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Abstract10

The allele-based association test or the allelic test, comparing allele frequency difference between11

case and control groups, is locally most powerful. However, the classical allelic test is limited in12

applications because it is sensitive to the Hardy–Weinberg equilibrium (HWE) assumption, not ap-13

plicable to continuous traits, and not easy to account for covariate effects or sample correlation. To14

develop a generalized robust allelic test, we propose a unifying regression model with individual15

allele as the response variable. We show that the score test statistic derived from this novel regres-16

sion framework contains a correction factor that explicitly adjusts for the departure from HWE and17

encompasses the classical allelic test as a special case. When the trait of interest is continuous, the18

corresponding allelic test evaluates a weighted difference between individual-level allele frequency19

estimate and sample estimate where the weight is proportional to an individual’s trait value, and20

the test remains valid under Y-dependent sampling. Finally, the proposed method allows for joint21

allele-based association analyses of multiple (continuous or binary) phenotypes, in the presence22

of covariates, sample correlation and population heterogeneity. To support our analytical findings,23

we provide empirical evidence from both simulation and application studies.24

Keywords: Allele-based association analysis; Correlation; Hardy–Weinberg equilibrium; Multiple25

phenotypes; Multiple populations; Relatedness; Robustness.26
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1 Introduction27

A key component of current large-scale genetic studies of complex human traits is association28

analysis. An association study aims to identify genetic markers that influence a heritable trait or29

phenotype of interest, while accounting for environmental effects. To formulate the problem more30

precisely, assume that single nucleotide polymorphisms (SNPs) are the genetic markers available.31

For each bi-allelic SNP, let a and A be the two possible alleles, and as in convention let A denote32

the minor allele with population frequency p ≤ 0.5. The SNP genotype G for an individual is a33

paired (but unordered) alleles, taking the form of aa, Aa or AA. For a case-control association34

study of a binary trait (Table 1), intuitively one can compare the estimates of allele frequency of A35

between the case and control groups. Indeed, the resulting allelic test is locally most powerful, but36

the validity of the test hinges on the assumption of Hardy-Weinberg equilibrium (HWE) (Sasieni,37

1997). Counting each genotype AA contributing two independent copies of allele A, the allelic38

test ‘doubles’ the sample size but implicitly assumes HWE (Sasieni, 1997). That is, the genotype39

frequencies depend only on the allele frequencies as, paa = (1− p)2, pAa = 2p(1− p) and pAA =40

p2.

Table 1: Notations for genotype and allele counts for a case-control study. The HLA-DQ3
example is from Sasieni (1997), studying women with cervical intraepithelial neoplasia 3.

Genotype Counts Allele Counts
aa Aa AA Total a A Total

Case r0 r1 r2 r 2r0 + r1 r1 +2r2 2r
Control s0 s1 s2 s 2s0 + s1 s1 +2s2 2s

naa nAa nAA na nA
Total n0 n1 n2 n 2n0 +n1 n1 +2n2 2n

The HLA-DQ3 example from Sasieni (1997)
Case 40 45 28 113 125 101 226
Control 273 100 43 416 646 186 832
Total 313 145 71 529 771 287 1058

41
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For a population to be in HWE, several assumptions must be (approximately) true includ-42

ing random mating, infinite population size, and no inbreeding, mutation, migration, or selection43

(Hardy et al., 1908; Weinberg, 1908). To evaluate the HWE assumption using an independent44

sample as in Table 1, one typically applies the Pearson goodness-of-fit χ2 test, ∑
3
i=1

(Oi−Ei)
2

Ei
=45

(n0−n(1−p)2)2

n(1−p)2 + (n1−n2p(1−p))2

n2p(1−p) + (n2−np2)2

np2 ∼ χ2
2 . In practice, allele frequency p is often unknown46

and commonly replaced by the sample estimate resulting in loss of degrees of freedom (d.f.). The47

resulting Pearson-based HWE test thus has the following form,48

THWE, Pearson =
(n0−n(1− p̂)2)2

n(1− p̂)2 +
(n1−n2p̂(1− p̂))2

n2p̂(1− p̂)
+

(n2−np̂2)2

np̂2 ∼ χ
2
1 , (1)

where p̂ = (n1 +2n2)/2n. Using the HLA-DQ3 data in Table 1 as an illustration, among a total of49

529 individuals 313, 145 and 71 have genotypes, respectively, aa, Aa and AA. Direct application50

of THWE, Pearson yields a test statistic of 49.7623 and a p-value of 1.74× 10−12, suggesting that51

the population is not in HWE.52

In the presence of Hardy-Weinberg disequilibrium (HWD), the size of the classical allelic test53

is not controlled at the nominal level (Sasieni, 1997). Efforts have been made to alleviate this54

problem, mainly along the line of improving variance estimate of the original test statistic (Schaid55

and Jacobsen, 1999). However, this improvement does not resolve several important issues present56

in more complex data, including how to analyze continuous traits, how to include covariates, and57

how to cope with related individuals from families or pedigree data.58

Consequently, most if not all current genetic association studies rely on genotype-based re-59

gression models, where the response variable is phenotype Y and the predictors include genotype60

G and other covariates. For the three genotype groups, aa, Aa and AA, the coding is commonly61

additive as 0, 1 and 2 (Hill et al., 2008). Note that although the genotype AA is also given a value62

of two here, the genotype-based approach is robust to HWD. This is because the Y −G regression63

is performed conditional on genotype G, and the value two here merely specifies that the effect of64
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G = AA on Y is twice that of G = Aa on Y (i.e. additively). Nevertheless, it is a bit mysterious65

how exactly a genotype-based test statistic accounts for HWD. Further, the actual data collection66

typically starts with sampling individuals based on Y , which can be a random or Y -dependent sam-67

pling (Derkach et al., 2015). It then genotypes the sampled individuals to obtain G. Thus, it can be68

argued that the G−Y regression is a more fitting statistical framework. This ‘reverse’ regression69

approach can also readily analyze multiple phenotypes simultaneously, which was the motivation70

behind the development of MultiPhen (O’Reilly et al., 2012). To deal with the three genotype71

groups, O’Reilly et al. (2012) used an ordinal logistic regression and stated that the proposed like-72

lihood ratio test does not assume HWE. However, the statistical insight is lacking and analyzing73

pedigree data remains a challenge.74

This work generalizes the locally most powerful allele-based association test to more complex75

settings by developing a novel allele-based ‘reverse’ regression framework. In what follows, Sec-76

tion 2 first revisits the classical allelic test, providing insight about the need for a more flexible77

formulation of the allelic test. Section 3 then develops the new allele-based ‘reverse’ regression78

framework by first appropriately partitioning the two alleles of a genotype then specifying the79

individual allele as the response variable. In addition to the parameter that captures the phenotype-80

genotype association, the proposed regression framework includes a new parameter that models81

the dependency between the two alleles of a genotype, explicitly accounting for potential departure82

from HWE. This section also provides examples that highlight the unifying feature of the proposed83

framework for both association analysis and HWE testing itself. Section 4 considers more com-84

plex settings including related individuals from pedigree data, genetic markers with more than two85

alleles, and multiple phenotypes and populations. Given the theoretical results presented, simu-86

lation experiments in Section 5 are relatively brief with additional empirical evidence from two87

applications. Section 6 concludes with remarks and discussion.88
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2 The classical allelic test revisited89

For a given SNP and a binary phenotype of interest, let pr denote the population frequency of allele90

A for the cases and ps for the controls. A test of no association between the SNP and the disease91

status is to test the null hypothesis that H0: pr = ps. The classical allelic test is a direct application92

of the standard test that compares two proportions using a pooled sample estimate of the variance,93

Tallelic =
(p̂r− p̂s)

2

( 1
2r +

1
2s)p̂(1− p̂)

HWE∼ χ
2
1 , (2)

where, using the notations in Table 1, p̂r = (2r2 + r1)/2r = rA/2r, p̂s = (2s2 + s1)/2s = sA/2s and94

p̂ = (2n2 +n1)/2n = nA/2n are the sample estimates of allele frequency, respectively, in the case,95

control and combined groups.96

The validity of Tallelic however requires the Hardy–Weinberg equilibrium assumption, because

only under HWE nA ∼ Binomial(2n, p), and

v̂ar(p̂r− p̂s)
HWE
= (

1
2r

+
1
2s
)p̂(1− p̂).

Using the HLA-DQ3 data in Table 1 as an example, the HWE test in Section 1 has shown that the97

assumption of HWE is violated. Thus, a direct application of the allelic association test in this case98

(Tallelic = 44.847 corresponding to a p-value of 2.13×10−11) is not appropriate.99

Indeed, Sasieni (1997) has pointed out that Tallelic is valid and locally most powerful if and

only if the HWE assumption holds and the genetic effect is additive (Web Appendix A). It is now

well known that Tallelic can have inflated type 1 error rate. However, we emphasize that this is true

only if there is an excess of homozygotes AA, i.e. δ > 0, where

δ = pAA− p2
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Figure 1: The theoretical type 1 error rate of the classical allelic test, Tallelic, at the nominal
level of α = 0.05, with respect to departure from HWE, δ . δ = pAA− p2 is the classical measure
of departure from HWE (Weir, 1996), where p is the frequency of the minor allele A and −p2 ≤
δ ≤ p(1− p). When p = 0.5, −0.25≤ δ ≤ 0.25.

is the most commonly used measure of Hardy–Weinberg disequilibrium (Weir, 1996). If δ < 0,100

Tallelic is conservative as shown in Figure 1.101

To robustify Tallelic against HWD, Schaid and Jacobsen (1999) proposed a variance adjust-

ment by directly modeling the genotype counts using a multinomial distribution. For the case

group, (r0,r1,r2) ∼ Multinomial{r,(paa, pAa, pAA)} under the null hypothesis of no association,

and v̂ar(p̂r) = v̂ar((2r2 + r1)/2r) = (p̂(1− p̂)+(p̂AA− p̂2))/2r = (p̂(1− p̂)+ δ̂ ))/2r, similarly

7
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for the control group replacing r with s. Hence,

v̂ar(p̂r− p̂s) = (
1
2r

+
1
2s
)(p̂(1− p̂)+ δ̂ ),

and the resulting test statistic is robust against HWD,102

Tallelic, Schaid =
(p̂r− p̂s)

2

( 1
2r +

1
2s)(p̂(1− p̂)+ δ̂ )

∼ χ
2
1 . (3)

The revised variance estimate has a correction term, δ̂ = (p̂AA− p̂2), which is the sample103

estimate of δ (Weir, 1996). Later in Section 3, we will provide analytical insight about how δ is104

related to THWE, Pearson in (1). For now, it is clear that the denominator of Tallelic can be smaller105

or larger than that of Tallelic, Schaid, resulting in inflated (when δ̂ > 0) or deflated (when δ̂ < 0)106

type 1 error rate. In the HLA-DQ3 example, δ̂ = 0.061. Thus, the classical allelic test will be too107

optimistic with {Tallelic = 44.8470}> {Tallelic, Schaid = 34.3207}.108

This robust-variance approach is effective but limited to the simplest setting of case-control109

studies using independent observations with no covariates. In the presence of sample correlation,110

direct modifications of the δ̂ term, or more generally the analytical expression of Tallelic, Schaid,111

can be difficult. For example, it is not clear if r and s should be simply replaced by the effec-112

tive numbers of sample size of the case and control groups, provided we know how to estimate113

them. It is also not clear how to use this comparing-two-proportions analytical framework to ad-114

just for covariate effects or analyze other types of phenotype data, whereas many complex traits115

are continuous. Thus, an alternative formulation of allele-based association test is needed.116
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3 A Generalized Robust Allele-based (RA) Association Test117

3.1 Decoupling the two alleles in a genotype118

Consider a SNP with genotype G ∈ {aa,Aa,AA} and for the moment assume that there are n in-119

dependent observations, Gi, i = 1, . . . ,n. The partition of the homozygous genotypes aa and AA120

is straightforward, but the partition of the heterozygous genotype Aa requires additional consid-121

erations because of the unknown ordering of the two alleles (i.e. Aa and aA equally likely). We122

partition each Gi as follows,123

(Gi1,Gi2) =



(0,0) if the genotype is aa

(0,1) if the genotype is Aa and ci = 0

(1,0) if the genotype is Aa and ci = 1

(1,1) if the genotype is AA

(4)

where ci
iid∼ Bernoulli(1/2) if Gi = Aa for i = 1, . . . ,n.124

Previous work attempted to split the nAa observations equally; exactly half of the nAa obser-125

vations have (G∗i1,G
∗
i2) = (0,1) and the other half have (G∗i1,G

∗
i2) = (1,0) (Schaid et al., 2012;126

Bourgain et al., 2003). That is, ∑i G∗i1 ≡ ∑i G∗i2 ≡ nAA +nAa/2. However, this even-split approach127

reduces the variation inherent in a randomly selected allele. One can show that var(∑i G∗i1) =128

n(pAA + pAa/4− (pAA + pAa/2)2) while var(∑i Gi1) = var(∑i G∗i1)+npAa/4; the use of a fair coin129

in our proposed approach ensures that ∑i Gi1 ∼ Binomial(n, pAA + pAa/2) and similarly for ∑i Gi2130

(Web Appendix B). As we will see in the following sections, this subtle difference in how we de-131

couple the two alleles in a genotype, as compared with previous work, leads to correct inference132

for both association and HWE analyses.133
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3.2 Reformulating the test of HWE as an allele-based regression134

A critical component of developing a robust allelic association test is the modelling of the Hardy–

Weinberg equilibrium assumption. HWE assumes that the two alleles in a genotype are indepen-

dent of each other. Thus, given the introduction of the two allele-based binary variables, Gi1 and

Gi2 in (4), a natural approach is to use the following logistic regression,

logit(E(Gi1)) = log(
pi

1− pi
) = α +βGi2,

and reformulate testing of HWE as testing of the regression coefficient β . Indeed, we can show135

that the corresponding score test of H0 : β = 0 closely approximates THWE, Pearson, the Pearson χ2
136

test derived from the genotype count data (Web Appendix C).137

Since our primary interest is testing (not estimation), we can also implement a Gaussian model,138

139

Gi1 = α +βGi2 + εi, where εi
iid∼ N(0,σ2). (5)

The score test derived from this Gaussian model is in fact identical to that from the logistic model.140

More generally, Chen (1983) has shown that, under some regularity conditions, the score test141

statistics for regression models from the exponential family have identical form.142

One can also show that (linearly) regressing Gi2 on Gi1 leads to the same conclusion. However,143

the differential treatment and interpretation of Gi1 and Gi2 is not ideal. Further, the regression144

framework (5) uses n alleles as the response whereas there are 2n alleles given a sample of n145

genotypes. Thus, we consider an alternative regression formulation that ‘doubles’ the sample size,146

with both alleles as the response.147

In the revised regression, instead of using the location parameter β to represent the dependence148

between the two alleles, we re-parameterize it as the correlation parameter ρ in the covariance ma-149

trix to capture HWD. This model reformulation is particularly beneficial for methodology develop-150
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ment in Section 3.3 where the regression coefficient is reserved for the primary goal of association151

testing. The proposed RA regression for HWE testing is152

Gi1

Gi2

= α

1

1

+

εi1

εi2

 , where

εi1

εi2

 iid∼ N(0,σ2

1 ρ

ρ 1

). (6)

The score test statistic of testing H0 : ρ = 0 is153

THWE, RA =
(ḡ12− ḡ2)2

1
n ḡ2(1− ḡ)2

=
(p̂AA− p̂2)2

1
n p̂2(1− p̂)2

=
δ̂ 2

1
n p̂2(1− p̂)2

∼ χ
2
1 , (7)

where ḡ12 = ∑i gi1gi2/n = nAA/n = p̂AA and ḡ = (∑i(gi1 +gi2))/2n = (2nAA +nAa)/2n = p̂. Note154

that ρ̂ = (p̂AA− p̂2)/(p̂(1− p̂)) = δ̂/(p̂(1− p̂)), which is a scaled estimate of HWD.155

We first note that the newly developed HWE test statistic is, attractively, proportional to δ̂ =156

p̂AA− p̂2. Interestingly, after some algebraic manipulations we can show that THWE, RA in (7) is157

identical to THWE, Pearson in (1),158

THWE, Pearson =
(n0−n(1− p̂)2)2

n(1− p̂)2 +
(n1−n2p̂(1− p̂))2

n2p̂(1− p̂)
+

(n2−np̂2)2

np̂2

=
(n2−np̂2)2

n
(

1
(1− p̂)2 +

2
p̂(1− p̂)

+
1

(p̂)2 )

=
(p̂AA− p̂2)2

1
n p̂2(1− p̂)2

=
δ̂ 2

1
n p̂2(1− p̂)2

∼ χ
2
1 .

(8)

Remark 1. For a sample of unrelated individuals, the score test of H0 : ρ = 0 based on the159

Gaussian regression model of (6) is identical to the classical Pearson’s χ2 test of HWE in (1)160

(or re-expressed in (8)) based on genotype count data, THWE, RA = THWE, Pearson.161

This equivalence, however, is under the simplest scenario of an independent sample. For more162

complex data, several authors have proposed different HWE testing strategies, each addressing163

a specific challenge (Troendle and Yu, 1994; Bourgain et al., 2004; Lauretto et al., 2009). For164
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example, Troendle and Yu (1994) developed a method that tests HWE across strata, while Bourgain165

et al. (2004) proposed a quasi-likelihood method that tests HWE in related individuals. In Section 4166

we will show how the proposed regression framework (6) can be extended to derive a generalized167

HWE test suitable for complex data. For the moment, we still consider an independent sample but168

turn our attention to association analysis.169

3.3 The generalized robust allele-based (RA) association test via regression170

As before, we start with an independent sample of size n. For a given bi-allelic SNP, we continue171

to use the previous notations for the two allele-based random variables, Gi1 and Gi2, i = 1, . . . ,n, as172

constructed in (4). We now also consider Y , a (categorical or continuous) phenotype of interest, and173

Z, an environmental factor or other covariates available; Z can be multi-dimensional but denoted174

as one random variable for notation simplicity but without loss of generality. The proposed RA175

regression for association analysis is as follows,176

Gi1

Gi2

= (α +βYi + γZi)

1

1

+

εi1

εi2

 , where

εi1

εi2

 iid∼ N(0,σ2

1 ρ

ρ 1

). (9)

Based on the above model, it is clear that testing H0 : β = 0 is evaluating the relationship between177

the SNP and phenotype of interest while adjusting for covariate effects. The corresponding score178

test is179

TRA =
{∑n

i=1 ∑
2
j=1(gi j− p̂− γ̂(zi− z̄))yi}2

2(1− ρ̂2
Y,Z)∑i(yi− ȳ)2(p̂(1− p̂)+ δ̂ )

∼ χ
2
1 , (10)

where p̂ and δ̂ are defined as before, ȳ and z̄ are the sample means, and180

α̂ = p̂− γ̂ z̄, γ̂ =
∑i(gi1 +gi2)zi− p̂z̄

∑i(zi− z̄)2 , and ρ̂Y,Z =
∑i yizi− ȳz̄√

∑i(yi− ȳ)2
√

∑i(zi− z̄)2
.

The proposed TRA unifies previous methods. For example, if Y is binary and γ = 0 as in a181
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case-control study without covariates, TRA in (10) is simplified to182

TRA, binary, γ=0 =
(p̂r− p̂s)

2

( 1
2r +

1
2s)(p̂(1− p̂)+ δ̂ )

. (11)

If we further assume HWE (i.e. let ρ = 0), the corresponding score test is reduced to183

TRA, binary, γ=0, ρ=0 =
(p̂r− p̂s)

2

( 1
2r +

1
2s)p̂(1− p̂)

. (12)

Remark 2. Under the HWE assumption and for a case-control study using an independent184

sample without covariates, the score test of H0 : β = 0 based on the proposed RA regression185

model (9) is identical to the classical allelic test in (2), TRA, binary, γ=0, ρ=0 = Tallelic. In the186

presence of HWD, the corresponding score test has an additional correction factor δ̂ = p̂AA−187

p̂2 for the variance estimate as compared to Tallelic, and TRA, binary, γ=0 = Tallelic, Schaid.188

The proposed RA testing framework also generalizes. For example, TRA accounts for covariate189

effects. TRA also analyzes any phenotypes, binary or continuous, by generalizing the concept of190

comparing two proportions between two groups (H0 : pr = ps) to testing regression coefficient191

(H0 : β = 0). To provide additional analytical insight, consider a continuous trait and constrain the192

full model (9) to be without covariates. In that case, the corresponding score test statistic has the193

expression of194

TRA, γ=0 =
{∑i((gi1 +gi2)/2− p̂)yi}2

1
2 ∑i(yi− ȳ)2(p̂(1− p̂)+ δ̂ )

. (13)

Thus, the generalized RA test evaluates a weighted difference between individual-level allele fre-195

quency estimate, (gi1 + gi2)/2, and the whole sample estimate, p̂ = ∑i(gi1 + gi2)/2n, where the196

weight is an individual’s trait value, yi.197

Remark 3. The proposed robust allele-based regression (9) delivers a more flexible allelic198

test, TRA in (10), that analyzes both categorical and continuous phenotypes while accounting199

for covariate effects. Because the regression model is conditional on Y , the phenotype data200

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.12.989004doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989004


can be subjected to Y -dependent sampling.201

In hindsight, results so far may not be surprising. However, the advantages of developing the pro-202

posed RA regression framework become evident when extending allele-based association methods203

to more complex data such as pedigree data and data with population heterogeneity, which we204

investigate in the next section.205

4 Complex data206

4.1 Multiple populations207

The classical allelic test is limited to a sample of individuals from the same population, but popula-208

tion heterogeneity is often present in large-scale datasets (Diaz-Papkovich et al., 2019). Intuitively,209

one may use a weighted average of the test statistics obtained from the individual populations.210

However, it is not clear how to derive the optimal weight, and it is also difficult to extend such211

an approach to non-discrete populations as in principal component analyses (PCA) (Reich et al.,212

2008).213

The proposed RA regression model of (9) can naturally adjust for population effects by in-214

cluding population indicators, or the top principal components inferred from PCA, as part of the215

covariates. Here we emphasize that the potential population effects could include both difference216

in allele frequency and difference in Hardy–Weinberg disequilibrium between populations. The217

RA framework, desirably, not only models allele frequency heterogeneity through the regression218

coefficient γ but also accounts for HWD heterogeneity through ρ in the covariance matrix.219

Without loss of generality, it is instructive to consider the simple case of a case-control study220

with two populations but without additional covariates. Let Zi = 0 for population I and Zi = 1 for221
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population II, the corresponding RA regression model is222

Gi1

Gi2

= (α +βYi + γZi)

1

1

+

εi1

εi2

 , where

εi1

εi2

∼ N(0,σ2
i

1 ρi

ρi 1

), (14)

ρi = ρ I and σ2
i = (σ I)

2 if Zi = 0; ρi = ρ II and σ2
i = (σ II)

2 if Zi = 1. Using superscripts I and II
223

for all the other notations introduced so far, the generalized RA test of H0 : β = 0 while accounting224

for population heterogeneity has the following expression,225

TRA, binary, 2 pop =
{2rIsI

nI (p̂I
r− p̂I

s)+
2rIIsII

nII (p̂II
r − p̂II

s )}2

2( rIsI

nI + rIIsII

nII ){ nI

nI+nII (p̂I(1− p̂I)+ δ̂ I)+ nII

nI+nII (p̂II(1− p̂II)+ δ̂ II)}
∼ χ

2
1 ,

(15)

where δ̂ I = p̂I
AA− (p̂I)2 and δ̂ II = p̂II

AA− (p̂II)2 capture any population-specific HWD.226

Finally, if evaluating HWE across multiple populations is the primary objective, we can achieve227

this by testing H0 : ρ I = ρ II = 0 and show that the corresponding score test statistic has the fol-228

lowing form, THWE, RA, 2 pop = THWE, RA, pop I + THWE, RA, pop II ∼ χ2
2 , where the expressions229

for THWE, RA, pop I and THWE, RA, pop II are given in (7). We note again the unifying feature of the230

proposed RA framework. For example, the test of Troendle and Yu (1994) developed specifically231

for testing HWE across strata has identical form as THWE, RA, 2 pop.232

4.2 Multiple alleles233

In the previous sections, we have assumed that the genetic marker under study is a bi-allelic SNP234

with two alleles and three unordered genotypes, the most commonly encountered genetic variation.235

Other types of data such as copy number of variations (CNVs) can be of interest (Jakobsson et al.,236

2008), but the corresponding allele-based association test has not been developed. Here we demon-237

strate how the RA model of (9) can be extended to derive a generalized allelic association test for238

multi-allelic markers, with adjustments for covariate effects and Hardy–Weinberg disequilibrium.239
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For a genetic marker with K different alleles, the total number of possible unordered genotypes240

is K(K + 1)/2, among which K(K− 1)/2 are heterozygotes and K are homozygotes. As in the241

bi-allelic marker case, a critical step in the RA methodology development is the partition of a242

genotype, particularly a heterozygote. Extending the partition method for a bi-allelic marker in243

Section 3.1, we now introduce two indicator vectors, gi1 and gi2, where gi1 = (G1
i1,G

2
i1, · · · ,G

K−1
i1 )′244

and gi2 = (G1
i2,G

2
i2, · · · ,G

K−1
i2 )′. Gl

i1 = 1 if the first allele is l and Gl
i2 = 1 if the second allele is245

l, for l < K; allele K is chosen to be the baseline without loss of generality. The partition of a246

homozygote Gi = (l, l) is straightforward. For a heterozygote Gi = (m, l), the ordering of the two247

alleles depends on the outcome of a Bernoulli trial, ci
iid∼ Bernoulli(1/2), as in the bi-allelic case of248

(4).249

Table 2: Allele partition of the six unordered genotypes for a genetic marker with three alleles,
A, B and C. For individual i, gi1 = (GA

i1,G
B
i1)
′ and gi2 = (GA

i2,G
B
i2)
′, denoting the allele status for the

first and second allele of genotype Gi, respectively. For each heterozygous genotype, i.e. Gi = AB,
AC or BC, the ordering of the two alleles depends on the outcome of ci

iid∼ Bernoulli(1/2).

Unordered Gi1 Gi2
Genotype, Gi GA

i1 GB
i1 GA

i2 GB
i2

AA 1 0 1 0
AB ci 1− ci 1− ci ci
AC ci 0 1− ci 0
BB 0 1 0 1
BC 0 ci 0 1− ci
CC 0 0 0 0

As an illustration, Table 2 details the allele partition of a tri-allelic marker with three possible250
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alleles, A, B and C. The corresponding RA regression model is251



GA
i1

GB
i1

GA
i2

GB
i2


=



α1

α2

α1

α2


+



β1

β2

β1

β2


Yi +



γ1

γ2

γ1

γ2


Zi + ε i, where ε i

iid∼ N(0,



σ2
1 δ1 δ2 δ3

δ1 σ2
2 δ3 δ4

δ2 δ3 σ2
1 δ1

δ3 δ4 δ1 σ2
2


), (16)

and under the null of no association, δ1 = −pA pB, δ2 = pAA− p2
A, δ3 =

1
2 pAB− pA pB, and δ4 =252

pBB− p2
B. Testing the association between a tri-allelic marker and a phenotype trait Y is then253

equivalent to testing H0: β1 = β2 = 0, and the resulting score test statistic is χ2
2 distributed under254

H0.255

Here we note that for a mutli-allelic marker with K alleles, a genotype-based association test256

inherently has (K(K +1)/2−1) d.f. Appropriate genotype coding can reduce the d.f. by restrict-257

ing the relationships between the effects of the K(K + 1)/2 genotypes on the phenotype, but the258

most parsimonious yet interpretable model is not well understood (Wang, 2011). In contrast, the259

proposed RA framework is allele-based with (K−1) d.f., modelling the effect of each allele with260

the chosen baseline allele. The RA model can also be used to derive regression-based test of HWE261

for multi-allelic markers (Web Appendix D).262

4.3 Multiple phenotypes263

In settings where we are interested in testing the association between a genotype and multiple264

J phenotypes simultaneously, we can simply include multiple Yj1 vectors in the RA model of265

(9), or (16) for a multi-allelic marker, each representing one phenotype, and then test H0 : β j =266

0,∀ j ∈ {1,2, . . . ,J}. The corresponding score test statistic will be χ2
J distributed under the null.267

Here we re-iterate that the proposed ‘reverse’ regression is allele-based, conceptually distinct from268

genotype-based MultiPhen (O’Reilly et al., 2012) that uses an ordinal logistic regression for an269
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independent sample.270

4.4 Related individuals271

We now consider a sample of n correlated individuals with known or accurately estimated pedigree272

structure (Dimitromanolakis et al., 2019). For notation simplicity but without loss of generality,273

we present the RA model for analyzing a bi-allelic marker and one phenotype of interest. Let g274

be a 2n×1 vector of allele indicators for the n genotypes available, where g = (g′1,g
′
2, . . . ,g

′
n)
′ and275

gi = (Gi1,Gi2)
′ for i ∈ {1, . . . ,n}, following the allele-partition step as outlined in Section 3.1, and276

let y = (y′1,y
′
2, . . . ,y

′
n)
′, yi = (Yi,Yi)

′, z = (z′1,z
′
2, . . . ,z

′
n)
′, and zi = (Zi,Zi)

′. The generalized RA277

regression model for a dependent sample is,278

g = α1+βy+ γz+ ε, where ε ∼ N(0,σ2
Σ), (17)

1 is a 2n×1 vector of 1s, and Σ is a 2n×2n matrix that captures the genetic correlation between279

individuals as well as departure from Hardy-Weinberg equilibrium in founders. Founders are in-280

dividuals that only have direct descendants or no related individuals included in the sample, and281

their offspring genotypes are in HWE assuming random mating (Web Appendix E).282

The specification of Σ is non-trivial, where for any two individuals i and j, Σ2(i−1)+l, 2( j−1)+l′ ,283

not only measures the genetic correlation between individual i’s lth allele and individual j’s l′th284

allele, l and l′ ∈ {1,2}, but also accounts for potential HWD. We note that if i = j and l = l′,285

Σ2(i−1)+l, 2( j−1)+l′ = 1. If i = j and l 6= l′, Σ2(i−1)+l, 2( j−1)+l′ = 0 for a non-founder and = ρ for286

a founder, where ρ models HWD. Finally, if i 6= j, Σ2(i−1)+l, 2( j−1)+l′ = φi, j(1+ρ), where φi, j is287

the kinship coefficient between the two individuals (Web Appendix F).288

As an illustration, let us consider a sample of f independent sib-pairs. With a slight abuse of

notations, let {G j11,G j12,G j21,G j22} denote the the four alleles of the jth sib-pair, j = 1, . . . , f ,

where {G j11,G j12} are for sibling 1 and {G j21,G j22} are for sibling 2. In this case, Σ is a block
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diagonal matrix with

Σ j =



1 0 φ(1+ρ) φ(1+ρ)

0 1 φ(1+ρ) φ(1+ρ)

φ(1+ρ) φ(1+ρ) 1 0

φ(1+ρ) φ(1+ρ) 0 1


,

where φ = 0.25 is the kinship coefficient for a sib-pair. If we assume that there are no covariates,289

the score statistic of testing H0 : β = 0 is290

TRA, sib-pair, γ=0 =

[ 1
1−4φ 2(1+ρ̂)2{

f
∑
j=1

2
∑

k=1

2
∑

l=1
y jk(g jkl− ḡ)−2φ(1+ ρ̂)

f
∑
j=1

2
∑

l=1
(y j1(g j2l− ḡ)+ y j2(g j1l− ḡ))}]2

2ḡ(1− ḡ)
f

∑
j=1
{(y j1− ȳ)2 +(y j2− ȳ)2−4φ(1+ ρ̂)(y j1− ȳ)(y j2− ȳ)}

,

(18)

where y j1 and y j2 are the phenotype values of the jth sib-pair, ȳ=
f

∑
j=1

2
∑

k=1
y jk/2 f , ḡ=

f
∑
j=1

2
∑

k=1

2
∑

l=1
g jkl/4 f ,291

and ρ̂ =
f

∑
j=1

2
∑

l=1
{(g j11− ḡ)(g j2l− ḡ)+(g j12− ḡ)(g j2l− ḡ)}/(φ ḡ(1− ḡ))−1.292

For further illustration, consider a sib-pair case-control study with all sib-pairs concordant in293

phenotype (i.e. r pairs of cases and s pairs of controls). In that case, (18) is reduced to294

TRA, sib-pair, binary-concordant, γ=0 =
(ḡr− ḡs)

2

( 1
4r +

1
4s)(1+2φ(1+ ρ̂))ḡ(1− ḡ)

, (19)

where ḡr = ∑
f
j=1 ∑

2
k=1 ∑

2
l=1 y jkg jkl/4r, ḡs = ∑

f
j=1 ∑

2
k=1 ∑

2
l=1(1− y jk)g jkl/4s, and ḡ and ρ̂ are as295

defined above. It is compelling that the form of (19) is similar to that of the classic allelic test296

in (2). However, the denominator of (19) explicitly adjusts for the inherent genetic correlation297

between the sibling alleles through φ , as well as any potential HWD through ρ̂ .298

Remark 4. The proposed robust allele-based regression (9) can be naturally generalized to299

analyze multiple populations and phenotypes. The RA model (9) can be further generalized300
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to model (16) to analyze genetic markers with more than two alleles, and to model (17) to301

analyze pedigree data. With a sample of related individuals, the Σ matrix decomposes into302

two parts that explicitly model the genetic correlation between individuals and the departure303

from HWE in the founder generation.304

5 Empirical evidence305

5.1 Simulation studies306

To numerically demonstrate the robustness of TRA to HWD as compared with Tallelic, we simulated307

a case-control study with an independent sample of 1,000 cases and 1,000 controls. The minor308

allele frequency was p = 0.2 or 0.5 for the minor allele A. The amount of HWD as measured309

by δ = pAA− p2 ranged from the minimum of −p2 to the maximum of p(1− p). Then pAA =310

δ + p2 and pAa = 2(p− pAA), and (naa,nAa,nAA) ∼ Multinomial{n,(1− pAa− pAA, pAa, pAA)}.311

For power evaluation at α = 0.05, we assumed an additive model with disease prevalence K = 0.1312

and penetrance P(Y = 1|G = aa) = f0 = 0.09; P(Y = 1|G = AA) = f2 = (K− f2 p)/(1− p) and313

P(Y = 1|G = Aa) = f1 = ( f0 + f2)/2. The empirical type 1 error results in Figure 2(a) and 2(b)314

confirm the theoretical results in Figure 1: Tallelic is not robust against HWD while the proposed315

TRA is accurate across the whole range of HWD values. Further, the empirical power results in316

Figures 2(c) and 2(d) highlight the fact that the classical allelic test could have reduced power317

when the number of homozygotes AA is fewer than what is expected under the HWE assumption318

(i.e. δ < 0), which is not well acknowledged in the existing literature.319

5.2 Application 1 - revisit the study of Wittke-Thompson et al. (2005)320

For the purpose of studying Hardy–Weinberg disequilibrium in case-control studies, Wittke-Thompson321

et al. (2005) identified 60 SNPs from 41 case-control association studies. Focusing on association322
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Figure 2: Empirical type 1 error rate and power of the classical allelic association test and
the proposed robust allelic (RA) test at the nominal level of α = 0.05. Note that when δ > 0,
the classical allelic test has inflated type 1 error rate as shown in (a) and (b), so the corresponding
power in (c) and (d) is not meaningful and shown in a lighter shade. Also note that the HWD
measure δ is bounded by the minor allele frequency p, −p2 ≤ δ ≤ p(1− p).
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analyses of these 60 bi-allelic markers, we compared Tallelic with the proposed TRA while consid-323

ering HWD at each SNP. Figure 3 contrasts −log10(p-values) of the two methods, stratified by if324

there was an excess (δ̂ > 0; unfilled triangles) or lack (δ̂ < 0; filled triangles) of the homozygotes325

AA with A being the minor allele.326

0 2 4 6 8 10

0
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4
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8
10

Allele-based association analyses of the 
 60 SNPs of Wittke-Thompson et al. (2005)

-log10 P(allelic)

-lo
g1

0 
P

(R
A

)

δ̂ > 0

δ̂ < 0

Figure 3: Results of application 1. Allele-based association tests of the 60 SNPs identified in
Wittke-Thompson et al. (2005), contrasting the proposed RA method, TRA in (11), with the clas-
sical allelic test, Tallelic in (2). Unfilled triangles are for SNPs with δ̂ > 0 (Tallelic having inflated
type 1 error), and filled triangles are for SNPs with δ̂ < 0 (Tallelic having deflated type 1 error); see
Figure 1 for theoretical results and Figure 2 for simulation results regarding type 1 error control of
the two methods.

As anticipated based on the theoretical results in Figure 1 and simulation results in Figure 2, for327

SNPs with δ̂ > 0, Tallelic can appear to be more powerful than the proposed TRA. For example, for328
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the most significant SNP, p-valueallelic = 1.82× 10−10 and p-valueRA = 6.60× 10−9. However,329

δ̂ = 0.052 > 0 with p-valueHWE = 3.09×10−4. Thus, the result of Tallelic is not accurate for this330

SNP. In contrast, for the third most significant SNP, δ̂ =−0.031 < 0 and p-valueHWE = 0.040. In331

that case, Tallelic is conservative while the proposed TRA is not only robust but also more powerful,332

where p-valueallelic = 5.84×10−6 and p-valueRA = 8.86×10−7.333

5.3 Application 2 - a cystic fibrosis (CF) gene modifier study334

To demonstrate the generalizability of the proposed RA framework, we applied TRA to jointly335

analyze two phenotypes using a sample of related individuals from the Canadian cystic fibrosis336

(CF) gene modifier study (Sun et al., 2012; Corvol et al., 2015). The two phenotypes of interest337

are lung function (a quantitative trait (Taylor et al., 2011)) and meconium ileus (MI, a binary338

trait (Gong et al., 2019)). Among the sample of 2,540 CF subjects, 2,420 are singletons and 60339

independent sib-pairs. For completeness, we first analyzed each phenotype individually using the340

proposed allele-based RA framework, and we compared the results with the traditional genotype-341

based method via (generalized) linear mixed models (LMM or GLMM). We then analyzed both342

phenotypes jointly using TRA.343

Figures 4(a) and 4(b) show that results of genotype-based and allele-based methods are largely344

consistent; see Section 6 for additional discussion. Interestingly, for the most significant SNP as-345

sociated with MI in Figure 4(b), p-value of TRA is 2.62×10−6, slightly smaller than 7.80×10−6
346

of the genotype-based GLMM method. In addition, the proposed TRA method can jointly analyzed347

both phenotypes and appears to identify SNPs that have p-values several orders of magnitude348

smaller than that from studying one phenotype at a time, as shown in Figures 4(c) and 4(d). How-349

ever, these results do not reach genome-wide significance and establishing true association requires350

additional analyses.351

Table 3 summarizes the association results for previously reported and replicated SNPs associ-352

ated with CF lung function (Corvol et al., 2015) and MI association (Sun et al., 2012). Note that353
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Figure 4: Results of application 2 - Chromosome 5-wide. Genetic association studies of lung
function and meconium ileus of 34,378 bi-allelic markers on chromosome 5, using a sample of
2,540 individuals with cystic fibrosis of which 2,420 are singletons and 120 are from 60 sib-pairs.
LMM and GLMM are genotype-based association analyses based on, respectively, linear mixed
model for a continuous trait (i.e. lung) and generalized LMM for a binary trait (i.e. MI), and RA
is the proposed allele-based association method that can also jointly analyze multiple traits using
a sample of related individuals. Genome-wide results are shown in Web Figure 1.

the p-values in Table 3 differ from those in Sun et al. (2012) and Corvol et al. (2015), because the354

analyses here only included the Canadian sample and individuals with both phenotypes measured.355

For all the SNPs in Table 3, the proposed RA test yields slightly larger −log10(p-values) than356

LMM or GLMM, suggesting that the allele-based method has the potential to be more powerful357

than the traditional genotype-based approach. The joint RA analysis of the two phenotypes did not358
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Table 3: Results of application 2 - Previously reported SNPs. Other details see legend to Figure
4.

Top CF lung function associated SNPs from Corvol et al. (2015)
Chr SNP Lung function only MI and lung function jointly

−log10 pLMM −log10 pRA −log10 pRA, joint
3 rs2246901 3.21 3.25 2.63
5 rs3749615 3.25 3.27 3.57
6 rs2395185 6.65 6.77 6.08
11 rs10466455 5.84 5.86 4.84

Top CF meconium ileus associated SNPs from Sun et al. (2012)
Chr SNP MI only MI and lung function jointly

−log10 pGLMM −log10 pRA −log10 pRA, joint
1 rs4077468 5.34 5.47 4.87
1 rs7512462 4.54 4.82 4.56
1 rs7419153 3.68 4.07 3.35
1 rs12047830 3.10 3.20 2.63

lead to more significant results; this is not surprising because these SNPs were selected based on359

the single-phenotype analyses.360

6 Discussion361

The classical allele-based association test, examining the difference in allele frequency of a bi-362

allelic genetic marker between cases and controls, is intuitive and locally most powerful. As363

pointed out by Sasieni (1997), for a sample of n individuals the allelic test ‘doubles’ the sample364

size by considering 2n alleles instead of n genotypes. However, the work of Sasieni (1997) also365

highlighted the sensitivity of the allelic test to the assumption of Hardy–Weinberg equilibrium.366

The subsequent development of Schaid and Jacobsen (1999) based on improving variance esti-367

mate is effective, but its application is restricted to case-control studies using independent samples368

and without covariates.369

Here we developed a novel, robust allele-based (RA) regression framework that regresses the370

individual alleles on the phenotype of interest and covariates if available, generalizing the con-371
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cept of comparing allele frequencies for more complex data. Utilizing the earlier work by Chen372

(1983), the proposed regression relies on the Gaussian model of (9) that (i) leads to a valid allelic373

association test through testing the regression coefficient β , (ii) analyzes either a binary or a con-374

tinuous phenotype, or both, where the phenotype data can be subjected to Y -dependent sampling,375

(iii) adjusts for covariate effects, including population heterogeneity, through additional regression376

coefficient γ , (iv) accounts for sample correlation through kinship coefficient φ in the covariance377

matrix Σ, and (v) explicitly models potential departure from HWE through ρ in Σ; see Remark 3.378

Appealingly, the generalized allelic association test also unifies previous methods; see Remark 2.379

The pivotal stage of this work is designing the two allele-based random variables, Gi1 and Gi2,380

and leveraging the regression framework in new settings. The idea of reformulating an existing test381

statistic as a regression to facilitate method extension is not new. In their Reader Reaction to the382

generalized non-parametric Kurskal-Wallis test of Acar and Sun (2013) for handling group uncer-383

tainty, Wu and Guan (2015) presented “a rank linear regression model and derived the proposed384

GKW statistic as a score test statistic". More recently, Soave and Sun (2017) showed that by first385

reformulating the original Levene’s test, testing for variance heterogeneity between k groups in an386

independent sample without group uncertainty, as a two-stage regression, the extension to more387

complex data is more straightforward.388

In our study, the correct representation of Gi1 and Gi2 is critical. In Section 3.1, we have argued389

that splitting the nAa heterozygotes into exact halves (G∗i1 and G∗i2) reduces the variation inherent390

in a randomly selected allele. Looking at it from a different angle, assume that there are only two391

individuals with Aa. In that case, if G∗11 is one for individual 1 then G∗21 must be zero for individual392

2, introducing additional dependence between alleles beyond the underlying kinship relationship393

and HWD. In contrast, if G11 is one then G21 is yet to be independently determined by the outcome394

of tossing a fair coin as defined in (4).395

The concept of ‘reverse’ regression has also been explored before, focusing on regressing geno-396

type on phenotype, notably by O’Reilly et al. (2012) for joint analyses of multiple phenotypes. The397
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corresponding MultiPhen method uses an ordinal logistic regression for the three genotype groups398

and then applies a likelihood ratio test. Although MultiPhen does not require the assumption of399

HWE, its application is limited to independent samples and bi-allelic markers.400

Another stream of genotype-based ‘reverse’ or retrospective approach started with the quasi-401

likelihood method of Thornton and McPeek (2007) for case-control association testing with related402

individuals. The method first defines Xi = Gi/2 ∈ {0,1/2,1}, then links the mean of Xi with Yi via403

a logit transformation and uses the kinship coefficient matrix as the covariate matrix of Xi, and404

finally obtains a quasi-likelihood score test. Subsequently, Feng (2014) and Feng et al. (2011)405

extended the method of Thornton and McPeek (2007) to a quasi-likelihood regression model that406

can incorporate multiple phenotypes. We note that although Xi = Gi/2 was interpreted as the allele407

frequency per individual i by the previous work, the quasi-likelihood score test is fundamentally a408

genotype-based association method. Further, the use of the kinship matrix alone as the covariance409

matrix requires the assumption of HWE. Recently, we showed that genotype-based ‘reverse’ re-410

gression can be specified in a robust fashion that guards against HWD in related individuals (Zhang411

and Sun, 2019).412

Most existing family-based association studies rely on the Y −G prospective regression frame-413

work via LMM or GLMM (Eu-Ahsunthornwattana et al., 2014). For the application study in Sec-414

tion 5.3, we applied both the proposed RA method and LMM (for the continuous CF lung function)415

and GLMM (for the binary meconium ileus status). Although there are differences in the (single-416

phenotype) analyses (Figures 4(a) and 4(b)), results are remarkably consistent. Interestingly, in417

the simplest case of an independent sample with no covariates, we can show analytically that the418

corresponding RA test statistic has identical form as that derived from genotype-based prospec-419

tive regression model, as well as that from the non-parametric trend test (Web Appendix G). The420

similarity with the existing methods indirectly confirms the validity of the proposed approach but421

does not take away the contributions of this work. In particular, unlike LMM and GLMM, the pro-422

posed ‘reverse’ regression can analyze more than one phenotype at a time as shown in Figures 4(c)423
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and 4(d).424

One of the challenges related to the proposed framework is the interpretation of parameter es-425

timate for β even though its corresponding hypothesis testing is valid. Thus, we emphasize that426

the method developed here is tailored for variant detection, providing a statistically efficient and427

computationally fast way for genome-wide association scans. Another difficulty present in any ‘re-428

verse’ regression approach is the modelling and interpretation of gene-gene or gene-environment429

interactions. It is also not clear how to perform allelic association test for X-chromosomal variants;430

see Chen et al. (2018) for genotype-based association methods. However, the proposed framework431

is flexible and promising in a number of other ways.432

For example, the inclusion of parameter ρ in the RA model (9) is advantageous for both method433

comparison and further development. In the absence of Y and Z and sample correlation, the score434

test derived from the reduced model is equivalent to the traditional Pearson χ2 test of HWE using435

a sample of independent genotype observations; see Remark 1. For more complex data, instead436

of developing individual remedies addressing specific challenges, the proposed method provides a437

principled approach for extensions. For example, we have shown in Section 4.1 that by introducing438

a population indicator we can derive a HWE test across populations. Similarly, testing H0 : δ2 =439

δ3 = δ4 = 0 using model (16) in Section 4.2 leads to a HWE test for tri-allelic markers. Finally,440

using the generalized RA model (17) in Section 4.4, we can develop a score test of HWE that441

naturally accounts for sample correlation present in pedigree data.442

In terms of association testing, the value of introducing ρ in the regression model is two fold.443

First, if there is a strong prior evidence for HWE, we can restrict ρ to be zero and establish a444

locally most powerful score test. Second, for the special case of a case-control study, Song and445

Elston (2006) and Wang and Shete (2010) have argued that departure from HWE in the case group446

provides additional association evidence. However, their methods are ad-hoc. For example, the447

method of Song and Elston (2006) first conducts genotype-based association test and Pearson χ2
448

test of HWE separately, then aggregates the two (dependent) tests by a weighted sum, and finally449
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evaluates the statistical significance via simulations. The proposed RA regression framework offers450

a conceivable approach to directly incorporate group-specific ρ into association inference, which451

we will explore as future work.452
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