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Abstract 34 

Decision-makers are often faced with limited information about the outcomes of 35 
their choices. Current formalizations of uncertain choice, such as the explore-exploit 36 
dilemma, do not apply well to decisions in which search capacity can be allocated to each 37 

option in variable amounts. Such choices confront decision-makers with the need to 38 
tradeoff between breadth - allocating a small amount of capacity to each of many options 39 
– and depth - focusing capacity on a few options. We formalize the breadth-depth 40 
dilemma through a finite sample capacity model. We find that, if capacity is smaller than 41 
4-7 samples, it is optimal to draw one sample per alternative, favoring breadth. However, 42 

for larger capacities, a sharp transition is observed, and it becomes best to deeply sample 43 
a very small fraction of alternatives, that decreases with the square root of capacity. Thus, 44 

ignoring most options, even when capacity is large enough to shallowly sample all of 45 
them, reflects a signature of optimal behavior. Our results also provide a rich casuistic 46 
for metareasoning in multi-alternative decisions with bounded capacity. 47 

 48 
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Introduction  57 

The breadth-depth (BD) dilemma is a ubiquitous problem in decision-making. 58 
Consider the example of going to graduate school, where one can enroll in many courses 59 
in many topics. Let us assume that the goal is to determine the single one topic that is 60 
most relevant, the one that will grant us a job. Should I enroll in few courses in many 61 
topics –breadth search— at the risk of not learning enough about any topic to tell which 62 

one is the best? Or should I enroll in many courses in very few topics –depth search— at 63 
the risk of missing the really exciting topic for the future? One crucial element of this 64 
type of decision is that the allocation of resources (time, in this case) needs to be done in 65 
advance, before feedback is received (before classes start). Also, once decided, the 66 
strategy cannot be changed on the fly, as doing so would be very costly. The BD dilemma 67 

is popular in tree search algorithms (Horowitz and Sahni, 1978; Korf, 1985) and in 68 
optimizing menu designs (Miller, 1981). It is also one faced by humans and other 69 

foragers in many situations, as when we plan, schedule, or invest with finite resources. It 70 
is remarkable that the bulk of research on the BD has been in fields outside of psychology 71 
(e.g. (Halpert, 1958; Schwartz et al., 2009; Turner et al., 2002). We believe that one 72 
reason is the lack of standard sets of tools for thinking about the problem and separating 73 

it from other dilemmas. 74 
Many features of the BD dilemma warrant its study in isolation. First, BD 75 

decisions are about how to divide finite resources, with the possibility of oversampling 76 
specific options and ignoring others. Second, the BD dilemma is about making strategic 77 
decisions, that is, decisions that need to be planned in advance and cannot be changed on 78 

the fly once initiated, e.g., once courses start, it is very costly to change them. Finally, 79 
these decisions need to be made before feedback is received: enrollment happens before 80 

courses start, and thus before knowing the true relevance of the courses and topics. These 81 
features are distinct from those of the well-known exploitation-exploration dilemma 82 

(Cohen et al., 2007; Costa et al., 2019; Daw et al., 2006; Ebitz et al., 2018; Wilson et al., 83 
2014) and its associated formalization in multi-armed bandits (Averbeck, 2015; Chen et 84 
al., 2016; Gittins et al., 2011).  85 

Past work revealed that humans appear to carefully trade off the benefits of 86 
breadth and depth in multi-alternative decision-making. For example, when faced with a 87 

large number of options, we often focus – even if arbitrarily – on a subset of them 88 
(Bettman et al., 1998; Brandstätter et al., 2006; Gigerenzer and Gaissmaier, 2011; 89 
Tversky, 1972) with the presumable benefit that we can more precisely evaluate them. 90 
Likewise, we may consider all options, but arbitrarily reject value-relevant dimensions 91 

(Busemeyer et al., 2019; Timmermans, 1993), as if contemplating them all is too costly. 92 
Option narrowing appears to be a very general pattern, one that is shared with both human 93 
and non-human animals, despite the fact that rejecting options can reduce experienced 94 
utility (Gigerenzer and Gaissmaier, 2011; Tversky, 1972). It is often proposed that such 95 

heuristics reflect bounded rationality (Simon, 1955), which is likely correct in principle, 96 
but the exact processes underlying that rationality remain to be identified. Why do we so 97 
often consider a very small number of options when considering more would a priori 98 

improve our choice? One possibility is that this pattern reflects an evolved response to 99 
an empirical fact: that when capacity is constrained, optimal search favors consideration 100 
of a small number of options.  101 

Because cognitive capacity is limited in many ways, the BD dilemma has direct 102 
relevance to many aspects of cognition as well. For example, executive control is thought 103 
to be limited in capacity, such that control needs to be allocated strategically (Hills et al., 104 
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2010; Koechlin and Summerfield, 2007; Shenhav et al., 2013, 2017). Likewise, 105 

attentional focus and working memory capacity are limited, such that, during search, we 106 
often foveate only a single target or hold a few items in memory (Cowan et al., 2005). 107 
Although the effective numbers are low, each contemplated option is encoded with great 108 
detail (Awh et al., 2007; Luck and Vogel, 2013; Ma et al., 2014). Furthermore, it seems 109 
clear that recollection of information from memory can be thought of as a search-like 110 

process (Hills et al., 2012; Ratcliff and Murdock, 1976; Shadlen and Shohamy, 2016). 111 
That is, to retrieve a memory we must attend to a recollection processes, with its 112 
associated limited capacity. Thus memory-guided decisions presumably involve BD 113 
tradeoffs too.  114 

Although the relevance of the BD dilemma is clear, tractable models are lacking, 115 

and thus, optimal strategies for BD decisions are largely unknown. Here, we develop and 116 
solve a model for multi-alternative decision making endowed with the prototypical 117 

ingredients of the BD dilemma. Our model consists of a reward-optimizing yet bounded 118 
decision-maker (Gershman et al., 2015; Griffiths et al., 2015; Simon, 1955) confronted 119 
with multiple alternatives with unknown subjective values. The first critical element of 120 
the model is finite sample capacity, which enforces a tradeoff between sampling many 121 

options with few samples (breadth) and sampling few options with many samples 122 
(depth). The second critical element is that samples need to be allocated across 123 

alternatives before sampling starts and, thus, before feedback is available. This strategic 124 
decision with the finite sample capacity constraint implies a metareasoning problem 125 
(Griffiths et al., 2015; Russell and Wefald, 1991) where deliberation about the multiple 126 

possible allocations of resources (meta-actions) need to be made in advance to optimize 127 
expected utility of a future choice. 128 

Despite the simplicity of the model, it features non-trivial behaviors, which are 129 
characterized analytically. When capacity is low (less than 4-7 samples can be probed), 130 

it is best to sample as many alternatives as possible, but only once each; that is, breadth 131 
search is favored. At larger capacities, there is a qualitative and sharp change of behavior 132 
(a ‘phase transition’) and the optimal number of sampled alternatives grows with the 133 

square root of sample capacity (‘square root sampling law’), balancing breadth and depth. 134 
Therefore, in this regime it is best to ignore the vast majority of potentially accessible 135 

options. We considered globally optimal allocations in comparison to even allocation of 136 
samples across sampled alternatives and found that the square root sampling law, 137 
obtained for the latter, provides a close-to-optimal heuristic that is simpler to implement. 138 
Our results are robust to strong variations of the environments where the probability of 139 

finding good options widely varies. 140 
 141 

  142 
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Results  143 

 144 
 145 

 146 
 147 
Figure 1. Finite sample capacity model. The environment (top, green) contains a large number 148 
N of options, and choosing either might lead to a successful outcome (e.g., a large reward). For 149 
each option, the probability of success (blue fraction of red/blue bar) is a-priori unknown to the 150 
decision-maker, and is drawn independently across options from an underlying prior probability 151 
distribution, modelled as a beta distribution (top distribution). The prior distribution defines the 152 
overall difficult of finding successful options in the environment. Options are characterized by 153 
the probability of delivering a successful outcome (e.g., a large reward), and the outcomes are 154 
modelled as Bernoulli variables. The decision-maker (bottom, orange) has a finite capacity C, 155 
i.e., a finite number of samples (bar of squares) that can be allocated to any option in any possible 156 
way. The decision-maker can decide to oversample options by allocating more than one sample 157 
to them (e.g., options on the left), and also ignore some options by not sampling them at all (e.g., 158 
rightmost option). All samples need to be allocated in advance and allocation cannot be changed 159 
thereafter. Therefore, feedback is not provided at this stage. After allocation, sampling starts, in 160 
which the decision-maker observes a number of successes and failures for each of the sampled 161 
options (colored squares; blue: success –large reward, red: failure –small reward). Once this 162 
evidence is collected, the decision-maker choses the option that is deemed to have the highest 163 
probability of success (in this case, option 2; purple box). 164 
 165 
 166 
 167 
Finite sample capacity model 168 

We assume that a decision-maker can choose how to allocate a finite resource 169 
among options of unknown status to determine the best option (Figure 1). The 170 
environment generates a large number of options, each characterized by the probability 171 
of delivering a successful outcome. The success probabilities, unknown to the decision-172 

maker, determine the quality of each of the options, with better options having higher 173 
success probabilities (e.g., options with a higher probability of delivering a large reward 174 
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if they are sampled). The goal of the decision-maker is to infer which of the options has 175 

the highest success probability. The success probabilities of the options are generated 176 
randomly from an underlying prior probability distribution, modelled as a beta 177 
distribution. We assume that this distribution is known by the decision-maker due, for 178 
example, to previous experience with the environment. The prior distribution defines the 179 
overall difficult of finding successful options in the environment.  180 

The decision-maker is endowed with a finite sample capacity 𝐶, i.e., a finite 181 
number of samples that she can allocate to any option and to as many options as desired. 182 
Within the allowed flexibility, it is possible that the decision-maker decides to 183 
oversample options by allocating more than one sample to them, and it is also possible 184 

that she decides to ignore some options by not sampling them at all. Feedback is not 185 
provided at the allocation stage, so this decision is based purely on the expected quality 186 
of options in the environment. After allocation has been determined, the outcomes of the 187 

samples are revealed, constituting the only feedback that the decision-maker receives 188 
about the fitness of her sample allocation. Outcomes for each of the sampled alternatives 189 
are modelled as a Bernoulli variable, where a successful outcome (corresponding to a 190 
large reward) has probability equal to the success probability of that option. The inferred 191 

best alternative is the one with the largest inferred success probability based on the 192 
observed outcomes from the allocated samples to each of the options (Bechhofer and 193 

Kulkarni, 1984; Gupta and Liang, 1989; Sobel and Huyett, 1957). Choosing this 194 
alternative maximizes expected utility (see below and Methods).  195 

 While making a choice based on the observed outcomes is a trivial problem, 196 
deciding how to allocate samples over the options to maximize expected future reward 197 
is a hard combinatorial problem. There are many ways a finite number of samples can be 198 

allocated amongst a very large number of alternatives. At the breadth extreme, one can 199 
split capacity to over as many alternatives as possible, sampling each just once. In this 200 

case, the decision-maker will likely identify a few promising options, but will lack the 201 
information for choosing between them. At the depth extreme, the search could allocate 202 

all samples to one alternative. The decision-maker’s estimate of the success probability 203 
of that option will be accurate, but that of the other alternatives will remain unknown. It 204 

would seem that an intermediate strategy is better than either extreme. Specifically, the 205 
optimal allocation of samples should balance the diminishing marginal gains of sampling 206 
a new alternative and those of drawing an additional sample from an already sampled 207 

alternative.  208 
 To formalize the above model, let us assume that the decision-maker can sample 209 

and choose from 𝑁 = 𝐶 alternatives. That is, we consider scenarios where the number of 210 

alternatives 𝑁 is as large as the decision-maker’s sampling capacity –if the number of 211 
alternatives is larger than capacity, the only difference is that there would be a larger 212 

number of ignored alternatives. The allocation of samples over the alternatives is 213 

described by the vector �⃗�  , with components 𝐿𝑖  representing the number of samples 214 

allocated to alternative 𝑖 = 1,… ,𝑁. The finite sample capacity of the decision-maker 215 

imposes the constraint ∑ 𝐿𝑖𝑖 = 𝐶. Denoting 𝑛𝑖 as the number of successes (1’s) of the 216 

Bernoulli variable over the 𝐿𝑖 samples drawn from alternative 𝑖, the decision-maker’s 217 

expected utility 𝑈(�⃗� ) is 218 

 219 

𝑈(�⃗� ) = ∑𝑝(�⃗� |�⃗� , 𝛼, 𝛽)max
𝑖

 
𝑛𝑖 + 𝛼

𝐿𝑖 + 𝛼 + 𝛽
�⃗� 

 . (1) 220 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.987081doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.987081
http://creativecommons.org/licenses/by-nc/4.0/


 

7 
 

 

 221 

The optimal allocation of samples across options �⃗� ∗  is the one that maximizes the 222 

decision-maker’s expected utility 𝑈(�⃗� ) over all allocations of samples �⃗� ,  223 

 224 

�⃗� ∗ = argmax
�⃗� 

𝑈(�⃗� ) , (2) 225 

 226 
with the above finite sample capacity constraint (see Methods for details). The right-hand 227 
side in Eq. (1) results from taking the average over the expected gain associated with 228 

each possible number of successes �⃗� , weighted by the probability of these successes 229 

occurring for a chosen allocation of samples �⃗� . As each alternative is sampled 230 

independently, the joint distribution of success counts factorizes as 𝑝(�⃗� |�⃗� , 𝛼, 𝛽) =231 

∏ 𝑝(𝑛𝑖|𝐿𝑖 , 𝛼, 𝛽)𝑖 , where 𝑝(𝑛𝑖|𝐿𝑖, 𝛼, 𝛽) is a beta-binomial distribution (Murphy, 2012), 232 

representing the probability of having exactly 𝑛𝑖 successes from a Bernoulli variable that 233 

is drawn 𝐿𝑖 times, and whose success probability 𝑝𝑖 follows a beta distribution with 234 

parameters 𝛼 and 𝛽. These parameters control the skewness of the distribution: with 235 
equal values of both parameters, the distribution is symmetric around one half, while for 236 

𝛼 larger (smaller) than 𝛽 the distribution is negatively (positively) skewed. Overall, these 237 

parameters describe the difficulty of finding successful options in the environment. The 238 

term 
𝑛𝑖+𝛼

𝐿𝑖+𝛼+𝛽
= 𝐸(𝑝𝑖|𝑛𝑖, 𝛼, 𝛽) in Eq. (1) corresponds to the posterior mean for the beta-239 

binomial distribution, and thus it represents the expected success probability of the 240 

sampled Bernoulli variable 𝑖 based on the observed outcome and the prior distribution. 241 

The optimal expected utility then becomes 𝑈∗ = max
�⃗� 

𝑈(�⃗� ), which involves a double 242 

maximization over the expected success probabilities of the sampled alternatives and the 243 

allocation of samples over the alternatives, effectively solving the two-stage decision 244 
process (i.e., first allocate samples, then observed outcomes, then choose) in reverse 245 

order (i.e., first optimize choices given outcomes and allocation, then optimize 246 
allocation).  247 
 This maximization allows total flexibility over how many samples to allocate to 248 

each alternative. For tractability, let us first consider the best even allocation of samples, 249 

that is, a subfamily of allocation strategies where the same number of samples 𝐿 allocated 250 

to each of 𝑀 sampled alternatives, while the remaining alternatives (𝐶 − 𝑀) are not 251 

sampled, subject to the standard capacity constraint 𝑀 × 𝐿 = 𝐶. Indeed, finding the 252 
optimal even allocation of samples is easier than finding the globally optimal allocation, 253 

which might be uneven in general (see below). As we show in Methods, a particularly 254 

simple expression for the optimal even sample allocation, 𝐿∗, arises when the prior 255 

distribution over success probabilities is uniform (𝛼 = 𝛽 = 1),  256 

 257 

𝐿∗ = argmin
𝐿

∑ (𝑠 + 1)𝑀𝐿
𝑠=0  

(𝐿 + 1)𝑀(𝐿 + 2)
 , (3) 258 

 259 

where the right-hand side is related to utility by 260 

 261 
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 𝑈(𝑀 = 𝐶/𝐿) = 1 −
∑ (𝑠 + 1)𝑀𝐿

𝑠=0  

(𝐿 + 1)𝑀(𝐿 + 2)
. (4) 262 

 263 

Note that only 𝑀∗ = 𝐶/𝐿∗ ≤ 𝐶 alternatives are sampled in the optimal allocation, while 264 
the remaining options are given zero samples, thus effectively being ignored. The 265 

sampled alternatives can be chosen randomly, as they are indistinguishable before 266 
sampling. By using extreme value theory (see Methods) we show that the optimal number 267 

of sampled alternatives 𝑀∗ and optimal number of samples per alternative 𝐿∗ both follow 268 

a power law with exponent ½ for large capacity 𝐶   269 

 270 

 lim
𝐶→∞

𝑀∗ = √𝐶,        lim
𝐶→∞

𝐿∗ =  √𝐶, (5) 271 

 272 

which corresponds to perfect balancing breadth and depth.  273 
In the next section, we analyze this case in detail. After that, we consider optimal 274 

even allocations of samples for arbitrary prior distributions, and finally we provide 275 
results for the globally optimal allocations, not necessarily even.  276 

 277 
Sharp transition of optimal sampling strategy at capacity equal to 7 samples 278 

We first analyze the expected utility 𝑈(𝑀) as a function of the number of sampled 279 

alternatives 𝑀 evenly each 𝐿 times (such that 𝑀 × 𝐿 = 𝐶) (Figure 2a).  At low capacity 280 

(𝐶 = 4, lighter gray line), the utility increases monotonically from sampling just one 281 

alternative (𝑀 = 1) four times, to sampling four alternatives (𝑀 = 4) one time each. 282 

Thus, a pure breadth strategy is favored. At intermediate capacity (𝐶 = 10, medium gray 283 

line), the maximum occurs at an intermediate number of alternatives (specifically, M=5), 284 

reflecting an increasing emphasis on depth. At large capacity (𝐶 = 100, black line), the 285 

maximum expected utility occurs when sampling few different alternatives (𝑀 = 10 286 

sampled alternatives with 𝐿 = 10 samples each), reflecting a tight balance between 287 

breadth and search. For such large capacities, sampling instead most of the of alternatives 288 
(rightmost point of the black line) would lead to a reward that approaches 2/3, which is 289 

the lowest expected reward one would obtain if at least one sampled alternative has a 290 
positive outcome (see Methods).  291 

The model displays a sharp transition when capacity crosses the critical value of 292 
7 (Figure 2b). Below this transition point, the optimal number of sampled alternatives 293 
equals capacity –except for capacity 6, where there is a temporary dip below one. That 294 

is, one should follow a breadth strategy and distribute one sample to each alternative. 295 
Above 7, the optimal number of sampled alternatives is much smaller than the capacity. 296 

That is, one should balance the number of sampled alternatives with the depth of 297 
sampling each of them. Specifically, the optimal number of sampled alternatives follows 298 
a power law with exponent ½ (log-log linear regression, power = slope = 0.50, 95% CI 299 
= [0.48, 0.52] ), as predicted by Eq. (5), which implies that the fraction of sampled 300 
alternatives decreases with the square root of capacity. This means that breadth and depth 301 

are tightly balanced in the optimal strategy. The sharp transition at 7 becomes clearer 302 
when plotting the ratio between the optimal number of sampled alternatives and capacity 303 
as a function of capacity (Figure 2c).  304 
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In summary, if the capacity of a decision-maker increases by a factor of 100, the 305 

decision-maker will roughly increase the number of samples alternatives just by a factor 306 
of 10, one order of magnitude smaller than the capacity increase. Because the optimal 307 
number of sampled alternatives increases with capacity with an exponent ½ , we call this 308 
the ‘square root sampling law’. A remarkable implication of this law is that the vast 309 

majority of potentially accessible alternatives should be ignored (e.g., for 𝐶 = 100, 𝐶 −310 

𝑀 = 90 options are ‘rationally’ ignored). 311 
 312 
 313 

 314 
Figure 2. Sharp transitions in optimal number of sampled alternatives when crossing around the 315 
critical capacity of 4-7. (a) Average reward (points, simulations; lines, theoretical expressions, 316 
Eq. 4) as a function of the number of sampled alternatives 𝑀 for three different capacities (𝐶 =317 
4, 10, 100; light, intermediate and dark lines respectively). The maximum occurs at the large 318 
extreme for low capacity but at a relatively low value for large capacity. Note log horizontal 319 
scale. (b) Optimal number of sampled alternatives as a function of capacity. When capacity is 320 
smaller than around 7, a linear trend of unit slope is observed (dashed green line), but when 321 
capacity is above 7, a sublinear behavior is observed (dashed red line corresponds to the best 322 
power law fit, with exponent close to ½). The transition between these two regimes is sharp. 323 
Black line corresponds to analytical predictions –the jagged nature of this prediction and 324 
simulation lines in this and other panels is due to the discrete values that the optimal 𝑀 can only 325 
take, not to numerical undersampling. (c) The sharp transition is clearer when plotting the optimal 326 
number of sampled alternatives to capacity ratio as a function of capacity. For low capacity, the 327 
ratio is one, but for large capacity the ratio decreases very rapidly. The last point for which the 328 
optimal ratio is one corresponds to capacity equal to 7 (indicated with a vertical red line). (d) 329 
Number of sampled alternatives to capacity ratios for different prior distributions (𝛼 = 𝛽 = 1, 330 
black line, same as in the previous panel, not visible because it is very similar to the one with a 331 
bell-shaped prior; 𝛼 = 𝛽 = 3, bell-shaped, green line; 𝛼 = 3, 𝛽 = 1, negatively skewed prior 332 
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modelling a ‘rich’ environment, brown line; 𝛼 = 1, 𝛽 = 3, positively skewed distribution 333 
modeling looking for a ‘needle in a haystack’, that is, a ‘poor’ environment, blue line). Lines 334 
correspond to analytical predictions from Eq. 3; points correspond to numerical simulations; error 335 
bars are smaller than data points in all panels.  336 
 337 

 338 
Generalizing to variations in beta prior distributions 339 

The above critical capacity for optimal even sample allocation changes when, 340 
instead of using a uniform prior of success probabilities, we allow for variations of the 341 
prior distribution (e.g. Figure 2d), but it consistently lies in the range 4-7 with the critical 342 

value depending on the environment. By changing the prior’s parameters, we can vary 343 
the difficulty of finding a good extreme alternative, and thus can compare different 344 
scenarios. For the uniform prior that we have used above, a decision-maker is equally 345 

likely to find an alternative with any success probability. Consider a prior distribution 346 
that is concentrated and symmetric around a success probability of 0.5 (approximately as 347 

a Gaussian, corresponding to the beta prior parameters 𝛼 = 𝛽 = 3). In this environment, 348 
unusually good (high success probability) and unusually bad (low success probability) 349 

options are rarer than medium ones (Figure 2d, green line). In this case, the breadth-350 

depth tradeoff as a function of 𝐶 is remarkably similar to the uniform prior case, with a 351 

transition at 𝐶 = 7.  352 

We also consider a negatively skewed prior distribution (𝛼 = 3, 𝛽 = 1). This 353 

distribution refers to environments with rare bad options, as, for example, a tree whose 354 
fruits are mostly ripe but that has a few unripe ones. In this ‘rich’ environment, one can 355 

afford sampling a smaller number of options, but as they are sampled more deeply, it is 356 
possible to detect better the really excellent ones. A sharp transition occurs even in this 357 
condition, and the last point for which the ratio is one corresponds again to the critical 358 

capacity of 7 (brown line), while capacity 4 corresponds to the first point where the ratio 359 

is below one. As expected in this environment, the decay of the ratio after this transition 360 
is (slightly) faster than that of the symmetric prior. Therefore, negative skews engender 361 
a modest bias towards depth over breadth.  362 

Finally, consider the opposite scenario, in which the prior distribution is 363 

concentrated at low success probability values (𝛼 = 1, 𝛽 = 3, positively skewed beta 364 

distribution), which corresponds to looking for a ‘needle in a haystack’ or a ‘poor’ 365 
environment. In this scenario, one ought to sample more alternatives less deeply to allow 366 
for the possibility of finding the rare good alternatives, and thus breadth should be 367 

emphasized over depth (Figure 2d, blue line). In this scenario, the sharp transition occurs 368 
at capacities around 10 (blue line).  369 

Despite the large variations of prior distributions, a fast transition occurs in all 370 
conditions at around a small capacity value, as in the uniform prior case. In addition, a 371 

power law behavior is observed for values of 𝐶 greater than around 7 regardless of skew, 372 
with exponents close to ½ in all cases (uniform prior, power = 0.50; negatively skewed 373 
prior, 0.46; positively skewed prior, 0.63; s.e.m. < 0.02).  374 

 375 
 376 
Optimal choice sets and sample allocations 377 

So far, we have studied optimal even sample allocation. Let us now consider the 378 
payoffs for decision-makers willing to consider all possible allocation strategies. The 379 
number of all possible allocations equals the number of partitions of integers in number 380 
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theory, which grows exponentially with the square root of capacity (Andrews, 1998). 381 

This makes finding the globally optimal sample allocation a problem that is intractable 382 

in general. For small capacity values 𝐶 ≤ 7 and uniform prior distributions we compute 383 
the exact optimal sample allocation by exhaustive search and rely on a Monte Carlo 384 
gradient descent method for larger capacities and other priors. The latter finds a local 385 

maximum for the reward, that we found to coincide with the exhaustive search optima 386 
for small capacities.  387 

Globally optimal sample allocation (which defines optimal choice sets) for a 388 
uniform prior beta distribution tends to sample all or most of the alternatives when the 389 
capacity is small, but as capacity increases the number of sampled alternatives decrease 390 

(Figure 3, left). For instance, for capacity equal to 5 samples, the optimal sample 391 
allocation is (2,1,1,1,0). In general, in optimal allocations, the decision-maker adopts a 392 
local balance between oversampling a few alternatives and sparsely sampling others –a 393 

local compromise between breadth and depth— even though all options are initially 394 
indistinguishable.  395 

We also studied optimal sample allocation for positively and negatively skewed 396 
prior distributions. In a rich environment (center panel), the optimal sample allocation is 397 

uneven for capacities as low as 𝐶 = 3. In contrast, in a poor environment (right), the 398 

optimal sample allocation remains even up to capacity 𝐶 =5, which was not the case for 399 

the flat environment (compare with left panel). For higher capacities, decision-makers in 400 
rich environments ought to sample less broadly but more deeply. For instance, for 401 

capacity 𝐶 = 20, only around 5 alternatives are sampled, while the remaining 15 402 
potentially accessible alternatives are neglected. In the haystack environment, in contrast, 403 

about half of the alternatives are sampled, but not very deeply (only a maximum of 3 404 
samples are allocated to the most sampled alternatives).     405 
 406 

 407 
 408 
Figure 3. Optimal sample allocations and choice sets. Optimal sample allocation for flat, rich 409 
and poor environments from capacity 𝐶 = 1 up to 𝐶 = 20. The environments corresponding 410 
respectively to uniform, negatively and positively skewed prior distributions (top icons). Optimal 411 
sample allocations are represented as bar plots, indicating the number of samples allocated to 412 
each alternative ordered from the most to the least sampled alternative. Note that at large capacity 413 
many alternatives that could potentially be sampled (up to a number equal to the capacity) are 414 
not actually sampled.  415 
 416 
 417 
 418 
 419 
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Even sample allocation is close to optimal 420 

Three principles stand out. First, globally optimal sample allocation almost never 421 
coincides with optimal even allocation. Second, at low capacity optimal allocation favors 422 
breadth while at large capacity a breadth-depth balance is preferred (Figure 4a). Third, 423 
a fast transition is observed between the two regimes happening at a relatively small 424 
capacity value. The last two features are shared by the optimal even allocations as well 425 

(cf. Figure 2c).   426 
 427 

 428 
Figure 4. Globally optimal and optimal even sample allocations share similar features and have 429 
similar performances. (a) Fraction of sampled options (compared to the maximum number of 430 
potentially accessible alternatives, equal to 𝐶) as a function of capacity 𝐶. The fraction is close 431 
to one for small values for all environments (flat -black line, rich -brown, and poor -blue). The 432 
fraction decays rapidly to zero from a critical value that depends on the prior. The jagged nature 433 
of the lines is due to the discrete nature of capacity. (b) Percentage points increase in averaged 434 
reward by using globally optimal sample allocation compared to even allocation (see Methods). 435 
Color code as in the previous panel.  436 
 437 

Optimal even and globally optimal sample allocations share some important 438 
features, but are they equally good in terms of average reward obtained? We compared 439 

the average reward from globally optimal and even optimal sample allocations. For 440 
comparison, we always used optimal even sampling based on a uniform prior over each 441 

alternatives’ success probabilities, that is, we sample 𝑀 = 𝐶 alternatives with one sample 442 

each if capacity is 𝐶 ≤ 7 and 𝑀 = √𝐶 alternatives with 𝐿 = √𝐶 samples each if capacity 443 
is larger (square root sampling law; see Methods for details). This heuristic produced 444 
comparable performances to the optimal ones (Figure 4b). The worst-case scenario 445 

occurred in the poor environment (blue line) when capacity is close to 10, which led to a 446 
reduction in performance of close to 10%, but the maximum discrepancy value was even 447 

smaller for the flat and rich environments. Indeed, for the flat environment, the maximum 448 
reduction of performance was only around 5%.  449 

For large capacity 𝐶 > 100 the square root sampling law produced results that 450 

were very close to the performance of the optimal solutions (as found by the MC gradient 451 
descent method). Therefore, the advantage provided by using globally optimal sample 452 

allocation over optimal even sampling at low capacity and the square root sampling law 453 
for high capacity is at most marginal. 454 

 455 
 456 
  457 
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Discussion  458 

We delineate a formal mathematical framework for thinking about a 459 
commonplace decision-making problem. The breadth-depth dilemma occurs when a 460 
decision-maker is faced with a large set of possible options, can query multiple options 461 
simultaneously, and has a limited search capacity. In such situations, the decision-maker 462 
will often have to balance between allocating search capacity to more (breadth) or to 463 

fewer (depth) options. We develop and use a finite sample capacity model to analyze 464 
optimal allocation of samples as a function of capacity. The model displays a sharp 465 
transition of behavior at a critical capacity close to the magical numbers 4-7 (cf. (Miller, 466 
1956)). Below this capacity, the optimal strategy is to allocate one sample per alternative 467 
to access to as many alternatives as possible (i.e. breadth is favored). Above this capacity, 468 

breadth-depth balance is emphasized, and the square root sampling law, a close-to-469 
optimal heuristic, applies. That is, capacity should be split into a number of alternatives 470 

equal to the square root of the capacity. This heuristic provides average rewards that are 471 
close to those from the optimal allocation of samples. As it is easy to implement, it can 472 
become a general rule of thumb for strategic allocation of resources in multi-alternative 473 
choices. The same results roughly apply to a wide variety of environments, including 474 

flat, rich and poor ones, characterized by very different difficulties of finding good 475 
options.  476 

Despite the billions of neurons in the brain, our processing capacity seems quite 477 
limited. This strict limit applies to attention (where it is sometimes called the attentional 478 
bottleneck, (Deutsch and Deutsch, 1963; Treisman, 1969; Yantis and Johnston, 1990), 479 

including spatial attention, where the limit is best characterized (Desimone and Duncan, 480 
1995), over working memory (Brady et al., 2011; Cowan et al., 2005; Luck and Vogel, 481 

2013; Ma et al., 2014; Miller, 1956; Sims, 2016), to executive control (Norman and 482 
Shallice, 1986; Shenhav et al., 2017; Sleezer et al., 2016) and to motor preparation (Cisek 483 

and Kalaska, 2010). These narrow limits, which often number only a handful of items 484 
(though see (Ma et al., 2014)), suggest some sort of bottleneck. However, another 485 
interpretation is that capacity is much larger than it appears, and instead, observed 486 

capacity reflects the strategic allocation of resources according to the compromises that 487 
our model identifies as optimal. The square root sampling law, in other words, suggests 488 

that the apparently narrow bandwidth of cognition may reflect the optimal allocation 489 
across very few options of a relatively large capacity.  490 

This is particularly likely to be true for economic choice. We are especially 491 
interested in the apparent strict capacity limits of prospective evaluation (Hayden and 492 

Moreno-Bote, 2018; Krajbich et al., 2010; Lim et al., 2011; Redish, 2016; Rich and 493 
Wallis, 2016). Indeed, the failures of choice with choices sets over a few items are 494 
striking and have been a major part of the heuristic literature (Diehl and Poynor, 2010; 495 
Iyengar and Lepper, 2000). These strict limits are ostensibly difficult to explain. It does 496 

not derive, for example, from the basic computational or biophysical properties of the 497 
nervous system, as is evident from the fact that our visual systems are an exception to 498 
the general pattern and can process much information in parallel. Nor do these limits 499 

appear to relate to any desire to reduce the extent of computation, as large numbers of 500 
brain regions coordinate to implement these cognitive processes (Rushworth et al., 2011; 501 
Siegel et al., 2015; Vickery et al., 2011; Yoo and Hayden, 2018). Our results presented 502 
above offer an appealing explanation for this problem: economic choice can be construed 503 
as breadth-depth search problems, and even when capacity is large, the optimal strategy 504 
is to focus on a very small region of the search space. Thus, our results can also help to 505 
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understand why many cognitive systems operate in a regime of low sampling size, thus 506 

resolving the paradox of why low breadth sampling and large brain resources can coexist.  507 
We believe that these results are particularly relevant to behavioral economics. 508 

Research has shown that consumers often consider just a small number of brands from 509 
where to purchase a specific product out of the many brands that exist in the market 510 
(Hauser and Wernerfelt, 1990; Stigler, 1961). The prevailing notion is that decision-511 

makers hold a consideration choice set from where to make a final choice rather than 512 
contemplating all possibilities. Several reasons for this behavior have been provided. 513 
First, choice overload has been shown to produce suboptimal choices in certain 514 
conditions (Iyengar and Lepper, 2000; Scheibehenne et al., 2010). Secondly, selecting a 515 
small number of options from where to choose can be actually optimal if there is 516 

uncertainty about the value of the options and there is cost for exploring and sampling 517 
further options (Mehta et al., 2003; Roberts and Lattin, 1991; Santos et al., 2012).  518 

Estimating the overall benefits of considering larger sets has to be balanced with 519 
the associated cost of exploring further options. This research has provided a relevant 520 
line of thought to understand low sampling behavior within the context of bounded 521 
rationality by formally assuming the presence of linear costs of time for searching for 522 

new options. Time costs comes in the model at the expense of unknown parameters, 523 
which often are difficult to fit (Mehta et al., 2003; Roberts and Lattin, 1991). Further, 524 

linear time costs always permit unlimited number of sampled options, as they do not 525 
impose a strict limit in the number of options that can be sampled. In our approach, in 526 
contrast, allocating finite resources imposes a strict limit to the number of options that 527 

can be sampled and, as resources are limited, there is a tradeoff between sampling more 528 
options with less resources or sampling fewer options with more resources, directly 529 

addressing the breadth-depth dilemma. This difference could be the main reason why the 530 
consideration set literature has not reported sharp transitions of behavior as a function of 531 

model parameters (costs) nor power sampling laws, which are the main features of our 532 
finite sample capacity model.  533 

A number of extensions would be required to fully address more realistic 534 

problems associated to the breadth-depth dilemma. So far, we have considered a two-535 
stages decision process, where the first metareasoning decision is about optimally 536 

distributing limited sampling capacity. It would be interesting to extend our results to 537 
sequential processes, where the decision of how to allocate is iterated over several steps, 538 
with intermediate feedback. An advantage of this more general setup (Morgan and 539 
Manning, 1985) is that a full-fledged interaction between the breadth-depth and 540 

exploration-exploitation dilemmas could be studied. In particular, a relevant direction is 541 
relating our square root sampling law with Hick’s law (Hick, 1952) for multialternative 542 
choices. The two approaches touch different aspects of multialternative decision making: 543 
while Hick’s law refers to the problem of how long options should be sampled in a 544 

multialternative setting, it does so by sampling all available options; the square root 545 
sampling law, by contrast, applies to situations where there are many alternatives and 546 
large fraction of them are to be ignored due to limited capacity, directly facing the 547 

breadth-depth dilemma. It will be interesting to integrate the two sets of results within a 548 
general framework of multialternative sequential sampling (Roe et al., 2001; Tajima et 549 
al., 2016; Usher and McClelland, 2004) under limited resources.  550 

A second possible extension of our work is reconsidering the nature of capacity. 551 
For instance, ‘rate distortion theory’ defines a natural capacity constraint over the mutual 552 
information between the inputs and the outputs in a system (Bates et al., 2019; Sims, 553 
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2003, 2016). This capacity constraint might more naturally enforce a finite capacity than 554 

fixing the total number of samples that a system can draw from (externally or internally). 555 
A third relevant direction would be extending our study to cases where the capacity is 556 
continuous rather than discrete, and to cases where the observations are continuous 557 
variables. Although this remains a topic for future research, we do not expect qualitative 558 
differences in behavior, as for large capacity the continuous limit approximation applies, 559 

and for low capacities a low number of sampled alternatives is expected.  560 
While we do not know of direct tests of breadth-depth capacities in humans, 561 

indirect measurements suggest that the square root sampling law can be at work in some 562 
realistic conditions, such as chess. It has been argued that chess players can image around 563 
100 moves before deciding their next move (Simon, HA, 1972). Assuming that their 564 

capacity is 100, then the square root sampling law would predict that players should 565 
sample 10 immediate moves followed by around 10 continuations. Indeed, estimates 566 

indicate that chess players mentally contemplate roughly between 6-12 immediate moves 567 
followed by their continuations (Simon, HA, 1972) before capacity is exhausted due to 568 
time pressure. Although decisions in trees like this surely involve other types search 569 
heuristics beyond balancing breadth and depth, the quantitative similarity between 570 

predictions and observations is intriguing.  571 
Finally, our work potentially opens ways to understand confirmation biases. 572 

Confirmation biases happen when people extensively sample too few alternatives, thus 573 
effectively seeking information for the same source. We have demonstrated that 574 
oversampling some alternatives and completely ignoring others is optimal in certain 575 

conditions. It remains to be seen, however, whether this is actually the optimal strategy 576 
under more general conditions or whether the oversampling strategy induces severely 577 

harmful biases in certain niches.  578 
It is important to note that we have described the phenomenology of the breadth-579 

depth dilemma in conditions where all alternatives are, a priori, equally good. Thus, 580 
ignoring a large fraction of options and the associated square root sampling law can only 581 
be the worst-case scenario, in the sense that if there are biases or knowledge that a subset 582 

of alternatives is initially better than the rest, then fewer number of alternatives should 583 
be sampled. This consideration reassures us in the conclusion that the number of 584 

alternatives that ought to be sampled is much smaller than sampling capacity, an 585 
observation that might turn to be of general validity in both decision-making setups as 586 
well as in terms of brain organization for cognition.  587 

 588 

  589 
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 590 

Data Availability 591 
The data that support the findings of this study are publicly available at 592 
https://github.com/rmorenobote/breadth-depth-dilemma 593 
 594 
 595 

Code Availability 596 
The codes used for analysis and to generate figures are available publicly at 597 
https://github.com/rmorenobote/breadth-depth-dilemma 598 

 599 
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