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Abstract

Understanding synchrony in growing populations is important for applications as diverse

as epidemiology and cancer treatment. Recent experiments employing fluorescent reporters in

melanoma cell lines have uncovered growing subpopulations exhibiting sustained oscillations,

with nearby cells appearing to synchronise their cycles. In this study we demonstrate that the

behaviour observed is consistent with long-lasting transient phenomenon initiated, and am-

plified by the finite-sample effects and demographic noise. We present a novel mathematical

analysis of a multi-stage model of cell growth which accurately reproduces the synchronised

oscillations. As part of the analysis, we elucidate the transient and asymptotic phases of the

dynamics and derive an analytical formula to quantify the effect of demographic noise in the

appearance of the oscillations. The implications of these findings are broad, such as provid-

ing insight into experimental protocols that are used to study the growth of asynchronous

populations and, in particular, those investigations relating to anti-cancer drug discovery.
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1 Introduction

Growing populations are a crucial feature of many biological phenomena, from the clonal ex-

pansion of cancer cell lines to the increase in numbers of infected individuals during a disease

outbreak. A deeper understanding of cell proliferation sheds light on a vast range of biologi-

cal processes, from morphogenesis to tumour growth [Gilbert, 2000, Evan and Vousden, 2001],

understanding and predicting the time evolution of these growing population is, therefore, of fun-

damental biological relevance [Mort et al., 2016, Haass and Gabrielli, 2017]. The initial stages

of growth in both these scenarios are typically considered to be exponential as cells replicate

without restriction or disease spreads into an otherwise susceptible population.

Standard mathematical modelling approaches assume that cell divisions are independent

events with exponentially distributed waiting times. This gives rise to exponential growth in

unstructured populations [Murray, 2007]. In cell biology, this approach has been supported by

classic experimental studies for large populations under favourable growth conditions [Monod,

1949, Laird, 1965]. However, when smaller populations are considered - for example clones of a

single progenitor cell - the classical model of exponential growth fails to capture the variable per

capita growth rates caused by non-exponentially distributed cell cycle times and more sophisti-

cated models are necessary [Baker and Simpson, 2010, Yates et al., 2017, Jafarpour, 2019, Pirjol

et al., 2017, Lang et al., 2009, Kuritz et al., 2018].

Due to recent technological advances, we are now able to access accurate data revealing the

structure of dynamic cell populations [Chao et al., 2018, Vittadello et al., 2018, Simpson et al.,

2018] using, amongst other tools, proliferation assays: an in vitro experimental protocol in which

the growth of cell populations is monitored over time [Riss et al., 2016]. In particular, in recent

work [Vittadello et al., 2019], we assayed the proliferation of melanoma cells labelled with FUCCI

(Fluorescent Ubiquitous Cell Cycle Indicator [Sakaue-Sawano et al., 2008, Haass et al., 2014] - see

Figure 1 and Section 4.2 of Materials and Methods) which allowed us to track the number of cells
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in particular phases of the cell cycle over a timespan of 48 hours (h). Strikingly, the proportion

of cells in the first phase of the cell-cycle, gap 1 (G1), demonstrates clear and unexpected

fluctuations during the entire duration of the experiment. This synchrony, reproducible over

multiple cell lines and experimental replicates, has potentially serious implications for studies of

rapidly dividing cell populations and demonstrates that classical, and widely adopted exponential

models of population growth are insufficient to capture either individual-level or population-scale

growth dynamics.

Inspired by our experimental findings, we build a multi-stage mathematical model for cell

proliferation which represents the cell-cycle as a series of discrete stages [Vittadello et al., 2019].

The waiting time distribution between consecutive stages is exponential, meaning that the cell

cycle time (CCT) follows a more general class of distributions, known as hypo-exponential.

This family of distributions has been shown to provide good agreement with the experimen-

tal cell-cycle time distribution data [Yates et al., 2017, Gavagnin et al., 2019, Simpson et al.,

2018, Vittadello et al., 2018, Golubev, 2016]. By deriving a deterministic representation of the

population dynamics under the multi-stage approach we reproduce the cell-cycle fluctuations

observed in the experiments. This suggests that multi-stage models are a suitable framework

for investigating the phenomenon of cell-cycle synchronisation. However, since in [Vittadello

et al., 2019] the parametrisation of the model is carried out individually for each experimental

trajectory, our previous study did not explain the origin of such oscillatory phenomena nor their

asymptotic behaviour.

The fluctuations which appear in the multi-stage model are a typical example of damped

oscillations about an equilibrium [Harrison and Topiwala, 1974]. In other words, if the initial

phase-distribution - the distribution of cells in each phase of the cell cycle - is sufficiently far

from its invariant distribution, the system enters a transient phase characterised by oscillations

of decaying amplitude, followed by an asymptotic phase in which the invariant distribution is

reached and the total population grows exponentially. The presence of these two regimes (the
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Figure 1: Data from a proliferation assay. Panels (a) to (c) show three snapshots of an epiflu-
orescence microscopy image time series - merged images of bright-field and the red and green
fluorescence channels. Panel (a) is taken at the beginning of the recording, t = 24h, panel (b)
is taken half-way through the recording, t = 48h, and at panel (c) at the end of the recording,
t = 72h (scale bar 100µm). The cells with red nuclei are in the G1 (gap 1) phase of the cell cycle,
the ones with yellow nuclei are in the eS (early-synthesis) phase and those with green nuclei are
in one of the remaining consecutive phases: S (synthesis), G2 (gap 2) or M (mitosis). Panel
(d) shows a comparison between the distribution of the duration of the G1 phase obtained by
tracking 200 randomly chosen cells (red histogram) and the Erlang distribution with the same
mean and variance (black curve). Panel (e) shows the comparison between the distribution of
the full cell cycle time of the same tracked cells (blue histogram) together with the corresponding
Erlang distribution. See Section section S.4 of Supplementary Materials for full details.
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transient-oscillatory regime and asymptotic-exponential regime) is a common feature of many

structured growing population [Jafarpour, 2019, Jafarpour et al., 2018, Pirjol et al., 2017, Baker

and Röst, 2019]. It is not surprising, therefore, that these two phases play distinct but critically

important roles in the dynamics of a growing cell population.

In this study, we establish that strong oscillations observed in growing populations of cells can

be the result of finite-sample stochasticity alone. This finding demonstrates that it may not be

necessary to appeal to an external synchronisation mechanism requiring cell-cell communication

to explain synchronisation observed in experiments. To do this we first analyse the multi-stage

model with a particular focus on characterising the transient and asymptotic phases. By deriving

a stochastic mesoscopic model, we study the effect of stochasticity in the system and obtain an

analytical formula that can be used to quantify the amplitude of the fluctuations due to finite-

sample effects. Finally, we parametrise the multi-stage model by fitting the G1 and total cell-cycle

time distributions, obtained from single-cell tracking data, and compare our predictions with the

time series obtained in the experiments.

Our central finding is that the fluctuations in the subpopulation of G1 cells in the proliferation

assay are of the same magnitude as those induced by demographic noise alone, which suggests

finite-sample effects as the main origin of the synchronisation. Our study also examines the

specific impact of demographic noise on the dynamics, predicting that the observed oscillations

are a transient phenomenon for which we can predict the corresponding characteristic decay

time.

The fact that the observed synchrony is a result of demographic noise, and not a feature

peculiar to the cell line we studied, means that we expect the same phenomenon to be observed

in a wide range of other populations undergoing stochastic growth, as exemplified in a number of

studies [Riss et al., 2016, Beaumont et al., 2016, Haass and Gabrielli, 2017, Welsh et al., 2016, Hill

et al., 2009]. The possible implications of our findings therefore range from revised experimental

protocols, to altered cancer treatment schedules and from new ways of understanding early
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infection progression within the body to strategies for prevention of the spread dissemination

of disease in the early stages of an outbreak. The characterisation of the transient nature of

synchronised behaviour may also impact on the broad range of experimental protocols in which

cell cycle synchronisation is of vital importance [Banfalvi, 2017].

2 Results

2.1 Multistage model recapitulates experimental observations

We adopt an agent-based model (ABM) for the growth and division of cells, following [Yates

et al., 2017, Gavagnin et al., 2019, Vittadello et al., 2018]. In this formulation the cell-cycle is

represented as a series of K stages through which a cell progresses before it divides. We choose

the waiting time to progress from one stage to the next to be exponentially distributed with rate

β, independent from all other events. When a cell passes through the final stage, it divides into

two new daughter cells, both initialised at stage one. This is a simplified model of the cell cycle,

however, it is sufficient for the purposes of this study and (as we will show later) it gives a good

fit to experimentally observed distributions of cell cycle time.

The K stages of our model are grouped into sections corresponding to the known phases of

the cell cycle. In particular, we say that a cell is in the G1 phase if it is in one of the first αK

stages, where α ∈ [1/K, 2/K, . . . , 1] is a constant to be determined by comparison with data.

Expressed as a sum of exponential random variables, the duration of both the G1 and the entire

cell cycle are Erlang distributed with parameters (K,β) and (αK, β), respectively. Figure 1 (d)

and (e) show the maximum likelihood fit of the model simultaneously to both the duration of the

G1 phase and the total cell-cycle time for the melanoma cell line C8161. In this example we find

parameters K = 92, αK = 33, β = 4.96h−1. The measured cell cycle time has an average of 18.5

hours with standard deviation around 2 hours (see Section S.4 of Supplementary Materials).

To keep track of the growth of a population of cells, we define the state vector X(t) =
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(X1(t), X2(t), . . . , XK(t)), where Xk(t) denotes the number of cells in stage k at time t. Our

model is then represented as a series of chemical reactions, namely

G1 phase

X1
β−→ X2

β−→ · · · β−→ XαK
β−→ XαK+1

β−→ · · · β−→ XK

Cell cycle

β−→ 2X1 . (1)

We write N =
∑K
k=1Xk for the total number of cells, G =

∑αK
k=1Xk for the number of cells in

G1 phase. As the population grows, the proportion of cells in each stage will eventually converge

to a fixed value Xi/N
t→∞−→ ui, for i = 1, . . . , N . Together, these proportions are known as the

invariant stage distribution, u. In Section 2.2 we prove this fact and derive an exact expression

for the limit u. On shorter time horizons, the system exhibits previously transitory oscillations

about the invariant distribution [Strässle et al., 1988, 1989].

To assess the strength of oscillations, in what follows we develop a mathematical theory for

the behaviour of the proportion, Q = G/N , of G1-phase cells. The first part of our analysis

reveals long-lived damped oscillations in the expected value of Q in a growing population, while

the second shows how this effect is initiated and sustained by demographic noise.

Our experimental data are 30 time series of images taken from proliferation assays, as previ-

ously reported in Vittadello et al. [2019] - see Figure 1 (a), (b) and (c) for three snapshots of the

microscopy images and Section 4.1 of Materials and Methods. Each time series captures a 48h

time window following an incubation period of 24h. In Figure 2 we present a comparison between

an experimental time series of Q (the proportion of G1-stage cells) (blue line) and the envelope

of two standard deviations about the mean, Ω (light grey region) obtained from the multi-stage

model (see Section S.3 of Supplementary Materials). Although the trajectory shows clear oscil-

lations about the mean (about three complete cycles from time 24h to time 72h), 97% of the

data points lie inside Ω. We repeat the comparison for all 30 time series from the experiments

(reported in the Supplementary Materials). The envelope, Ω, provides a good approximation for

the amplitude of the fluctuations for most of the experimental trajectories.
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Figure 2: Comparison between experimental data and model prediction for the time evolution of
Q(t). One time series trajectory obtained from the experiments is plotted (blue line), together
with the envelope of two standard deviations from the mean (light grey region) predicted using
the multi-stage model. The parameters of the multi-stage models are obtain by fitting the
distribution of the total cell-cycle time and G1 duration (see Section S.4 of Supplementary
Materials): K = 92, αK = 33, β = 4.96h−1 and N0 = 155.

2.2 Understanding the transient and asymptotic dynamics

In order to understand the interplay between the transient oscillatory dynamics and asymptotic

exponential growth, we begin by writing down the equations governing the dynamics of the

expected number of cells in each stage x̄ = E [X]. Here expected should be interpreted to mean

the average over many experiments with precisely the same initial condition — we will later

see that the variability of the initial condition is a different feature that can also lead to the

emergence of oscillations. From the model formulation we directly obtain

dx̄
dt = βSx̄ , (2)
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where β is the rate of progression through the model stages, and S is the corresponding stoi-

chiometry matrix. This matrix has non-zero entries Sk,k = −1,Sk,k+1 = 1 for k = 1, . . . ,K − 1

describing progression between stages, and SK,K = −1,S1,K = 2 describing cell division.

For the purpose of the analysis, we assume β = K throughout, so that the average cell-

cycle time is normalised to unity. The characteristic polynomial of the matrix S is given by

P(y) = (y+ 1)K − 2, from which the eigenvalues of S are λk = ξk 2
1
K − 1 for k = 1, . . . ,K, where

ξk = e2πik/K is a K-th root of unity. By solving a series of recursive equations, one can write

down the left- and right-eigenvectors associated with the k-th eigenvalue of S, which we denote

uk and vk, respectively. Specifically, we have

ukj = 2λK
(1 + λk)j

, vkj = 1
K

(1 + λk)j

2λK
. (3)

We drop the index k whenever we refer to the eigenvalue with maximum real part and the

corresponding eigenvectors, i.e. λ = λK = 2
1
K − 1, u = uK and v = vK .

Notice that from system (2) we can write x̄(t) = eKtS x̄0, where x̄0 denotes the initial number

of cells per stage. In order to study the matrix exponential eKtS , we first notice that we can

write down the (i, j) element in terms of the eigenvalues and eigenvectors of S as

[
eKtS

]
i,j

=
K∑
k=1

uki v
k
j e
Kλkt . (4)

Notice that as t → ∞ the leading term of equation (4) is uivjeKλt and, hence x̄(t) ∼ ueKλt

determines the long-time behaviour of system (2). We can use this fact to study the limiting

behaviour of Q: we write Q̄(t) =
∑αK
i=1[eKStx̄0]i/

∑K
i=1[eKStx̄0]i and by looking at the first two

terms of (4), we obtain limt→∞Q(t) =
∑αK
i=1 ui = 2(1− 2−α) = Q∗. Notice that convergence to

Q∗ occurs with an exponential decay rate given by the spectral gap of the stoichiometry matrix,

<[λK−1]− λK (see Figure 3).

9

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


We now focus on the transient behaviour of the system (2). We substitute the expressions

(3) into the formula (4) and, by exploiting a remarkable identity of the Mittag–Leffler function

[Paris, 2002], we transform the finite sum over eigenvalues on the right-hand side of (4) into an

infinite sum over the cycles of the oscillatory solutions. Precisely, we write

[
eKtS

]
i,j

= 1
K

K∑
k=1

(1 + λk)j−ieKλkt

=
+∞∑
n=0

1
2πi

∮
2n(1 + z)−1−Kn−(i−j)eKztdz

=
+∞∑
n=0

ϕn(t, i, j) ,

(5)

(6)

(7)

where ϕn(t, i, j) = 2ne−Kt(Kt)Kn+i−j/(Kn+ i− j)!.

We can now use the expression (7) to approximate eKtS for short times, by truncating the

sum over n to a finite index, n̄. For example, let us consider an initial population of N0 cells

perfectly synchronised at the beginning of the cell cycle, i.e. x̄0 = N0e1. Then we define Gn̄ =

N0
∑αK
k=1

∑n̄
n=0 ϕ(n, i, 1) and Nn̄ = N0

∑K
k=1

∑n̄
n=0 ϕ(n, i, 1). In Figure 3 we plot Qn̄ = Gn̄/Nn̄,

for n̄ = 0, 1 and 3, together with Q obtained by solving system (2) numerically. The plot

illustrates how each term of the sum (7) contributes one additional oscillation to the transient

dynamics of the proportion of G1-phase cells. We now have a complete picture of how oscillations

propagate on average in the growing population. It remains for us to show how those oscillations

are created and sustained.

2.3 Finite-sample effects trigger and amplify oscillations

There are two sources of randomness that are relevant to our model cell population growth:

the choice of the initial state, and the timing of cell division events. In order to take into

account the stochasticity in the initial population of cells we mimic the sampling procedure of

the experiments. We assume that a sample of average size N0 cells is drawn from the flask at
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0 1 2 3 4 5 6 7 8

time (CC)
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0.5

1

Q

(a)

Figure 3: The transient oscillatory dynamics. The figure shows the plot of the ratio Q(t) obtained
by solving the deterministic system (2) numerically (blue solid) initialised with X(0) = N0e1
and parameters K = 40, N0 = 100 and α = 0.4. The dashed lines represent the short-time
approximation obtained by truncating expression (7) up to n̄ = 0 (dashed yellow), n̄ = 1 (dashed
pink) and n̄ = 2 (dashed green). The red solid line shows the exponential decay of the oscillations.

time t = 0 (we ignore cell death due to detachment - see Section 4.1 of Material and Methods).

As the cell culture in the flask has been maintained at a subconfluent cell density in fresh

growth medium to prevent any synchronisation due to G1-arrest [Beaumont et al., 2016], we

consider the population of the flask to have reached the invariant stage distribution u. However,

since only a small proportion of the total population is recorded in each experiment, there is a

natural form of finite-sample departure from the theoretical invariant distribution due to initial

sampling procedure. The random sampling of the number of cells in each stage is modelled by

using K independent Poisson random variables, Xi(0) ∼ Po(uiN0), for i = 1, . . . ,K, describing

the number of cells initialised in each stage.

Next, we aim to quantify the effects of inherent stochasticity in the agent-based model.
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Performing a finite-size expansion of the master equation associated with the model [Morris and

Rogers, 2014, Gardiner, 2009], we derive a system of stochastic differential equations for the

density of cells relative to the initial population size. Let x = X/N0, then for large but finite

N0 we obtain the Langevin equation

dx
dt = KS x+

√
K

N0
S η(t) , (8)

where η(t) is a K-dimensional white noise vector with correlator E[ηi(t)ηj(t′)] = xiδijδ(t − t′).

The first term on the right describes the average behaviour of the model, and is the same as in

equation (2). The second term captures the stochastic contributions arising from the finiteness

of the population.

To gain more insight into the behaviour of this model, we first write down an Ornstein–Uhlenbeck

(OU) model which approximates the behaviour of the Langevin equation (see Section S.1 of Sup-

plementary Materials). By studying the OU process, and in particular its correlation matrix (see

Section S.2 of Supplementary Materials), we calculate the envelope of two standard deviations

about the mean of Q, defined as

Ω(t) = [Q∗ − 2σQ(t), Q∗ + 2σQ(t)] , (9)

where σQ(t) denotes the standard deviation of Q(t). All the details of the derivation are discussed

in the Supplementary Materials.

We denote with Ω the envelope obtained from the Langevin model with initial random sam-

pling, with Ω̄ the envelope obtained from the system (2) with initial random sampling and with

Ωu the envelope obtained from the of the Langevin model with the deterministic initial condition

x0 = u. In the two panels of Figure 4 we overlay Ω, Ω̄ and Ωu, together with two numerical

trajectories of Q: one (red) obtained by solving the Langevin equation (8) and one (blue) by
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(a)

(b)

Figure 4: Finite-sample effects amplify the oscillations of Q. The two panels show the overlay
of the three envelopes Ω (light grey region with solid line), Ω̄ (medium grey region with dashed
line) and Ωu (dark grey region with solid line) together with two trajectories of Q(t) obtained
by solving numerically (by using the Euler-Maruyama method with time step ∆t = 10−3) the
Langevin model (red line) and the deterministic system (2) (blue line) with the same, random
initial condition. The two panels show two independent realisations of the models with different
stochastic, initial conditions. The plots provide an example of two possible scenarios in which
the intrinsic stochasticity of the Langevin model amplifies the oscillations of the deterministic
system (panel b), or it triggers the emergence of new oscillations (panel b).
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solving system (2), both initialised with the same random initial condition.

The results of Figure 4 show that in all three cases considered, accounting for the finite-

sample stochasticity can lead to a persistent departure of Q from the equilibrium value. In the

two cases which account for the initial random sampling, Ω and Ω̄, the envelopes present an

evident initial departure from equilibrium, which is sustained for several cell-cycle times, halving

after approximately four periods. The inherent dynamical stochasticity of the Langevin model

tends to amplify the departure from the equilibrium as evident in Ω. Interestingly, both these

envelopes have slightly fluctuating edges. In contrast, the envelope initialised at the invariant

distribution, Ωu shows an initial, fast expansion, followed by a phase of slower decay. Notice

that Ωu lies well inside Ω for all time. This suggests that the initial random sampling plays a

role for the entire duration of the experiment. The numerical trajectories overlaid show good

agreement with the these findings. In particular, the solution of system (2) (blue line) lies well

inside Ω̄ while the simulation of the Langevin equation (red line) shows a larger departure but

it remains almost entirely inside the envelope Ω.

Notice that both trajectories in Figure 4 (a) show clear oscillations about the origin with

similar phases. The Langevin solution has increased oscillation amplitude in comparison to the

solution of the deterministic system (2). Although this amplification phenomenon, due to the

stochasticity of the Langevin model, is common, we also find that, for some initialisations, the

oscillations appear only in the Langevin model and not in the deterministic model as shown in

Figure 4 (b).

In order to quantify the appearance of the oscillations, we look at the time-autocorrelation

function of G(t) which we define as

A(t, t′) = ρ
[
G(t), G(t′)

]
, (10)

14

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


2 3 4 5 6

0

1
t=2

4 5 6 7 8

0

1
t=4

0 1 2 3 4

0

1
t=0

Analytical

Langevin model

(a)

(b)

(c)

Figure 5: The time-autocorrelation function. The three panels (a), (b) and (c) show the time-
autocorrelation function, A(t, t′) at time t = 0, 2 and 4, respectively, obtained analytically from
the full stochastic model (back line) and by averaging over 50 independent simulations of the
Langevin model (orange line). The parameters of the model are the same as in Figure 2. Time
is normalised with respect to the average cell-cycle time.

where ρ denotes the correlation coefficient (defined in equation (S.9) of Supplementary Mate-

rials) and can be computed using the formula for the correlation matrix (see Section S.2 of

Supplementary Materials). Figure 5 shows the evolution of the autocorrelation function, A(t, t′)

as function of t′, for t = 0, 2 and 4, respectively. In each panel we plot A(t, t′) calculated an-

alytically, using the correlation matrix, (black solid line) and the simulated value obtained by

averaging 50 independent trajectories of the Langevin model (orange line). All three panels show

a good agreement between the analytical formula and the simulated counterpart. Moreover, the

results confirm the presence of strong fluctuations on the time autocorrelation of G, i.e. the

number of cells in the G1-phase, with a period of exactly one cell cycle. As Q converges to the

equilibrium, the amplitude of the oscillations decreases and the autocorrelation function A(t, t′)

tends to unity.
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3 Discussion

In this work we highlight the importance of demographic noise to the early dynamics of growing

populations with non-exponentially distributed generation times. We demonstrate that finite-

sample effects can recapitulate the synchronisation in the cell-cycle phase that we previously

observed [Vittadello et al., 2019]. To provide insight in these observations we adopt a multi-

stage approach to model both the total cell-cycle time distribution and the distribution of the

G1 duration and we derive both a deterministic and a stochastic representation for the time

evolution of the ratio Q. We find that the stochasticity in the initial sampling of cells leads

to a departure from the invariant distribution which triggers a transient oscillatory phase. The

presence of intrinsic stochasticity in the dynamics tends to amplify these oscillations and delay

their exponential decay.

We characterise the transient and asymptotic phases of the multi-stage model by deriving

an analytical formula for the variance of the amplitude of the oscillations. By comparing our

results with the experimental data from a proliferation assay of C8161 melanoma cells, we find

that the amplitude of the experimentally observed fluctuation lies inside the envelope predicted

by the model. Our findings suggest that finite-sample stochasticity plays a crucial role in the

early stage dynamics of growing populations and that it can provide an explanation for observed

synchronisation in the subpopulation of the cell cycle phases.

From a theoretical point of view, our study provides a further understanding of the relation

between cell-cycle distribution and global population dynamics. Whilst our analysis employed a

multi-stage model, the results of our analysis are amenable to extension to more general type of

cell-cycle distributions. In fact, for certain choices of the model parameters, the Erlang distribu-

tion adopted in this paper is an excellent approximation of a Gaussian distribution. In Section

S.5 of the Supplementary Materials we compute the relative entropy (Kullback-Leibler diver-

gence) between Erlang and Gaussian distributions to show that the Erlang distribution tend to a
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Gaussian distribution as K →∞. In principle, one could use this fact to study the applicability

of our findings to Gaussian cell-cycle time and, hence, compare our results with other relevant

studies which rely on a Gaussian approach [Jafarpour, 2019, Pirjol et al., 2017]. For example,

Jafarpour [2019] used a Gaussian model to study the connection between mother-daughter size

regulation in bacteria and the decay of transient fluctuations. Our study focuses on synchrony

emerging even in the absence of correlation of CCTs, we expect that accounting for such mech-

anisms will tend to amplify the amplitude of the oscillations predicted by the model, however,

the analysis of this phenomenon is left for future study.

From an experimental point of view, our results highlight the routinely-overlooked importance

of the sample size when performing experiments which involve small populations. In particular,

any data interpretation should be carried out with the role played by finite-sample stochasticity

in mind. Employing larger initial populations, for example by increasing the size of microscopy

images, would diminish the amplitude of the synchronisation. However, since the oscillations

described in this paper are an intrinsic phenomenon due to the finiteness of the population, the

aim of any intervention would be to mitigate their effects, since they cannot be completely eradi-

cated. Our analysis provides a novel platform to quantify the extent of finite-sample effects which

can then be used to assess their relevance in experimental contexts. While we primarily focus

on explaining the synchronised oscillatory behaviour observed in subpopulations of melanoma

cells in a proliferation assay, we stress that the general protocol developed here will be useful in

order to determine the extent of effects due to finiteness of the cell population in a broad class of

applications. Our proliferation assays are typical experimental protocols used to investigate the

efficiency of cell-cycle-inhibiting drugs [Beaumont et al., 2016, Haass and Gabrielli, 2017], hence

our findings may impact upon the reproducibility of such experiments, the efficacy of treatment

protocols [Welsh et al., 2016, Hill et al., 2009] and the findings of mathematical models of these

experiments [Altinok et al., 2009, Clairambault, 2011, Lévi, 2006]. Our work suggests that in-
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herent synchronisation will also occur in bacterial populations and consequently that studies of

bacterial pathogen growth [Jafarpour et al., 2018] may be impacted. Many experimental proto-

cols rely on the synchronisation of cell populations in order to study the structural and molecular

events that occur throughout the cell cycle, providing information about gene expression pat-

terns, post transcriptional modification and contributing to drug discovery [Banfalvi, 2017]. The

improved understanding of the impacts of demographic noise on the evolution of synchronous

populations provided here will shed light on the potential impact that desynchronisation has on

the results of these studies.

4 Materials and Methods

4.1 Cells and cell culture

The human melanoma cell lines C8161 (kindly provided by Mary Hendrix, Chicago, IL, USA)

were genotypically characterised [Davies et al., 2009, Hoek et al., 2006, Smalley et al., 2007a,b],

grown as described by Spoerri et al. [2017] and authenticated by STR fingerprinting (QIMR

Berghofer Medical Research Institute, Herston, Australia)

We maintain the cell cultures to prevent any induced synchronisation from cell cycle arrest

in G1 phase. In general, such induced synchronisation can occur through various experimen-

tal conditions, namely contact inhibition of proliferation at relatively high population densities

[Davis et al., 2001], decreased pH of the growth medium due to the concentration of acidic cell-

metabolites such as lactic acid [Taylor and Hodson, 1984], and reduced availability of nutrients

such as serum [Beaumont et al., 2016]. We prevent induced synchronisation by passaging the

cells every three days, and on the day prior to setting up an experiment, to maintain a subcon-

fluent cell density and a fresh growth medium, so that the cell culture conditions are never such

that they cause G1 arrest.

We note that there are other factors that can induce cell synchronisation. For example, during
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the suspension, prior to seeding, some cells may die due to detachment - in particular those

close to mitosis. Clearly, this phenomenon might lead to further deviation from the invariant

distribution and hence, to amplification of the appearance of the oscillations. Since the aim of

our study is to quantify the oscillations arising only as a result of finite-sample effects, we do not

account for this phenomenon in our model.

4.2 Fluorescent ubiquitination-based cell cycle indicator

To generate stable melanoma cell lines expressing the FUCCI constructs, mKO2-hCdt1 (30–120)

and mAG-hGem (1–110) [Smalley et al., 2005] were subcloned into a replication-defective, self-

inactivating lentiviral expression vector system as previously described [Smalley et al., 2005].

The lentivirus was produced by cotransfection of human embryonic kidney 293T cells with four

plasmids, including a packaging defective helper construct (pMDLg/ pRRE), a Rev plasmid

(pRSV-Rev), a plasmid coding for a heterologous (pCMV-VSV-G) envelope protein, and the

vector construct harboring the FUCCI constructs, mKO2-hCdt1 (30–120) and mAG- hGem

(1–110). High-titer viral solutions for mKO2-hCdt1 (30/120) and mAG-hGem (1/110) were

prepared and used for co-transduction into eight biologically and genetically well-characterized

melanoma cell lines (see above), and subclones were generated by single-cell sorting.

4.3 Image processing and analysis

The microscopy data consist of multi-channel time-series stacks which are processed and analysed

automatically with Fiji/ImageJ and MATLAB as described in Vittadello et al. [2019].

To obtain the time distribution of the G1 phase cells and of the cell cycle we selected 200

cells towards the beginning of the experiment. To do this, we first labelled all the automatically

detected cells on the first frame of the processed merged image of the red and green channels

(using the routine Analyse particle of Fiji/ImageJ), we then selected 100 labelled mother cells

uniformly, without replacement. For each selected mother cell we manually recorded the time

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


intervals corresponding to the G1 phase (i.e. between the mitosis event of the mother cell and

the first appearance of the cell in the green channel) and to the cell cycle (i.e. between the

mitosis event of the mother cell and the last appearance of the cell in the green channel) of its

two daughter cells. We ignored cells which did not reach mitosis before the end of the experiment

or move out of the microscopy window (1% of the selected cells).

References

A. Altinok, F. Lévi, and A. Goldbeter. Identifying mechanisms of chronotolerance and chronoef-

ficacy for the anticancer drugs 5-fluorouracil and oxaliplatin by computational modeling. Eur.

J. Pharm. Sci, 36(1):20–38, 2009.

R.E. Baker and G. Röst. Global dynamics of a novel delayed logistic equation arising from cell

biology. arXiv:1901.07817, 2019.

R.E. Baker and M.J. Simpson. Correcting mean-field approximations for birth-death-movement

processes. Phys. Rev. E, 82(4):041905, 2010.

G. Banfalvi. Cell cycle synchronization. Springer, 2017.

K. A Beaumont, D.S. Hill, S.M. Daignault, Goldie Y.L.L., D.M. Sharp, B. Gabrielli,

W. Weninger, and N.K. Haass. Cell cycle phase-specific drug resistance as an escape mecha-

nism of melanoma cells. J. Investig. Dermatol., 136(7):1479–1489, 2016.

H.X. Chao, R.I. Fakhreddin, H.K. Shimerov, R.J. Kumar, G.P. Gupta, and J.E. Purvis. Evidence

that the cell cycle is a series of uncoupled, memoryless phases. bioRxiv, page 283614, 2018.

J. Clairambault. Optimizing cancer pharmacotherapeutics using mathematical modeling and a

systems biology approach. Pers. Med., 8(3):271–286, 2011.

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


M.A. Davies, K. Stemke-Hale, E. Lin, C. Tellez, W. Deng, Y.N. Gopal, S.E. Woodman, T.C.

Calderone, Z. Ju, A.J. Lazar, et al. Integrated molecular and clinical analysis of akt activation

in metastatic melanoma. Clin. Cancer Res., 15(24):7538–7546, 2009.

P.K. Davis, A. Ho, and S.F. Dowdy. Biological methods for cell-cycle synchronization of mam-

malian cells. BioTechniques, 30(6):1322–1331, 2001.

G.I. Evan and K.H. Vousden. Proliferation, cell cycle and apoptosis in cancer. nature, 411(6835):

342, 2001.

C. Gardiner. Stochastic methods, volume 4. Springer Berlin, 2009.

E. Gavagnin, M.J. Ford, R.L. Mort, T. Rogers, and C.A. Yates. The invasion speed of cell

migration models with realistic cell cycle time distributions. J. Theor. Biol., 481:91–99, 2019.

S.F. Gilbert. Developmental Biology. Sunderland, MA. Sinauer Associates, Inc, 2000.

A. Golubev. Applications and implications of the exponentially modified gamma distribution as

a model for time variabilities related to cell proliferation and gene expression. J. Theor. Biol.,

393:203–217, 2016.

N.K. Haass and B. Gabrielli. Cell cycle-tailored targeting of metastatic melanoma: Challenges

and opportunities. Exp. Dermatol., 26(7):649–655, 2017.

N.K. Haass, K.A. Beaumont, D.S. Hill, A. Anfosso, P. Mrass, M.A. Munoz, I. Kinjyo, and

W. Weninger. Real-time cell cycle imaging during melanoma growth, invasion, and drug

response. Pigment Cell Melanoma Res., 27(5):764–776, 2014.

D.E.F. Harrison and H.H. Topiwala. Transient and oscillatory states of continuous culture. In

Adv. Bio. Eng. Vol. 3, pages 167–219. Springer, 1974.

D. S Hill, S. Martin, J.L. Armstrong, R. Flockhart, J.J. Tonison, D.G. Simpson, M.A. Birch-

Machin, C.P.F. Redfern, and P.E. Lovat. Combining the endoplasmic reticulum stress–inducing

21

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


agents bortezomib and fenretinide as a novel therapeutic strategy for metastatic melanoma.

Clin. Cancer Res., 15(4):1192–1198, 2009.

K.S. Hoek, N.C. Schlegel, P. Brafford, A. Sucker, S. Ugurel, R. Kumar, B.L. Weber, K.L.

Nathanson, D.J. Phillips, M. Herlyn, et al. Metastatic potential of melanomas defined by

specific gene expression profiles with no braf signature. Pigment Cell Research, 19(4):290–302,

2006.

F. Jafarpour. Cell size regulation induces sustained oscillations in the population growth rate.

Phys. Rev. Lett., 122(11):118101, 2019.

F. Jafarpour, C.S. Wright, H. Gudjonson, J. Riebling, E. Dawson, K. Lo, A. Fiebig, S. Crosson,

A.R. Dinner, and S. Iyer-Biswas. Bridging the timescales of single-cell and population dynam-

ics. Phys. Rev. X, 8(2):021007, 2018.

K. Kuritz, W. Halter, and F. Allgöwer. Passivity-based ensemble control for cell cycle syn-

chronization. In Emerging Applications of Control and Systems Theory, pages 1–13. Springer,

2018.

A.K Laird. Dynamics of tumour growth: comparison of growth rates and extrapolation of growth

curve to one cell. Br. J. Cancer, 19(2):278, 1965.

M. Lang, S. Waldherr, and F. Allgöwer. Amplitude distribution of stochastic oscillations in

biochemical networks due to intrinsic noise. PMC biophysics, 2(1):10, 2009.

F. Lévi. Chronotherapeutics: the relevance of timing in cancer therapy. Cancer Causes Control,

17(4):611–621, 2006.

J. Monod. The growth of bacterial cultures. Annu. Rev. Microbiol., 3(1):371–394, 1949.

R.G. Morris and T. Rogers. Growth-induced breaking and unbreaking of ergodicity in fully-

connected spin systems. J. Phys. A.-Math. Theor., 47(34):342003, 2014.

22

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


R.L. Mort, R.J.H. Ross, K.J. Hainey, O.J. Harrison, M.A. Keighren, G. Landini, R.E. Baker, K.J.

Painter, I.J. Jackson, and C.A. Yates. Reconciling diverse mammalian pigmentation patterns

with a fundamental mathematical model. Nat. Commun., 7, 2016.

J.D. Murray. Mathematical biology: I. An introduction, volume 17. Springer Science & Business

Media, 2007.

R.B. Paris. Exponential asymptotics of the Mittag-Leffler function. Proc. R. Soc., Ser. B,

London, 458(2028):3041–3052, 2002.

D. Pirjol, F. Jafarpour, and S. Iyer-Biswas. Phenomenology of stochastic exponential growth.

Phys. Rev. E, 95(6):062406, 2017.

T.L. Riss, R.A. Moravec, A.L. Niles, S. Duellman, H.A. Benink, T.J. Worzella, and L. Minor.

Cell viability assays. In Assay Guidance Manual. Eli Lilly & Company and the National Center

for Advancing Translational Sciences, 2016.

A. Sakaue-Sawano, H. Kurokawa, T. Morimura, A. Hanyu, H. Hama, H. Osawa, S. Kashiwagi,

K. Fukami, T. Miyata, H. Miyoshi, et al. Visualizing spatiotemporal dynamics of multicellular

cell-cycle progression. Cell, 132(3):487–498, 2008.

M.J. Simpson, W. Jin, S.T. Vittadello, T.A. Tambyah, J.M. Ryan, G. Gunasingh, N.K. Haass,

and S.W. McCue. Stochastic models of cell invasion with fluorescent cell cycle indicators.

Phys. A, 510:375–386, 2018.

K.S.M. Smalley, P. Brafford, N.K. Haass, J.M. Brandner, E. Brown, and M. Herlyn. Up-regulated

expression of zonula occludens protein-1 in human melanoma associates with n-cadherin and

contributes to invasion and adhesion. Am. J. Pathol., 166(5):1541–1554, 2005.

K.S.M. Smalley, R. Contractor, N.K. Haass, A.N. Kulp, G.E. Atilla-Gokcumen, D.S. Williams,

H. Bregman, K.T. Flaherty, M.S. Soengas, E. Meggers, et al. An organometallic protein

23

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


kinase inhibitor pharmacologically activates p53 and induces apoptosis in human melanoma

cells. Cancer research, 67(1):209–217, 2007a.

K.S.M. Smalley, R. Contractor, N.K. Haass, J.T. Lee, K.L. Nathanson, C.A. Medina, K.T.

Flaherty, and M. Herlyn. Ki67 expression levels are a better marker of reduced melanoma

growth following mek inhibitor treatment than phospho-erk levels. Br. J. Cancer, 96(3):445–

449, 2007b.

L. Spoerri, K.A. Beaumont, A. Anfosso, and N.K. Haass. Real-time cell cycle imaging in a 3d

cell culture model of melanoma. In Methods Mol. Biol., pages 1612: 401–416. Springer, 2017.

C. Strässle, B. Sonnleitner, and A. Fiechter. A predictive model for the spontaneous synchro-

nization of saccharomyces cerevisiae grown in continuous culture. i. concept. J. Biotechnol., 7

(4):299–317, 1988.

C. Strässle, B. Sonnleitner, and A. Fiechter. A predictive model for the spontaneous synchro-

nization of saccharomyces cerevisiae grown in continuous culture. ii. experimental verification.

J. Biotechnol., 9(3):191–208, 1989.

I.W. Taylor and P.J. Hodson. Cell cycle regulation by environmental pH. J. Cell Physiol, 121

(3):517–525, 1984.

S.T Vittadello, S.W. McCue, G. Gunasingh, N.K Haass, and M.J. Simpson. Mathematical

models for cell migration with real-time cell cycle dynamics. Biophys. J., 114(5), 2018.

S.T. Vittadello, S.W. McCue, G. Gunasingh, N.K. Haass, and M.J. Simpson. Mathematical mod-

els incorporating a multi-stage cell cycle replicate normally-hidden inherent synchronization

in cell proliferation. J. R. Soc. Interface, 16(20190382), 2019.

S.J. Welsh, H. Rizos, R.A. Scolyer, and G.V. Long. Resistance to combination braf and mek

inhibition in metastatic melanoma: where to next? Eur. J. Cancer, 62:76–85, 2016.

24

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032


C.A. Yates, M.J. Ford, and R.L. Mort. A multi-stage representation of cell proliferation as a

markov process. Bull. Math. Biol., 79(12):2905–2928, 2017.

25

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.987032doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987032

