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Abstract 

As a predominant plant protein and oil source for both food and feed, soybean is unique in 

that both domesticated and wild types are predominantly selfing. Here we present a 

genome-wide variation map of 781 soybean accessions that include 418 domesticated 

(Glycine max) and 345 wild (Glycine soja) accessions and 18 of their natural hybrids. We 

identified 10.5 million single nucleotide polymorphisms and 5.7 million small indels that 

contribute to within- and between-population variations. We describe improved detection of 

domestication-selective sweeps and drastic reduction of overall deleterious alleles in 

domesticated soybean relative to wild soybean in contrast to the cost of domestication 

hypothesis. This resource enables the marker density of existing data sets to be increased to 

improve the resolution of association studies. 
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Introduction 

Soybean (Glycine max [L.] Merr.) is an important crop species. It is a major source of 

protein and oil. Cultivated soybean (G. max) has been domesticated as early as 7,000–9,000 

years ago from wild soybean (Glycine soja Sieb. & Zucc.) with distribution in East Asia1,2. 

The cultivation of soybean has been historically confined to East Asia and only recently 

expanded to North America, South America, and India, positioning it as one of the top crops 

in terms of growing area worldwide3. Both domesticated and wild soybean types are 

predominantly selfing4. The accumulation of recombination events in such selfing crops may 

result in a rapid fixation of both beneficial and deleterious mutations. Deleterious mutations 

are considered to be the genetic basis of inbreeding depression and heterosis in other major 

crops including maize and cassava that have outcrossing mating systems5. Thus, 

understanding of genome-wide patterns of historical deleterious allele fixation in soybean 

provides insight into breeding strategy of soybean itself as well as other major crops. After 

the release of the draft soybean genome sequence6, efforts to map soybean genetic variation 

by single nucleotide polymorphism (SNP) array genotyping2,7 and whole genome 

resequencing8-11 have resulted in the global picture of common and rare SNPs across the 

genome. However, those data have been poorly used as an integrated manner to serve as 

haplotype information by imputation approaches that enrich the above SNP genotype data 

with whole genome SNP data12. In addition, genetic variation of wild soybean, which 

contains a large amount of untapped and unexplored soybean diversity, remains poorly 

characterized relative to that of domesticated soybean. 

Here we analyze genomic variation of 781 soybean accessions consisting of 418 G. max, 

345 G. soja, and 18 hybrid (G. max x G. soja) accessions obtained through high-coverage (> 

13) whole-genome sequence data. We conducted the detection of domestication-selective 

sweeps and the identification of deleterious mutations in soybean populations, with the goal 

of providing soybean breeders with efficient means to approach untapped wild soybean 

alleles. We then showed the usefulness of our data in soybean genetics by imputing the SNP 

data set from SoySNP50K array genotyping7,13 using variants identified here for genome-

wide association study (GWAS) of seed protein and oil traits. 

 

Results 

Genomic variation 
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We collected genome resequencing data for a total of 855 samples from 833 soybean 

accessions (Supplementary Table 1 and Supplementary Note). The 855 samples included 22 

repeated samples that were added to examine the cause of high heterozygosity rate in some 

samples observed at the initial stage of this study. Of the 855 samples, 74 that showed higher 

than two thirds of heterozygous to homozygous non-reference SNPs ratios or inbreeding 

coefficient per individual of less than 0.8 were excluded from further population analyses 

(Supplementary Figs. 1 and 2). Final non-redundant 781 accessions as a haplotype map panel 

consisted of 418 G. max including 332 landraces and 86 improved lines, 345 G. soja, and 18 

hybrid (G. max x G. soja) accessions. The G. soja and hybrid accessions were obtained from 

China, Korea, Japan, and the Russian Far East. The 781 data were mapped to the soybean 

Williams 82 reference genome ver. Wm82.a2.v16 with mean depths ranging from 14.09 to 

61.27 after removing duplicate reads and covered > 95.2% of the reference genome by more 

than one read and > 85.4% by more than fine reads for all accessions. After variant calling 

and filtration steps, we retained 10,597,683 high-quality SNPs to perform most of the 

population analyses (Supplementary Fig. 3, Supplementary Table 2, and Supplementary 

Note). In case of indel calls, 5,717,052 bi-allelic indels, approximately two-thirds of raw 

calls, were defined for population analyses of the genomes of the 781 accessions. The indels 

were then divided into 5,578,041 of small indels and 139,011 of structural variants (SV) (> 

50 bp) (Supplementary Fig. 4). 

 

Population structure and diversity patterns 

The population structure of the 781 soybean set assessed using the 10.5 million SNPs 

(Supplementary Figs. 5 to 6, Fig. 1, and Supplementary Note) was similar to that from our 

recent analysis of 3,016 non-redundant soybean accessions genotyped using the 180K 

SoyaSNP array2. However, unlike the tree topology constructed from 180K SNP array data 

that had some ascertainment bias that favored selection of G. max soybean SNPs14, branch 

length differences between G. max and G. soja in our phylogenetic tree (Fig. 1) reflected 

almost two times higher nucleotide diversity () in G. soja (0.0023) than G. max (0.0012) in 

our 781 soybean genome population with an intermediate level (0.0020) in hybrid. The 

results indicate that, consistent with the previous observations10,15, roughly half of the genetic 

diversity has been lost during domestication from wild (G. soja) to domesticated soybean, 

which supports the occurrence of a bottleneck in the genetic pool during the soybean 

domestication process. 
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Genome-wide profiling of variants identified in the 781 soybean accessions was 

performed on the Williams 82 reference genome to reveal diversity patterns in soybean (Fig. 

2). Historical recombination rates (ρ) varied substantially along chromosomes, consistent 

with observations in other plants16,17. All chromosomes had lower recombination near the 

centromere repeat regions, which are presumed to be pericentromeric regions spanning more 

than 10 Mbp, relative to that in euchromatin regions. This pattern of recombination frequency 

distribution have been well supported experimentally by studies of multi-parental maize 

mapping populations16,18, although recombination rates were detected to be almost entirely 

suppressed in pericentromeric regions in those mapping populations. With available estimates 

of the recombination rate (R) from four soybean inter-crossed bi-parental populations, which 

captured ~38,000 meiotic crossovers19, we compared our estimates of historical 

recombination rates with empirical estimates of the recombination rate. Overall, R and ρ were 

weakly, significantly correlated, indicating that our historical recombination rate estimates 

inferred on the basis of the SNP distribution likely reflected naturally occurring 

recombination patterns (Spearman correlation coefficient = 0.256, P = 7.945e-16). 

The overall chromosomal distribution patterns of gene density, SNP density, indel 

density, and genomic evolutionary rate profiling (GERP) scores were similar to those of 

recombination rates (Fig. 2). A detailed description of GERP scores is provided below. The 

patterns of these variables we observed across the genome were significantly correlated with 

the highest correlation between gene density and GERP score density (Supplementary Table 

3) and thus reflected other reports on plant genomes20,21. Interestingly, although correlation 

coefficients between historical recombination rates and other variables are relatively low with 

the highest value of 0.344 between recombination and indel density, our visual inspection 

indicated that the highest peak (hotspot) of historical recombination rates in each of half of 

the 20 chromosomes corresponded with the densest region of indels in each chromosome. A 

variety of genomic features such as gene density, CpG islands, and structural variants have 

been identified as being associated with regions of high recombination17,18,22. However, the 

association between high indel density and recombination hotspot has so far been poorly 

examined. Interestingly, when we searched indel motifs from genomic regions showing 

extremely high historical recombination rate (Rho), we found the ‘AARATA’ and ‘CTCHA’ 

motifs (Supplementary Fig. 7) occurred with 15.5% and 14.2% frequencies, respectively, 

while the other motifs showed less than 3.5%. 
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We then estimated the patterns of linkage disequilibrium (LD), which is strongly 

influenced by the mutation and recombination history among many factors. LD decay rates 

were higher in G. soja than G. max, while that of hybrid was in the middle of the two large 

groups (Supplementary Fig. 8). LD (indicated by r2) dropped to half of its maximum value at 

~ 7.9 kb in wild soybean, similar to those from previous studies in soybean10, rice (Oryza. 

rufipogon, 20 kb)23, and wild maize (Z. mays ssp. parviglumis, 22 kb)24. In the domesticated 

soybean, LD increased to 94 kb similar to that of predominantly selfing cultivated rice (123 

kb and 167 kb in indica and japonica, respectively)25 but much higher than outcrossing 

cultivated maize (30 kb)24. We found that the local LD of pericentromeric regions was much 

higher than that of euchromatic regions (Fig. 2B). Thus, chromosomal distribution pattern of 

LD is negatively correlated with those of historical recombination rates, gene density, SNP 

density, indel density, and GERP scores (Supplementary Table 3). 

 

Signals of selection for domestication in soybean 

Our dataset derived from a collection of 418 domesticated accessions and a comparable 

number of wild accessions provides an unprecedented opportunity for the scanning of 

selective sweep regions during domestication. Previously, several notable genome 

resequencing-based studies have used less than 100 wild accessions for genome scans10,24,26. 

To identify potential selective signals during soybean domestication (wild versus 

domesticated soybean), we scanned genomic regions with extreme allele frequency 

differentiation over extended linked regions using a likelihood test (the cross-population 

composite likelihood ratio, XP–CLR)27. A total of 183 domestication-selective sweep regions 

were detected (Fig. 3). Selective sweep regions had a mean size of 368 kb containing an 

average of 20 genes and accounted for 6.4% of coding sequence (CDS) in the soybean 

genome (7,215,740 bp of CDS for selective sweeps versus 104,886,718 bp CDS for the rest 

of the genome). They showed multiple signatures of selection, including elevated 

differentiation and an expected profile of nucleotide diversity reduction in domesticated 

soybean relative to wild soybean (Fig. 3). More selective sweep regions were detected on 

chromosomes 3, 5, 11, 13, and 20, consistent with previous results that used small numbers of 

wild soybean accessions10,11. A notable exception is two adjacent large selective sweep 

regions spanning roughly 13 Mb at the pericentromeric region of chromosome 1. In this 

region, both domesticated and wild soybean had low nucleotide diversity reflecting a general 

pattern of pericentromeric region in plant genomes. However, Tajima’s D values for the 
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domesticated soybean population were highly negative, indicating that this large 

pericentromeric region might contain key loci that have been selected for domestication. 

When peaks on soybean chromosomes identified as putative selective sweeps were 

compared with domestication-related QTL from a recent comprehensive study using bi-

parental (domesticated by wild) cross soybean populations (Fig. 3)28, the comparison 

supported the selective sweeps identified in this study. Out of 42 chromosomal regions 

containing unique and overlapping QTL, about 70% corresponded to chromosomal regions 

detected by XP-CLR. Among 17 QTL that had more than 5% of phenotypic variation 

explained (PVE), 13 corresponded to the selective sweep regions that were detected by XP-

CLR. However, because several QTL spanned more than 20 Mb around pericentromeric 

regions that have low recombination rates, these comparisons should not be considered 

conclusive but rather suggestive of questions for further study. None of several genes that 

have been cloned with implication of domestication selection in soybean properly overlapped 

with XP-CLR peaks 

 

Enhanced genetic load in selective sweep regions 

Deleterious alleles that are tightly linked to the strongly selected allele on selective sweeps 

may be less effectively purged relative to those on neutral backgrounds. Studies with several 

predominant or mandatory outcrossing species21,29-31 showed that process of domestication 

have resulted in an increased number of deleterious variants in the domesticated genome, 

providing a basis for the “cost of domestication” hypothesis32,33. Here, to quantify the extent 

of purifying selection on deleterious alleles in the self-compatible, predominantly selfing 

plant soybean, we used Sorting Intolerant From Tolerant (SIFT)34 and GERP35 scores. In 

soybean, of the 397,869 SNPs identified within coding sequences (CDS), 17.8% (70,795) 

were considered putatively deleterious (SIFT < 0.05). GERP35 scores were obtained by 

computing constraint for individual positions on the basis of comparative genomic 

approaches. To allow for a comparative analysis, genomic evolution and amino acid 

conservation modeling21 was used to catalog candidate deleterious variants across the 

soybean genome. GERP identified 237.5 Mb of the soybean genome (24.3%) as 

evolutionarily constrained (GERP > 0), and 111.5 Mb (11.4%) as highly evolutionarily 

constrained (GERP > 2) (Supplementary Fig. 9). As expected from the distribution pattern of 

GERP scores on chromosomes (Fig. 2), we found that 71.8% of the deleterious SNPs inside 

CDS were also evolutionarily constrained (GERP > 0) in soybean. GERP scores were 
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combined with SIFT scores to identify the deleterious mutations in the constrained portions 

of the genome. As a result, the putative deleterious mutations (SIFT <0.05) in CDS were 

categorized into conserved deleterious (nonsynonymous, GERP  2,) and moderately-

conserved deleterious (nonsynonymous, 0 < GERP < 2, SIFT < 0.05) mutations. 

Additionally, stop mutations (either gain or loss, GERP > 0) were categorized as a deleterious 

mutation group, although their SIFT scores were not available. We explored the mutation 

burden in domesticated and wild soybean populations. To examine impact of recent crossing 

and selfing, the domesticated soybean accessions were further divided into landraces and 

improved lines. Contrary to an increase of mutation burden in domesticated types predicted 

by the cost of domestication hypothesis, results showed approximately 25% to 35% decrease 

of overall deleterious alleles in landraces relative to wild soybean accessions and 

approximately 5% additional decrease in improved lines (Supplementary Fig. 10). Because 

the three initial categories showed similar tendencies among three soybean subpopulations, 

we combined the three categories into one (Fig. 4A), and used the combined group in 

subsequent analysis. Our results are in contrast to previous studies from cassava, grape, 

maize, rice, and sunflower21,29-31,33,36. Interestingly, our results are similar to substantial 

decrease of the homozygous-mutation burden in domesticated cassava and grape accessions, 

compared with progenitors21,31. Decrease from landraces to improved lines were observed 

between inbred elite maize lines and their landraces37.  

We then compared selective sweep regions between the domesticated and wild soybean 

accessions. We found that domesticated soybean, compared with wild soybean, showed 

69.7% (landraces) and 69.0% (improved lines) fewer (Fig. 4B) deleterious alleles in sweep 

regions. Thus, the decrease in deleterious alleles has likely been enhanced by artificial 

selection, suggesting the decreased mutation load we observe in soybean has been driven by 

the genome-wide effects of the domestication bottleneck as well as linkage associated with 

the selection of specific genes. However, total mutation burden between landraces and 

improved lines was significantly different while there is no significant difference between the 

two groups in selective sweeps, indicating artificial selection outside of selective sweeps 

during modern soybean breeding. In addition to the comparison between the domesticated 

and wild populations, within-population comparison of sweep regions with the rest of the 

genome in deleterious alleles showed that selective sweeps exhibited 56.5% (landraces) and 

52.2% (improved lines) decreases (Fig. 4C) in deleterious alleles in domesticated soybean. 

As expected, nearly the same level of deleterious alleles (only 2.3% difference of means) was 
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observed between sweep regions and the rest of the genome in wild soybean (Fig. 4C). 

Collectively, these results suggest that haplotypes containing fewer deleterious alleles have 

been favored during artificial selection. Unlike outcrossing species that maintained 

accumulated deleterious mutations in the heterozygous state, the predominantly selfing plant 

soybean has been less tolerable to accumulation of deleterious alleles. In other words, 

progeny that might more frequently inherit homozygous deleterious alleles from 

heterozygous deleterious allele parents by selfing rather than outcrossing have been naturally 

or artificially eliminated, thereby purging deleterious mutations from the domesticated 

soybean. 

The selected mutations during domestication can be novel or standing genetic 

variation38. Novel domestication alleles such as those for the reduction of seed-shattering are 

deleterious in the wild and would be extremely rare in the wild plants. Standing 

domestication alleles such as those for seed size may be fixed in domesticated plants but are 

segregating in the wild. As the comparison between identified selective sweeps and 

domestication QTL supported their high correlation and the genetic load analysis in selective 

sweeps corroborated unique biological feature of soybean in domestication, we attempted to 

propose a list of 107 strong domestication candidate genes. Some of them are homologues of 

cloned canonical domestication genes including AP2 and PIF1 transcription factors39 that 

regulate plant architecture (Supplementary Table 4). However, in this approach, the trait or 

traits affected by the selected alleles may be ambiguous and novel mutation will generate a 

more conspicuous signature of a selective sweep than standing mutation. Thus, we 

highlighted 11 candidate novel mutation-containing genes whose deleterious alleles are 

almost fixed in the domesticated soybean and have low frequency in the wild soybean. 

Because none of them have been characterized with implication for domestication and three 

were annotated as proteins of unknown function, they are likely to be specific to soybean or 

eudicot crop plants. 

 

Uses of the haplotype data set for genomic association 

A major objective for sequencing a large collection of accessions is to impute genotypes to 

improve existing GWAS by fine-mapping existing association signals and detecting new 

associations. We evaluated the usefulness of our haplotype data for GWAS by imputing our 

SNP data set into existing SoySNP50K genotyping and phenotyping data for seed protein and 
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oil contents in a large population7,13. In soybean research, numerous linkage analysis and 

GWAS have been conducted for these two important traits40,41.  

We re-analyzed the previous GWAS of seed protein and oil because of a substantial 

update of the soybean reference genome version and to eliminate many nearly identical 

accessions in the original 12,116 soybean accession set (Supplementary Figs. 11 to 12, 

Supplementary Table 5, and Supplementary Note). We then imputed 10.5 million SNPs into 

36,647 SNPs from the SoySNP50K data of 8,844 non-redundant soybean accessions 

(Supplementary Fig. 13 and Supplementary Note). Imputation accuracies were approximately 

97%. General patterns of GWAS results analyzed using a linear mixed model on imputed 

data on 8,844 accessions were quite similar to our re-analysis results on existing SoySNP50K 

array genotyping and phenotyping data (Fig. 5, Supplementary Fig. 13, and Supplementary 

Note). As expected, major peaks were clearly found for both seed oil and protein. 

Interestingly, more than 10 novel minor significant peaks such as those on chromosomes 2, 4, 

and 10 appeared for each of the oil and protein traits and their multivariate trait. Although 

they were clearly found, not a single SNP at these regions reached genome-wide significance 

in the previous GWAS. However, when we performed multi-locus mixed-model (MLMM) 

analysis on the same data set, none of the novel minor peaks were any longer significant 

(Supplementary Fig. 14), indicating that those minor peaks appeared likely to be due to the 

confounding partial LD effects of massively imputed SNPs. For the sake of simplicity for 

examining any improvement of our imputed GWAS, we focused on five significant major 

peaks on chromosomes 5, 8, 13, 15, and 20 from mvLMM (Fig. 5A), which were supported 

by both the MLM and MLMM models. Similar to the previous GWAS that used imputed data 

sets12,42,43, the general width and shape of the peaks detected from unimputed data remained 

largely the same as those from the imputed data with slightly longer tails as much as LD 

distances of boundary markers (Fig. 5B and Supplementary Fig. 15). The number of 

significant SNPs increased and the most significant SNPs showed improvement in signal 

strength and shifted in position in GWAS with imputed data. Among genes that have been 

reported as regulatory genes for oil content in soybean, the GmSWEET39 

(Glyma.15g049200) gene provided an opportunity to examine the improvement of our 

imputed GWAS because this was cloned as a gene controlling seed oil content by selection 

during soybean improvement and was suggested as the causal gene for the major association 

peak on chromosome 1544. The most significant SNP shifted 90.83 kb in position, from 

3,937,899 to 3,847,069 bp (Fig. 5C), although the SNP is not located at the genic region of 
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GmSWEET39. The most significant SNP does not necessarily correspond with variants from 

a causal gene of an association peak, as notably shown by a rice GWAS45. Interestingly, the 

GmSWEET39 gene is located in a newly observed association region (approximately 85 kb) 

with 49 significant imputed SNPs (higher than –log10(p-value) of 20.09) in the middle of the 

chromosome 15 peak, which was non-significant valley in the GWAS with the original 

unimputed data (Fig. 5C). Because the GmSWEET39 gene would not have been regarded as a 

candidate causal gene in the GWAS with unimputed data, this observation serves as apparent 

evidence that GWAS with imputed data had the potential benefit of resolving associations in 

soybean. 

 

Discussion 

The discovery and characterization of extensive genome-wide genetic variation in the 781 

diverse soybean accessions containing an unprecedented number of wild soybean accessions 

provided us with an opportunity to find unique features of plant genomes that were largely 

due to both wild and domesticated species being predominantly self-pollinating. The most 

striking feature is that more deleterious alleles were purged from domesticated than wild 

soybean accessions. During the past decade, genome-wide fine genetic variation of major 

crops including rice, maize, sorghum, cassava, and grape have been revealed46. However, 

those well-characterized major crops have different reproduction modes from soybean. Both 

wild and domesticated species of maize are predominantly outcrossing. Domesticated species 

of rice and sorghum tends to be selfing while their wild types are predominantly outcrossing. 

Both wild and domesticated species of cassava and grape are outcrossing, however cultivated 

types are predominantly clonally propagated. Therefore, the findings from this study may be 

extended to the characterization of wheat and barley47,48, which have the same reproduction 

mode as soybean but whose genome analyses have lagged behind due to their huge genome 

sizes. 

Of the originally resequenced 855 samples, we excluded 74 samples (8.65%), which 

showed high heterozygosity and low inbreeding coefficient, based on presumed reproduction 

mode of soybean. The 781 soybean accessions were clearly divided into domesticated and 

wild accession groups with a distinct subgrouping of wild accessions according to geographic 

collection sites, in similar fashion to other major crops. However, compared to maize 

landraces that showed only 17% diversity reduction from their wild progenitor24, a drastic 

reduction in nucleotide diversity (∼ 48%) was observed during the transition from wild to 
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domesticated soybean. This likely reflects different reproduction modes between selfing 

soybean and outcrossing maize. The overall chromosomal distribution patterns of variation of 

several variables were also quite similar to those observed in other major crops. Nevertheless, 

it is interesting to observe that the historical recombination hotspot in half of the 20 

chromosomes corresponded with the densest indel region in each of those chromosomes. 

Discovery of the two highly frequent indel motifs suggested that there may be some 

relationship between indel mutagenesis and recombination. 

A diverse collection of 345 wild soybean accessions were analyzed against 418 

domesticated accessions to detect selective signals for soybean domestication. Although 

many canonical domestication genes have been cloned from major grass crop species, such 

knowledge has not been translated well to domestication research in eudicot seed crop 

species including soybean. In major crop species, cultivated species and their progenitors 

usually show distinct morphological and physiological differences in so-called domestication 

syndrome traits such as seed size, shattering, seed dormancy, flowering time, and viny 

growth habit. Soybean is not an exception. However, organs and tissues where several 

domestication traits are expressed differ between soybean and grasses. For example, 

shattering is related to the pod in soybean, but to pedicel in rice. Unfortunately, our analysis 

show that none of the soybean domestication genes cloned thus far should be regarded as a 

canonical domestication gene. However, in this study, we reported many candidate canonical 

domestication genes whose alleles are almost fixed in domesticated soybean and have low 

frequency in wild soybean. 

In this selfing species, overall deleterious alleles among landraces relative to wild 

soybean accessions have been drastically reduced by up to almost 35%, similar to the 

observation in sorghum20. Mutation burden was further decreased in improved lines from 

modern soybean breeding. The results are in contrast to the cost of domestication hypothesis 

that deleterious alleles (the genetic load) that happen to be present in the neighborhood 

background of the strongly selected allele in the presence of selective sweeps may become 

more prevalent than those in other neutral backgrounds32,33. Purging of deleterious alleles 

from the domesticated soybean has been further enhanced in selective sweep regions. Unlike 

outcrossing species that maintained accumulated deleterious mutations in the heterozygous 

state, this predominantly selfing plant may have been less tolerable to the accumulation of 

deleterious alleles, eventually leading to the reduction of diversity. In other words, progeny 

that might inherit homozygous recessive deleterious alleles from heterozygous deleterious 
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allele parents by selfing have been naturally or artificially eliminated, thereby purging 

deleterious mutations from domesticated soybean. Interestingly, artificial selection during 

modern soybean breeding have occurred outside of selective sweeps. Introgression of 

untapped variation in wild soybean should be an important objective for the future breeding 

of soybean. Most of the deleterious alleles have to be eliminated during breeding, although 

some deleterious alleles may provide beneficial effects for soybean growth or yield in crop 

fields. Information obtained here should help better design crossing and selfing efforts to 

efficiently eliminate unwanted deleterious alleles in a breeding program to select 

agronomically important untapped genes from wild soybean.  

Finally, we have shown that our high-quality map of genome variation in soybean could 

be used as a reference panel for the imputation of genotypes to improve the existing GWAS 

for oil and protein traits. In addition to those unique genome variation features due to selfing 

and being a eudicot seed crop species that suggest soybean as a model for other such crops, 

our imputation results suggest that the soybean variation map and methods developed here 

can be used in a direct manner to accelerate genetic variation discovery in this economically 

important crop. 
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Fig. 1. Neighbor-joining tree of the 781 haplotype soybean accessions. The accessions 

were divided into four color lines: Glycine max is red, most of Glycine soja black, G. soja 

collected from the middle region of the Yellow River basin orange, and hybrids blue. 
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Fig. 2. Genomic landscape of soybean. a Chromosomes based on the Williams 82 reference 

genome sequence v. Wm82.a2.v1. Centromere repeat regions are indicated by gray bands (a). 

Gene density heatmap (b). SNP density (c). Indel density (d). Population recombination rates 

calculated in 1 Mb windows (blue = historical recombination rate and red = estimates of 

recombination rate from mapping populations (e). SV density (f). Average GERP score 

density (> 0), with dark blue of high GERP score (g). All window sizes are 100 kb except 

recombination rates. b Mean LD scores estimated with a 1 Mb window. 
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Fig. 3. Genomic landscape of soybean. Chromosomes based on the Williams 82 reference 

genome sequence v. Wm82.a2.v1 (a). Centromere repeat regions are indicated by gray bands. 

Nucleotide diversity (𝜋) in 1 Mb windows for each soybean subpopulation (red=G. max, dark 

blue=G. soja, green=hybrid) (b). Tajima’s D for each soybean subpopulation (red=G. max, 

dark blue=G. soja, green=hybrid) (c). Distribution of genome-wide likelihood (XP-CLR) 

values for selection during domestication (d). Plot is based on XP-CLR scores of 100-kb 

block with 10-kb sliding windows. Domestication quantitative trait loci (QTL) and genes on 

chromosomes as detected in a large mapping population Williams 82 × PI 47975228. (QTL = 

blue bands and genes = dark blue bands) (e). Gene names are also shown. 
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Fig. 4. Box-and-whisker plot distributions of mutation burden in domesticated and wild 

soybean populations. a Total mutation burden in individual domesticated (Glycine max, 

landrace cultivars = 332 and improved lines = 86) and wild (Glycine soja, n = 345) soybean 

accessions. b Mutation burden among landrace, improved, and wild soybean accessions in 

domestication sweep regions. c Mutation burden in wild, landrace, and improved soybean 

accessions between domestication selective sweeps and control regions (rest of the genome). 

Vertical axis shows number of deleterious alleles per 100-kb CDS length. The subgroups in 

each of plots are significantly different between one another with P < 0.09e-5 in t-tests or 

Tukey multiple comparison tests except deleterious burdens between landrace and improved 

soybean accessions with P = 0.644. 
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Fig. 5. Comparison of mvMLM-based GWAS for oil and protein contents using 

unimputed and imputed genotype data. a Results using the original genotype data from 

SoySNP50K array. Horizontal line represent 5% significance thresholds corrected for 

multiple testing using Benjamini-Hochberg. Five major peaks are indicated by dashed 

vertical lines for comparison. b Results using imputed data that imputed 10.5 million SNP 

data from 781 soybean genomes into SoySNP50K data. c Comparison of mvMLM-based 

GWAS results using unimputed (SoySNP50K) and imputed genotype data at a major peak on 

chromosome 15. A pale blue box indicates a chromosomal region of oil content regulator 

GmSWEET39 that includes its genic region and 5 kb of each of its 5’ upstream and 3’ 

downstream regions. SNPs located in the GmSWEET39 region are also highlighted by green 

dots. 
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Methods 

Plant materials and sequencing. We initially selected 818 accessions based on the 180 K 

Axiom®  SoyaSNP array genotyping data of ~ 4,400 diverse soybean accessions, most of 

which were collected from South Korea. These diverse soybean accessions also contained 

representatives from the worldwide distribution of soybean49. Soybean plants were grown in 

the Ochang field of the Korea Research Institute of Bioscience and Biotechnology, Cheongju, 

Korea. Although more than two times of single plant selection for the SoyaSNP array 

genotyping had been performed50, we collected young leaves from a single plant of each 

accession and then extracted genomic DNA using the cetyltrimethylammonium bromide 

(CTAB) method51. DNA sequencing was performed at LabGenomics (Seongnam) or 

Macrogen (Seoul) companies in Korea. Paired-end sequencing libraries were constructed 

with an insert size of 500 bp using a TruSeq DNA PCR-Free kit (Illumina, San Diego, CA, 

USA) according to Illumina library preparation protocols. Libraries were then sequenced 

using Illumina HiSeq 2500 or 4000 platforms with 2 × 151-bp paired reads to a target 

coverage of 10X. Some accessions that showed high heterozygous variant levels were 

sequenced multiple times. We also added resequencing data of 16 accessions determined in 

our previous studies8,52 except IT182932 that was newly sequenced in the present study. 

Consequently, resequencing data from a total of 855 samples were used for initial variant 

calling in this study (Supplementary Table 1). 

 

Read mapping and variant calling. Short paired-end reads of 855 samples were quality 

checked using FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). We then 

essentially followed procedures described in the Genome Analysis Toolkit (GATK) Best 

Practices for data pre-processing and variant calling53,54. We used BWA (version 0.1.12) with 

default parameters except for –M option55 to map genomic reads from each accession against 

soybean Wm82.a2.v1 reference genome assembly6. Alignments were further checked for 

PCR duplicates using Picard tools (version 1.134) (http://picard.sourceforge.net/). We 

performed sorting operation, base recalibration, per-sample and joint variant callings, and 

variant filtration using GATK (version 4.0.1.2). Known variant sites for soybean extracted 

from NCBI dbSNP Build 144 

(https://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi?build_id=144) were used for 

base recalibration. Raw variant calling data were divided into SNPs and indels with 

SelectVariants function of GATK (v. 4.0.1.2). A total of 62,987,283 SNPs and 8,567,041 
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indels were identified from the analyses of the genomes of 855 samples. Quality filtering of 

raw SNP calls was performed using VariantFiltration in GATK according to the following 

criteria: ReadPosRankSum of < -2.0, MQRankSum < -2.0, polymorphism confidence scores 

(QUAL) < 30.0, genotype call quality divided by depth (QD) < 3.0, Phred-scaled P-value of 

Fisher exact test for strand (FS) > 30.0, mapping quality (MQ) < 30.0, total depth of coverage 

(DP) < 100, genotype-filter-expression depth of coverage (DP) < 5, and genotype-filter-

expression genotype call quality (GQ) < 10.0. Bi-allelic variants were then selected using 

VCFtools (version 0.1.15)56. To exclude erroneous variants in repetitive regions, variants 

with high mapping depth (> 4X reads per sample, where X was mapping depth) in each 

sample were masked. Allele balance (AB) was calculated and variants with AB < 30 in 

heterozygous genotypes were masked57. The VCFtools was then used to remove markers that 

were monomorphic and markers with call rates < 50%. Up to this stage of filtration, 36.8 

millions of SNPs were defined as candidate variants. In the 62.9 million raw SNP calls, some 

samples showed more heterozygous than homozygous non-reference alleles. Those samples 

still showed high heterozygous rates in the 36.8 million candidate SNP set. Thus, 66 samples 

that contained higher than two-third heterozygous to homozygous non-reference SNPs ratios 

among the samples with more than 0.5 million heterozygous SNPs in the raw SNP call set 

were excluded from further analyses. The inbreeding coefficient per individual was then 

calculated as the difference between the expected and the observed heterozygosity 

standardized by the expected heterozygosity under Hardy-Weinberg. Based on the 

assumption that pure inbred lines would show inbreeding coefficients of near 1.0, we 

additionally excluded eight wild samples that had < 0.8 inbreeding coefficients per individual 

in the 36.8 million candidate SNP set. Finally, 781 accessions were determined as our 

soybean genome variation study set. To perform population analyses using a set of 781 

accessions, we further filtered these candidate SNPs using the VCFtools according to the 

following criteria: --non-ref-ac 1 --maf 0.01 --max-missing 0.8. Finally, we retained 

10,597,683 high-quality SNPs from analyses of the genomes of 781 accessions. Filtering of 

raw indel calls was performed according to the following threshold criteria: 

ReadPosRankSum of < -20.0, QUAL < 30, QD < 2.0, and FS > 200. Bi-allelic variants were 

then retained. From this analysis of the genomes of 781 accessions, a filtered set of 5,717,052 

indels were defined. The indels were then divided into small indels and structural variants 

(SV) with a cut-off of sequence length of 50 bp. 
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Population structure and diversity pattern inference. Principal component analysis (PCA) 

was conducted to summarize the genetic structure and variation present in the 781 accessions 

using smartpca function in Eigensoft v7.258,59. We plotted the first three PCs. We further used 

the model-based, Bayesian clustering software FastStructure v 1.060 to estimate the 

population structure. FastStructure was run on default settings with 10-fold cross-validation 

for subpopulations (K) ranging from K = 2 to 12. Numbers of subpopulations were defined 

using the marginal likelihood function. We plotted the membership coefficient using 

DISTRUCT61. A neighbor-joining tree was constructed by MEGA762 under the p-distances 

model.  

Nucleotide diversity ()63, SNP density, and Tajimas’s D64 for 100 kb were calculated 

with the 10.5 million SNPs using vcftools --window-pi 100000, --SNPdensity 100000, and --

TajimaD 100000, respectively56. Indel and SV densities for the bi-allelic variants were 

calculated using vcftools --SNPdensity 100000. Population recombination rates (Rho, ⍴) 

were calculated in the entire panel using the software FastEPRR65 and also to calculate the 

recombination rate for each of the gene windows used to build the evolutionary model 

(FastEPRR_segments.R). Linkage disequilibrium (LD) decay was calculated using 

PopLDdecay v3.31 with -MaxDist 1000 -MAF 0.05 -Miss 0.1 parameters66. Measures of LD 

(r 2) were calculated for the entire population, but also for each chromosome and 

subpopulation. Pairwise r 2 estimates were calculated from the unimputed SNP dataset with 

MAF > 0.1 and maximum missing rate < 0.1. LD scores were calculated using the Genome-

wide Complex Trait Analysis (GCTA) suite with default settings67,68. Circos69 was used to 

display distributions of estimated variables on the Williams 82 reference genome ver. 

Wm82.a2.v16. 

To search indel motifs from high indel density regions that were highly correlated with 

recombination hotspots, we first designated regions with historical recombination rate 

(Rho) over 478.265, which was calculated by 3rd Quartile+1.5 IQR (Interquartile range): 

1.5*(251.24-99.89)+251. Next, in order to see whether or not there are significant patterns 

in those indel sequences, we retrieved insertion or deletion sequences from 781 soybean 

resequencing matrix in these genome regions. We trimmed out any indel sequences with 

lengths below 7 bp and only used indel sequences with lengths between 8 and 50 bp. All 

66,549 indel sequences were submitted as primary sequences for DREME analysis in the 

web-based motif search program70. 
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Genome scan for selective signals. To scan selective signals over the soybean genome, we 

used a widely used cross-population composite likelihood ratio test (XP-CLR)27 updated by 

Hufford, et al.24. XP-CLR uses allele frequency differentiation between populations. A total 

of 763 soybean accessions consisting of 418 domesticated and 345 wild accessions were used 

for detecting selective sweep regions. Missing variants in our haplotype map data were 

imputed using the BEAGLE v5.071 with the default option. Evidence for selection of 

domestication across the genome was evaluated by comparing domesticated versus wild 

soybean genomes. Individual SNPs were assigned at positions along with a recombinant 

inbred genetic map derived from a cross between G. max “Williams 82 K” and G. soja 

“IT182932”19. Markers located on the insertion of unanchored scaffolds or different 

chromosome segments as well as on chromosome segments whose physical or genetic orders 

were not collinear between the reference genome and our genetic maps were excluded from 

the genetic map. Coordinates of the soybean reference genome assembly Wm82.a2.v1 were 

applied to calculate genetic per physical distance between markers in the genetic map. XP-

CLR was performed with the following criteria: -w1 0.0005 200 100 –p1 0.7. In other words, 

XP-CLR scores of 100 bp windows were calculated for a maximum of 200 SNPs per 0.05 cM 

genetic window. Markers with a correlation level > 0.7 were down-weighted. Manhattan 

plots of XP-CLR scores were constructed using qqman72 in R package or using Circos69. 

Windows with > 89.4 of XP-CLR values, accounting for 5% of the genome, were considered 

as selective sweep regions. Groups of adjacent windows with XP-CLR values not containing 

more than one window below this threshold were defined as a single sweep region. We 

assigned the gene closest to the window with the maximum XP-CLR score in each selective 

sweep region as the most likely candidate. 

 

Determination of effects of nucleotide variants. To predict functional effects of variants, 

we used Sorting Intolerant From Tolerant 4G (SIFT)34 to annotate the high-quality 10.5 

million SNPs set. To create a soybean database, uniref90 (https://www.uniprot.org/, 

download date: Feb 9th, 2019) was used as a reference protein set. Annotation of G. max 

Wm82.a2.v1 was downloaded from EnsemblPlants 

(ftp://ftp.ensemblgenomes.org/pub/plants/release-44/gff3/glycine_max). Gff3 format was 

converted to Ensembl GTF format. Soybean SIFT4G database was constructed using 

SIFT4G_Create_Genomic_DB implemented in SIFT4G. SIFT scores ranged from 0 to 1, and 

any position with a SIFT score <0.05 was considered to be putatively deleterious. 
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Genomic evolutionary rate profiling (GERP). We estimated the individual burden of 

deleterious alleles based on the genomic evolutionary rate profiling (GERP) scores35 for each 

site in the soybean genome. GERP score reflects the strength of purifying selection based on 

constraint in a whole genome alignment of multiple plant species. For the whole genome 

alignment, we used the LASTz/MULTIz approach previously described for the alignment of 

20 angiosperm genomes to A. thaliana reference73 with minor modifications. We aligned 12 

soft repeat-masked genomes of Arabidopsis thaliana (TAIR10.1), Cajanus cajan (V1.0), 

Lupinus angustifolius (v1.0), Medicago truncatula (4.0), Oryza sativa (IRGSP_1.0), 

Phaseolus vulgaris (1_0), Populus trichocarpa (v3), Prunus persica (v2), Vigna radiata 

(ver6), Zea mays (v4) from RefSeq database (https://www.ncbi.nlm.nih.gov/refseq/), and 

Vitis vinifera (V2) from URGI database (https://urgi.versailles.inra.fr/Species/Vitis) to the G. 

max (Wm82.a2.v1) genome. Topology of the 12 species of interest was extracted from the 

whole phylogenetic tree using ete3 toolkit74. The phylogenetic tree was downloaded from 

Phylogenetic Resources files on Dryad database 

(https://datadryad.org/resource/doi:10.5061/dryad.63q27.2)75. The branch length (substitution 

per site) of the phylogenetic tree was calculated using phyloFit76 with four-fold degenerated 

sites of chromosome 1 in G. max. All alignment files (maf files) were merged using Multiz 

and converted to fasta format using maf2fasta program. Alignment gaps (-) in the reference 

genome (G. max) and sequences of the same position in other genomes were removed. 

Finally, we calculated GERP scores using gerpcol with –j option from GERP++35. 

Uncalculated positions were filled with "0" because neither GERP score of N nor n sequence 

position in G. max genome was calculated. 

 

Mutation load estimation. We estimated genome-wide mutation load using numbers of 

derived deleterious alleles identified in soybean accessions based on SIFT and GERP scores. 

From ~ 10.5 million SNPs, we extracted 397,869 variants located inside the coding regions of 

soybean genes (CDS). We categorized these mutations into three categories of deleterious 

variants: stop (either gain or loss of stop codon) mutations, moderately-conserved deleterious 

mutations (SIFT < 0.05, 0 < GERP  0), and conserved deleterious mutations (SIFT < 0.05, 

GERP > 2). The criterion of GERP >2 to determine conservative site was proposed by Ramu, 

et al.21 based on the distribution of cassava GERP scores. For most of the mutation load 

analysis, a combined data set containing all three groups of deleterious mutations was used. 
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We polarized derived and ancestral alleles for the 1,187,830 CDS SNPs using Phaseolus 

vulgaris (1_0) and Vigna radiata (ver6) genomes as outgroups. For each variant, the 

corresponding nucleotides in both the outgroup genomes were identified based on the whole-

genome alignment for the GERP score calculation above. We then used the est-sfs software77 

to infer the probability of the derived versus ancestral allelic state at a polymorphic site. We 

summarized the mutation load as the number of derived deleterious alleles in an 

accession21,78. 

 

Filtration and imputation of soybean data genotyped using SoySNP50K array. Genotype 

data in soysnp50k_wm82.a2_41317.vcf that consisted of 42,291 SNPs scored on 20,087 

germplasm accessions using the Illumina Infinium SoySNP50K BeadChip7 were downloaded 

from SoyBase as of June 10, 201979. In this data set, we corrected the genotypes of 3,494 

reverse-oriented SNP sites in Glyma.Wm82.a2. We removed 96 SNPs presumed to be absent 

in Glyma.Wm82.a2 because they showed a base that was different from both reference and 

non-reference bases. We also removed 2 mitochondrial DNA SNPs. The resultant 42,193 

then underwent further filtration. From the whole set, we selected a total of 12,116 accessions 

for GWAS of seed protein and oil content by Bandillo, et al.13. Of the 12,116 accessions, 559 

with heterozygous rate > 0.05 or missing rate > 0.05 were removed. We calculated identical-

by-descent (IBD) values for all pairwise comparisons among 11,557 G. max accessions using 

PLINK80. We considered pairs of accessions to be duplicates if they had an IBD > 0.9881. As 

a result, 3,272 duplicates were removed, leaving 8,844 non-duplicated accessions with high-

quality genotype data. In this set of 8,844 accessions, SNPs with heterozygous rate > 0.02, 

minor allele frequency < 0.02, and missing rate > 0.10 were discarded from the genotype 

data, leaving a total of 36,647 high-quality SNPs for the imputation of soybean haplotype 

data and GWAS. Beagle (v5.0) was used for imputing genotypes at sites not on the 36,647 

SoySNP50K data using 10.5 million SNP data from 781 soybean genomes. A genetic map 

constructed from a population of 233 recombinant inbred individuals derived from a cross 

between Williams 82K and IT18293219 was used as the fine-scale recombination map input 

for imputation. 

 

Genome-wide association analyses for oil and protein contents. For GWAS for seed 

protein and oil content on the 8,844 accessions using the original SoySNP50K data, of the 

36,647 high-quality SNPs, 36,498 SNPs located on 20 soybean chromosomes were used. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.12.989830doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.12.989830
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

 

GWAS on the 12,116 accessions originally used by Bandillo, et al.13 was also conducted for a 

comparison using 37,142 SNPs located on the 20 soybean chromosomes with frequency > 

2%. Missing variants were imputed using BEAGLE v5.082 with default option. We used 

GEMMA83 to infer the correlation between each variant and seed oil and protein content. We 

first estimated a relatedness matrix from genotypes using the ‘-gk 1’ option in GEMMA. 

Then, we assessed evidence for correlation in a univariate linear mixed model (LMM) 

framework using the ‘-lmm 4’ option. We also assessed evidence for testing marker 

associations between oil and protein content as well as for estimating genetic correlations 

between oil and protein content in a multivariate linear mixed model (mvLMM). The 

Benjamini–Hochberg procedure84 was used to account for multiple testing by controlling the 

false discovery rate (FDR) at 5%. Manhattan plots were constructed to display GWAS results 

qqman72 in R package. The GWAS procedure for seed protein and oil content on the 8,844 

accessions using genotype data that imputed 10.5 million SNPs into SoySNP50K array data 

of 8,844 accessions were essentially the same as that for unimputed SoySNP50K data.  

A modified genome-wide approach85 for implementing a multi-locus mixed-model 

(MLMM) (Segura et al., 2012) to resolve association signals involving large-effect genes was 

used to further identify SNPs potentially associated with the oil and protein traits. The 

MLMM method relies on a simple, stepwise mixed-model regression procedure with forward 

selection and backward elimination while re-estimating the genetic and error variances at 

each step of the regression. This method may well lead to higher detection power and a lower 

FDR relative to traditional single-locus approaches. Because the imputed data appeared to 

exceed the computing power available, we reduced the number of markers by linkage 

disequilibrium (LD)-based marker pruning in PLINK software80. Briefly, we pruned markers 

from imputed data using the ‘--indep-pairwise 100 25 0.99’ option in PLINK. This option 

considers a window of 100 SNPs. calculates LD between each pair of SNPs in the window, 

and finally removes one of a pair of SNPs if the LD is greater than 0.99. Next, overlapping 

SNPs between the imputed data and SoySNP50K data that were deleted during pruning were 

added back to the pruned data, resulting into 804,281 markers for MLMM models. 

 

Data and materials availability. Although 16 of the original data have been released in 

conjunction with prior publications8,52, we uploaded raw reads in fastq format for all 855 final 

accessions to NCBI SRA with SRA accession number PRJNA555366. Large datasets 

including SNP, indel, and SV calls and SIFT scores, GERP scores, ancestral state of CDS 
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SNP variants are available from figshare repository 

(https://figshare.com/projects/Soybean_haplotype_map_project/76110). 
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