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Figure A1: Simulation showing how beamforming is affected by co-registration error in a rigid helmet or flexible cap. A) 
Example of co-registration errors in the two cases. For the rigid helmet (upper panel), we assume we know the relative 
sensor locations and orientations accurately, so co-registration error is systematic across the helmet. For the flexible cap 
(lower panel), all sensor locations and orientations are acquired from the co-registration process independently, meaning 
co-registration error is random. The black circles show true sensor positions, and the coloured circles show measured 
locations with co-registration error. The left hand panel shows zero co-registration error; the right hand panel shows an 
error of 4 mm translation and a 4 degree rotation (about the origin). B) Summary measures of time course correlation (left) 
source power (centre) and localisation accuracy (right) plotted as a function of co-registration error. Red shows the rigid 
cap, blue shows the flexible cap. Note x-axes represent both translation and rotation – e.g. an error of 5 means 5 mm and 
5 degrees. 
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APPENDIX 2: Alpha band summary 
The same methodology was used to analyse responses in the alpha/mu band (we chose to keep these 

results in an appendix in order to shorten and simplify the figures main body of our paper). As for the beta 

and gamma bands, data were first frequency filtered to the 8-13 Hz band, and then processed using a 

beamformer approach. We derived pseudo-t-statistical images showing the spatial signature of the largest 

alpha band changes, as well as our summary measures of ellipsoid volume, image consistency, sensor-space 

SNR and output to input SNR ratio.  

Results showed that the largest changes were localised to sensorimotor cortices and probably reflect 

the well-known ‘mu’ rhythm (an 8-13 Hz) oscillation generated by the sensorimotor system (see Figure A2A). 

Some alpha changes were also noted over visual cortex. Summary statistics support the findings in the main 

manuscript: localisations showed that pseudo-t-statistical peaks were largely overlapping for all three systems 

(Figure A2B), with ellipsoid volumes smallest for the rigid helmet (Figure A2C – left panel). Image consistency 

(Figure A2C – centre panel) was similar in all three systems for Subject 1, but better in the cryogenic system 

for Subject 2. Even though sensor space SNR was better for the flexible system (Figure A2D – left panel) 

source space SNRs were comparable for both the rigid helmet and the flexible cap, and indeed for the 

cryogenic device (Figure A2C, right panel). As previously, we observed the output/input SNR to be higher for 

the rigid helmet compared to the flexible cap (Figure A2D – right-hand panel), a result of the improved 

knowledge of sensor location and orientation. In summary, alpha-band findings strongly support beta and 

gamma results in showing the advantages of the rigid cap, and moreover that the OPM and cryogenic systems 

are comparable. This is of some importance due to the known degradation of performance at lower 

frequency. Specifically, OPM noise levels are higher at low frequency; further, movement artefact and relative 

cable motion will likely affect the lower frequencies. However, clearly performance of OPM-MEG is not 

limited down to 8 Hz. The delta and theta bands remain a topic of future research. 
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Figure A2: Summary of results in Alpha band. A) Beamformer pseudo-T-statistical images averaged over all 6 experimental 
runs for both participants. B) Glass brain, with the centre of the ellipsoids showing average peak location across runs. The 
size of the ellipsoids represents the standard deviation of the peak locations – and hence variability of localisation across 
runs. C) (Left) Ellipsoid volumes averaged across participants, (middle) Image consistency (correlation between pseudo-T-
statistical images) collapsed across both participants, (right) Signal-to-Noise ratios for the three different systems in the 
alpha band. D) (Left) Input SNR at the best sensor, (middle) Output SNR measured in beamformer projected data, (right) 
Ratio of output to input SNR. 
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