran MSMC on unphased
564	GATK-called genotypes separately for an individual in each of seven focal populations
565	(excluding generalist C. higuey due to poor sequencing quality of our single high-coverage
566	individual) with higher sequencing coverage (17-28x mean coverage across individuals; Fig
567	1D;Table S7). As recommended in the MSMC documentation, we masked out sites with less
568	than half or more than double the mean coverage for that individual or with a genotype quality
569	below 20. We also excluded sites with <10 reads as recommended by Nadachowska-Brzyska et
570	al. (27). To scale the output of MSMC to real time and effective population sizes, we used a one-
571	year generation time (24) and the estimated spontaneous mutation rate of 1.56×10^{-8} for
572	Caribbean pupfishes (see previous section).

573

575

574 <u>Introgression</u>

We characterized differential introgression between specialists in the SSI radiation on both a genome-wide and local level. We visualized the directionality of hybridization and introgression on a genome-wide level using *TreeMix* (v 1.13; (*28*)). *TreeMix* estimates a maximum likelihood phylogeny of the focal populations and then fits a user specified number of migration edges to the tree by comparing genetic covariances of allele frequencies among populations. We ran

581	TreeMix with C. dearborni as the root node, and with 0 through 20 migration edges. The most
582	likely number of migration events was chosen using the broken-stick approach (Fig. S7).
583	We investigated how signatures of hybridization at the genome-wide level contributed
584	variation potentially important to the divergence between species using the f_d statistic, which is
585	designed to look for signatures of introgression across sliding genomic windows (18). The f_d
586	statistic, a modified version of the D-statistic, looks at allele frequencies fitting two allelic
587	patterns referred to as ABBA and BABA based on the tree (((P1,P2),P3),O), where O is an
588	outgroup species in which no gene flow is thought to occur with the other populations (18). We
589	used 2 individuals of C. artifrons from Cancun, Mexico as our distantly related outgroup
590	population for this test, which forms the deepest divergence event with C. variegatus within the
591	Cyprinodon clade (1), and focused on introgression between San Salvador Island specialists and
592	Caribbean populations. Based on the tree (((P1,P2),P3), C. artifrons), the f_d statistic was
593	calculated for the combinations of populations in which P2 was either the scale-eater or
594	molluscivore and P3 was one of the Caribbean outgroup populations (Table S8 and S9) in 50-kb
595	sliding windows with a minimum of 100 variant sites with no missing data within a population
596	using the ABBABABA.py script (available on
597	https://github.com/simonhmartin/genomics_general;(18)). To compare these patterns of
598	introgression into the specialist to patterns of introgression into focal generalist populations on
599	other islands, we also calculated f_d statistics across the genomes of generalist populations on
600	islands where we had population-level sampling and sister groups to fit the relationship expected
601	for the test (Table S9B and S9D).
602	Significance of f_d values in sliding windows across the genome was evaluated using

simulations with no migration using ms-move (29) using estimates of effective population size

604	changes from our MSMC analyses and a divergence time between the two specialists set to
605	10,000 years, the age of the hypersaline lakes on SSI (Table S8). Significant regions were
606	determined by calculating the f_d statistic across a genome simulated under a coalescent model
607	with no gene flow and consisting of 150,000 windows, each containing the mean number of
608	variants found across 50-kb windows in the empirical genomes. Empirical windows were
609	considered candidate introgressed regions if the f_d statistic was above the maximum simulated f_d
610	value (Table S8). Consecutive 50-kb f_d outlier windows were merged to estimate the range in the
611	sizes of introgressed regions to approximate the age of introgression events (Fig. 2D).
612	
613 614	Candidate adaptive variants underlying San Salvador Island specialist phenotypes
615	In the specialists, we also looked for regions that appeared to be under strong divergent selection
616	in the form of a hard selective sweep from the site frequency spectrum calculated with SweeD
617	(v.3.3.4;(30)). In this calculation of the composite likelihood ratio (CLR) of a sweep, we
618	incorporated our empirical estimate of the decrease in population size for each focal population
619	estimated from MSMC analyses in 50-kb windows across scaffolds that were at least 100-kb in
620	length (99 scaffolds; 85.6% of the genome). We also calculated CLRs across 100,000 scaffolds
621	consisting of neutrally evolving sequences simulated with ms-move (29), controlling for the
622	impact of the inferred population size decreases over time for each population from MSMC runs
623	mentioned above (Fig. 1D; Table S7). The CLR ratios for the simulated datasets were then used
624	to assess outlier CLR ratios from the empirical dataset. Regions with CLR ratios above the 95 th
625	percentile value of CLR from the neutral simulated dataset were considered candidate hard
626	selective sweep regions (scale-eater: $CLR > 5.28$; molluscivore: $CLR > 4.47$; Table S7).
627	Candidate hard selective sweep regions were also independently inferred for the five focal

628 Caribbean generalist populations (sample size ≥ 10) following the same method outlined above 629 for the specialists (Table S7).

630

632

631 Spatial distribution of candidate adaptive variants

To determine candidate adaptive variants underlying the divergence observed on San Salvador 633 Island, we looked for regions of the genome that contained signatures of strong genetic 634 divergence and hard selective sweeps. Variants that were nearly fixed between the species on 635 San Salvador ($F_{st} \ge 0.95$) and located in a candidate selective sweep region (empirical CLR > 636 demographic simulations CLR: Table S7) were considered candidate adaptive variants (Table 637 S2-S3; Data S2-S3). We then surveyed all pupfish individuals sampled from outside these 638 populations for the specialist allele at their respective candidate variant sites (e.g. whether or not 639 the scale-eater allele was found in other populations across the Caribbean). Variants were then 640 separated into two categories of genetic variation: *de novo* (the specialist allele was found only 641 on San Salvador Island) or standing (the specialist allele was also found in at least one generalist 642 population sampled outside of San Salvador Island). Standing genetic variation that was found in 643 candidate introgression regions from the f_d tests for introgression (see Introgression section) was 644 further parsed into the category of introgressed variation and separated by geographic region of 645 introgression (North Carolina (NC), New Providence Island (NP), or Dominican Republic (DR)). 646 Given the amount of candidate adaptive variation that exists as standing genetic variation across 647 the Caribbean (Fig. 2A), we looked for how many of these candidate regions also showed 648 evidence of hard selective sweeps in focal generalist populations outside of San Salvador Island 649 and found that very few of these regions exhibited signatures of a hard selective sweeps outside 650 of San Salvador Island populations (Fig. S3). 651

652

653 <u>Adaptive introgression</u>

654

655	We examined all introgressed regions for evidence of hard selective sweeps on SSI and genetic
656	divergence between trophic specialists, which would provide evidence that secondary gene flow
657	brought in variation potentially important for speciation. We looked for overlap between the f_d
658	introgression outliers, SweeD selective sweep outliers, and whether these overlapping regions
659	contained at least one of the nearly fixed variants ($F_{st} \ge 0.95$) between specialists (31) (Table
660	S10-S14).

We were interested in whether San Salvador Island specialist genomes exhibited more 661 introgression in regions undergoing hard selective sweeps on SSI than other generalist 662 populations. In the absence of a clear null expectation for the number of introgressed regions, we 663 calculated the number of these candidate adaptive regions for the specialists that were also 664 outlier fd regions in other combinations of populations across the Caribbean (Table S9), to 665 compare to the number of adaptive introgression regions observed in the specialists. Since 666 667 several outgroup generalist populations had multiple values for the number of adaptive introgression regions (due to different combinations of sister lineages (P1) available for testing 668 against: Table S9), only the average number of adaptive introgression regions per generalist 669 670 population was shown for ease of visualization (Table S9; Fig. 3C). We then performed a Mann-Whitney U test to determine if the mean number of adaptive introgression regions in each 671 672 specialist was greater than the mean from the rest of the Caribbean (Table S9A v. S9B and Table 673 S9C v. S9D) and calculated 95% confidence intervals around these means using the boot.ci 674 function in the R package boot (v1.3; Fig. 3C). Since neither of the SSI specialists appear to have experienced adaptive introgression from the Venezuela C. dearborni population, it was excluded 675

as a potential donor population for the focal generalist populations on other islands as well in
these comparative analyses.

678	
679	Functional analysis of candidate adaptive variants
680	
681	GO analysis of candidate variant regions
682 683	We performed gene ontology (GO) enrichment analyses for genes near candidate adaptive
684	variants using ShinyGo (v.0.51;(32)). In the C. brontotheroides reference genome annotations
685	(described in <i>de novo</i> genome assembly and annotation section), gene symbols largely match
686	human gene symbols. Thus, we searched for enrichment across biological process ontologies
687	curated for human gene functions.
688	For genes with focal GO terms (e.g. feeding behavior, muscle, mouth, eye and
689	craniofacial development) relevant to stages of diversification in this system (i.e. habitat
690	preference, trophic morphology, and pigmentation; Fig. 2C; Fig. 4; Table S4), we checked other
691	annotation databases and studies for verification of putative function, including Phenoscape
692	Knowledgebase (https://kb.phenoscape.org/#/home), NCBI's PubMed
693	(https://www.ncbi.nlm.nih.gov/pubmed), and the Gene Ontology database using AMIGO2 (33).
694	All genes had consistent annotations across databases, except galr2. Galr2 was annotated for
695	feeding behavior in the Biological Processes database (Ensemble 92), but to our knowledge, the
696	most recent studies indicate that it does not play a role in feeding behavior $(34, 35)$. Thus, we
697	removed its annotation as a candidate gene for feeding behavior, but kept it as a candidate for
698	trophic morphology.

699

700 Differential gene expression

702	Additionally, we looked for overlap between genes associated with candidate variants and genes
703	differentially expressed between the two specialists in whole embryos at two early
704	developmental stages (2 and 8 days post-fertilization (dpf)) reported in a previous study (36).
705	Tables with differentially expressed genes at 2 and 8 dpf from this study are provided in Data S4
706	and S5.
707	
708	Morphometrics and caudal fin pigmentation
709 710	We measured two key morphological traits associated with the major axes of phenotypic
711	diversification in the SSI radiation, lower jaw length and nasal protrusion distance. Ethanol-
712	preserved specimens from SSI were measured from external landmarks on the skull using digital
713	calipers. Measurements were repeated on both lateral sides and averaged for each specimen.
714	Lower jaw length was measured from the quadrate-articular jaw joint to the tip of the most
715	anterior tooth on the dentary (Data S6). Nasal protrusion distance was measured by placing a
716	tangent line from the dorsal surface of the neurocranium to the tip of the premaxilla and
717	measuring the perpendicular distance that the nasal region protrudes from this tangent (Fig. S8A;
718	Data S6). Each specimen was also measured for standard length using digital calipers in order to
719	remove the effects of variation in body size on the craniofacial trait measurements among
720	individuals and species. We log-transformed morphological measurements and regressed them
721	against log-transformed standard length (Fig. S9; Data S6) and used the residuals for association
722	mapping analyses.
723	The major axis of divergence in reproductive coloration and patterning between trophic
724	specialists on SSI is the overall lightness or darkness of breeding males. Scale-eaters reach a

nearly jet black coloration in the wild while guarding a breeding territory whereas molluscivore

726	males remain paler throughout their body and fins. This pair of sympatric specialists exceeds the
727	lightness contrast in male reproductive breeding coloration observed across all other Cyprinodon
728	pupfishes. Females of each species show the same general pattern of lightness/darkness. We
729	detected no difference in the total number of melanocytes on the caudal, anal, or pectoral fins
730	among the SSI species (data not shown). Instead, we found that scale-eater individuals were
731	significantly darker on their caudal fins (two-tailed <i>t</i> -test, t=5.25, df=45.5, <i>P</i> -value= 3.8×10^{-6} ;
732	Fig. 4B; Data S6), perhaps due to the larger melanocyte areas relative to molluscivores. We
733	found similar patterns for anal and pectoral fins and used only caudal fin lightness values for
734	GWAS (data not shown). A Meiji EMZ-8TR stereomicroscope with standardized external
735	illumination and an OMAX 18 Mp digital microscope camera was used to take lateral
736	photographs of the caudal fin of each individual against the same white reference background in
737	each image (Fig. 4B;Data S6). Adobe Photoshop (Creative Cloud) was used to select a
738	rectangular area from inside the caudal fin, not including the caudal peduncle region or terminal
739	marginal band and measure the mean overall lightness of this region relative to a control region
740	selected from the illuminated white background. Standardized caudal fin pigmentation was then
741	calculated as the proportion of the caudal fin lightness value relative to the control background
742	lightness value for downstream GWAS analyses.

- 743
- 744

Genome-wide association mapping analyses

745

We employed a Bayesian Sparse Linear Mixed Model (BSLMM) implemented in the GEMMA
software package (v. 0.94.1; (*37*)) to identify genomic regions associated with variation in lower
oral jaw length, caudal fin pigmentation, and nasal protrusion distance. The BSLMM uses
Markov Chain Monte Carlo sampling to estimate the proportion of phenotypic variation

750	explained by all SNPs included in the analysis (proportion of phenotypic variance explained
751	(PVE);Fig. S10A-C), explained by SNPs of large effect (proportion of genetic variance
752	explained by sparse effects (PGE); Fig. S10D-F), and the number of large-effect SNPs needed to
753	explain PGE (nSNPs;Fig. S10G-I). GEMMA also estimates a posterior inclusion probability
754	(PIP) for each SNP. We used PIP (the proportion of iterations in which a SNP is estimated to
755	have a non-zero effect on phenotypic variation) to assess the significance of regions associated
756	with jaw size variation. We performed 10 independent runs of the BSLMM using a step size of
757	100 million with a burn-in of 50 million steps for three traits (lower oral jaw size ($n = 78$), caudal
758	fin pigmentation ($n = 61$), and nasal protrusion distance ($n = 65$)). We chose to only include SSI
759	individuals in these analyses given extensive Caribbean-wide population structure that could
760	confound significant associations (Fig. 1C). We summed PIP parameter estimates across 20-kb
761	windows to avoid dispersion of the posterior probability density across SNPs in linkage
762	disequilibrium due to physical linkage. Independent runs were consistent in reporting the
763	strongest associations for the same 20-kb windows. We identified regions with strong association
764	with our traits of interests as ones that had a PIP score in the 99th percentile of PIP scores across
765	all regions (Data S7-9). Our PIP estimates for strongly associated windows suggest that jaw
766	length may be controlled predominantly by a few loci of moderate effect (see bimodal PGE
767	distribution, Fig. S10H). This is consistent with a previous QTL mapping study in an
768	F2 intercross between SSI trophic specialists which detected one significant QTL with moderate
769	effects on oral jaw size explaining up to 15% of the variation and three to four additional
770	potential quantitative trait loci (QTL) with similar moderate effects (38).
771	

771

772 *QTL analysis for jaw size*
774	We also investigated candidate variants for effects on craniofacial morphology by overlapping
775	scaffolds with a previously published linkage map and QTL analysis of an F2 intercross between
776	specialist species (38). We overlapped markers from this study that spanned the 95% Bayesian
777	credible interval for a significant QTL for lower jaw length (LG15; taken from Fig S2 in (38)).
778	The fasta sequences for these two markers bookending the QTL region on a single scaffold were
779	then blasted against the Cyprinodon brontotheriodes genome using the blastn function in
780	BLAST+ (39) and we selected the result with the highest percent identity and lowest e-value
781	(Table S5). We then looked at all the genic regions within the interval between these two
782	markers to investigate overlap between the QTL region and the candidate variants in this current
783	study. The top hits for overlap between the sequences of two markers that spanned the LG15
784	QTL region and the Cyprinodon brontotheroides reference genome showed that this QTL
785	corresponds to a 18 Mb region on scaffold c_bro_v1_0_ scaf8 (Table S5). However, this large
786	region contained only a few candidate adaptive variants associated with the genes map2k6 (3
787	variants), galr2 (2 variants), and grid2ip (4 variants).
788	
789 700	Timing of divergence for condidate adaptive verients
790 701	<u>I minig of divergence for candidate adaptive variants</u>
791 792	If adaptive diversification in this radiation of pupfishes followed the temporal stages hypothesis
793	(habitat preference first, then trophic morphology, and finally sexual communication; (40)), we
794	predicted an ordering of divergence times among candidate regions containing genes annotated
795	for traits related to these axes of diversification, with regions containing genes related to habitat
796	preference having older divergence times, followed by regions with genes related to trophic
797	morphology, and finally regions with pigmentation genes having the youngest divergence times.
798	In order to determine if there have been stages of adaptive diversification in this adaptive

radiation of pupfishes, we first estimated divergence times between molluscivores and scaleeaters for each candidate adaptive region (i.e. each 50 kb window containing signatures of a hard
selective sweep in either specialist and a nearly fixed variant between specialists).

Many methods for estimating divergence times and allele ages rely on the pattern of 802 variation in the haplotype background surrounding the allele of interest. Heuristic approaches, 803 804 particularly those that use point estimates of number of derived mutations within a chosen distance of the site are accessible, quick ways to approximate divergence times among regions 805 and allele ages without extensive haplotype data (41, 42). We estimated sequence divergence in 806 regions surrounding candidate variants using D_{xy} , an absolute measure of genetic divergence. To 807 get a heuristic estimate of divergence time between specialists at these regions, we used this D_{xy} 808 count of the number of variants that have accumulated between specialists and the approximation 809 that the observed genetic differences between two lineages should be equal to 2µt: t, the time 810 811 since their divergence and μ , the mutation rate (43). Using the per generation mutation rate estimated above (1.56×10^{-8}) , we calculated the time since divergence for candidate regions and 812 compared that time to the estimated 10-15 kya age of the radiation (based on estimates of the last 813 period of drying of hypersaline lake basins on San Salvador Island during the last glacial 814 815 maximum (44)).

We plotted the divergence time estimates for candidate adaptive regions by the spatial categories they were assigned to (de novo, introgression, standing genetic variation), and against a background of neutral regions that contained a nearly fixed variant, but no signature of a hard selective sweep (Fig 4, S5 and S11). So that each point in the plot was independent, we pruned variants by randomly selecting one from the group of variants that fell within the same 50-kb window. Some windows had multiple variants with different spatial distributions (e.g. de novo

vs. standing genetic variation), so to make sure all points on the figure were independent, we 822 made alternative plots for alternative spatial distributions of variants that occurred within a single 823 50 kb window (the smaller vs larger spatial distribution; Fig. 4 and Fig. S11). This applied to 824 several variants that were characterized as either introgressed or standing genetic variation in 825 four regions containing genes with relevant adaptive annotations (galr2, gmp6a, and kcnk2) from 826 827 the plot with the smaller spatial distribution (Fig. 4). The alternative, larger spatial distribution (i.e. the regions containing these genes were assigned to the standing genetic variation column 828 829 instead of the int rogression column) for each of these four annotated 50 kb windows is shown in 830 Figure S11.

To look for stages of diversification along different trait axes, we matched regions to 831 potential phenotypes in two ways: 1) from our GO enrichment analyses that implicated genes in 832 the region as relevant to the major axes of adaptive radiation in this system (e.g. craniofacial 833 development, pigmentation, feeding behavior), and 2) with regions strongly associated with 834 either lower jaw size, nasal protrusion distance, or caudal fin pigmentation in the GWAS for San 835 Salvador Island pupfish species. Regions associated with traits in the GWAS were then polarized 836 for effects on trait values that were in directions relevant to each specialist. For scale-eaters, this 837 838 meant filtering for regions with significant association with darker caudal fin pigmentation, larger lower oral jaws, and smaller nasal protrusion distances. For molluscivores, this meant 839 840 filtering for regions with significant associations for lighter caudal fin pigmentation, larger lower 841 oral jaws, and larger nasal protrusion distances. We found 23 regions containing genes with relevant GO terms and 24 regions containing variants significantly associated with traits in the 842 GWAS. 843

Based on relevant GO terms, we found that regions with genes annotated for feeding behavior have some of the oldest divergence times (Fig 4A and S11) while regions with genes related to craniofacial morphology and pigmentation had younger divergence times (Fig 4A and S11). Similarly, we found younger divergence times among regions with genes annotated for traits related to trophic morphology based on GWAS annotations (Fig 4B).

849 Considering there are only 23 and 24 observations used to test for stages of adaptive diversification, we also checked that this pattern was statistically robust and not due to chance. 850 851 First, we used linear models to determine if divergence times among adaptive variant regions could be predicted by the associated adaptive traits. In our first linear model used to test for 852 stages, major GO categories relevant to divergent traits in this system (feeding behavior, eye, 853 mouth, muscle, and craniofacial development) were used as the predictor variable and the rank 854 ordering of divergence times was the response variable. We found that relevant GO categories 855 significantly predicted the rank ordering of divergence times among regions (df=5, F=3.03, P-856 value= 0.039). From this, we then tested all pairwise comparisons of different categories of 857 relevant traits to determine which were driving the significant difference in ordering using 858 Tukey's HSD test. For the stages of trait diversification based on relevant GO terms (feeding 859 860 behavior, eye, mouth, muscle, and craniofacial development): diversification in feeding behavior was significantly older than mouth development (P = 0.022), and moderately older than muscle 861 and craniofacial development (P = 0.05 for both). This conservative test supports a 'behavior-862 863 first' ordering to trait diversification in this system (45). Divergence in behavioral traits as a 864 major stage of radiation in pupfish makes sense because both specialists are more aggressive than generalist species (46), and adaptive kinematic traits important for scale-eating performance 865 866 are behaviorally mediated (47).

867	Evidence for the behavior first stage of adaptive diversification is largely driven by the
868	fact that the two oldest divergences times occur in regions with genes annotated for feeding
869	behavior. Therefore, we further investigated the probability that this 'behavior first' pattern could
870	have occur by chance given our small sample size. We used a permutation test to calculate the
871	probability of the two regions with the oldest divergence times both being related to feeding
872	behavior can occur randomly. We first ranked the 23 candidate regions based on their
873	corresponding age and randomly reassigned these rankings for each region 10,000 times. We
874	then assessed how many of each of these iterations had the two regions with the oldest
875	divergence times assigned to feeding behavior (as observed in the empirical data). We found that
876	only 41 of the iterations matched the observed value, suggesting that the probability of observing
877	the two regions with the oldest divergence times related to feeding behavior by chance alone is
878	extremely small (P -value = 0.0041).
879	In our second linear model to test for stages of adaptive radiation, significant association
880	with three key adaptive traits measured for our GWAS (lower oral jaw size, caudal fin
881	pigmentation, and nasal protrusion distance) was used as the predictor variable and ordering of
882	divergence times was the response variable. We found that GWAS trait association did not
883	significantly predict the ordering of divergence times among regions ($df=3, F=1.67, P$ -value =
884	0.197). However, this is qualitatively similar to our results from the GO analyses considering

- that we lack a behavioral trait related to feeding behavior in our GWAS analyses.
- 886

887 888

Timing of selection for candidate adaptive variants

- We also estimated the age of hard selective sweeps using the R package *McSwan* (v1.1.1;;
- 890 https://github.com/sunyatin/McSwan; (48)). *McSwan* detects hard selective sweeps by comparing

891 local site frequency spectra (SFS) simulated under neutral and selective demographic models, which it uses to assign selective sweeps to regions of the genome and predict the age of selection 892 events (48). By using information from the SFS, McSwan is advantageous for estimating 893 selective sweep ages in non-model organisms because it does not require high quality haplotype 894 data to detect sweeps and predict their ages. However, this flexibility comes at the cost of not 895 896 jointly estimating the selection coefficient of a particular sweep, so it assumes the strength of selection is equal across all sweeps. With the input of a mutation rate estimate, neutral 897 demographic model (effective population size changes, divergence events), and variant file, 898 899 McSwan generates simulated and observed SFSs and a prior of sweep ages, whose upper bound is determine by the divergence time estimate specified in the demographic model (in our case: 900 10,000 years). McSwan uses these simulated selective and neutral SFSs to scan the input variant 901 file for selective sweep regions and produce a posterior distribution of sweep ages for each 902 sweep region it detects. 903

To simulate SFSs, we used the mutation rate estimated above (1.56×10^{-8}) , the same 904 905 demographic models of changes in effective population sizes used in our SweeD runs for the generalists and scale-eater populations (Table S7), and a divergence time estimate between San 906 Salvador Island generalist and scale-eater of 10,000 years (based on dating of last glacial 907 908 maximum when the hypersaline lakes were dry on San Salvador Island). We first simulated 909 neutral and selection SFSs that were each comprised of 2,000 simulations (default 910 recommendation) across sequences 50-kb in length. To look for selective sweeps in the 911 specialists, we then generated empirical SFSs from scans across the 500-kb region surrounding each of the 23 sets of candidate variants highlighted in Figure 4. In order to precisely determine 912 913 the boundaries of hard selective sweep, McSwan iterates its genomic scans over adjacent

914	windows of various lengths and offsets and compares the empirical SFS to the simulated SFS
915	under selection to assign regions as selective sweeps. We set up the iterative scans across these
916	500-kb regions in sliding windows that ranged from 1000 bp to 200-kb in length and a minimum
917	of 50 variants required per window. Each sliding scan of the 500-kb region was done in 100
918	overlapping steps (default setting). We then looked for overlap between the regions detected as
919	hard selective sweeps by McSwan to the candidate regions previously detected with SweeD and
920	F_{st} (Table S2-S3). For the scale-eater population only 9 of the 23 sets of candidate variants
921	detected as hard selective sweeps using SweeD were also detected as hard selective sweeps using
922	McSwan and given age estimates. In Tournebize et al. 2019 (48), investigations of McSwan's
923	performance noted poor performance to detect selective sweeps when selection was relatively
924	weak (s ≤ 0.05) and recent (≤ 16 kya; Supplemental information Section 2 of (48)). Thus, the
925	thirteen additional candidate adaptive regions undetected by McSwan may be under weaker
926	selection or more recent. The candidate variants surrounding the consecutively spaced genes
927	cenpf and kcnk2 were detected as within the same selective sweep in McSwan and thus have the
928	same age estimates (Fig. 4C and Fig. S12).

For these 8 regions, we then filtered these distributions of sweep ages for estimates that 929 had a stability value (a parameter that represents the strength of support for a selective sweep 930 model over a neutral model) in the 95th percentile. To get a likely range of selective sweep age 931 estimates for each region, we calculated the 95% high posterior density (HPD) region with the R 932 package HDIntervals (v0.2; https://cran.r-project.org/web/packages/HDInterval/index.html) from 933 934 their respective posterior distributions. We repeated this process for the 6 sets of candidate regions found in the molluscivore, only three of which were also detected as being under a 935 selective sweep in McSwan and given age estimates. The 95% HPD of these age estimates for 936

- 937 the scale-eater and molluscivore populations are presented in Figure 4C, S5 and Table S14 and
- 938 the full posteriors are shown in Figure S12 and S13.

939

- 940 **References**
- A. A. Echelle, E. W. Carson, A. F. Echelle, D. Bussche, T. E. Dowling, Historical Biogeography of the New-World Pupfish Genus Cyprinodon (Teleostei: Cyprinodontidae). *Copeia*. 2005, 320–339 (2005).
- E. J. Richards, C. H. Martin, Adaptive introgression from distant Caribbean islands
 contributed to the diversification of a microendemic adaptive radiation of trophic
 specialist pupfishes. *PLoS Genet.* 13, 1–35 (2017).
- M. R. Green, J. Sambrook, Isolation of high-molecular-weight DNA using organic
 solvents. *Cold Spring Harb. Protoc.* 2017, 356–359 (2017).
- J. R. Wang, J. Holt, L. McMillan, C. D. Jones, FMLRC: Hybrid long read error correction using an FM-index. *BMC Bioinformatics*. 19, 1–11 (2018).
- 952 5. R. L. Warren, C. Yang, B. P. Vandervalk, B. Behsaz, A. Lagman, S. J. M. Jones, I. Birol,
 953 LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads.
 954 *Gigascience*. 4 (2015), doi:10.1186/s13742-015-0076-3.
- 955
 6. N. C. Durand, M. S. Shamim, I. Machol, S. S. P. Rao, M. H. Huntley, E. S. Lander, E. L.
 956
 957
 957
 958
 959
 959
 959
 950
 950
 950
 950
 950
 951
 951
 952
 952
 952
 953
 954
 954
 955
 955
 955
 955
 956
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
 957
- 958
 958
 959
 959
 960
 97. O. Dudchenko, S. S. Batra, A. D. Omer, S. K. Nyquist, M. Hoeger, N. C. Durand, M. S. Shamim, I. Machol, E. S. Lander, A. P. Aiden, E. L. Aiden, *Science (80-.).*, in press, doi:10.1126/science.aal3327.
- 9618.R. Vaser, I. Sovic, N. Nagarajan, Š. Mile, Fast and accurate de novo genome assembly962from long uncorrected reads. *Genome Res.*, 1–10 (2017).
- 963
 963
 964
 964
 965
 965
 965
 966
 967
 968
 969
 969
 969
 969
 960
 960
 960
 961
 961
 962
 963
 965
 964
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
 965
- 96610.B. L. Cantarel, I. Korf, S. M. C. Robb, G. Parra, E. Ross, B. Moore, C. Holt, A. S.967Alvarado, M. Yandell, MAKER: An easy-to-use annotation pipeline designed for968emerging model organism genomes. *Genome Res.* 18, 188–196 (2008).
- E. S. Lencer, W. C. Warren, R. Harrison, A. R. McCune, The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species. *BMC Genomics*. 18, 424 (2017).
- H. Li, R. Durbin, Inference of human population history from individual whole-genome sequences. *Nature*. 475, 493–496 (2011).
- M. A. DePristo, E. Banks, R. Poplin, K. V Garimella, J. R. Maguire, C. Hartl, A. A.
 Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M.
 Kernytsky, A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, M. J. Daly, A
 framework for variation discovery and genotyping using next-generation DNA sequencing
 data. *Nat. Genet.* 43, 491–8 (2011).
- 14. C. D. Marsden, Y. Lee, K. Kreppel, A. Weakley, A. Cornel, H. M. Ferguson, E. Eskin, G.

980 C. Lanzaro, Diversity, differentiation, and linkage disequilibrium: prospects for 981 association mapping in the malaria vector Anopheles arabiensis. G3 (Bethesda). 4, 121–31 982 (2014).983 15. P. Danecek, A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker, G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin, 1000 Genomes 984 Project Analysis Group, The variant call format and VCFtools. Bioinformatics. 27, 2156-985 2158 (2011). 986 16. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, 987 P. Sklar, P. I. W. de Bakker, M. J. Daly, P. C. Sham, PLINK: A Tool Set for Whole-988 Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 81, 989 559-575 (2007). 990 17. D. H. Alexander, J. Novembre, K. Lange, Fast model-based estimation of ancestry in 991 unrelated individuals. Genome Res. 19, 1655-1664 (2009). 992 18. S. H. Martin, J. W. Davey, C. D. Jiggins, Evaluating the use of ABBA-BABA statistics to 993 locate introgressed loci. Mol. Biol. Evol. 32, 244-257 (2015). 994 995 19. F. L. Wu, A. Strand, C. Ober, J. D. Wall, P. Moorjani, M. Przeworski, A comparison of 996 humans and baboons suggests germline mutation rates do not track cell divisions. *bioRxiv*, 844910 (2019). 997 20. M. Malinsky, H. Svardal, A. M. Tyers, E. A. Miska, M. J. Genner, G. F. Turner, R. 998 999 Durbin, Whole-genome sequences of Malawi cichlids reveal multiple radiations interconnected by gene flow. Nat. Ecol. Evol. 2, 1940-1955 (2018). 1000 21. C. Feng, M. Pettersson, S. Lamichhaney, C. J. Rubin, N. Rafati, M. Casini, A. Folkvord, 1001 L. Andersson, Moderate nucleotide diversity in the Atlantic herring is associated with a 1002 low mutation rate. *Elife*. 6, 1–14 (2017). 1003 22. A. F. Kautt, G. Machado-Schiaffino, A. Meyer, Multispecies Outcomes of Sympatric 1004 1005 Speciation after Admixture with the Source Population in Two Radiations of Nicaraguan Crater Lake Cichlids. PLoS Genet. 12, 1–33 (2016). 1006 B. Guo, F. J. J. Chain, E. Bornberg-Bauer, E. H. Leder, J. Merilä, Genomic divergence 23. 1007 between nine- and three-spined sticklebacks. BMC Genomics. 14, 756 (2013). 1008 24. C. H. Martin, J. E. Crawford, B. J. Turner, L. H. Simons, Diabolical survival in Death 1009 Valley: recent pupfish colonization, gene flow and genetic assimilation in the smallest 1010 species range on earth. Proc. R. Soc. B Biol. Sci. 283, 20152334 (2016). 1011 C. H. Martin, K. Gould, C. Bocklage, Surprising spatiotemporal stability and frequency-1012 25. independence across multiple fitness peaks driving adaptive radiation in the wild (2019). 1013 26. S. Schiffels, R. Durbin, Inferring human population size and separation history from 1014 multiple genome sequences. Nat. Genet. 46, 919 (2014). 1015 27. K. Nadachowska-Brzyska, R. Burri, L. Smeds, H. Ellegren, PSMC analysis of effective 1016 population sizes in molecular ecology and its application to black-and-white Ficedula 1017 1018 flycatchers. Mol. Ecol. 25, 1058–1072 (2016). 28. J. K. Pickrell, J. K. Pritchard, Inference of Population Splits and Mixtures from Genome-1019 Wide Allele Frequency Data. PLoS Genet. 8, e1002967 (2012). 1020 29. D. Garrigan, A. Geneva, msmove: A modified version of Hudson's coalescent simulator 1021 ms allowing for finer control and tracking of migrant genealogies (2014), 1022 doi:10.6084/m9.figshare.1060474. 1023 1024 30. P. Pavlidis, D. Živković, A. Stamatakis, N. Alachiotis, SweeD: Likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224-2234 1025

1026	(2013).
	· · · · · · · · · · · · · · · · · · ·

- 102731.E. J. Richards, M. R. Servedio, C. H. Martin, Searching for Sympatric Speciation in the1028Genomic Era. *BioEssays.* 41, 1900047 (2019).
- 1029 32. S. X. Ge, D. Jung, ShinyGO: a graphical enrichment tool for animals and plants. *bioRxiv*, 2 (2018).
- 1031 33. E. Balsa-Canto, D. Henriques, A. Gabor, J. R. Banga, AMIGO2, a toolbox for dynamic 1032 modeling, optimization and control in systems biology. *Bioinformatics*. **32**, 1–2 (2016).
- M. E. Anderson, J. Runesson, I. Saar, Ü. Langel, J. K. Robinson, Galanin, through GalR1
 but not GalR2 receptors, decreases motivation at times of high appetitive behavior. *Behav. Brain Res.* 239, 90–93 (2013).
- S. Wang, L. Ghibaudi, T. Hashemi, C. He, C. Strader, M. Bayne, H. Davis, J. J. Hwa, The
 GalR2 galanin receptor mediates galanin-induced jejunal contraction, but not feeding
 behavior, in the rat: Differentiation of central and peripheral effects of receptor subtype
 activation. *FEBS Lett.* 434, 277–282 (1998).
- 104036.J. A. Mcgirr, C. H. Martin, Parallel evolution of gene expression between trophic1041specialists despite divergent genotypes and morphologies, 62–75 (2018).
- 104237.X. Zhou, P. Carbonetto, M. Stephens, Polygenic modeling with bayesian sparse linear1043mixed models. *PLoS Genet.* 9, e1003264 (2013).
- 104438.C. H. Martin, P. A. Erickson, C. T. Miller, The genetic architecture of novel trophic1045specialists: higher effect sizes are associated with exceptional oral jaw diversification in a1046pupfish adaptive radiation. *Mol. Ecol.* 26, 624–638 (2017).
- 1047 39. C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, T. L.
 1048 Madden, BLAST+: Architecture and applications. *BMC Bioinformatics*. 10, 1–9 (2009).
- 104940.T. J. Streelman, P. D. Danley, The stages of vertebrate evolutionary radiation. Trends1050Ecol. Evol. 18, 126–131 (2003).
- 1051 41. R. R. Hudson, The Variance of Coalescent Time Estimates from DNA Sequences. J. Mol.
 1052 Evol. 64, 702–705 (2007).
- 42. G. Coop, K. Bullaughey, F. Luca, M. Przeworski, The Timing of Selection at the Human
 FOXP2 Gene. *Mol. Biol. Evol.* 25, 1257–1259 (2008).
- 1055 43. N. Masatoshi, Genetic distance between populations. *Am. Nat.* **106**, 283–292 (1972).
- 44. F. M. Hagey, J. . Mylroie, Pleistocene lake and lagoon deposits, San Salvador Island,
 Bahamas. *Geol. Soc. Am.* **30**, 77–90 (1995).
- 105845.R. B. Huey, P. E. Hertz, B. Sinervo, Behavioral drive versus behavioral inertia in1059evolution: A null model approach. Am. Nat. 161, 357–366 (2003).
- 106046.M. E. St. John, J. A. McGirr, C. H. Martin, The behavioral origins of novelty: did1061increased aggression lead to scale-eating in pupfishes? *Behav. Ecol.* (2018),1062doi:10.1093/beheco/ary196.
- 106347.M. E. St. John, C. H. Martin, Scale-eating specialists evolved adaptive feeding kinematics1064within a microendemic radiation of San Salvador Island pupfishes. *bioRxiv*. 648451,1065648451 (2019).
- 106648.R. Tournebize, V. Poncet, M. Jakobsson, Y. Vigouroux, S. Manel, McSwan: A joint site1067frequency spectrum method to detect and date selective sweeps across multiple population1068genomes. Mol. Ecol. Resour. 19, 283–295 (2019).
- 49. M. M. Stevenson, Karyomorphology of Several Species of Cyprinodon. *Copeia*, 494–498 (1981).
- 1071 50. Y. Ofran, B. Rost, ISIS: Interaction sites identified from sequence. *Bioinformatics*. 23,

- 1072 13–16 (2007).
- 1073 51. E. V. Davydov, D. L. Goode, M. Sirota, G. M. Cooper, A. Sidow, S. Batzoglou,
 1074 Identifying a high fraction of the human genome to be under selective constraint using
 1075 GERP++. *PLoS Comput. Biol.* 6 (2010), doi:10.1371/journal.pcbi.1001025.
- 1076 52. M. Nei, W. H. Li, Proc. Natl. Acad. Sci., in press, doi:10.1073/pnas.76.10.5269.

1078

1079

1080 **Fig. S1.**

1081Average genetic diversity is similar across Caribbean pupfish populations. Within population (π) nucleotide1082diversity in 50-kb sliding windows across the genomes of the San Salvador Island (SSI) species and generalist1083species on Rum Cay (RC), New Providence Island (NPI), Dominican Republic (DR), North Carolina (NC) and1084Venezuela (VZ). π values are averaged across 100 random samples of 10 individuals from each population in order1085to down-sample from populations with larger sample sizes and compare π across populations.

1088

1089 Fig. S2.

1090Genetic divergence among SSI species. Manhattan plot of F_{st} in 50-kb windows across the genome for the three1091SSI species on the largest 24 scaffolds in the molluscivore (*C. brontotheroides*) genome corresponding to the 241092chromosomes in *Cyprinodon (49)*. Solid red line represents the average F_{st} values for each comparison (generalist1093vs. molluscivore; 0.07; generalist vs. scale-eater: 0.11; molluscivore vs. scale-eater: 0.15).

1096

1097 **Fig. S3.**

1098Selective sweeps in SSI population shared with other Caribbean populations. The proportion of hard selective1099sweeps in the SSI species that are also found sweeping in other Caribbean populations. Note that 42% of selective1100sweeps in the molluscivore population also showed signs of a sweep in the scale-eater population.

1103 **Fig. S4**.

1102

Sequence conservation among fishes around candidate gene twist1. A) Amino acid sequence of twist1 protein for 1104 1105 SSI generalists and scale-eaters. The non-synonymous substitution that is nearly fixed between the two species 1106 changes the amino acid from a proline to histidine (highlighted in black). B) This amino acid substitution alters a 1107 protein binding site (highlighted in red box) predicted and visualized with Predict Protein Open (https://open.predictprotein.org) using the machine-learning prediction method PPsites2 (50). C) GERP scores for 1108 the 500 base pair region surrounding the non-synonymous coding substitution in twist1 (red arrow) found only on 1109 1110 SSI. Conservation scores were obtained from aligning scale-eater genomes to the 60 fish EPO low coverage genome 1111 alignment on Ensembl (release 98) and a conservation score above 2 is considered highly conserved (51). 1112

1114 **Fig. S5.**

1115 The spatiotemporal landscape of genetic variation for the molluscivore. Time to most recent common ancestor 1116 1117 (TMRCA) of the region surrounding candidate adaptive variants (LD-pruned so that each point is independent) 1118 based on relative genetic divergence metric Da (52) which captures only the amount divergence that has 1119 accumulated since the two populations diverged. Variants are separated by spatial distribution into: introgressed 1120 from a single population and standing genetic variation observed in more than two populations. No variants existed as de novo variation in the molluscivore populations on SSI. No nearly fixed variants introgressed from the 1121 1122 Venezuela population. Points are colored by their adaptive relevance to this system (black points: adaptive variants 1123 annotated for non-focal GO terms or unannotated; gray points: nearly fixed variants between specialists that are not 1124 under hard selective sweeps). A) All variants annotated for GO categories from the Biological Processes database 1125 (Ensemble 92) for feeding behavior, muscle, eye, and mouth development, or craniofacial (mouth and/or eye, muscle) are shown. B) All variants in the 99th percentile of PIP scores for association with either smaller oral jaw 1126 1127 size, lighter caudal fin pigmentation, or premaxillary nasal protrusion from GWAS are shown. Dot sizes represent 1128 PIP score of each GWAS hit within a trait. C) The 95% high posterior density of the posterior distribution of ages of 1129 selective sweeps in focal gene regions. Focal regions are colored based on GO and GWAS annotations relevant to 1130 the stages of adaptive radiation hypothesis: habitat preference (feeding behavior: red), trophic morphology 1131 (craniofacial and muscle: blue-violet), and sexual communication (pigmentation: orange).

Distance between variants (kb)

- 1134 1135 **Fig. S6.**
- 1136Linkage disequilibrium decay along the genome. LD decay over pairwise combinations of variants within 100 kb1137of each other on the longest scaffold in the genome (49,059,223 bp), with $r^2=0.1$ marked for reference. From this1138pattern of decay, we chose a window size of 50-kb for sliding windows analyses used in this study.
- 1139

1120

1159

1160 **Fig. S7.**

1161
 1162 The log likelihood of number of migration events on the population graph inferred using TREEMIX (28). The
 1163 rate of change in the likelihood began to decline after three migration events, so three migration arrows were
 1164 included in the population graph in Fig. 4B.

1166 1167 1168

1168 nasal protrusion distance. The yellow line represents a baseli1169 neurocranium to the tip of the premaxilla used for reference.

1170Fig. S9. Standardized craniofacial trait measurements in SSI species. Log-transformed A) lower oral jaw length1172(mm) and B) nasal protrusion distance (mm) standardized by log-transformed standard length (mm) for SSI1173generalist (red), molluscivore (green), and scale-eater (blue).

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.988774; this version posted March 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

1180Posterior density distributions for hyper-parameters describing the proportion of variance in phenotypes for1181the three focal traits (lower jaw size, nasal protrusion distance, and caudal fin pigmentation) explained by A-C)1182every SNP (proportion of phenotype variance explained (PVE)), D-F) SNPs of large effect (proportion of genetic1183variance explained by sparse effects) PGE)), and G-H) the number of large effect SNPS required to explain PGE.1184Individual lines represent 10 independent MCMC runs of GEMMA's Bayesian sparse linear mixed model.

1186 1187 Fig. S11. The spatiotemporal landscape of adaptive radiation from the perspective of the alternative allele 1188 (larger spatial distribution). Time to most recent common ancestor (TMRCA) of the region surrounding candidate 1189 adaptive variants (LD-pruned so that each point is independent) based on relative genetic divergence metric Dxy 1190 (52) which captures only the amount divergence that has accumulated since the two populations diverged. Variants 1191 are separated by spatial distribution into: de novo, introgressed from a single population and standing genetic 1192 variation observed in more than two populations. No nearly fixed variants introgressed from the Venezuela 1193 population. Points are colored by significantly enriched GO terms chosen for their adaptive relevance to this system (black points: adaptive variants annotated for non-focal GO terms or unannotated; gray points: nearly fixed variants 1194 1195 between specialists that are not under hard selective sweeps) and triangle points represent those variants also 1196 associated with pigmentation. All variants annotated for GO categories from the Biological Processes database 1197 (Ensemble 92) for feeding behavior, muscle, eye, and mouth development, or craniofacial (mouth and/or eye, 1198 muscle) are shown. Points labeled with gene names indicate the three regions which have alternative spatial 1199 distributions shown in Fig. 4.

 $\begin{array}{c} 1201 \\ 1202 \end{array}$

Fig. S12. Posterior distributions for scale-eater sweeps. The posterior distributions of sweep ages estimated from focal regions (Table S13). These nine regions were found under a hard selective sweep using both SweeD and 1203 1204 McSwan. Posterior distributions of ages were calculated in McSwan. Focal regions are colored based on GO and 1205 GWAS annotations relevant to the stages proposed in the stages of adaptive radiation hypothesis: habitat preference 1206 (feeding behavior: red), trophic morphology (craniofacial and muscle: blue-violet), and sexual communication 1207 (pigmentation: orange).

1211Coweep Age Estimate (years)1212Fig. S13. Posterior distributions for molluscivore sweeps. The posterior distributions of sweep ages estimated1213from focal regions (Table S13). These three regions were found under a hard selective sweep using both SweeD and1214McSwan. Posteriors distributions of ages were calculated in McSwan. Focal regions are colored based on GO and1215GWAS annotations relevant to the stages proposed in the stages of adaptive radiation hypothesis: trophic1216morphology (craniofacial and muscle: blue-violet).

1217

1218 **Table S1.**

Summary of Caribbean pupfish sampling. The sampling localities of individuals that were whole genome
 resequenced from San Salvador Island radiation (SSI), other *Cyprinodon* across the Caribbean, Mexico, and United
 States, and two outgroups. Full details including sample codes, collector identities, GPS coordinates are included in
 Data S1 table.

Group	Species	Lake/Site	Island/Nation	Sample size
SSI generalist	Cyprinodon variegatus	Clear Pond	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Crescent Pond	San Salvador Island, Bahamas	4
SSI generalist	Cyprinodon variegatus	Granny Lake	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Great Lake	San Salvador Island, Bahamas	2
SSI generalist	Cyprinodon variegatus	Little Lake	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Stout's Pond	San Salvador Island, Bahamas	2
SSI generalist	Cyprinodon variegatus	Mermaid Pond	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Moon Rock Pond	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	North Little Lake	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Osprey Lake	San Salvador Island, Bahamas	12
SSI generalist	Cyprinodon variegatus	Oyster Lake	San Salvador Island, Bahamas	2
SSI generalist	Cyprinodon variegatus	Oyster Lake	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Pain Pond	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Reckley Hill Pond	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Six Pack Pond	San Salvador Island, Bahamas	1
SSI generalist	Cyprinodon variegatus	Wild Dilly Pond	San Salvador Island, Bahamas	1
SSI molluscivore	Cyprinodon brontotheroides	Crescent Pond	San Salvador Island, Bahamas	12
SSI molluscivore	Cyprinodon brontotheroides	Little Lake	San Salvador Island, Bahamas	5
SSI molluscivore	Cyprinodon brontotheroides	Moon Rock Pond	San Salvador Island, Bahamas	6
SSI molluscivore	Cyprinodon brontotheroides	Osprey Lake	San Salvador Island, Bahamas	12
SSI molluscivore	Cyprinodon brontotheroides	Oyster Pond	San Salvador Island, Bahamas	8
SSI scale-eater	Cyprinodon desquamator	Crescent Pond	San Salvador Island, Bahamas	10
SSI scale-eater	Cyprinodon desquamator	Little Lake	San Salvador Island, Bahamas	5
SSI scale-eater	Cyprinodon desquamator	Osprey Lake	San Salvador Island, Bahamas	10

SSI scale-eater	Cyprinodon desquamator	Oyster Lake	San Salvador Island, Bahamas	1
Dominican Republic	Cyprinodon higuey	Laguna Bavaro	Dominican Republic	10
New Providence Island	Cyprinodon laciniatus	Lake Cunningham	New Providence Island, Bahamas	16
Rum Cay	Cyprinodon variegatus	Lake George - main lake	Rum Cay, Bahamas	17
North Carolina	Cyprinodon variegatus	Fort Fisher estuary	NC, USA	11
Venezuela	Cyprinodon dearborni	Isla Margarita	Venezuela	11
Caribbean outgroup generalist	Cyprinodon artifrons	Cancun	Mexico	2
Caribbean outgroup generalist	Cyprinodon variegatus	North Salt Pond	Acklins Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon dearborni		Bonaire	1
Caribbean outgroup generalist	Cyprinodon variegatus		Caicos Island	1
Caribbean outgroup generalist	Cyprinodon variegatus	Great Lake	Cat Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon dearborni		Curacao	2
North American outgroup generalist	Cyprinodon albivelis	Rio Yaqui basin	Mexico	1
North American outgroup generalist	Cyprinodon eremus	Quitobaquito Spring	AZ, USA	1
North American outgroup generalist	Cyprinodon eximius	Rio Conchos basin	Mexico	1
North American outgroup generalist	Cyprinodon fontinalis	Ojo de Carbonera Spring	Mexico	1
North American outgroup generalist	Cyprinodon longidorsalis	Charco Palma	Mexico	1
North American outgroup generalist	Cyprinodon macularius	Coachella	CA, USA	1
North American outgroup generalist	Cyprinodon macrolepis	Ojo de Hacienda Delores	Mexico	1
North American outgroup generalist	Cyprinodon radiosus	Owens Valley	CA, USA	1
Caribbean outgroup generalist	Cyprinodon veronicae	Ojo de Agua Charco Azul	Mexico	1
North American outgroup generalist	Cyprinodon variegatus	Salt pond near Dean's blue hole	Long Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Unnamed lake 'near Rokers Point'	Exumas, Bahamas	2
Caribbean outgroup generalist	Cyprinodon variegatus	Unnamed lake 'Ephemeral'	Exumas, Bahamas	1
Caribbean outgroup generalist	Cyprinodon bondi	Etang Saumautre	Dominican Republic	1
Caribbean outgroup generalist	Cyprinodon variegatus	Unnamed lake	Mayaguana	1
Caribbean outgroup generalist	Cyprinodon variegatus	Sarasota estuary	Florida, United States	1

Caribbean outgroup generalist	Cyprinodon variegatus	Lake Kilarney	New Providence Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Great Lake in the south	Long Island, Bahamas	1
Caribbean outgroup generalist	Cyprinodon ovinus	Falmouth River	Massachusetts, USA	1
Caribbean outgroup generalist	Cyprinodon variegatus	New Bight	Cat Island, Bahamas	
Caribbean outgroup generalist	Cyprinodon variegatus	Pirate's Well Lake	Mayaguana, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Salt Pond	Exumas, Bahamas	1
Caribbean outgroup generalist	Cyprinodon variegatus	Scully Lake	Mayaguana, Bahamas	1
Lake Chichancab pupfish radiation outgroup	Cyprinodon maya	Laguna Chichancanab	Quintana Roo, Mexico	1
Lake Chichancab pupfish radiation outgroup	Cyprinodon simus	Laguna Chichancanab	Quintana Roo, Mexico	1
Cualac outgroup	Cualac tessellatus	Media Luna	Mexico	1
Megupsilon outgroup	Megupsilon aporus	El Potosi	Mexico	1

1226 **Table S2.**

1227 **Candidate adaptive regions for the San Salvador Island scale-eater.** Location of the genic 1228 regions that contained signatures of a strong selective sweep in the scale-eater (SweeD CLR \geq 1229 5.28) and at least one divergent variant between the specialists ($F_{st} \geq 0.95$). Full list of variants, 1230 including unannotated candidate regions provided in Data S2. Regions highlighted in Figure 4 1231 are listed in bold.

Gene	Scaffold	Gene Start	Gene End	Number of Variants
coq7	c_bro_v1_0_scaf1	28974409	28979038	3
gpr83	c_bro_v1_0_scaf1	38351481	38355816	2
klf1	c_bro_v1_0_scaf1	29239984	29242454	13
notum2	c_bro_v1_0_scaf1	28950946	28957848	1
rbm20	c_bro_v1_0_scaf1	15024176	15044016	1
rps15a	c_bro_v1_0_scaf1	28942599	28947456	2
ube2k	c_bro_v1_0_scaf1	41168936	41171561	2
atp8a2	c_bro_v1_0_scaf11	13000335	13035561	92
cd226	c_bro_v1_0_scaf11	10936603	10941232	7
cdk8	c_bro_v1_0_scaf11	13057400	13067971	1
cmbl	c_bro_v1_0_scaf11	9934853	9938096	11
crispld1	c_bro_v1_0_scaf11	11066268	11081938	7
dok6	c_bro_v1_0_scaf11	10963193	10972277	50
fbxl7	c_bro_v1_0_scaf11	21351783	21356510	6
hnf4g	c_bro_v1_0_scaf11	8350195	8354295	1
med1	c_bro_v1_0_scaf11	21393330	21400087	26
mtrr	c_bro_v1_0_scaf11	9943625	9954042	2
ncoa2	c_bro_v1_0_scaf11	11949666	11977882	4
prlh	c_bro_v1_0_scaf11	9494231	9495565	18
rnf6	c_bro_v1_0_scaf11	13047328	13052736	4
shisa2	c_bro_v1_0_scaf11	12945178	12953040	38
slc51a	c_bro_v1_0_scaf11	9862250	9873650	29
spice1	c_bro_v1_0_scaf11	12934206	12942196	2
zfhx4	c_bro_v1_0_scaf11	8078834	8095610	1
zbed1	c_bro_v1_0_scaf14	23383635	23383982	9
abhd8	c_bro_v1_0_scaf16	13452740	13457468	24
b3gnt3	c_bro_v1_0_scaf16	10003286	10004410	15
bmb	c_bro_v1_0_scaf16	10649637	10654441	38
brinp3	c_bro_v1_0_scaf16	11738302	11756508	33
crocc	c_bro_v1_0_scaf16	32985892	33009791	1
dda1	c_bro_v1_0_scaf16	13466708	13470377	2
eef1d	c_bro_v1_0_scaf16	10028318	10042958	30
ptprs	c_bro_v1_0_scaf16	8205473	8246024	56

pycr3	c_bro_v1_0_scaf16	10045452	10047013	8
rfc4	c_bro_v1_0_scaf16	35817866	35832867	38
serpinb1	c_bro_v1_0_scaf16	10634868	10638000	14
tdrd5	c_bro_v1_0_scaf16	12808042	12822317	47
tjp3	c_bro_v1_0_scaf16	35777675	35795399	21
tsta3	c_bro_v1_0_scaf16	10641946	10647463	23
zfp2	c_bro_v1_0_scaf16	35859060	35860865	8
zfp26	c_bro_v1_0_scaf16	35907423	35909825	2
znf271	c_bro_v1_0_scaf16	35840463	35842592	7
znf45	c_bro_v1_0_scaf16	35879283	35880581	7
anks1a	c_bro_v1_0_scaf18	18164811	18167681	1
gnat2	c_bro_v1_0_scaf18	13731762	13735798	2
itga5	c_bro_v1_0_scaf18	28908235	28944244	2
mybph	c_bro_v1_0_scaf18	26461834	26474649	15
nfasc	c_bro_v1_0_scaf18	17031686	17047770	1
sarg	c_bro_v1_0_scaf18	18185730	18187828	2
slc16a1	c_bro_v1_0_scaf18	29586755	29599009	1
nap1l4	c_bro_v1_0_scaf19	7836170	7842620	1
smap	c_bro_v1_0_scaf19	2027249	2028419	2
th	c_bro_v1_0_scaf19	7787018	7794685	1
trim44	c_bro_v1_0_scaf19	6431393	6435783	13
trim44 aasdhppt	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467	6435783 26919394	13 1
trim44 aasdhppt b3gat1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21	6431393 26911467 29988110	6435783 26919394 29992848	13 1 1
trim44 aasdhppt b3gat1 cntn5	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673	6435783 26919394 29992848 10063457	13 1 1 1
trim44 aasdhppt b3gat1 cntn5 col26a1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619	6435783 26919394 29992848 10063457 20287102	13 1 1 1 12
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093	6435783 26919394 29992848 10063457 20287102 20266161	13 1 1 1 12 2
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968	6435783 26919394 29992848 10063457 20287102 20266161 32848322	13 1 1 1 12 2 9
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201	6435783 26919394 29992848 10063457 20287102 20266161 32848322 41218789	13 1 1 12 2 9 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156	6435783 26919394 29992848 10063457 20287102 20266161 32848322 41218789 15201994	13 1 1 1 12 2 9 1 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156 24482700	6435783 26919394 29992848 10063457 20287102 20266161 32848322 41218789 15201994 24491999	13 1 1 1 12 2 9 1 1 13 33
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 iff8 mrm3 nipsnap2 nxn	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156 24482700 15204991	6435783 26919394 29992848 10063457 20287102 20266161 32848322 41218789 15201994 24491999 15221395	13 1 1 1 1 2 9 1 1 33 8
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2 nxn pde4d	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156 24482700 15204991 32298408	64357832691939429992848100634572028710220266161328483224121878915201994244919991522139532320844	13 1 1 1 12 2 9 1 1 33 8 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 ifi8 mrm3 nipsnap2 nxn pde4d slc35e1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156 24482700 15204991 32298408 31978195	6435783269193942999284810063457202871022026616132848322412187891520199424491999152213953232084431986378	13 1 1 1 1 2 9 1 1 33 8 1 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2 nxn pde4d slc35e1 tiparp	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	643139326911467299881101001267320284619202540933284396841216201151981562448270015204991322984083197819533709833	643578326919394299928481006345720287102202661613284832241218789152019942449199915221395323208443198637833728566	13 1 1 1 1 2 9 1 1 33 8 1 1 1 1 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2 nxn pde4d slc35e1 tiparp trarg1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156 24482700 15204991 32298408 31978195 33709833 25190856	64357832691939429992848100634572028710220266161328483224121878915201994244919991522139532320844319863783372856625191383	13 1 1 1 1 2 9 1 1 33 8 1 1 1 1 1 1 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2 nxn pde4d slc35e1 tiparp trarg1 atad2	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	6431393 26911467 29988110 10012673 20284619 20254093 32843968 41216201 15198156 24482700 15204991 32298408 31978195 33709833 25190856 7942666	643578326919394299928481006345720287102202661613284832241218789152019942449199915221395323208443198637833728566251913837961336	13 1 1 1 1 2 9 1 1 33 8 1 1 1 1 1 3 3
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2 nxn pde4d slc35e1 tiparp trarg1 atad2 cyp26b1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21	64313932691146729988110100126732028461920254093328439684121620115198156244827001520499132298408319781953370983325190856794266620457960	64357832691939429992848100634572028710220266161328483224121878915201994244919991522139532320844319863783372856625191383796133620473004	13 1 1 1 1 2 9 1 1 33 8 1 1 1 1 1 3 8
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 ifi8 mrm3 nipsnap2 nxn pde4d slc35e1 tiparp trarg1 atad2 dysf	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf24 c_bro_v1_0_scaf24	6431393269114672998811010012673202846192025409332843968412162011519815624482700152049913229840831978195337098332519085679426662045796020196578	64357832691939429992848100634572028710220266161328483224121878915201994244919991522139532320844319863783372856625191383796133620211497	13 1 1 1 1 2 9 1 1 33 8 1 1 1 1 3 8 1 1 3 8 1 1 3 8 1 1 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1
trim44 aasdhppt b3gat1 cntn5 col26a1 emid1 ifi44 irf8 mrm3 nipsnap2 nxn pde4d slc35e1 tiparp trarg1 atad2 cyp26b1 dysf ext1	c_bro_v1_0_scaf19 c_bro_v1_0_scaf21 c_bro_v1_0_scaf24 c_bro_v1_0_scaf24	6431393269114672998811010012673202846192025409332843968412162011519815624482700152049913229840831978195337098332519085679426662045796020196578271389	6435783 26919394 29992848 10063457 20287102 20266161 32848322 41218789 15201994 24491999 15221395 32320844 31986378 33728566 25191383 7961336 20473004 20211497 272345	13 1 1 1 1 2 9 1 1 3 8 1 1 1 3 8 1 1 3 8 1 1 3 8 1 1 3 8 1 1 3 8 1 1 3 8 1 1 3 8 1 1 3 8 1 1 1 1 1 1 1 1 1 1 1 1 1

ppp1r3a	c_bro_v1_0_scaf26	8473965	8479904	4
soga3	c_bro_v1_0_scaf26	428526	434421	23
washc5	c_bro_v1_0_scaf26	301047	314009	1
zdhhc14	c_bro_v1_0_scaf2748	17727	21969	1
bri3bp	c_bro_v1_0_scaf33	12638129	12642531	28
gnaq	c_bro_v1_0_scaf33	12884125	12889121	9
pip5k1b	c_bro_v1_0_scaf33	2845282	2870905	6
wdr31	c_bro_v1_0_scaf33	12650071	12652945	20
cadps	c_bro_v1_0_scaf34	25394387	25411387	3
eya2	c_bro_v1_0_scaf34	32387513	32410375	2
srgap3	c_bro_v1_0_scaf34	26044753	26082456	2
st7l	c_bro_v1_0_scaf34	31252675	31262720	1
tfap2a	c_bro_v1_0_scaf34	32260190	32264933	6
znf362	c_bro_v1_0_scaf34	27775403	27792854	1
arhgap29	c_bro_v1_0_scaf37	30354970	30373446	1
atp5if1a	c_bro_v1_0_scaf37	3215186	3217688	1
cfap20	c_bro_v1_0_scaf37	5089635	5093234	24
chrna7	c_bro_v1_0_scaf37	3585852	3605137	8
dgat1	c_bro_v1_0_scaf37	5067735	5086382	37
dlx6a	c_bro_v1_0_scaf37	12742190	12744024	1
gpr20	c_bro_v1_0_scaf37	5101678	5107779	6
kcnn3	c_bro_v1_0_scaf37	3554189	3565883	4
mylipa	c_bro_v1_0_scaf37	8279827	8292615	1
slc45a4	c_bro_v1_0_scaf37	5115894	5125512	11
tbc1d20	c_bro_v1_0_scaf37	5047715	5065680	25
trim46	c_bro_v1_0_scaf37	3671825	3693120	1
trps1	c_bro_v1_0_scaf37	5649512	5665892	2
rmil	c_bro_v1_0_scaf39	4258986	4266819	1
smyd1	c_bro_v1_0_scaf39	1675166	1684412	7
ubox5	c_bro_v1_0_scaf39	1621625	1630916	7
cld	c_bro_v1_0_scaf43	30356623	30357420	6
dst	c_bro_v1_0_scaf43	16259900	16336750	2
ppp3r1	c_bro_v1_0_scaf43	30309740	30313100	4
sertad2	c_bro_v1_0_scaf43	10397273	10398532	4
sptlc3	c_bro_v1_0_scaf43	12316311	12350292	3
tmem26	c_bro_v1_0_scaf43	26556107	26570766	5
znf451	c_bro_v1_0_scaf43	16192481	16198948	15
atp8a1	c_bro_v1_0_scaf44	14934291	14999736	19
cenpf,kcnk2	c_bro_v1_0_scaf44	12548021	12569724	16
дртба	c_bro_v1_0_scaf44	24566260	24570802	9

kcnk2	c_bro_v1_0_scaf44	12526223	12538276	23
tsc22d3	c_bro_v1_0_scaf44	11339700	11340952	3
tstd1	c_bro_v1_0_scaf44	12012710	12013203	1
card8	c_bro_v1_0_scaf46	1328324	1329460	10
ccdc178	c_bro_v1_0_scaf46	15536795	15561009	1
xrn1	c_bro_v1_0_scaf46	25988805	26007498	39
dnm1	c_bro_v1_0_scaf47	21986865	22007761	1
map1b	c_bro_v1_0_scaf47	16222149	16245672	9
pdlim5	c_bro_v1_0_scaf47	24141068	24152322	1
ptger4	c_bro_v1_0_scaf47	16158956	16164333	4
aldh1a2	c_bro_v1_0_scaf5	27683247	27700000	1
esrp2	c_bro_v1_0_scaf5	34229725	34252121	1
gse1	c_bro_v1_0_scaf5	28378694	28397287	1
tcf12	c_bro_v1_0_scaf5	27885956	27895543	15
bcor	c_bro_v1_0_scaf52	5564938	5578475	2
chpf	c_bro_v1_0_scaf52	21895691	21907353	1
nr4a2	c_bro_v1_0_scaf52	13846770	13849514	4
st6gal2	c_bro_v1_0_scaf52	6730438	6731400	2
vgll3	c_bro_v1_0_scaf52	23953279	23956671	1
cox6b1	c_bro_v1_0_scaf53	24790612	24793003	8
cyp21a2	c_bro_v1_0_scaf53	18529622	18536111	2
evalb	c_bro_v1_0_scaf53	29794772	29795353	2
fhod3	c_bro_v1_0_scaf53	18622119	18644926	2
galnt1	c_bro_v1_0_scaf53	20852048	20872629	17
glipr2	c_bro_v1_0_scaf53	20433230	20435503	3
hdac9b	c_bro_v1_0_scaf53	19008287	19034268	1
mag	c_bro_v1_0_scaf53	17408478	17413240	2
map7d1	c_bro_v1_0_scaf53	29904810	29922183	25
mindy3	c_bro_v1_0_scaf53	20097197	20106215	8
nacad	c_bro_v1_0_scaf53	20437309	20451974	2
pxn1	c_bro_v1_0_scaf53	20366555	20367417	1
rasip1	c_bro_v1_0_scaf53	24769523	24786366	13
slc2a3	c_bro_v1_0_scaf53	24809669	24817209	15
steap4	c_bro_v1_0_scaf53	20313856	20325260	26
tbrg4	c_bro_v1_0_scaf53	20454806	20462512	2
them4	c_bro_v1_0_scaf53	21823050	21830844	5
tnc	c_bro_v1_0_scaf53	18536783	18542213	1
twist1	c_bro_v1_0_scaf53	18968733	18969242	1
zhx2	c_bro_v1_0_scaf53	11078442	11084544	6
znf628	c_bro_v1_0_scaf53	24721275	24732863	6

trim25	c_bro_v1_0_scaf60	1610217	1614325	2
znf214	c_bro_v1_0_scaf60	1787099	1793538	1
foxo3	c_bro_v1_0_scaf7	12823341	12824321	3
myct1	c_bro_v1_0_scaf7	13100090	13100656	1
otof	c_bro_v1_0_scaf7	12616933	12629352	3
otof	c_bro_v1_0_scaf7	12642391	12658039	5
smek1	c_bro_v1_0_scaf7	12319537	12332574	1
43530	c_bro_v1_0_scaf752	1258	12292	29
nat1	c_bro_v1_0_scaf752	13172	14020	7
zdhhc20	c_bro_v1_0_scaf752	16935	24566	7
galr2	c_bro_v1_0_scaf8	19974117	19979248	2
grid2ip	c_bro_v1_0_scaf8	21581872	21603752	4
map2k6	c_bro_v1_0_scaf8	19746299	19760895	3
dcun1d2	c_bro_v1_0_scaf9	28311034	28313774	7
fhl2	c_bro_v1_0_scaf9	25288775	25292382	1
fut9	c_bro_v1_0_scaf9	25262573	25263652	16

Table S3. Candidate adaptive regions for the San Salvador Island molluscivore. Location of1237the genic regions that contained signatures of a strong selective sweep in the molluscivore1238(SweeD CLR ≥ 4.47) and at least one divergent variant between the specialists ($F_{st} \geq 0.95$). Full1239list of variants, including one unannotated candidate regions provided in Data S3. Regions1240highlighted in Figure S5 are listed in bold.

Gene	Scaffold	Gene Start	Gene Stop	Number of Variants
alox15b	c_bro_v1_0_scaf1	34682742	34695090	1
coq7	c_bro_v1_0_scaf1	28974409	28979038	3
gga1	c_bro_v1_0_scaf1	29195804	29209213	5
gpr83	c_bro_v1_0_scaf1	38351481	38355816	2
klf1	c_bro_v1_0_scaf1	29239984	29242454	13
notum2	c_bro_v1_0_scaf1	28950946	28957848	1
rbm20	c_bro_v1_0_scaf1	15024176	15044016	1
rps15a	c_bro_v1_0_scaf1	28942599	28947456	2
atp8a2	c_bro_v1_0_scaf11	13000335	13035561	92
cd226	c_bro_v1_0_scaf11	10936603	10941232	6
ncoa2	c_bro_v1_0_scaf11	11949666	11977882	7
shisa2	c_bro_v1_0_scaf11	12945178	12953040	18
spice1	c_bro_v1_0_scaf11	12934206	12942196	4
ube2w	c_bro_v1_0_scaf11	11253461	11259709	48
abhd8	c_bro_v1_0_scaf16	13452740	13457468	17
b3gnt3	c_bro_v1_0_scaf16	10003286	10004410	15
b3gnt3	c_bro_v1_0_scaf16	10019232	10020410	1
eef1d	c_bro_v1_0_scaf16	10028318	10042958	64
ptprs	c_bro_v1_0_scaf16	8205473	8246024	20
pycr3	c_bro_v1_0_scaf16	10045452	10047013	8
rfc4	c_bro_v1_0_scaf16	35817866	35832867	31
anksla	c_bro_v1_0_scaf18	18164811	18167681	1
mybph	c_bro_v1_0_scaf18	26461834	26474649	7
nfasc	c_bro_v1_0_scaf18	17031686	17047770	1
sarg	c_bro_v1_0_scaf18	18185730	18187828	2
trim44	c_bro_v1_0_scaf19	6431393	6435783	14
b3gat1	c_bro_v1_0_scaf21	29988110	29992848	1
entn5	c_bro_v1_0_scaf21	10012673	10063457	1
tiparp	c_bro_v1_0_scaf21	33709833	33728566	1
trarg1	c_bro_v1_0_scaf21	25190856	25191383	1
atad2	c_bro_v1_0_scaf22	7942666	7961336	3
cyp26b1	c bro v1 0 scaf24	20457960	20473004	8

ext1	c_bro_v1_0_scaf26	271389	272345	8
ext1b	c_bro_v1_0_scaf26	241224	252635	1
sox9	c_bro_v1_0_scaf27	22135691	22136918	2
bri3bp	c_bro_v1_0_scaf33	12638129	12642531	26
gnaq	c_bro_v1_0_scaf33	12884125	12889121	9
wdr31	c_bro_v1_0_scaf33	12650071	12652945	20
cadps	c_bro_v1_0_scaf34	25394387	25411387	2
znf362	c_bro_v1_0_scaf34	27775403	27792854	1
dlx6a	c_bro_v1_0_scaf37	12742190	12744024	1
mylipa	c_bro_v1_0_scaf37	8279827	8292615	1
trps1	c_bro_v1_0_scaf37	5649512	5665892	2
vps9d1	c_bro_v1_0_scaf4	15227575	15257418	1
slc29a3	c_bro_v1_0_scaf43	13679707	13685975	2
ttc33	c_bro_v1_0_scaf47	16128909	16148227	7
esrp2	c_bro_v1_0_scaf5	34229725	34252121	1
fn1	c_bro_v1_0_scaf52	19355212	19387175	1
st6gal2	c_bro_v1_0_scaf52	6730438	6731400	2
vgll3	c_bro_v1_0_scaf52	23953279	23956671	1
cox6b1	c_bro_v1_0_scaf53	24790612	24793003	8
map7d1	c_bro_v1_0_scaf53	29904810	29922183	25
rasip1	c_bro_v1_0_scaf53	24769523	24786366	13
slc2a3	c_bro_v1_0_scaf53	24809669	24817209	15
zhx2	c_bro_v1_0_scaf53	11078442	11084544	5
znf628	c_bro_v1_0_scaf53	24721275	24732863	5
foxo3	c_bro_v1_0_scaf7	12823341	12824321	3
otof	c_bro_v1_0_scaf7	12616933	12629352	11
otof	c_bro_v1_0_scaf7	12642391	12658039	5
smek1	HiC_scaffold_7	12319537	12332574	1

Table S4.

1256 Full list of functional terms associated with genes in candidate regions for the scale-eaters

1257 that were significantly enriched (FDR <0.05) in a GO analysis. Focal functional terms related

to key axes of diversification in this system: habitat preference (scale-eating/snail-eating niches),
 trophic morphology, and/or pigmentation.
Functional Category	Enrichment FDR	Genes in list	Total genes	Genes
Neuron differentiation	0.00608452	25	1400	map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,ptprs,mag,f oxo3,med1,rnf6,aldh1a2,gnat2,pdlim5,trim46,nfasc,wash c5,zhx2,th,ext1,galr2,anks1a,chrna7,dok6
Camera-type eye morphogenesis	0.00608452	7	114	tbc1d20,atp8a2,gnat2,zhx2,th,tfap2a,twist1
Generation of neurons	0.00608452	26	1553	map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,ptprs,mag,f oxo3,twist1,med1,rnf6,aldh1a2,gnat2,pdlim5,trim46,nfas c,washc5,zhx2,th,ext1,galr2,anks1a,chrna7,dok6
Muscle tissue development	0.00608452	12	400	cyp26b1,eya2,kcnk2,smyd1,fhl2,cenpf,twist1,med1,aldh1 a2,fhod3,pdlim5,tiparp
Regulation of biological quality	0.00608452	50	4146	kcnk2,klf1,dnm1,foxo3,atp8a1,abhd8,atp8a2,gnaq,ptger4 ,chrna7,gpr20,pde4d,xrn1,cyp26b1,cfap20,ube2k,rasip1,tr im44,crocc,eya2,prlh,ptprs,mag,map2k6,otof,med1,rnf6,s teap4,aldh1a2,map1b,gnat2,fhod3,dysf,slc16a1,tsc22d3,p dlim5,cadps,tiparp,nxn,rmi1,th,galr2,dgat1,grid2ip,tbc1d2 0,tbrg4,them4,trim46,rfc4,cyp21a2
Cell development	0.00708671	32	2196	map1b,atp8a2,tcf12,gpm6a,brinp3,tnc,ptprs,mag,fhl2,fox o3,twist1,med1,tbc1d20,rnf6,aldh1a2,gnat2,fhod3,dysf,nr 4a2,tdrd5,pdlim5,trim46,nfasc,washc5,zhx2,th,ext1,galr2, anks1a,pde4d,chrna7,dok6
Neural retina development	0.00819009	5	64	atp8a2,gnat2,gpm6a,zhx2,tfap2a
Feeding behavior	0.00819009	6	102	cfap20,prlh,atp8a2,rmi1,th,galr2
Striated muscle tissue development	0.00819009	11	385	cyp26b1,eya2,kcnk2,smyd1,fhl2,cenpf,twist1,med1,aldh1 a2,fhod3,pdlim5
Neurogenesis	0.00819009	26	1663	map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,ptprs,mag,f oxo3,twist1,med1,rnf6,aldh1a2,gnat2,pdlim5,trim46,nfas c.washc5.zhx2.th.ext1.aalr2.anks1a.chrna7.dok6
Response to lipid	0.00819009	19	997	rnf6,brinp3,ptger4,card8,med1,cyp26b1,tnc,pde4d,xrn1,fo xo3,trim25,gpr83,aldh1a2,ncoa2,irf8,nr4a2,hnf4g,th,fhl2
Eating behavior	0.00819009	4	33	prlh,atp8a2,rmi1,th
Camera-type eye development	0.00819009	10	317	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Developmental growth	0.00819009	15	651	tnc,prlh,kcnk2,ptprs,mag,pde4d,foxo3,med1,rnf6,map1b, atp8a2,dysf,pdlim5,rmi1,trim46
Eye morphogenesis	0.0084973	7	152	tbc1d20,atp8a2,gnat2,zhx2,th,tfap2a,twist1
Embryonic camera- type eye development	0.01187832	4	39	aldh1a2,th,twist1,tfap2a
Regulation of phospholipid translocation	0.01187832	2	3	atp8a1,atp8a2
Positive regulation of phospholipid translocation	0.01187832	2	3	atp8a1,atp8a2
Negative regulation of axon extension	0.01370935	4	41	ptprs,mag,rnf6,trim46

Eye development	0.01408643	10	365	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Growth	0.01408643	18	1018	sertad2,st7l,tnc,prlh,kcnk2,ptprs,mag,pde4d,foxo3,med1,r nf6,map1b,atp8a2,dysf,irf8,pdlim5,rmi1,trim46
Cellular response to lipid	0.01408643	14	671	rnf6,brinp3,ptger4,card8,med1,cyp26b1,tnc,pde4d,foxo3, aldh1a2,irf8,nr4a2,hnf4g,fhl2
Visual system development	0.01408643	10	366	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Anatomical structure morphogenesis	0.01669332	34	2702	map1b,tfap2a,cyp26b1,tnc,esrp2,ptprs,rasip1,mag,fhl2,fo xo3,twist1,med1,tbc1d20,rnf6,aldh1a2,atp8a2,gnat2,fhod 3,dysf,gpm6a,nr4a2,itga5,pdlim5,trim46,nfasc,tiparp,zhx2 ,th,ext1,crispld1,chrna7,bcor,eya2,dok6
Neuron development	0.01669332	19	1140	map1b,atp8a2,gpm6a,tnc,ptprs,mag,rnf6,gnat2,nr4a2,pd lim5,trim46,nfasc,washc5,th,ext1,galr2,anks1a,chrna7,do k6
Sensory system development	0.01669332	10	377	med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm6a,zhx2,th,tfap 2a,twist1
Cell differentiation	0.01725075	48	4372	tnc,klf1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,smyd1,f oxo3,glipr2,med1,tfap2a,cyp26b1,prlh,ptprs,rasip1,mag,f hl2,cenpf,twist1,tbc1d20,rnf6,steap4,aldh1a2,gnat2,fhod 3,dysf,irf8,tdrd5,pdlim5,trim46,nfasc,tiparp,washc5,nxn,p tger4,zhx2,th,ext1,galr2,itga5,anks1a,trps1,pde4d,chrna7, eya2,dok6
Behavior	0.01791936	13	619	cfap20,prlh,kcnk2,atp8a1,atp8a2,ncoa2,nr4a2,slc16a1,itg a5,rmi1,th,chrna7,galr2
Intracellular receptor signaling pathway	0.02008492	9	323	rnf6,med1,cyp26b1,twist1,aldh1a2,nr4a2,hnf4g,fhl2,map 2k6
Reduction of food intake in response to dietary excess	0.02011061	2	5	prlh,rmi1
Nervous system development	0.02011061	31	2439	cox6b1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,tnc,prlh, ptprs,mag,foxo3,twist1,med1,rnf6,aldh1a2,gnat2,pdlim5, trim46,nfasc,washc5,fut9,zhx2,th,ext1,galr2,cenpf,anks1a ,tfap2a,chrna7,dok6
Sensory organ development	0.02011061	12	561	cyp26b1,kcnk2,med1,tbc1d20,aldh1a2,atp8a2,gnat2,gpm 6a,zhx2,th,tfap2a,twist1
Regulation of axon extension	0.02011061	5	94	ptprs,mag,rnf6,map1b,trim46
Response to vitamin	0.02011061	5	92	cyp26b1,tnc,trim25,med1,aldh1a2
Cellular hormone metabolic process	0.02011061	6	142	cyp26b1,aldh1a2,tiparp,dgat1,med1,cyp21a2
regulation of growth	0.02011061	8	267	sertad2,st7l,kcnk2,ptprs,mag,rnf6,irf8,trim46
Retina morphogenesis in camera-type eye	0.02011061	4	53	atp8a2,gnat2,zhx2,tfap2a
Sensory organ morphogenesis	0.02011061	8	267	cyp26b1,tbc1d20,atp8a2,gnat2,zhx2,th,tfap2a,twist1
Negative regulation of	0.02019114	6	147	atad2,xrn1,twist1,znf451,bcor,cenpf

chromosome organization				
Regulation of neuron differentiation	0.02113374	13	656	tcf12,brinp3,ptprs,mag,foxo3,med1,rnf6,map1b,atp8a2,p dlim5,washc5,zhx2,trim46
Retina development in camera-type eye	0.02113374	6	149	med1,atp8a2,gnat2,gpm6a,zhx2,tfap2a
Neuron projection morphogenesis	0.02244972	13	662	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Response to hormone	0.02411051	17	1031	foxo3,med1,rnf6,ncoa2,nr4a2,ptger4,chrna7,tnc,prlh,xrn1 ,gpr83,aldh1a2,hnf4g,th,trarg1,fhl2,gnaq
Negative regulation of developmental growth	0.02447961	5	105	kcnk2,ptprs,mag,rnf6,trim46
Cell morphogenesis involved in neuron differentiation	0.02447961	12	591	map1b,ptprs,mag,rnf6,atp8a2,nr4a2,pdlim5,trim46,nfasc, ext1,chrna7,dok6
Cell projection morphogenesis	0.02447961	13	678	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Axon development	0.02447961	11	510	map1b,tnc,ptprs,mag,rnf6,atp8a2,nr4a2,trim46,nfasc,ext 1,dok6
Plasma membrane bounded cell projection morphogenesis	0.02447961	13	676	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Response to organic cyclic compound	0.02545138	16	962	rnf6,med1,tiparp,tnc,pde4d,xrn1,foxo3,trim25,gpr83,aldh 1a2,ncoa2,nr4a2,slc16a1,hnf4g,th,fhl2
Negative regulation of neuron differentiation	0.02545138	7	224	ptprs,mag,foxo3,med1,rnf6,zhx2,trim46
Embryonic camera- type eye morphogenesis	0.02545138	3	28	th,twist1,tfap2a
Regulation of extent of cell growth	0.02545138	5	109	ptprs,mag,rnf6,map1b,trim46
Protein K48-linked ubiquitination	0.02545138	4	62	ube2k,march6,trim44,rnf6
Negative regulation of chromatin organization	0.02545138	4	63	atad2,twist1,znf451,bcor
Cellular developmental process	0.02579863	48	4587	tnc,klf1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,smyd1,f oxo3,glipr2,med1,tfap2a,cyp26b1,prlh,ptprs,rasip1,mag,f hl2,cenpf,twist1,tbc1d20,rnf6,steap4,aldh1a2,gnat2,fhod 3,dysf,irf8,tdrd5,pdlim5,trim46,nfasc,tiparp,washc5,nxn,p tger4,zhx2,th,ext1,galr2,itga5,anks1a,trps1,pde4d,chrna7, eya2,dok6

Circulatory system development	0.02618802	17	1064	th,kcnk2,rasip1,smyd1,fhl2,twist1,med1,aldh1a2,fhod3,dy sf,itga5,pdlim5,tiparp,nxn,rbm20,chrna7,bcor
Cell part morphogenesis	0.0264455	13	697	map1b,ptprs,mag,rnf6,atp8a2,gpm6a,nr4a2,pdlim5,trim4 6,nfasc,ext1,chrna7,dok6
Anatomical structure maturation	0.0264455	6	167	foxo3,aldh1a2,nr4a2,nfasc,washc5,anks1a
Response to extracellular stimulus	0.02777357	11	532	nr4a2,cyp26b1,tnc,prlh,foxo3,trim25,med1,aldh1a2,slc16 a1,rmi1,th
Response to oxygen-containing compound	0.0281392	23	1689	foxo3,nr4a2,brinp3,ptger4,th,card8,chrna7,cyp26b1,tnc,p rlh,klf1,dnm1,map2k6,pde4d,xrn1,trim25,med1,aldh1a2,n coa2,irf8,rmi1,trarg1,gnaq
Cellular response to oxygen- containing compound	0.02824704	18	1178	foxo3,nr4a2,brinp3,ptger4,card8,cyp26b1,tnc,klf1,map2k 6,pde4d,xrn1,med1,aldh1a2,irf8,th,trarg1,gnaq,chrna7
Response to axon injury	0.02862969	4	69	tnc,kcnk2,ptprs,mag
Negative regulation of axonogenesis	0.02862969	4	69	ptprs,mag,rnf6,trim46
Developmental growth involved in morphogenesis	0.02862969	7	237	tnc,ptprs,mag,med1,rnf6,map1b,trim46
Negative regulation of protein polyubiquitination	0.02862969	2	8	trim44,dysf
Regulation of phospholipid transport	0.02862969	2	8	atp8a1,atp8a2
Positive regulation of phospholipid transport	0.02862969	2	8	atp8a1,atp8a2
Neuron projection development	0.02913429	16	997	map1b,gpm6a,tnc,ptprs,mag,rnf6,atp8a2,nr4a2,pdlim5,tr im46,nfasc,washc5,ext1,galr2,chrna7,dok6
Cell maturation	0.03039891	6	178	foxo3,nr4a2,tdrd5,nfasc,washc5,anks1a
Axon extension	0.03039891	5	120	ptprs,mag,rnf6,map1b,trim46
Heart development	0.03089855	11	552	th,kcnk2,smyd1,fhl2,twist1,med1,aldh1a2,fhod3,pdlim5,r bm20,bcor
Cellular response to chemical stimulus	0.03089855	38	3443	foxo3,med1,rnf6,ncoa2,nr4a2,brinp3,ptger4,shisa2,cyp26 b1,card8,tfap2a,irf8,tiparp,trim44,tnc,kcnk2,klf1,map2k6, pde4d,xrn1,trim25,twist1,aldh1a2,dysf,slc16a1,hnf4g,nxn, th,trarg1,ube2k,znf451,gnaq,chrna7,fhl2,esrp2,itga5,cmbl ,nat1
Axonogenesis	0.0310125	10	471	map1b,ptprs,mag,rnf6,atp8a2,nr4a2,trim46,nfasc,ext1,do k6
Embryonic forelimb morphogenesis	0.03241747	3	34	twist1,aldh1a2,tfap2a

Cellular response to retinoic acid	0.03315736	4	74	brinp3,cyp26b1,tnc,aldh1a2
Homeostatic process	0.03339051	25	1962	klf1,foxo3,abhd8,ptger4,gpr20,xrn1,ube2k,cyp26b1,crocc, prlh,map2k6,pde4d,med1,steap4,gnat2,slc16a1,tsc22d3,n xn,rmi1,th,galr2,dgat1,tbc1d20,chrna7,rfc4
Negative regulation of cellular component organization	0.03339051	13	739	atad2,xrn1,ptger4,ptprs,mag,twist1,rnf6,fhod3,dysf,znf45 1,bcor,trim46,cenpf
Response to vitamin D	0.03347122	3	35	tnc,trim25,med1
Animal organ morphogenesis	0.03351451	16	1027	tfap2a,cyp26b1,tnc,esrp2,fhl2,foxo3,twist1,med1,tbc1d20 ,aldh1a2,atp8a2,gnat2,tiparp,zhx2,th,bcor
System development	0.03351451	50	4976	cox6b1,klf1,map1b,atp8a2,tcf12,gpm6a,nr4a2,brinp3,th,f oxo3,glipr2,tfap2a,cyp26b1,tnc,prlh,kcnk2,esrp2,ptprs,rasi p1,mag,smyd1,fhl2,cenpf,twist1,med1,tbc1d20,rnf6,aldh1 a2,gnat2,fhod3,dysf,irf8,itga5,pdlim5,trim46,nfasc,tiparp, washc5,nxn,ptger4,fut9,zhx2,ext1,galr2,rbm20,chrna7,bc or,anks1a,trps1,dok6
Embryonic eye morphogenesis	0.03498708	3	36	th,twist1,tfap2a
Cell morphogenesis involved in differentiation	0.03535026	13	751	map1b,ptprs,mag,tbc1d20,rnf6,atp8a2,nr4a2,pdlim5,trim 46,nfasc,ext1,chrna7,dok6
Negative regulation of cell growth	0.03535026	6	191	sertad2,st7l,ptprs,mag,rnf6,trim46
Embryonic limb morphogenesis	0.03535026	5	130	cyp26b1,twist1,med1,aldh1a2,tfap2a
Embryonic appendage morphogenesis	0.03535026	5	130	cyp26b1,twist1,med1,aldh1a2,tfap2a
Protein localization to axon	0.03535026	2	10	trim46,nfasc
Regulation of developmental growth	0.03607979	8	333	prlh,kcnk2,ptprs,mag,rnf6,map1b,atp8a2,trim46
Cellular response to organic cyclic compound	0.03631117	11	579	rnf6,med1,tiparp,tnc,pde4d,xrn1,foxo3,nr4a2,slc16a1,hnf 4g,fhl2
Response to nutrient levels	0.03921368	10	500	cyp26b1,tnc,prlh,foxo3,trim25,med1,aldh1a2,slc16a1,rmi 1,th
Response to steroid hormone	0.03921368	9	418	rnf6,med1,foxo3,gpr83,ncoa2,nr4a2,hnf4g,th,fhl2
Regulation of tooth mineralization	0.04037623	2	11	tfap2a,bcor
Oxidation- reduction process	0.04038443	16	1061	cyp26b1,steap4,coq7,prlh,tsta3,pycr3,mtrr,cox6b1,aldh1a 2,ppp1r3a,nxn,th,cyp21a2,twist1,tbrg4,tstd1
Response to endogenous stimulus	0.04173373	22	1692	foxo3,med1,rnf6,ncoa2,nr4a2,ptger4,shisa2,chrna7,tnc,pr lh,klf1,pde4d,xrn1,gpr83,aldh1a2,hnf4g,th,trarg1,znf451,f hl2,gnaq,esrp2

Vitamin metabolic process	0.04365266	5	140	cyp26b1,mtrr,aldh1a2,slc2a3,aasdhppt
Positive regulation of transcription, DNA-templated	0.04365266	21	1593	zfhx4,klf1,foxo3,tcf12,ncoa2,atad2,coq7,twist1,med1,tfap 2a,irf8,hnf4g,trim44,galr2,zbed1,ppp3r1,rnf6,nr4a2,serta d2,fhl2,cdk8
Response to ketone	0.04397175	6	204	ptger4,tnc,xrn1,foxo3,ncoa2,th
Negative regulation of transcription by RNA polymerase II	0.04451995	14	896	zfhx4,foxo3,coq7,zhx2,trps1,fhl2,tfap2a,irf8,twist1,med1, ncoa2,bcor,znf451,nr4a2
Protein polyubiquitination	0.04451995	7	277	ubox5,ube2k,rnf6,march6,trim44,dysf,fbxl7
Response to external stimulus	0.04451995	29	2525	card8,rps15a,nr4a2,trim44,ptger4,cyp26b1,tnc,prlh,kcnk2 ,ptprs,mag,pde4d,foxo3,trim25,med1,aldh1a2,atp8a2,gn at2,dysf,ifi44,irf8,gpm6a,slc16a1,nfasc,rmi1,th,ext1,gnaq, dok6
Response to organic substance	0.04451995	37	3461	foxo3,med1,rnf6,ncoa2,march6,nr4a2,brinp3,ptger4,th,sh isa2,card8,aldh1a2,irf8,tiparp,trim44,chrna7,cyp26b1,tnc, prlh,klf1,dnm1,map2k6,pde4d,xrn1,trim25,twist1,gpr83,sl c16a1,hnf4g,rmi1,trarg1,ube2k,znf451,fhl2,gnaq,esrp2,itg a5
Negative regulation of macromolecule metabolic process	0.04451995	32	2872	serpinb1,zfhx4,foxo3,atad2,coq7,zhx2,xrn1,trps1,card8,fhl 2,cenpf,twist1,tfap2a,irf8,trim44,bcor,kcnk2,pde4d,smyd1 ,med1,dysf,ncoa2,nxn,c1d,chrna7,rasip1,znf451,tbrg4,nr4 a2,gnaq,tiparp,rps15a
Positive regulation of gene expression	0.04451995	25	2046	zfhx4,klf1,foxo3,tcf12,ncoa2,atad2,coq7,twist1,med1,tfap 2a,irf8,hnf4g,trim44,galr2,zbed1,ppp3r1,cyp26b1,tnc,rnf6 ,aldh1a2,nr4a2,sertad2,rbm20,fhl2,cdk8
Negative regulation of gene expression	0.04451995	24	1952	zfhx4,foxo3,atad2,coq7,zhx2,trps1,card8,fhl2,cenpf,twist1 ,tfap2a,irf8,bcor,xrn1,smyd1,med1,dysf,ncoa2,c1d,znf451, tbrq4,nr4a2,tiparp,rps15a
Developmental maturation	0.04451995	7	282	foxo3,aldh1a2,nr4a2,tdrd5,nfasc,washc5,anks1a
Negative regulation of histone modification	0.04451995	3	44	twist1,znf451,bcor
Protein modification by small protein conjugation	0.04451995	14	891	dcun1d2,ubox5,ube2k,znf451,rnf6,march6,trim44,bcor,tri m25,med1,dysf,nxn,fbxl7,zbed1
Regulation of integrin activation	0.04451995	2	13	ptger4,rasip1
Forelimb morphogenesis	0.04451995	3	42	twist1,aldh1a2,tfap2a
Dopamine biosynthetic process	0.04451995	2	12	th,nr4a2
Negative regulation of transcription, DNA- templated	0.04451995	18	1298	zfhx4,foxo3,atad2,coq7,zhx2,trps1,fhl2,cenpf,twist1,tfap2 a,irf8,bcor,smyd1,med1,ncoa2,c1d,znf451,nr4a2

Embryonic camera- type eye formation Evelid	0.04451995	2	12	twist1,tfap2a
Evelid				
development in camera-type eye	0.04451995	2	13	twist1,tfap2a
Cellular response to organic substance	0.04451995	32	2872	foxo3,med1,rnf6,ncoa2,nr4a2,brinp3,ptger4,shisa2,card8, irf8,tiparp,trim44,cyp26b1,tnc,klf1,map2k6,pde4d,xrn1,tri m25,twist1,aldh1a2,slc16a1,hnf4g,th,trarg1,ube2k,znf451 ,gnaq,chrna7,fhl2,esrp2,itga5
Cellular response to alcohol	0.04451995	4	90	ptger4,tnc,xrn1,foxo3
Response to amyloid-beta	0.04451995	3	43	dnm1,foxo3,chrna7
Negative regulation of cellular macromolecule biosynthetic process	0.04451995	20	1509	zfhx4,foxo3,atad2,coq7,zhx2,xrn1,trps1,fhl2,cenpf,twist1,t fap2a,irf8,bcor,kcnk2,smyd1,med1,ncoa2,c1d,znf451,nr4a 2
Cardiac muscle tissue development	0.04461977	6	213	kcnk2,fhl2,med1,aldh1a2,fhod3,pdlim5
Axon regeneration	0.04525881	3	45	tnc,ptprs,mag
Neuron maturation	0.04525881	3	45	nr4a2,nfasc,anks1a
Regulation of nucleobase- containing compound metabolic process	0.04595578	44	4374	eya2,zfhx4,klf1,foxo3,tfap2a,tcf12,ncoa2,atad2,coq7,zhx2 ,xrn1,esrp2,trps1,fhl2,cenpf,twist1,med1,irf8,rfc4,hnf4g,tri m44,galr2,bcor,zbed1,ppp3r1,kcnk2,smyd1,znf45,rnf6,znf 214,nr4a2,tsc22d3,znf362,sertad2,c1d,znf628,zfp2,rbm20 ,vgll3,card8,znf451,trim25,tbrg4,cdk8
Tissue development	0.04604795	25	2079	glipr2,tfap2a,cyp26b1,tnc,eya2,kcnk2,esrp2,ptprs,rasip1,s myd1,fhl2,cenpf,twist1,med1,tbc1d20,aldh1a2,fhod3,dysf ,pdlim5,tiparp,ext1,itga5,bcor,trps1,pde4d
DNA-templated transcription, initiation	0.04769373	7	293	twist1,med1,znf451,znf45,cdk8,nr4a2,hnf4g
Transcription initiation from RNA polymerase II promoter	0.04769373	6	221	med1,znf451,znf45,cdk8,nr4a2,hnf4g
Response to xenobiotic stimulus	0.04769373	7	292	cyp26b1,foxo3,nr4a2,tiparp,th,cmbl,nat1
Appendage morphogenesis	0.04769373	5	154	cyp26b1,twist1,med1,aldh1a2,tfap2a
Limb morphogenesis	0.04769373	5	154	cyp26b1,twist1,med1,aldh1a2,tfap2a
Positive regulation of nucleobase- containing compound metabolic process	0.04769373	24	1978	eya2,zfhx4,klf1,foxo3,tcf12,ncoa2,atad2,coq7,twist1,med 1,tfap2a,irf8,rfc4,hnf4g,trim44,galr2,zbed1,ppp3r1,rnf6,nr 4a2,sertad2,rbm20,fhl2,cdk8

Negative regulation of neurogenesis	0.04769373	7	292	ptprs,mag,foxo3,med1,rnf6,zhx2,trim46
Negative regulation of nitrogen compound metabolic process	0.04769373	29	2551	serpinb1,zfhx4,foxo3,atad2,coq7,zhx2,xrn1,trps1,card8,fhl 2,cenpf,twist1,tfap2a,irf8,trim44,bcor,kcnk2,pde4d,smyd1 ,med1,dysf,ncoa2,nxn,c1d,chrna7,rasip1,znf451,nr4a2,gn aq
Roof of mouth development	0.04769373	4	94	twist1,tiparp,tfap2a,bcor
Cellular response to endogenous stimulus	0.04769373	19	1431	foxo3,med1,rnf6,ncoa2,nr4a2,ptger4,shisa2,tnc,klf1,pde4 d,xrn1,hnf4g,th,trarg1,znf451,gnaq,chrna7,fhl2,esrp2
Response to nutrient	0.04807838	6	222	cyp26b1,tnc,trim25,med1,aldh1a2,slc16a1
Regulation of gene expression	0.04807838	47	4798	zfhx4,klf1,znf451,foxo3,tfap2a,tcf12,ncoa2,atad2,coq7,zh x2,esrp2,trps1,card8,fhl2,cenpf,twist1,med1,irf8,hnf4g,tri m44,galr2,bcor,zbed1,ppp3r1,cyp26b1,tnc,xrn1,smyd1,znf 45,rnf6,aldh1a2,dysf,znf214,nr4a2,tsc22d3,znf362,sertad 2,c1d,znf628,zfp2,rbm20,vgll3,trim25,tbrg4,tiparp,cdk8,rp s15a
Developmental cell growth	0.04807838	6	223	ptprs,mag,rnf6,map1b,pdlim5,trim46
Oocyte development	0.04807838	3	48	foxo3,tdrd5,washc5
Regulation of neurogenesis	0.04807838	13	824	<pre>tcf12,brinp3,ptprs,mag,foxo3,med1,rnf6,map1b,atp8a2,p dlim5.washc5.zhx2.trim46</pre>

Table S5. Top 5 BLAST hits for LG15 QTL. Bolded values indicate the top hit that was used1278to determine the region the significant oral jaw size QTL aligned to an 18-Mb region on scaffold1279c_bro_v1_0_scaf8 (8840660-27314762) in the *C. brontotheroides* reference genome that1280contained 3 genes (map2k6, galr2, and grid2ip).

LG15	Scoffold	% identity	Length (hp)	Migmatah	Stort	End	E valua	Ditaoro
10000	scallolu	07.017	(0p) 06	2	Start 8940660	Enu 9940755	1 05E 42	174
10333	C_DIO_VI_O_SCAIO	97.917	90	2	0040000	0040733	1.7512-42	1/4
10999	c_bro_v1_0_scaf8	100	17	0	17544438	17544422	4.6	34.2
10999	c_bro_v1_0_scaf36	100	20	0	201747	201728	0.074	40.1
10999	c_bro_v1_0_scaf7	100	19	0	13795738	13795756	0.29	38.2
10999	c_bro_v1_0_scaf52	100	18	0	23185857	23185840	1.2	36.2
10999	c_bro_v1_0_scaf38	100	18	0	1880370	1880387	1.2	36.2
33382	c_bro_v1_0_scaf8	100	93	0	27314670	27314762	1.97E-45	184
33382	c_bro_v1_0_scaf8	93.617	47	3	26627380	26627426	8.05E-11	69.9
33382	c_bro_v1_0_scaf8	93.617	47	3	27916662	27916616	8.05E-11	69.9
33382	c_bro_v1_0_scaf8	95.238	42	2	1464518	1464477	3.18E-10	67.9
33382	c_bro_v1_0_scaf8	95.238	42	2	11224060	11224019	3.18E-10	67.9

1285 **Table S6.**

Per generation mutation rate estimation from high coverage sequencing of parents and F1 from two crosses of San Salvador Island species.

1288

1284

Cross	C. varie	gatus x	C. variegatus x C.
	C. bronto	theroides	desquamator
Offspring	F1.A	F1.B	F1.A
Avg. coverage	67.5X	45.1X	32.7X
Known heterozygous sites genotype quality (GQ)	X>99	X>99	X>99
Known heterozygous sites base quality rank sum (BaseQRankSum)	1.4 <x<2.6< td=""><td>1.4<x<2.6< td=""><td>1.4<x<2.7< td=""></x<2.7<></td></x<2.6<></td></x<2.6<>	1.4 <x<2.6< td=""><td>1.4<x<2.7< td=""></x<2.7<></td></x<2.6<>	1.4 <x<2.7< td=""></x<2.7<>
Known heterozygous sites mapping quality (MQ)	x>54	x>54	x>54
Known heterozygous sites mapping quality rank sum (MQRankSum)	1.6 <x<1.9< td=""><td>1.6<x<1.9< td=""><td>1.4<x<2< td=""></x<2<></td></x<1.9<></td></x<1.9<>	1.6 <x<1.9< td=""><td>1.4<x<2< td=""></x<2<></td></x<1.9<>	1.4 <x<2< td=""></x<2<>
Known heterozygous sites quality by depth (QD)	24 <x<36< td=""><td>24<x<36< td=""><td>24<x<36< td=""></x<36<></td></x<36<></td></x<36<>	24 <x<36< td=""><td>24<x<36< td=""></x<36<></td></x<36<>	24 <x<36< td=""></x<36<>
Known heterozygous sites depth (DP)	27 <x<77< td=""><td>15 < x < 54</td><td>12< x < 39</td></x<77<>	15 < x < 54	12< x < 39
Known heterozygous sites allele depth (AD)	10 <x<42< td=""><td>5<x<30< td=""><td>4< x < 21</td></x<30<></td></x<42<>	5 <x<30< td=""><td>4< x < 21</td></x<30<>	4< x < 21
Known heterozygous sites read position rank sum (ReadPosRankSum)	-1.8 <x<2.3< td=""><td>1.8<x<2.3< td=""><td>1.4<x<2.34< td=""></x<2.34<></td></x<2.3<></td></x<2.3<>	1.8 <x<2.3< td=""><td>1.4<x<2.34< td=""></x<2.34<></td></x<2.3<>	1.4 <x<2.34< td=""></x<2.34<>
Known heterozygous sites StrandOddsRatio (SOR)	0.17 <x<1.4< td=""><td>0.14<x<1.4< td=""><td>0.19<x<1.3< td=""></x<1.3<></td></x<1.4<></td></x<1.4<>	0.14 <x<1.4< td=""><td>0.19<x<1.3< td=""></x<1.3<></td></x<1.4<>	0.19 <x<1.3< td=""></x<1.3<>
Known heterozygous sites FisherStrand (FS)	4.6 <x<7.5< td=""><td>4.6<x<7.3< td=""><td>45<x<7.5< td=""></x<7.5<></td></x<7.3<></td></x<7.5<>	4.6 <x<7.3< td=""><td>45<x<7.5< td=""></x<7.5<></td></x<7.3<>	45 <x<7.5< td=""></x<7.5<>
GATK new mutation sites (bp)	9114	8936	331
mpileup new mutation sites (bp)	14772	14182	7206
Shared variants (bp)	20	37	9
Accessible genome (bp)	698887016	712364816	695995433
Mutation rate estimate	1.43x10 ⁻⁸	2.59x10 ⁻⁸	6.46x10 ⁻⁹

1291 **Table S7.**

Parameters for selective sweep analyses. The average coverage, composite likelihood ratio
 threshold based on neutral simulations, and the population size change parameters and individual
 used for each species.

1295

Species	Average Coverage	CLR threshold	SweeD Commands
SSI generalist	28.87X	4.89	-folded -strictPolymorphic -G 0.4068 -eN 5.45 181.8 -s 64
SSI molluscivore	17.37X	4.47	-folded -strictPolymorphic -G 0.389 -eN 5.88 196 -s 88
SSI scale-eater	18.21X	5.28	-folded -strictPolymorphic -G 0.218 -eN 8.11 270 -s 52
RC	21.04X	4.41	-folded -strictPolymorphic -G 0.23 -eN 11.15 269.1 -s 34
NP	22.67X	2.28	-folded -strictPolymorphic -G 0.198 -eN 13.35 445.07 -s 30
DR	NA	5.37	-folded -strictPolymorphic -G 0.236 -eN 10.83 362.8 -s 20
NCC	27.62X	5.09	-folded -strictPolymorphic -G 0.29 -eN 8.01 374.4 -s 24
VEN	17.21X	18.05	-folded -strictPolymorphic -G 8.87 -eN 0.086 0.345 -eN 1.077 38.78 -s 22

1298

1299 Table S8. The number of introgression regions in the SSI specialists. We determined introgressed regions of the genome as region with a fd statistic (ranges from 0 to 1) value above 1300 1301 the threshold found in neutral simulations with no gene flow. These introgressed regions from each donor population were then overlapped with regions of the genome with strong genetic 1302 divergence (variants with Fst ≥ 0.95) and signatures of a hard selective sweep (CLR ≥ 5.28 and 1303 > 4.47 for scale-eaters and molluscivores respectively) to determine the number of adaptive 1304 1305 introgression regions. These adaptive introgression regions range in size from 50-kb to 110-kb in 1306 length.

1307

Donor population (P3)	f _d threshold	Number of candidate	Number of candidate adaptive			
Introgression with Molluscivore						
Rum Cay	0.81	536	5			
New Providence	0.72	660	7			
Dominican Republic	0.81	375	8			
North Carolina	0.69	138	0			
Venezuela	0.69	54	0			
Introgression with Scale-eater						
Rum Cay	0.81	385	5			
New Providence	0.72	645	9			
Dominican Republic	0.81	426	11			
North Carolina	0.71	163	3			
Venezuela	0.69	15	0			

1309 **Table S9.**

1310Combinations of Caribbean pupfish populations used to detect signatures of introgression in San Salvador1311Island specialists and generalist lineages on other islands. The *fd* statistic was used to detect introgression1312between combinations of P2 and P3 populations, given the tree (((P1,P2),P3),O). For this series of tests we used C.1313artifrons as the outgroup in which limited gene flow is expected to have occurred with the others.

1314

-	Sister group (P1)	Introgression into (P2)	Introgression from (P3)	Adaptive introgression regions			
	Focal introgression regions in scale-eater						
<u>A.</u>	C. brontotheroides	C. desquamator	C. laciniatus NP	11			
	C. brontotheroides	C. desquamator	C. higuey DR	8			
	C. brontotheroides	C. desquamator	C. variegatus NC	4			
	C. brontotheroides	C. desquamator	C. dearborni VZ	0			
<u>B.</u>	C. variegatus SSI	C. higuey DR	C. laciniatus NP	2			
	C. variegatus SSI	C. higuey DR	C. variegatus NC	3			
	C. variegatus RC	C. higuey DR	C. laciniatus NP	0			
	C. variegatus RC	C. higuey DR	C. variegatus NC	0			
	C. variegatus SSI	C. laciniatus NP	C. variegatus NC	4			
	C. variegatus RC	C. laciniatus NP	C. variegatus NC	1			
	C. variegatus RC	C. laciniatus NP	C. variegatus NC	2			
	C. variegatus SSI	C. variegatus RC	C. higuey DR	3			
	C. variegatus SSI	C. variegatus RC	C. laciniatus NP	4			
	C. variegatus SSI	C. variegatus RC	C. variegatus NC	4			
		Focal introgression region	s in molluscivore				
<u>C.</u>	C. desquamator	C. brontotheroides	C. laciniatus NP	5			
_	C. desquamator	C. brontotheroides	C. higuey DR	6			
_	C. desquamator	C. brontotheroides	C. variegatus NC	2			
_	C. desquamator	C. brontotheroides	C. dearborni VZ	0			
<u>D.</u>	C. variegatus SSI	C. higuey DR	C. laciniatus NP	0			
2	C. variegatus SSI	C. higuey DR	C. variegatus NC	1			
_	C. variegatus RC	C. higuey DR	C. laciniatus NP	0			
_	C. variegatus RC	C. higuey DR	C. variegatus NC	0			
_	C. variegatus SSI	C. laciniatus NP	C. variegatus NC	1			
_	C. variegatus RC	C. laciniatus NP	C. variegatus NC	0			
_	C. variegatus RC	C. laciniatus NP	C. variegatus NC	0			
_	C. variegatus SSI	C. variegatus RC	C. higuey DR	2			
_	C. variegatus SSI	C. variegatus RC	C. laciniatus NP	1			
	C. variegatus SSI	C. variegatus RC	C. variegatus NC	3			

1315 1316 1317

1318

Table S10.

1319	Candidate adaptive introgression regions from Rum Cay generalists (C. variegatus) and San Salvador Island
1320	specialists.
1321	

Scaffold	Variant Position	Start	End	Gene			
Introgression with Molluscivore							
c_bro_v1_0_scaf11	12962909	12965001	13010000	shisa2, atp8a2			
c_bro_v1_0_scaf16	35813565	35765001	35875000	rfc4			
c_bro_v1_0_scaf18	18167642	18150001	18215000	anks1a			
c_bro_v1_0_scaf18	18177499	18150001	18225000	sarg			
c_bro_v1_0_scaf52	19358574	19345001	19395000	fn1			
Introgression with Scale-eater							
c_bro_v1_0_scaf1	15017907	14995001	15065000	rbm20			
c_bro_v1_0_scaf5	28411973	28365001	28455000	gsel			
c_bro_v1_0_scaf37	3586373	3585001	3650000	chrna7			
c_bro_v1_0_scaf43	30358142	30355001	30405000	cld			
c_bro_v1_0_scaf53	11080970	11080001	11130000	zhx2			

1325 **Table S11.**

1326Candidate adaptive introgression regions from Dominican Republic generalists (C. higuey) and San Salvador1327Island specialists.

1328

1324

Scaffold	Variant Position	Start End		Gene			
Introgression with Molluscivore							
c_bro_v1_0_scaf1	28938769	28935001	28985000	rps15a			
c_bro_v1_0_scaf1	28962108	28935001	28995000	notum2			
c_bro_v1_0_scaf1	28969771	28935001	28995000	coq7			
c_bro_v1_0_scaf7	12326193	12305001	12375000	smek1			
c_bro_v1_0_scaf7	12606143	12605001	12685000	otof			
c_bro_v1_0_scaf11	11256440	11210001	11295000	ube2w			
c_bro_v1_0_scaf18	18167642	18135001	18225000	anks1a,sarg			
c_bro_v1_0_scaf19	6430544	6410001	6465000	trim44			
Introgression with Scale-eater							
c_bro_v1_0_scaf5	28411973	28385001	28450000	gsel			
c_bro_v1_0_scaf8	19759133	19735001	19790000	map2k6			
c_bro_v1_0_scaf18	28961523	28915001	29010000	itga5			
c_bro_v1_0_scaf19	7822448	7815001	7870000	nap1l4			
c_bro_v1_0_scaf34	25414453	25400001	25460000	cadps			
c_bro_v1_0_scaf34	26069290	26020001	26115000	srgap3			
c_bro_v1_0_scaf37	3700741	3685001	3750000	trim46			
c_bro_v1_0_scaf44	12541185	12540001	12620000	kcnk2, cenpf			
c_bro_v1_0_scaf44	24564920	24540001	24620000	gpm6a			
c_bro_v1_0_scaf53	18998120	18990001	19045000	hdac9b			
c_bro_v1_0_scaf53	20294941	20245001	20330000	steap4			

1331	
1332	

1332

1333

Table S12. Candidate adaptive introgression regions from New Providence Island generalists (*C. laciniatus*) and San Salvador Island specialists.

Scaffold	Variant Position	Start	End	Gene			
Introgression with Molluscivore							
c_bro_v1_0_scaf1	29209555	29160001	29250000	ggal			
c_bro_v1_0_scaf1	29241942	29195001	29250000	klf1			
c_bro_v1_0_scaf7	12326193	12300001	12375000	smek1			
c_bro_v1_0_scaf7	12628199	12610001	12670000	otof			
c_bro_v1_0_scaf24	20486354	20470001	20540000	cyp26b1			
c_bro_v1_0_scaf33	12634285	12590001	12655000	bri3bp, wdr31			
c_bro_v1_0_scaf47	16145704	16110001	16195000	ttc33			
Introgression with Scale-eater							
c_bro_v1_0_scaf5	27882801	27845001	27900000	tcf12			
c_bro_v1_0_scaf7	12604722	12555001	12620000	otof			
c_bro_v1_0_scaf11	9503186	9500001	9550000	prlh			
c_bro_v1_0_scaf11	11975348	11930001	12010000	ncoa2			
c_bro_v1_0_scaf16	32982520	32950001	33030000	crocc			
c_bro_v1_0_scaf18	28961523	28915001	28970000	itga5			
c_bro_v1_0_scaf37	8265887	8220001	8315000	mylipa			
c_bro_v1_0_scaf43	30297117	30250001	30325000	ppp3r1			
c_bro_v1_0_scaf53	20832687	20830001	20880000	galnt1			

Table S13. Candidate adaptive introgression regions from North Carolina Coast generalists (*C. variegatus*) and San Salvador Island specialists.

Scaffold	Variant Position	Start	End	Gene			
Introgression with Scale-eater							
c_bro_v1_0_scaf1	28962108	28945001	28995000	notum2,coq7			
c_bro_v1_0_scaf1	38350857	38330001	38400000	gpr83			
c_bro_v1_0_scaf34	32388612	32380001	32440000	eya2			

1340 1341

1342 **Table S14.**

Selective sweep ages on San Salvador Island. 95% high posterior density region of the
 posterior distribution of sweep ages of focal regions in scale-eater and molluscivore genomes
 estimated using McSwan (48).

1346

C		0.0011	Position	Position	Region	95% HPD	95% HPD
Gene	Irait	Scaffold	Start	Stop	Size	Lower	Upper
			Scale-eater				
cfap20	habitat preference	c_bro_v1_0_scaf37	5000841	5017240	16399	6747.04	8490.23
prlh	habitat preference	c_bro_v1_0_scaf11	9200146	9276987	76841	6594.56	9210.36
card8	pigmentation	c_bro_v1_0_scaf46	1451011	1663431	212420	973.64	5097.36
kcnk2, cenpf	trophic morphology	c_bro_v1_0_scaf44	12227155	12305895	78740	2936.44	3966.91
smyd1	trophic morphology	c_bro_v1_0_scaf39	1643098	1647708	4610	3054.91	6030.54
tcf12	trophic morphology	c_bro_v1_0_scaf5	27975725	28016276	40551	1607.22	5119.88
twist1	trophic morphology	c_bro_v1_0_scaf53	18953132	19092361	139229	1636.34	3413.14
itga5	trophic morphology	c_bro_v1_0_scaf18	28040450	28049258	8808	1697.39	2357.06
Molluscivore							
ext1	trophic morphology	c_bro_v1_0_scaf26	162903	230930	68027	814.01	1060.49
tiparp	trophic morphology	c_bro_v1_0_scaf21	33602383	33606685	4302	3353.84	5003.16
cyp26b1	trophic morphology	c_bro_v1_0_scaf24	20527588	20602663	75075	1447.58	4567.30

Data S1. 1349 *Cyprinodon* pupfish sampling information. The pond/lake names, localities, island, country, 1350 and species names, and individual codes of the pupfish individuals used in this study. 1351 1352 Data S2. 1353 San Salvador Island scale-eater candidate variants. The candidate scale-eater variants that 1354 were nearly-fixed (Fst > 0.95) and in a region with a signature of a hard selective sweep and the 1355 genes within 20-kb of them. 1356 1357 Data S3. 1358 San Salvador Island molluscivore candidate variants. The candidate molluscivore variants 1359 that were nearly-fixed (Fst > 0.95) and in a region with a signature of a hard selective sweep and 1360 the genes within 20-kb of them. 1361 1362 1363 Data S4. 1364 Differentially expressed genes at 2 dpf. The gene names and *P*-values of genes that were found 1365 to be significantly differential expressed (FDR> 0.05) between scale-eaters and mollsucivores at 1366 the 2 days post-fertilization larval stage in a previous study (36). 1367 1368 1369 Data S5. 1370 **Differentially expressed genes at 8 dpf.** The gene names and *P*-values of genes that were found 1371 to be significantly differential expressed (FDR> 0.05) between scale-eaters and mollsucivores at 1372 the 8 days post-fertilization larval stage in a previous study (36). 1373 1374 Data S6. 1375 SSI GWAS trait measurements. Trait values of standard length, lower oral jaw size, nasal 1376 protrusion distance, and caudal fin pigmentation measured across the three species of San 1377 Salvador Island radiation to include in a GWAS for candidate variants underlying these traits. 1378 1379 1380 Data S7 Top genomic regions associated with lower oral jaw size in a GWAS of SSI species. 1381 Regions in which all the variants within a 20-kb windows had a summed PIP score that was in 1382 the 99th percentile of all summed PIP scores for association with lower oral jaw size across 10 1383 independent runs of Bayesian linear mixed model implemented in GEMMA (37). 1384 1385 1386 Data S8. Top genomic regions associated with lower caudal fin pigmentation in a GWAS of SSI 1387 species. Regions in which all the variants within a 20-kb windows had a summed PIP score that 1388 1389 was in the 99th percentile of all summed PIP scores for association with caudal fin pigmentation across 10 independent runs of Bayesian linear mixed model implemented in GEMMA (37). 1390 1391 1392 Data S9. Top genomic regions associated with lower maxillary nasal protrusion in a GWAS of SSI 1393 species. Regions in which all the variants within a 20-kb windows had a summed PIP score that 1394

1395 was in the 99th percentile of all summed PIP scores for association with maxillary nasal
 1396 protrusion across 10 independent runs of Bayesian linear mixed model implemented in
 1397 GEMMA.

1398