Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Limited correspondence in visual representation between the human brain and convolutional neural networks

View ORCID ProfileYaoda Xu, Maryam Vaziri-Pashkam
doi: https://doi.org/10.1101/2020.03.12.989376
Yaoda Xu
1Yale University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yaoda Xu
  • For correspondence: xucogneuro@gmail.com
Maryam Vaziri-Pashkam
2National Institute of Mental Health
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

Convolutional neural networks (CNNs) have achieved very high object categorization performance recently. It has increasingly become a common practice in human fMRI research to regard CNNs as working model of the human visual system. Here we reevaluate this approach by comparing fMRI responses from the human brain in three experiments with those from 14 different CNNs. Our visual stimuli included original and filtered versions of real-world object images and images of artificial objects. Replicating previous findings, we found a brain-CNN correspondence in a number of CNNs with lower and higher levels of visual representations in the human brain better resembling those of lower and higher CNN layers, respectively. Moreover, the lower layers of some CNNs could fully capture the representational structure of human early visual areas for both the original and filtered real-world object images. Despite these successes, no CNN examined could fully capture the representational structure of higher human visual processing areas. They also failed to capture that of artificial object images in all levels of visual processing. The latter is particularly troublesome, as decades of vision research has demonstrated that the same algorithms used in the processing of natural images would support the processing of artificial visual stimuli in the primate brain. Similar results were obtained when a CNN was trained with stylized object images that emphasized shape representation. CNNs likely represent visual information in fundamentally different ways from the human brain. Current CNNs thus may not serve as sound working models of the human visual system.

Significance Statement Recent CNNs have achieved very high object categorization performance, with some even exceeding human performance. It has become common practice in recent neuroscience research to regard CNNs as working models of the human visual system. Here we evaluate this approach by comparing fMRI responses from the human brain with those from 14 different CNNs. Despite CNNs’ ability to successfully perform visual object categorization like the human visual system, they appear to represent visual information in fundamentally different ways from the human brain. Current CNNs thus may not serve as sound working models of the human visual system. Given the current dominating trend of incorporating CNN modeling in visual neuroscience research, our results question the validity of such an approach.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license.
Back to top
PreviousNext
Posted March 14, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Limited correspondence in visual representation between the human brain and convolutional neural networks
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Limited correspondence in visual representation between the human brain and convolutional neural networks
Yaoda Xu, Maryam Vaziri-Pashkam
bioRxiv 2020.03.12.989376; doi: https://doi.org/10.1101/2020.03.12.989376
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Limited correspondence in visual representation between the human brain and convolutional neural networks
Yaoda Xu, Maryam Vaziri-Pashkam
bioRxiv 2020.03.12.989376; doi: https://doi.org/10.1101/2020.03.12.989376

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4685)
  • Biochemistry (10362)
  • Bioengineering (7682)
  • Bioinformatics (26342)
  • Biophysics (13534)
  • Cancer Biology (10693)
  • Cell Biology (15446)
  • Clinical Trials (138)
  • Developmental Biology (8501)
  • Ecology (12824)
  • Epidemiology (2067)
  • Evolutionary Biology (16867)
  • Genetics (11401)
  • Genomics (15484)
  • Immunology (10619)
  • Microbiology (25225)
  • Molecular Biology (10225)
  • Neuroscience (54481)
  • Paleontology (402)
  • Pathology (1669)
  • Pharmacology and Toxicology (2897)
  • Physiology (4345)
  • Plant Biology (9252)
  • Scientific Communication and Education (1587)
  • Synthetic Biology (2558)
  • Systems Biology (6781)
  • Zoology (1466)