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Abstract:   
 
The   precise   spatial   localization   of   molecular   signals   within   tissues   richly   informs   the  
mechanisms   of   tissue   formation   and   function.   Previously,   we   developed   Slide-seq,   a   technology  
which   enables   transcriptome-wide   measurements   with   10-micron   spatial   resolution.   Here,   we  
report   new   modifications   to   Slide-seq   library   generation,   bead   synthesis,   and   array   indexing   that  
markedly   improve   the   mRNA   capture   sensitivity   of   the   technology,   approaching   the   efficiency   of  
droplet-based   single-cell   RNAseq   techniques.   We   demonstrate   how   this   modified   protocol,  
which   we   have   termed   Slide-seqV2,   can   be   used   effectively   in   biological   contexts   where   high  
detection   sensitivity   is   important.    First,   we   deploy   Slide-seqV2   to   identify   new   dendritically  
localized   mRNAs   in   the   mouse   hippocampus.    Second,   we   integrate   the   spatial   information   of  
Slide-seq   data   with   single-cell   trajectory   analysis   tools   to   characterize   the   spatiotemporal  
development   of   the   mouse   neocortex.   The   combination   of   near-cellular   resolution   and   high  
transcript   detection   will   enable   broad   utility   of   Slide-seq   across   many   experimental   contexts.  
 
  

Main   text:  
The    ab   initio    identification   of   spatially   defined   gene   expression   patterns     can   provide  

powerful   insights   into   the   development   and   maintenance   of   complex   tissue   architectures,   and  
the   molecular   characterization   of   pathological   states.    Recently,   we   developed   Slide-seq 1 ,   a  
spatial   genomics   technology   that   quantifies   expression   genome-wide   with   high   (10-micron)  
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spatial   resolution.    Densely   barcoded   bead   arrays,   termed   “pucks,”   are   fabricated   by   split-pool  
phosphoramidite   synthesis,   and   indexed   up   front   using   a   sequencing-by-ligation   strategy.  
Downstream   users   of   these   arrays   can   perform   assays   with   equipment   found   in   a   standard  
molecular   biology   laboratory,   enabling   the   facile   reconstruction   of   3D   tissue   volumes   that   are  
tens   or   even   hundreds   of   cubic   millimeters   in   size.   

However,   Slide-seq’s   low   transcript   detection   sensitivity   limited   the   range   of   biological  
problems   to   which   the   technology   could   be   applied.   Through   improvements   to   the   barcoded  
bead   synthesis,   the   array   sequencing   pipeline,   and   the   enzymatic   processing   of   cDNA,   we   show  
here   how   we   increased   the   sensitivity   of   Slide-seq   by   an   order   of   magnitude.   With   our   new  
protocol,   termed   Slide-seqV2,   we   demonstrate   a   range   of   new   analytical   possibilities   by  
leveraging   its   improved   capture   efficiency,   including   the   identification   process-localized   genes   in  
neurons,   and   the   analysis   of   developmental   trajectories    in   situ .  

We   optimized   the   yield   of   Slide-seq   capture   by   improving   the   array   generation   pipeline  
as   well   as   the   library   preparation   strategy   (Fig.   1a).   First,   we   developed   a   novel   strategy   to  
spatially   index   Slide-seq   arrays   using   a   monobase   encoding   scheme   with   sequencing   by  
ligation   using   sequential   interrogation   by   offset   primer 2 , 3    (Fig.   S1,   Methods).   This   strategy  
enables   array   indexing   with   open-source,   commercially   available   reagents   and   increases   the  
efficiency   of   spatial   mapping   of   Illumina   reads   to   bead   barcodes   by   50%   (Fig.   S1,   mapped  
barcodes   <   hamming   distance   2).   In   addition,   we   developed   improved   parameters   for   split-pool  
synthesis   of   the   10   μm   polystyrene   barcoded   beads   (Methods),   which   improved   the   clonality   of  
our   barcodes   (Fig.   S2).   Together,   these   strategies   enabled   more   efficient   recovery   of   gene  
expression   on   Slide-seq   arrays   per   Illumina   read.   

Next,   we   optimized   the   enzymatic   library   preparation   steps   of   Slide-seq.   We  
hypothesized   that,   due   to   the   tissue’s   inhibitory   presence   during   reverse   transcription,   the  
template-switching   reaction   that   adds   a   3’   sequence   priming   site   for   whole-transcriptome  
amplification   was   inefficient.   We   therefore   employed   an   additional   second   strand   synthesis   step 4  
after   reverse   transcription   to   increase   the   number   of   cDNAs   that   can   be   amplified   by   PCR.   To  
evaluate   the   relative   improvement   in   transcript   capture   efficiency,   we   performed   Slide-seq   on  
E12.5   mouse   embryos.   Using   our   improved   protocol   (Slide-seqV2),   we   obtained   ~9.3x   more  
transcripts   (UMIs)   per   bead,   compared   to   the   original   Slide-seq   workflow   (Fig.   1b,    median   550  
UMIs   Slide-seqV2,   59   UMIs   Slide-seq).   In   the   mouse   hippocampus,   the   capture   efficiency   of  
Slide-seqV2   was   higher   than   that   of   a   recently   released   commercial   spatial   transcriptomics  
technology 5    (mean   UMIs:   Slide-seqV2   45,772,   Visium   =   27,952,    for   equal   feature   size,   Fig.   S3)  
while   maintaining   25-100x   improved   spatial   resolution   (25x   by   area   per   feature,   100x   including  
feature   spacing,   Fig.   1c).   

Next,   we   sought   to   quantify   the   absolute   sensitivity   of   Slide-seqV2   relative   to   other  
molecular   technologies   that   measure   RNA   content   in   cells   and   tissues.   We   compared   counts   of  
known   marker   genes   of   mouse   hippocampal   CA1   pyramidal   neurons   ( Atp2b1,   Ocaid2,   Slc17a7)  
in   an   equal   number   of   pyramidal   cells   measured   by:   (1)   Slide-seqV2;   (2)   Drop-seq,   a  
high-throughput   scRNA-seq   method 6,7 ;   and   (3)   smFISH 8,9    (Methods).    We   found   that  
Slide-seqV2   detected   only   slightly   fewer   (17%   fewer)   counts   than   Drop-seq   for   the   three   genes  
measured   (mean   +/-   std.   scRNAseq   =   33.5±1.4,   2.1±1.5,1.2±1.5,   Slide-seqV2   =   15.7±1.5,  
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2.3±2.4,   1.9±2.6,   Fig.   1d,    N   =   6,   Supp.   Table   1),   demonstrating   that   Slide-seqV2   capture  
efficiency   was   competitive   with   modern   single   cell   technologies.   

We   used   Slide-seqV2   to   gain   insight   into   biological   problems   where   higher   capture  
sensitivity   is   important.    Neurons   actively   transport   specific   mRNAs   to   dendrites   and  
postsynaptic   densities,   where   they   play   critical   roles   in   synaptic   development   and   plasticity 10–12 .  
Previous   studies   have   explored   dendritic   enrichment   through   physical   microdissection   or   cell  
culture,   but   none   has   systematically   identified   the   distribution   of   dendritically   localized  
transcripts    in   situ .    Dendritic   mRNAs   constitute   only   a   tiny   fraction   of   neuronal   transcripts 13 ,  
necessitating   higher   sensitivity   methods   for   their   detection.    To   identify   dendritically   localized  
mRNAs   from   our   mouse   hippocampal   Slide-seqV2   dataset,   we   took   advantage   of   the  
stereotyped   architecture   of   the   CA1   neuropil   to   reduce   the   spatial   localization   of   transcripts   to   a  
1D   profile   perpendicular   to   the   CA1   soma   layer   (from   stratum   oriens   (s.o.)   to   stratum   pyramidale  
(s.p.)   across   stratum   radiatum   (s.r.),   Fig.    2a,b).   For   each   gene   detected   in   Slide-seq   (N=4  
sections),   we   calculated   the   spatial   expression   as   a   function   of   distance   from   the   soma  
(representative   spatial   expression   profiles   shown   in   Fig.   2b,   bottom).  

To   select   for   dendritically   localized   mRNA,   we   performed   differential   expression   analysis,  
comparing   the   proximal   neuropil   (s.r.)   to   the   soma   (s.p.).   The   CA1   neuropil   contains   glial   cell  
types   (i.e.   microglia   and   astrocytes)   that   also   contribute   RNA   and   interfere   with   analysis;   we  
therefore   included   only   genes   expressed   in   CA1   pyramidal   cells   (>0.5   TPM   in   CA1   pyramidal  
neurons)   and   excluded   those   that   are   markers   of   non-neuronal   cell   types   (Methods,   Supp.   Table  
2),   based   on   existing   scRNA-seq   data   of   the   hippocampus 6 .    After   filtering,   differential  
expression   between   the   proximal   neuropil   and   the   soma   revealed   213   significant   genes   with  
greater   than   2-fold   dendritic   enrichment   (Fig.   2c,    unpaired   t-test,   N   =4   sections,   Supp.   Table   2).  
These   genes   overlapped   significantly   (p<10 -16 ,   hypergeometric   test,   Fig.   S4,   Supp.   Table   2)   with  
two   gene-lists   of   dendritically   enriched   RNAs   from   two   previous   studies 14,15 ,   suggesting  
Slide-seq   can   discover   dendritically   enriched   genes.  

Next,   we   asked   whether   functionally   related   genes   showed   similarities   in   their   dendritic  
enrichment.   First,   we   grouped   dendritically   enriched   genes   according   to   their   1D   spatial  
expression   profile   (Fig.   2d).   Using   K-means,   we   identified   4   clusters   of   spatial   expression   of  
dendritically   localized   genes   in   CA1   neuropil,   with   clusters   having   different   degrees   of   dendritic  
enrichment   (Fig.   2e,   Supp.   Table   2).   To   identify   whether   this   observed   spatial   diversity   in  
localization   was   related   to   protein   function,   we   used   gene   ontology   (GO)   to   determine   the  
cellular   components   of   each   spatial   cluster   (Fig.   2f,   Methods).   We   found   that   each   cluster   was  
enriched   for   ontologically   distinct   groups   of   genes.    Specifically,   the   first   2   clusters   were  
enriched   for   components   of   the   cellular   respiration   machinery,   as   well   as   ubiquitin   ligases,   while  
clusters   3   and   4   were   enriched   for   ribosomal   subunits.   There   was   also   a   strong   enrichment   of  
synaptic   proteins   across   3   of   the   4   clusters   (2-4),   suggesting   that   dendritically   localized   synaptic  
mRNAs   demonstrate   considerable   heterogeneity   in   the   degree   of   dendritic   localization.  
Slide-seq’s   genome-wide   capture   allowed   us   to   visualize   the   heterogeneity   in   dendritic  
trafficking   across   two   synaptic   and   two   cytoskeletal   genes   chosen   from   each   cluster   (Fig.   2g,  
spatial   reconstructions   of   all   213   genes   are   shown   in   Supp.   Dataset   1).   Taken   together,   these  
data   demonstrate   Slide-seqV2’s   ability   to   characterize   process-localized   mRNAs,   which   appear  
to   display   significant   heterogeneity   amongst   the   various   trafficked   synaptic   mRNA   components.  
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During   development,   dynamic   changes   in   gene   expression   across   time   and   space   help  
give   rise   to   complex   tissue   architectures   and   terminally   differentiated   cell   types.   An   array  
computational   strategies   have   been   developed   to   identify   and   explore   developmental  
trajectories   from   scRNA-seq   data 16–19 ,   based   upon   similarities   in   gene   expression   between  
individual   profiles.    More   recently,   an   additional   approach   called   RNA   velocity   was   developed  
that   dynamically   models   expression   trajectories   by   the   relative   quantities   of   spliced   and  
unspliced   transcripts   for   each   gene 20 .    We   reasoned   that   the   combination   of   Slide-seqV2’s  
enhanced   capture   efficiency--which   approaches   that   of   scRNA-seq   technologies--and   its  
near-single-cell   resolution--may   allow   us   to   exploit   these   powerful   algorithms   directly   on   our  
spatial   data   to   learn   how   developmental   processes   are   proceeding   across   a   tissue   section.  

  In   the   embryonic   mouse   neocortex,   neuronal   development   progresses   along   a   radial  
axis   that   begins   in   the   Ventricular   Zone   (VZ)   and   moves   through   the   Subventricular   Zone   (SVZ),  
Intermediate   Zone   (IZ),   and   finally   the   Cortical   Plate   (CP),   where   neurons   integrate   into   cortical  
layers   in   a   birthdate-dependent   manner.    We   wondered   whether   Slide-seqV2   data   could   be  
used   to   successfully   recover   this   highly   spatially   organized   developmental   trajectory 21 .    We   first  
applied   unsupervised   clustering 22    to   Slide-seqV2   data   from   embryonic   day   15   (E15)   developing  
mouse   brain   to   characterize   gene   expression   gradients   in   the   neocortex.   We   annotated   clusters  
corresponding   to   cell   types   in   different   developing   brain   regions,   including   cortex   and   striatum  
(Fig.   3a,   Fig.   S5).   Segregating   just   the   radially   developing   cortex   (Fig.   3a,   black   box),   we  
reclustered   the   beads   to   reveal   populations   representing   the   VZ,   SVZ,   IZ,   CP,   early   cortical  
layers   (L5/6)   and   Cajal   Retzius   cells   (CR)   (Fig.   3a).   

To   determine   whether   Slide-seqV2   data   can   identify   developmental   trajectories,   we   first  
applied   scVelo 23 ,   a   recently   developed   trajectory   inference   method   that   leverages   splicing  
information 20 ,   to   order   our   beads   along   a   predicted   latent   time   (LT).    Projection   of   each   bead’s  
LT   value   onto   spatial   coordinates   successfully   recapitulated   the   established   radial  
developmental   axis   of   the   neocortex   (Fig.   3b).   A   very   similar   trajectory   was   recovered   using   the  
pseudotime   ordering   generated   by   Monocle3 17,24 (Fig.   S5).    Additionally,   Slide-seqV2   data   could  
also   be   used   to   recover   the   radial   axis   of   ocular   lens   development   in   the   embryonic   eye  
(E12.5) 25    (Fig.   S5),   demonstrating   this   analytical   approach   could   be   extended   to   other   biological  
processes   as   well.  

During   the   course   of   a   developmental   process,   each   stage   of   maturation   can   proceed   at  
a   different   rate.    We   wondered   whether   Slide-seqV2’s   spatial   information   could   be   exploited   to  
identify   the   relative   rates   of   differentiation   across   the   radial   axis   of   neocortical   development.    To  
accomplish   this,   we   took   the   spatial   derivative   of   the   scVelo-generated   LT   (Methods),   recovering  
regions   where   LT   changes   most   dramatically   (Fig.   3b   with   magnitude   of   arrows   representing   the  
magnitude   of   derivative).   We   found   that   the   spatial   rate   of   change   was   most   pronounced   at   the  
earlier   stages   of   the   trajectory,   decreasing   as   cells   progress   from   VZ   to   SVZ/IZ,   and   largely  
terminating   in   the   cortical   plate.  

Since   each   bead’s   physical   position   is   strongly   predictive   of   its    LT    value,   we   reasoned   that  
combining   spatial   and    LT    information   could   give   us   considerably   greater   statistical   power   to   identify  
gene   expression   changes   across   this   developmental   process.    The   scVelo   method   was   able   to  
identify   179   genes   with   significant   loading   on    LT ,   while   the   Monocle3   approach   identified   377   genes.  
We   previously   demonstrated   that   we   could   leverage   the   spatial   dimension   of   Slide-seq   to  
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systematically   discover   non-random   spatial   gene   expression   patterns 1 .   Leveraging   this,   we  
identified   1349   spatially   varying   genes   in   the   developing   neocortex   (P<0.005,   Methods,   Supp.  
Table   4),   spatial   expression   plots   of   all   genes   are   in   Supp.   Dataset   2).   Among   these   were   genes  
that   are   known   to   be   involved   in   cortical   development   and   are   shared   among   Slide-seq   and   the  
trajectory   inference   methods   including    Sema5b    and    Nrp1 ,   both   involved   in   axonal   guidance 26,27  
(Fig.   3c).   We   noted   that   these   genes   correlated   strongly   with   the   spatial   LT   axis.   Thus,   to  
systematically   find   genes   that   varied   along   this   axis,   we   correlated   the   expression   of   these   1349  
nonrandom   genes   with   a   spatial   LT   axis   that   was   created   by   fitting   a   surface   to   the   LT   values   in  
physical   space   (Methods).    Of   the   1349   spatially   variable   genes,   1043   correlated   significantly  
with   LT   (pFdr   <0.005),   while   very   few   of   the   non-spatially   variable   genes   showed   significant   LT  
relationship   (Fig.   3d).   In   addition,   the   1043   genes   were   highly   overlapping   with   the   trajectory  
inference   methods:   amongst   these   were   76.5%   of   the   scVelo-identified   genes   (137/179,   Fig.   S6,  
Supp.   Table   3),   and   75.6%   of   the   Monocle3-defined   genes   (285/377,   Fig.   S6,   Supp.   Table   3).  
These   results   gave   us   confidence   that   the   1043   genes   found   using   our   spatial   LT   approach  
were   truly   associated   with   neocortical   development.  

Developmental   disorders   (DD)   are   a   class   of   diseases   frequently   caused   by   pathogenic  
mutations   in   protein   coding   genes 28    that   often   disrupt   the   normal   process   of   neocortical  
development.    Therefore,   we   asked   how   a   set   of   299   DD-associated   genes   that   were   recently  
discovered   from   exome   sequencing   of   DD   parent-offspring   trios    29    distributed   on   our   spatial   LT  
trajectory.    A   total   of   74   of   the   299   DD-associated   genes   were   found   in   the   spatial   LT   gene   set  
(1.87-fold   enrichment,   p   =   3.2x10 -8 ).   These   genes   were   expressed   later   in   average   LT   compared  
with   all   spatial   LT   genes   (Fig.   3f,   left).    Interestingly,   the   average   expression   of   the   74  
DD-associated   spatial   LT   genes   was   much   higher   than   all   spatial   LT   genes   (Fig.   3f,   right).  
These   74   genes   could   be   clustered   into   five   groups   based   on   their   spatial   expression   patterns  
(Fig.   3g,   Methods).    The   individual   clusters   were   enriched   for   distinct   GO   functional   terms,  
suggesting   that   these   genes   participate   in   distinct   developmental   processes   and   pathways   (Fig.  
3h),   ranging   from   chromatin   modification   to   establishment   of   neuronal   states.    Once   additional  
phenotypic   data   becomes   available   about   the   relative   clinical   differences   amongst   these  
DD-associated   genetic   disorders,   it   will   be   revealing   to   understand   how   such   phenotypes  
differentially   load   onto   the   spatial   LT   axis.  

Here,   we   describe   Slide-seqV2,   an   updated   version   of   Slide-seq   with   nearly   order   of  
magnitude   higher   sensitivity.   In   particular,   we   demonstrated   how   the   higher   capture   efficiency   of  
Slide-seqV2   significantly   expands   the   scope   of   possible   analyses,   including   the   discovery   of  
genes   with   distinct   patterns   of   subcellular   localization,   and   the   tracing   of   developmental  
trajectories   through   two-dimensional   space.    To   further   facilitate   adoption   of   the   technology,   we  
have   generated   a   streamlined   pipeline   for   image   processing   and   merging   of   short   read  
sequencing   and   imaging   data 30    (Fig.   S7,   Methods).   This   pipeline   provides   statistics   on   the  
alignment   of   imaging   and   short   read   data,   in   addition   to   the   gene   expression   matrix   and   spatial  
locations   of   each   barcode,   with   limited   user   intervention.   The   combination   of   efficient   molecular  
biology   workflows,   open   sourced   sequencing   chemistry   for   array   indexing,   and   easy-to-use  
software   for   merging   imaging   and   sequencing   data   should   support   wide   application   of   Slide-seq.  
We   anticipate   that   the   technical   and   computational   improvements   here   will   significantly  
accelerate   the   adoption   of   Slide-seq   across   the   academic   community.  
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Main   Figures  

 
Figure   1:    Highly   improved   mRNA   detection   sensitivity   in   Slide-seqV2 .   
A)   Overview   of   the   Slide-seq   method.   Uniquely   barcoded   mRNA   capture   beads   are   affixed   as   a  
monolayer   on   a   microscope   slide,   where   their   physical   locations   are   determined   by    in   situ  
sequencing.    Subsequent   application   of   a   tissue   section   (mouse   hippocampus,   shown   at  
bottom)   to   the   array   enables   high-resolution   spatial   localization   of   gene   expression.   Right:   An  
example   array   of   mouse   hippocampus   generated   with   Slide-seqV2,   with   each   bead   colored   by  
the   number   of   UMIs.   (scale   bar   500   μm).   
B)   Histogram   of   number   of   UMIs   per   bead   for   Slide-seq   (red)   versus   Slide-seqV2   (blue)   on  
serial   mouse   embryo   sections.   
C)   Measure   of   width   of   hippocampus   CA1   across   four   modalities   (N   =   10   measurements   per  
modality   for   DAPI   (mean=48.8µm 5.8),   Slide-seq(mean=40.6   µm 5.5),  
Slide-seqV2(45.9 5.2).   N=20   for   smFISH   (mean=42.5   µm 3.4).  
D)   Comparison   of   marker   gene   counts   in   mouse   hippocampus   CA1   across   four   modalities   (N   =  
6   measurements   per   modality,   mean      sd   reported   in   Supp.   Table   1,   displayed   in   log10).    For  
smFISH,   Slide-seqV2   and   Slide-seq   data,   all   transcript   counts   within   a   fixed   area   of   CA1   were  
summed   together;   for   scRNA-seq,   we   summed   the   counts   for   the   number   of   CA1   pyramidal  
cells   counted   within   this   area.   
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Figure   2:    Slide-seq   reveals   spatial   patterning   of   dendritically   enriched   mRNAs.   
A)   Spatial   heatmap   of   number   of   UMIs   for   a   hippocampal   Slide-seq   dataset.   
B)   (top)   Schematic   of   linear   spatial   profiling   across   CA1   soma   and   dendrites.   Line   profiles  
perpendicular   to   the   soma   layer   were   averaged   in   the   boxed   region   for   each   gene.    (bottom)  
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Spatial   profiles   of   a   CA1   marker   ( Hpca ,   red),   and   a   classically   dendritically   localized   gene  
( Camk2a ,   blue)   are   shown.  
C)   Differentially   expressed   genes   in   soma   versus   proximal   dendrites.   Highlighted   are   genes   with  
FDR-corrected   p-value   <0.05   and   fold   change   >2   (Methods).  
D)   Expression   heatmap   of   237   dendritically   enriched   RNAs.   Columns   move   along   profile  
position   from   0   to   520   microns   (each   bin   is   3   microns).   Genes   are   shown   clustered   by   their  
spatial   profile   (k-means   clustering,   4   clusters).   Rows   are   normalized   and   sum   to   1.  
E)   Average   spatial   expression   profile   of   each   of   the   four   gene   clusters   identified   in   D   across  
CA1.   
F)   Gene-ontology   classifications   using   over-representation   analysis   (Methods)   for   cellular  
component   terms   for   each   spatial   cluster   in    D    as   well   as   all   dendritically   enriched   genes.  
G)   Slide-seq   reconstruction   images   of   one   synaptic   protein-encoding   gene   from   each   of   the   four  
clusters   in    D .   Scale   bars   are   500   μm   for   all   Slide-seq   reconstructions.  
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Figure   3:    Slide-seq   of   developing   mouse   cortex   reconstructs   spatial   developmental  
trajectories   
A)   Left:   Unsupervised   cluster   analysis   of   Slide-seq   data   obtained   from   a   section   of   E15   mouse  
brain.   Black   box   indicates   region   chosen   for   downstream   analysis.   (Scale   bar,   200   μm,   ML:  
medial/lateral   axis,   DV:   dorsal   ventral   axis).   Right:   Beads   present   within   black-box   inset   from  
top,   colored   by   their   annotated   cluster   identities,   subsetted   by   clusters   of   cortical   identity.    Red   =  
Ventricular   Zone   (VZ),    Blue/Purple   =   Subventricular   Zone/   Intermediate   Zone,   Green/   Orange   =  
Cortical   Plate/   Layer   5   /   6,   Pink   =   Cajal   Retzius   Cells   (CR   cells).   
B)   Beads   within   the   anatomical   region   of   developing   cortex,   colored   by   their   assigned   latent  
time   metric   from   scVelo.    Arrow   size   and   direction   correspond   to   the   direction   and   magnitude   of  
the   spatial   derivative   of   the   latent   time   in   physical   space.   
C)   Expression   profiles   of   sample   genes   jointly   identified   by   Slide-seq,   scVelo   and   Monocle3,  
across   the   Slide-seq-generated   spatial   latent   time   axis.   
D)   Two-dimensional   density   plot   quantifying   the   relationship   between   the   a   gene’s   correlation  
with   scVelo   latent   time   (x-axis,   Pearson’s   r)   and   spatial   significance   (y-axis,   log   p-value,   see  
Methods).   Each   square   is   colored   by   the   number   of   genes   found   in   that   bin.   
E)   Stacked   histogram   of   the   number   of   genes   associated   to   the   developmental   trajectory   by  
Monocle3   (blue),   scVelo   (yellow),   and   spatial   latent   time   (red),   binned   by   expression   level  
(x-axis,   log2   counts   per   gene   across   the   dataset).  
F)   left:   density   plot   of   all   spatial   latent   time   genes   compared   to   DD   latent   time   genes   across  
mean   expressed   latent   time   value;   right:   density   plot   of   all   spatial   latent   time   genes   compared   to  
DD   latent   time   genes   for   summed   gene   expression   across   array.  
G)   Slide-seq   reconstruction   images   of   metagenes   associated   with   each   spatial   cluster   of   DD  
genes   (Methods).  
H)   Gene-ontology   classifications   using   over-representation   analysis   (Methods)   for   biological  
process   terms   for   each   spatial   cluster   in    G.  
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