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MODELING REGULATORY NETWORK TOPOLOGY IMPROVES1

GENOME-WIDE ANALYSES OF COMPLEX HUMAN TRAITS2
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Genome-wide association studies (GWAS) have cataloged many sig-5

nificant associations between genetic variants and complex traits. How-6

ever, most of these findings have unclear biological significance, because7

they often have small effects and occur in non-coding regions. Integra-8

tion of GWAS with gene regulatory networks addresses both issues by9

aggregating weak genetic signals within regulatory programs. Here we10

develop a Bayesian framework that integrates GWAS summary statis-11

tics with regulatory networks to infer enrichments and associations si-12

multaneously. Our method improves upon existing approaches by ex-13

plicitly modeling network topology to assess enrichments, and by au-14

tomatically leveraging enrichments to identify associations. Applying15

this method to 18 human traits and 38 regulatory networks shows that16

genetic signals of complex traits are often enriched in networks spe-17

cific to trait-relevant tissue or cell types. Prioritizing variants within18

enriched networks identifies known and new trait-associated genes re-19

vealing novel biological and therapeutic insights.20

INTRODUCTION21

Genome-wide association studies (GWAS) have catalogued many signifi-22

cant associations between common genetic variants, notably single-nucleotide23

polymorphisms (SNPs), and a full spectrum of human complex traits1,2. How-24

ever, it remains challenging to translate most of these findings into biological25

mechanisms and clinical applications. In particular, most variants have small26

effects3 and are often mapped to non-coding regions4.27

One possible interpretation is that non-coding variants cumulatively affect28

complex traits through gene regulation. To test this hypothesis, large-scale29

epigenomic5,6 and transcriptomic7,8 data have been made available span-30

ning diverse human cell and tissue types. Exploiting these regulatory ge-31

nomic data, many studies have shown enrichments of trait-associated SNPs32

in chromatin regions6,9,10 and genes11–13 that are active in trait-relevant tis-33

sue or cell types. These studies often incorporate regulatory information into34

effects of SNPs in a linear manner, and ignore potential functional interac-35

tions among loci within regulatory programs.36

Gene regulatory networks14–17 have proven useful in mining functional37

interactions of genes from genomic data. Further, context-specific regulatory38

*Correspondence should be addressed to X.Z. (xiangzhu@stanford.edu) and W.H.W
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networks are potentially informative to dissect the genetics of complex traits,39

since, through cellular interactions, trait-associated variants are likely to be40

topologically related18. Though promising, the full potential of regulatory41

networks is yet to be unleashed in GWAS. For example, recent connectiv-42

ity analyses15,19 identify enrichments of genetic signals across many traits43

and networks, but do not leverage observed enrichments to further enhance44

trait-associated gene discovery14.45

To further exploit regulatory networks in GWAS, we develop a Bayesian46

framework for simultaneous genome-wide enrichment and prioritization anal-47

ysis. Through extensive simulations on the new method, we show its flexibil-48

ity to various genetic architectures, its robustness to a wide range of model49

mis-specification, and its improved performance over existing methods. Ap-50

plying the method to 18 human traits and 38 regulatory networks, we iden-51

tify strong enrichments of genetic associations in networks that are specific52

to trait-relevant tissue or cell types. By prioritizing variants within the en-53

riched networks we identify trait-associated genes that were not implicated54

by the same GWAS. Many of these putatively novel genes have strong sup-55

port from multiple lines of external biological and clinical evidence; some are56

further validated by follow-up GWAS of the same traits with increased sam-57

ple sizes. Together, these results demonstrate the potential for our method to58

yield novel biological and therapeutic insights from existing GWAS.59

RESULTS60

Method overview. Figure 1 provides a schematic method overview. In61

brief, we develop a new prior distribution that dissects the total effect of a sin-62

gle variant on a trait into effects of multiple (nearby or distal) genes through63

a regulatory network, and then we combine this network-induced prior with64

a multiple-SNP regression likelihood based on single-SNP association sum-65

mary statistics20 to analyze regulatory networks and complex traits jointly.66

We refer to this integrative framework as RSS-NET (Methods).67

RSS-NET specifies the likelihood for SNP-level effects (β) based on single-68

SNP effect estimates and their standard errors from GWAS (Fig. 1a), and69

linkage disequilibrium (LD) estimates from an external reference panel with70

ancestry matching the GWAS (Fig. 1b). For a given network (Fig. 1c), RSS-71

NET uses its topology (nodes and edges) to specify a prior that decomposes72

the total effect of each SNP (β) into effects of multiple interconnected genes.73

This prior contains two independent enrichment parameters: θ and σ2, which74

measures the extent to which, SNPs near network nodes have increased like-75

lihood to be associated with the trait, and, SNPs near network edges have76

larger effect sizes, respectively. See Methods for mathematical definitions.77
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1. Public Input Data
a. GWAS summary statistics
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β̂j :=marginal effect estimate of SNP j

ŝj := standard error of β̂j
bβ := (β̂1, . . . , β̂p)′, bS := diag{(ŝ1, . . . , ŝp)′}

b. External LD estimates

−1 0 1

ÒR := p×p matrix of LD between SNPs

c. Gene regulatory network annotations

TF gTG t TG u OG k TF q TG n

SNP j, aj = 1

gnqngugt

Gj = {TF g, TG u, OG k}vgt

cjg

Tg = {TG t, TG u, TG n} 
Tq = {TG n}

TG t

TG u

TF g

TF q

TG n Gene (TF/TG/OG)

RE for TF&TG

Trans effect 
of TF on TG

Cis effect 
of SNP on gene

gt gn

gu
qn

SNP j ∼ cjk ·OG k+ cju · TG u+ cjg · (TF g+ vgn · TG n+ vgu · TG u+ vgt · TG t)
aj := 1{SNP j “near” the network}, Gj := {genes “near” SNP j}
Tg := {TGs directly regulated by TF g}, vgt := trans impact of TF g on TG t
γjg := effect of SNP j due to gene g, cjg := cis impact of SNP j on gene g

2. Bayesian Model
d. Parameter of interest

βj := true effect of SNP j
β := (β1, . . . , βp)′

e. Likelihood function

bβ ∼ N
�bSÒRbS−1β, bSÒRbS

�

f. Prior distribution

βj ∼ πj ·N (μj, σ20) + (1− πj) · δ0
πj = (1+ 10−(θ0+aj·θ))−1

μj =
∑

g∈Gj

[cjg

︸ ︷︷ ︸
cis

· (γjg +
∑
t∈Tg

vgt · γjt
︸ ︷︷ ︸

trans

)]

γjg ∼ N (0, σ2)

3. Posterior Inference

g. Network enrichment

BF :=
Pr(Data | M1)

Pr(Data | M0)

Enrichment model
M1 : θ > 0 or σ2 > 0
Baseline model
M0 : θ = 0 and σ2 = 0

h. Gene prioritization
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Fig 1: Schematic overview of RSS-NET. RSS-NET requires three types of input data: GWAS summary statistics (a), external
LD estimates (b) and gene regulatory network annotations (c). Here a regulatory network is a bipartite graph that has two types of
nodes, transcription factor (TF) and target gene (TG), and has directed edges from TFs to TGs through regulatory elements (REs).
RSS-NET uses a regulatory network to decompose the total effect of each SNP into effects of multiple genes. For example, the
expected total effect of SNP j shown in Panel c can be represented as a sum of cis effects of three nearby genes, outside-network
gene (OG) k, TG u and TF g, and trans effects of three TGs (n, u, t) that are directly regulated by TF g. RSS-NET performs Bayesian
hierarchical modeling (d-f) under two models about two enrichment parameters (θ for nodes; σ2 for edges): the “baseline model”
(M0 : θ = 0 and σ2 = 0) that each SNP has equal chance of being associated with the trait (θ = 0) and each trait-associated SNP
has the same effect size distribution (σ2 = 0), and, the “enrichment model” (M1 : θ > 0 or σ2 > 0) that SNPs near network nodes
are more often associated with the trait (θ > 0) or SNPs near network edges have larger effect sizes (σ2 > 0). To assess network
enrichment, RSS-NET computes a Bayes factor (BF) comparing M0 and M1 (g). RSS-NET also automatically prioritizes loci within
an enriched network by comparing the posterior distributions of genetic effects (β) under M0 and M1 (h). For each locus, RSS-NET
summarizes the posterior of β as P1, the posterior probability that at least one SNP in this locus is associated with the trait (β j 6= 0).
Differences between P1 under M0 and M1 reflect the influence of a regulatory network on genetic associations, which can highlight
new trait-associated genes (h).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.990010doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990010
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 / 29

RSS-NET provides a unified framework (Fig. 1d-f) for two tasks: (1) test-78

ing whether a network is enriched for genetic associations; (2) identifying79

which genes within this network drive the enrichment. To assess network80

enrichment (Fig. 1g), RSS-NET computes a Bayes factor (BF) comparing the81

“enrichment model” (M1 : θ > 0 or σ2 > 0) against the “baseline model” (M0 :82

θ = 0 and σ2 = 0). To prioritize genes within enriched networks (Fig. 1h) RSS-83

NET contrasts posterior distributions of genetic effects (β) under M0 and M1.84

RSS-NET outputs results for these two tasks simultaneously.85

RSS-NET improves upon its predecessor RSS-E13. Indeed RSS-NET in-86

cludes RSS-E as a special case where edge-enrichment σ2 = 0 and only node-87

enrichment θ is learned from data. By estimating the additional parame-88

ter σ2, RSS-NET is more flexible than RSS-E, and thus, RSS-NET consis-89

tently outperforms RSS-E in various simulation scenarios, and often yields90

better fit on real data. Despite different treatments of σ2, RSS-NET and91

RSS-E share computation schemes (Supplementary Notes), which allows us92

to build RSS-NET on the efficient algorithm of RSS-E. Software is available93

at https://github.com/suwonglab/rss-net.94

Method comparison based on simulations. The novelty of RSS-NET95

lies in its use of regulatory network topology to infer enrichments from whole-96

genome association statistics, and more importantly, its automatic priori-97

tization of loci in light of inferred enrichments. We are not aware of any98

published method with the same features. However, one could ignore topol-99

ogy and simply create SNP-level annotations based on proximity to network100

nodes (Supplementary Notes). On the node-based annotations, there are meth-101

ods to test global enrichments or local associations using GWAS summary102

data. Here we use Pascal21, LDSC10,22 and RSS-E13 to benchmark RSS-NET103

through genome-wide simulations on real genotypes23 (Methods).104

We started with simulations where RSS-NET modeling assumptions were105

satisfied. Here we considered two genetic architectures: a sparse scenario106

with most SNPs being null (β= 0), and, a polygenic scenario with most SNPs107

being trait-associated (β 6= 0); see Supplementary Figure 1 for details. For108

each architecture, we simulated baseline datasets from M0 and enrichment109

datasets from three patterns of M1 (only θ > 0; only σ2 > 0; both θ > 0 and σ2 >110

0), and used RSS-NET and existing methods to detect M1 from all datasets.111

Figure 2 and Supplementary Figure 1 show the trade-off between false and112

true enrichment discoveries for each method. Existing methods tend to per-113

form well in select settings. For example, Pascal and LDSC perform poorly114

when genetic signals are very sparse (Fig.2b) or weak (Supplementary Fig.115

1); RSS-E performs poorly when enrichment patterns are inconsistent with116
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its modeling assumptions (Fig.2c). In contrast, RSS-NET performs consis-117

tently well in all scenarios. This is expected because RSS-NET models are118

sufficiently flexible to capture various genetic architectures and enrichment119

patterns. In practice, one rarely knows in advance the correct genetic or en-120

richment architecture. This makes the flexibility of RSS-NET appealing.121

Genetic associations of complex traits are often enriched in regulatory re-122

gions5,6,10–13,22. Since a regulatory network is a set of genes linked by regula-123

tory elements, it is important to confirm that network enrichments identified124

by RSS-NET are not driven by general regulatory enrichments. Hence, we125

performed simulations where baseline datasets had enriched associations in126

random near-gene (Fig. 3a; Supplementary Fig. 2) or regulatory SNPs (Fig.127

3b; Supplementary Fig. 3). The results show that RSS-NET is unlikely to128

yield false discoveries due to arbitrary regulatory enrichments, and is yet129

more powerful than other methods.130

Regulatory network edges play important roles in driving context speci-131

ficity16 and propagating disease risk24, but existing methods largely focus132

on network nodes (genes). In contrast, RSS-NET leverages information from133

both edges and nodes. This topology-aware feature increases the potential of134

RSS-NET to identify the most relevant network for a trait among candidates135

that share many nodes but differ in edges. To illustrate this, we designed a136

scenario where a real target network and random candidates had the same137

nodes and edge counts, but different edges. We simulated enrichment and138

baseline datasets where genetic associations were enriched in the target net-139

work and random candidates respectively, and then tested enrichment of the140

target network on all datasets. As expected, only RSS-NET can reliably dis-141

tinguish true enrichments of the target network from enrichments of its edge-142

altered counterparts (Fig. 3c; Supplementary Fig. 4).143

To benchmark its prioritization component, we compared RSS-NET with144

gene-based association methods in RSS-E13 and Pascal21. Figure 4 and Sup-145

plementary Figure 5 show the power of each method to identify genome-wide146

gene-level associations. Consistent with previous work13, RSS-based meth-147

ods substantially outperform Pascal methods even without network enrich-148

ment (Fig. 4a). This is because RSS-NET and RSS-E exploit a multiple regres-149

sion framework20 to learn the genetic architecture from data of all genes and150

assesses their effects jointly, whereas Pascal only uses data of a single gene to151

estimate its effect. Similar to enrichment simulations (Fig. 2), RSS-NET out-152

performs RSS-E methods in prioritizing genes across different enrichment153

patterns (Fig. 4b-d). This again highlights the flexibility of RSS-NET.154

Finally, since RSS-NET uses a regulatory network as is, and, most net-155

works to date are algorithmically inferred, we performed simulations to as-156
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sess the robustness of RSS-NET under noisy networks. Specifically we sim-157

ulated datasets from a real target network, created noisy networks by ran-158

domly removing edges from this real target, and then used the noisy net-159

works, rather than the real one, in RSS-NET analyses. By exploiting retained160

true nodes and edges, RSS-NET produces reliable results in identifying both161

network enrichments and genetic associations, and unsurprisingly, its perfor-162

mance drops as the noise level increases (Supplementary Fig. 6).163

In conclusion, RSS-NET is flexible to perform well in various genetic ar-164

chitectures and enrichment patterns, is robust to a wide range of model mis-165

specification, and outperforms existing related methods. To further investi-166

gate its real-world utility, we applied RSS-NET to analyze 18 complex traits167

and 38 regulatory networks.168

Enrichment analyses of 38 networks across 18 traits. We first in-169

ferred17 whole-genome regulatory networks for 38 tissue or cell types, using170

public paired data of gene expression and chromatin accessibility (Methods;171

Supplementary Table 1). Clustering analysis showed that networks recapit-172

ulated context similarity, with immune cells and brain regions grouping to-173

gether as two single units (Fig. 5a; Supplementary Fig. 7).174

On these 38 networks, we then applied RSS-NET to analyze 1.1 million175

common SNPs25 for 18 traits, using GWAS summary statistics from 20,883176

to 253,288 European ancestry individuals (Supplementary Table 2). For each177

trait-network pair we computed a BF assessing network enrichment. Full178

results of 684 trait-network pairs are available online (Methods).179

To check whether observed enrichments could be driven by general regu-180

latory enrichments, we created a “near-gene” control network with 18,334181

protein-coding autosomal genes as nodes and no edge, and then analyzed182

this control with RSS-NET on the same GWAS data. For most traits, the183

near-gene control has substantially weaker enrichment than the actual net-184

works. In particular, 512 out of 684 trait-network pairs (one-sided Binomial185

p = 2.2×10−40) showed stronger enrichments than their near-gene counter-186

parts (average log10 BF increase: 13.94, one-sided p = 5.1×10−15), and, 16187

out of 18 traits had multiple networks more enriched than the near-gene con-188

trol (minimum 5; one-sided Wilcoxon p = 1.2×10−4; Supplementary Table 3).189

Consistent with simulations (Fig. 3a-b), these results indicate that network190

enrichments identified by RSS-NET are unlikely due to generic regulatory191

enrichments harbored in the vicinity of genes.192

Among 512 trait-network pairs passing the near-gene enrichment control,193

we further examined whether the observed enrichments could be confounded194

by network properties or genomic annotations. We associated the BFs with195
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three network features and did not observe any correlation (proportion of196

SNPs in a network: r = −3.0×10−2, p = 0.49; node counts: r = −5.4×10−2,197

p = 0.23; edge counts: r = −9.2× 10−3, p = 0.84). To check confounding ef-198

fects of genomic annotations (e.g., promoter), we computed the correlation199

between BFs and proportions of SNPs falling into a network and each of200

73 functional categories10,22, and we did not find any significant correla-201

tion (−0.13 < r < −0.01, p > 0.05/73). Similar patterns hold for all 684 trait-202

network pairs (Supplementary Tables 4-5). Together, these results suggest203

that observed network enrichments are unlikely to be driven by known fea-204

tures and the resulting model mis-specification.205

For each trait-network pair, we also computed BFs comparing the base-206

line (M0) against three disjoint models where enrichments were contributed207

by (1) only nodes (M11 : θ > 0,σ2 = 0); (2) only edges (M12 : θ = 0,σ2 > 0);208

(3) both nodes and edges (M13 : θ > 0,σ2 > 0). We found that M13 was the209

most supported model by data (with the largest BF) for 411 out of 512 trait-210

network pairs (one-sided Binomial p = 1.2×10−45), corroborating the “omni-211

genic” hypothesis24,26 that genetic signals of complex traits tend to be spread212

across the genome via regulatory interconnections. When stratifying results213

by traits, however, we observed that enrichment patterns could vary consid-214

erably (Fig. 5b; Supplementary Table 6). For type 2 diabetes (T2D), two of215

five networks passing the near-gene enrichment control showed the strongest216

support for node-only enrichment (M11). Many networks showed the strongest217

support for edge-only enrichment (M12) in breast cancer (10), body mass in-218

dex (BMI, 14), waist-hip ratio (37) and schizophrenia (38). Since one rarely219

knows the true enrichment patterns a priori, and M1 includes the restricted220

models (M11, M12, M13) as special cases, we used BFs based on M1 in this221

study. Collectively, these results highlight the heterogeneity of network en-222

richments across complex traits, which can be potentially learned from data223

by flexible approaches like RSS-NET.224

Top-ranked enrichments recapitulated many trait-context links reported225

in previous GWAS. Genetic associations with BMI were enriched in the net-226

works of pancreas (BF = 2.07× 1013), bowel (BF = 8.02× 1012) and adipose227

(BF= 4.73×1012), consistent with the roles of obesity-related genes in insulin228

biology and energy metabolism. Networks of immune cells showed enrich-229

ments for rheumatoid arthritis (RA, BF = 2.95×1060), inflammatory bowel230

disease (IBD, BF = 5.07× 1035) and Alzheimer’s disease (BF = 8.31× 1026).231

Networks of cardiac and other muscle tissues showed enrichments for coro-232

nary artery disease (CAD, BF = 9.78 × 1028), atrial fibrillation (AF, BF =233

8.55×1014), and heart rate (BF = 2.43×107). Other examples include brain234

network with neuroticism (BF = 2.12×1019), and, liver network with high-235
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density lipoprotein (HDL, BF= 2.81×1021) and low-density lipoprotein (LDL,236

BF= 7.66×1027).237

Some top-ranked enrichments were not identified in the original GWAS,238

but they are biologically relevant. For example, natural killer (NK) cell net-239

work showed the strongest enrichment among 38 networks for BMI (BF =240

3.95×1013), LDL (BF = 5.18×1030) and T2D (BF = 1.49×1077). This result241

supports a recent mouse study27 revealing the role of NK cell in obesity-242

induced inflammation and insulin resistance, and adds to the considerable243

evidence unifying metabolism and immunity in many pathological states28.244

Other examples include adipose network with CAD29 (BF= 1.67×1029), liver245

network with Alzheimer’s disease13,30 (BF = 1.09×1020) and monocyte net-246

work with AF31,32 (BF= 4.84×1012).247

Some networks show enrichments in multiple traits. To assess network248

co-enrichments among traits, we tested correlations for all trait pairs us-249

ing their BFs of 38 networks (Fig. 5c; Supplementary Table 7). Among 153250

trait pairs, 29 of them were significantly correlated (p < 0.05/153). Reas-251

suringly, subtypes of the same disease showed strongly correlated enrich-252

ments, as in IBD subtypes (r = 0.96, p = 1.3 × 10−20) and CAD subtypes253

(r = 0.90, p = 3.3×10−14). The results also recapitulated known genetic cor-254

relations including RA with IBD33 (r = 0.79, p = 5.3× 10−9), and, neuroti-255

cism with schizophrenia34 (r = 0.73, p = 1.6×10−7). Network enrichments of256

CAD were correlated with enrichments of its established risk factors such as257

heart rate35 (r = 0.75, p = 5.1×10−8) and BMI36 (r = 0.71, p = 5.1×10−7),258

and its associated traits such as AF37 (r = 0.65, p = 9.2×10−6) and height38
259

(r = 0.64, p = 1.6×10−5). Network enrichments of Alzheimer’s disease were260

strongly correlated with enrichments of LDL (r = 0.90, p = 2.6×10−14) and261

IBD (r = 0.78, p = 8.3×10−9), consistent with recent data linking Alzheimer’s262

disease to lipid metabolism39 and immune activation40. The results show263

the potential of GWAS to highlight trait similarities via regulatory networks,264

complementing previous work via SNPs41, heritabilities42 and pathways13.265

Enrichment-informed prioritization of network genes. A key fea-266

ture of RSS-NET, inherited from RSS-E13, is that inferred network enrich-267

ments automatically contribute to prioritize genetic associations of network268

genes. Specifically, for each locus RSS-NET produces Pbase
1 , Pnear

1 and Pnet
1 ,269

the posterior probability that at least one SNP in the locus is associated with270

the trait, assuming M0, M1 for the near-gene control network, and M1 for a271

given network, respectively (Method). When multiple networks are enriched,272

RSS-NET produces Pbma
1 by averaging Pnet

1 over all networks passing the273

near-gene control, weighted by their BFs (Method). This allows us to assess274
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genetic associations in light of enrichment without having to select a sin-275

gle enriched network. Differences in estimates based on enrichment (Pnet
1 or276

Pbma
1 ) and reference (Pbase

1 or Pnear
1 ) reflect the enrichment impact on a locus.277

RSS-NET enhances genetic association detection by leveraging inferred278

enrichments. To quantify this improvement, for each trait we calculated the279

proportion of genes with higher Pbma
1 than reference estimates (Pbase

1 or Pnear
1 ),280

among genes with reference P1 passing a given cutoff (Fig. 5d). When using281

Pbase
1 as reference, we observed high proportions of genes with Pbma

1 > Pbase
1282

(median: 82−98%) across a wide range of Pbase
1 -cutoffs (0−0.9), and as ex-283

pected, the improvement decreased as the reference cutoff increased. When284

using Pnear
1 as reference, we observed less genes with improved P1 than using285

Pbase
1 (one-sided Wilcoxon p = 9.8×10−4), suggesting the observed improve-286

ment might be partially due to general near-gene enrichments, but propor-287

tions of genes with Pbma
1 > Pnear

1 remained high (median: 74−94%) nonethe-288

less. Similar patterns occurred when we repeated the analysis with Pnet
1289

across 512 trait-network pairs (Supplementary Table 8). Together the results290

demonstrate the strong influence of network enrichments on nominating ad-291

ditional trait-associated genes.292

RSS-NET tends to promote more genes in networks with stronger enrich-293

ments. For each trait the proportion of genes with Pnet
1 > Pnear

1 in a network294

is often positively correlated with its enrichment BF (r : 0.28−0.91; Supple-295

mentary Table 9). When a gene belongs to multiple networks, its highest Pnet
1296

often occurs in the top-enriched networks. We illustrate this coherent pattern297

with MT1G, a liver-active7 gene that was prioritized for HDL by RSS-NET298

and also implicated in a recent multi-ancestry genome-wide sleep-SNP inter-299

action analysis of HDL46. Although MT1G belongs to regulatory networks300

of 18 contexts, only the top enrichment in liver (BF = 2.81×1021) informs a301

strong association between MT1G and HDL (Pnet
1 = 0.98), and remaining net-302

works with weaker enrichments yield minimal improvement (Pbase
1 = 0.10,303

Pnet
1 : 0.14−0.19). Additional examples are shown in Figure 6.304

RSS-NET recapitulates many genes previously implicated in the same305

GWAS. For each analyzed dataset we downloaded the corresponding genes306

from the GWAS Catalog47 and computed the proportion of these genes that307

had high Pbma
1 . With a stringent cutoff 0.9, we observed a significant overlap308

(median across traits: 69%; median Fisher exact p = 1.24×10−26; Supplemen-309

tary Table 10). Reassuringly, many recapitulated genes are well-established310

for the traits (Supplementary Table 11), such as CACNA1C for schizophrenia,311

TCF7L2 for T2D, APOB for lipids and STAT4 for autoimmune diseases.312

RSS-NET also uncovers putative associations that were not reported in313

the same GWAS. To demonstrate that many of these new associations are314
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Fig 6: RSS-NET gene prioritization results of select trait-network pairs. In the left column, each dot represents a
member gene of a given network. In the center and right columns, each dot represents a network to which a select gene
belongs. Numerical values are available online (Methods).
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Trait Gene (Role) Pbase
1 Pnear

1 Pbma
1 Pnet

1 (Network, BF) Mouse trait Therapeutic/clinical evidence

BMI PAX2 (TF) 0.78 0.80 0.94 0.94 (Pancreas, 2.07×1013) Eye, Renal FSGS7, PAPRS
FLT3 (TG) 0.61 0.70 0.85 0.85 (Cerebellum, 8.70×1011) Growth, Immune Acute myeloid leukemia

WAIST LAMB1 (TG) 0.97 0.97 0.98 0.98 (Esophagus, 6.78×10239) Neuron, NS Lissencephaly 5
BC KCTD1 (TG) 0.89 0.93 0.98 0.98 (Heart, 8.08×107) CS Scalp-ear-nipple syndrome

CASP8 (TG) 0.71 0.72 0.94 0.94 (Aorta, 8.27×108) Growth, Immune HCC, Glionitrin A
RA AIRE (TF) 0.54 0.61 0.84 0.84 (B cell, 3.31×1057) Immune APS1
IBD LPP (TG) 0.98 0.94 0.99 0.99 (Monocyte, 6.28×1031) Cellular Acute myeloid leukemia

FOXP1 (TF) 0.84 0.78 0.95 0.95 (NK cell, 5.07×1035) Immune, Neuron Language impairment
CCND3 (TG) 0.81 0.89 0.95 0.95 (NK cell, 5.07×1035) Immune

HDL ALOX5 (TG) 0.97 0.97 0.99 0.99 (Monocyte, 4.75×1015) Immune, Metab. Atherosclerosis
GPAM (TG) 0.92 0.95 0.98 0.98 (Liver, 2.81×1021) Liver, Metab.
NR0B2 (TG) 0.84 0.93 0.98 0.98 (Liver, 2.81×1021) Growth, Metab. Early-onset obesity

LDL CERS2 (TG) 0.99 0.99 1.00 1.00 (NK cell, 5.18×1030) Liver, Metab.
ABCA1 (TG) 0.98 0.98 0.99 0.99 (Liver, 7.66×1027) Liver, Metab. Tangier disease, Probucol
ABCB11 (TG) 0.68 0.72 0.88 0.88 (Liver, 7.66×1027) Liver, Metab. Cholestasis BRI2, PFI2
DLG4 (TG) 0.69 0.59 0.85 0.85 (NK cell, 5.18×1030) Metab., NS Tat-NR2B9c
SOX17 (TF) 0.52 0.65 0.82 0.84 (CD8, 5.86×1028) Liver, Metab. Vesicoureteral reflux 3

CAD TGFB1 (TG) 0.92 0.99 0.99 0.99 (Adipose, 1.67×1029) CS, Growth Camurati-Engelmann disease
FN1 (TG) 0.58 0.79 0.91 0.92 (GEJ, 9.78×1028) CS, Metab. GFND2, SMDCF
CDH13 (TG) 0.31 0.55 0.77 0.82 (Heart, 1.93×1028) CS, Metab.
EDNRA (TG) 0.57 0.79 0.80 0.82 (Aorta, 1.09×1027) CS, Muscle Ambrisentan , Macitentan

AF SCN5A (TG) 0.87 0.92 1.00 1.00 (Heart, 6.89×1012) CS, Muscle Brugada syndrome 1, FAF 10
ENPEP (TG) 0.50 0.76 0.92 0.94 (Uterus, 2.71×1011) QGC-001
ATXN1 (TG) 0.45 0.62 0.90 0.90 (Colon, 7.54×1014) Muscle, NS Spinocerebellar ataxia 1
MYOT (TG) 0.55 0.66 0.86 0.87 (Muscle, 8.55×1014) Spheroid body myopathy, MFM3

SCZ FOXP1 (TF) 1.00 1.00 1.00 1.00 (Colon, 1.20×10144) Growth, Neuron Mental retardation
BCL11A (TG) 1.00 1.00 1.00 1.00 (Spleen, 1.44×10141) Immune, NS Dias-Logan syndrome
SLC25A12 (TG) 0.79 0.81 0.88 0.88 (Muscle, 4.99×10127) Neuron, NS EIEE39

NEU TCF4 (TF) 0.72 0.88 0.95 0.95 (CD8, 3.66×1020) Immune, NS Pitt-Hopkins syndrome
RAPSN (TG) 0.77 0.88 0.93 0.93 (Muscle, 8.20×1017) Muscle, NS CMS11
MEF2C (TF) 0.15 0.40 0.83 0.83 (Ileum, 8.56×1022) Growth, Neuron Mental retardation 20
SNCA (TG) 0.15 0.32 0.78 0.79 (Putamen, 2.12×1019) Neuron, NS DLB, Parkinson 1, 4, BIIB054
PAX6 (TF) 0.10 0.22 0.62 0.64 (Putamen, 2.12×1019) NS, Vision Optic nerve hypoplasia
PCLO (TG) 0.06 0.17 0.63 0.63 (Ileum, 8.56×1022) Growth, NS Pontocerebellar hypoplasia 3

TABLE 1
Examples of RSS-NET highlighted genes that were not reported in GWAS of the same data
(p ≥ 5×10−8) but were implicated in later GWAS with increased sample sizes (p < 5×10−8).

The “mouse trait” column is based on the Mouse Genome Informatics43. The
“therapeutic/clinical evidence” column is based on the Online Mendelian Inheritance in

Man44 and Therapeutic Target Database48. Click blue links to view details online. Drugs
are highlighted in yellow . Abbreviations of GWAS traits are defined in Supplementary

Table 2. GEJ: gastroesophageal junction; CS: cardiovascular system; DS:
digestive/alimentary system; Metab.: metabolism; NS: nervous system.
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potentially real we exploited 15 analyzed traits that each had an updated315

GWAS with larger sample size. In each case we obtained newly mapped316

genes from the GWAS Catalog47 and computed the proportion of these genes317

that were identified by RSS-NET (Pbma
1 ≥ 0.9). The overlap proportions re-318

mained significant (median: 12%; median Fisher exact p = 1.93×10−5; Sup-319

plementary Table 10), showing the potential of RSS-NET to identify trait-320

associated genes that can be validated by later GWAS with additional sam-321

ples. Among these validated genes, many are strongly supported by multiple322

lines of external evidence. A particular example is NR0B2, a liver-active7
323

gene prioritized for HDL (BF = 2.81×1021, Pbase
1 = 0.84, Pnet

1 = 0.98), which324

was not identified by standard GWAS49 of the same data (minimum single-325

SNP p = 1.4×10−7 within 100kb, n = 99,900). NR0B2 is associated with var-326

ious mouse lipid traits50–52 and human obesity53, and was later identified327

in a GWAS of HDL54 with larger sample size (p = 9.7×10−16, n = 187,056).328

Table 1 lists additional examples.329

Biological and clinical relevance of prioritized genes. Despite sig-330

nificant overlaps with GWAS-implicated genes, a large fraction of RSS-NET331

prioritized genes (Pbma
1 ≥ 0.9) were not identified by GWAS (median: 70%;332

Supplementary Table 10). To systematically assess their relevance, we cross-333

referenced these genes with multiple orthogonal databases.334

Mouse phenomics provides important resources to study genetics of human335

traits55. Here we evaluated overlap between RSS-NET prioritized genes and336

genes implicated in 27 categories of knockout mouse phenotypes43. Network-337

informed genes (Pbma
1 ≥ 0.9) were significantly enriched in 128 mouse-human338

trait pairs (FDR≤ 0.1; Supplementary Table 12). Fewer significant pairs were339

identified without network information (119 for Pnear
1 ≥ 0.9; 80 for Pbase

1 ≥ 0.9).340

For many human traits, top enrichments of network-prioritized genes oc-341

curred in closely related mouse phenotypes (Fig. 5e). Schizophrenia-associated342

genes were strongly enriched in nervous, neurological and growth phenotypes343

(OR: 1.77−2.04). Genes prioritized for autoimmune diseases were strongly344

enriched in immune and hematopoietic phenotypes (OR: 2.05− 2.35). The345

cardiovascular system showed strong enrichments of genes associated with346

heart conditions (OR: 2.45−2.92). The biliary system showed strong enrich-347

ments of genes associated with lipids, BMI, CAD and T2D (OR: 2.16−10.78).348

The cross-species phenotypically matched enrichments strengthen the bio-349

logical relevance of RSS-NET results.350

Mendelian disease-causing genes have been recognized as an vital con-351

tributor to complex traits56,57. Here we quantified overlap between RSS-352

NET prioritized genes and genes causing 19 categories45 of Mendelian disor-353
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Trait Gene (Role) Pbase
1 Pnear

1 Pbma
1 Pnet

1 (Network, BF) Mouse trait Therapeutic/clinical evidence

BMI NEXN (TG) 0.71 0.79 0.89 0.90 (Muscle, 9.31×1012) CS, Muscle Cardiomyopathy D1CC, H20
CDX2 (TF) 0.61 0.70 0.83 0.86 (NK cell, 3.95×1013) DS, Growth

WAIST BSCL2 (TG) 0.80 0.68 0.87 0.87 (Esophagus, 6.78×10239) Adipose, Growth Lipodystrophy CG2
FOXP2 (TF) 0.56 0.59 0.73 0.73 (Esophagus, 6.78×10239) Growth, NS Speech-language disorder 1

BC ADSL (TG) 0.76 0.80 0.91 0.92 (Aorta, 8.27×108) CS, Eye Adenylosuccinase deficiency
SYNE1 (TG) 0.57 0.63 0.89 0.90 (Esophagus, 6.30×107) Growth, Muscle AMCM, EDMD4, SCAR8

RA TAL1 (TF) 0.71 0.79 0.91 0.93 (CD4, 3.02×1052) Immune, Tumor Acute lymphocytic leukemia
FHIT (TG) 0.30 0.60 0.90 0.91 (CD4, 3.02×1052) Immune, Tumor
FLT3 (TG) 0.33 0.57 0.73 0.73 (B cell, 3.31×1057) Immune, Tumor Acute myeloid leukemia

IBD FHIT (TG) 0.63 0.87 0.95 0.95 (CD4, 5.32×1033) Immune, Tumor
GATA3 (TF) 0.85 0.83 0.94 0.94 (NK cell, 5.07×1035) Immune, Renal Barakat syndrome
RORA (TF) 0.66 0.78 0.87 0.90 (B cell, 1.49×1032) Immune, NS IDDECA
NFKB2 (TF) 0.74 0.85 0.84 0.88 (B cell, 1.49×1032) Immune CVID10, DIMS-0150
LRBA (TG) 0.42 0.58 0.72 0.72 (NK cell, 5.07×1035) Immune Immunodeficiency CV8
DOCK2 (TG) 0.38 0.53 0.71 0.71 (NK cell, 5.07×1035) Immune Immunodeficiency 40

HDL MT1G (TG) 0.10 0.09 0.98 0.98 (Liver, 2.81×1021) CS, Metab.
RETSAT (TG) 0.79 0.80 0.95 0.95 (Liver, 2.81×1021) Adipose, Metab.
ESR1 (TF) 0.77 0.82 0.95 0.95 (Liver, 2.81×1021) CS, Metab. Myocardial infarction
HCAR3 (TG) 0.85 0.85 0.92 0.92 (Monocyte, 4.75×1015) Metab. ARI-3037MO
TNNC1 (TG) 0.48 0.45 0.78 0.78 (Liver, 2.81×1021) CS, Muscle CMD1Z, CMH13, Levosimendan

LDL RAF1 (TG) 0.79 0.83 0.90 0.90 (Aorta, 3.71×1027) CS, Immune CMD1NN, Semapimod
APOA1 (TG) 0.70 0.76 0.90 0.90 (Liver, 7.66×1027) CS, Metab. Amyloidosis, HDL deficiency
ACADVL (TG) 0.69 0.59 0.85 0.85 (NK cell, 5.18×1030) Liver, Metab. VLCAD deficiency

T2D ITGB6 (TG) 0.75 0.99 0.99 0.99 (Ileum, 4.52×1062) Immune, Metab. AI1H
HR TKT (TG) 0.65 0.67 0.92 0.93 (Aorta, 2.43×107) CS, Growth SDDHD
CAD OSM (TG) 0.56 0.78 0.86 0.86 (Aorta, 1.09×1027) Immune, Metab. GSK2330811

TRIB1 (TG) 0.43 0.68 0.85 0.85 (Adipose, 1.67×1029) Adipose, Metab.
TAB2 (TG) 0.19 0.43 0.61 0.61 (CD8, 1.13×1025) CS Congenital heart defects

AF TPMT (TG) 0.88 0.93 0.99 0.99 (Ileum, 4.43×1013) Metab. THPM1
RUNX1 (TF) 0.44 0.60 0.88 0.89 (Heart, 2.15×1014) CS, Immune Acute myeloid leukemia, FPDMM
CSF3 (TG) 0.56 0.72 0.88 0.88 (Muscle, 8.55×1014) Blood, Immune Interleukin-3

LOAD CASP2 (TG) 0.99 1.00 1.00 1.00 (CD8, 8.31×1026) Cellular, NS Caspase-2

TTR (TG) 0.64 0.92 0.94 0.94 (Pancreas, 3.53×1020) Metab. FAP, Inotersen , Patisiran
SCZ RORA (TF) 1.00 1.00 1.00 1.00 (Cortex, 5.39×10128) Neuron, NS IDDECA

ERBB4 (TG) 1.00 1.00 1.00 1.00 (Putamen, 7.22×10116) Neuron, NS ALS19
NFIB (TF) 0.97 0.97 0.98 0.98 (Cortex, 5.39×10128) NS MACID
GRIK2 (TG) 0.90 0.94 0.97 0.97 (Cerebellum, 3.15×10129) Neuron, NS Mental retardation 6
SYT1 (TG) 0.84 0.89 0.93 0.93 (Cerebellum, 3.15×10129) Neuron, NS Baker-Gordon syndrome
ESR1 (TF) 0.80 0.84 0.93 0.93 (Colon, 1.07×10141) Neuron, NS Migraine
NTRK2 (TG) 0.78 0.84 0.91 0.91 (Cerebellum, 3.15×10129) Neuron, NS EIEE58
LRRK2 (TG) 0.73 0.78 0.86 0.86 (Monocyte, 5.85×10131) Neuron, NS Parkinson 8, DNL151 , DNL201
C9orf72 (TG) 0.74 0.78 0.83 0.83 (Spleen, 1.44×10141) Neuron, NS FTDALS1
SNCA (TG) 0.60 0.66 0.74 0.74 (Cerebellum, 3.15×10129) Neuron, NS DLB, Parkinson 1, 4

NEU LMBRD1 (TG) 0.42 0.66 0.94 0.94 (Ileum, 8.56×1022) Metab. MAHCF
PRKCQ (TG) 0.36 0.56 0.90 0.91 (Spleen, 2.13×1019) Immune, NS
ATP1A2 (TG) 0.33 0.39 0.76 0.78 (Putamen, 2.12×1019) Neuron, NS AHC1, FHM2

TABLE 2
Examples of RSS-NET highlighted genes that have not reached genome-wide significance in
the GWAS Catalog47 (p ≥ 5×10−8) at the time of analysis. The rest is the same as Table 1.
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ders44. Leveraging regulatory networks (Pbma
1 ≥ 0.9), we observed 47 signifi-354

cantly enriched Mendelian-complex trait pairs (FDR ≤ 0.1; 44 for Pnear
1 ≥ 0.9;355

31 for Pbase
1 ≥ 0.9; Supplementary Table 13), among which the top-ranked356

ones were often phenotypically matched (Fig. 5f). Schizophrenia-associated357

genes were strongly enriched in Mendelian development and psychiatric dis-358

orders (OR: 2.22− 2.23). Genes prioritized for atrial fibrillation and heart359

rate were strongly enriched in arrhythmia (OR: 7.16− 8.28). Genes priori-360

tized for autoimmune diseases were strongly enriched in monogenic immune361

dysregulation (OR: 3.11− 4.32). Monogenic cardiovascular diseases showed362

strong enrichments of genes associated with lipids and heart conditions (OR:363

2.69− 3.70). We also identified pairs where Mendelian and complex traits364

seemed unrelated but were indeed linked. Examples included Alzheimer’s365

disease with immune dysregulation40 (OR= 7.32) and breast cancer with in-366

sulin disorders58 (OR = 9.71). The results corroborate that Mendelian and367

complex traits are not dichotomous, but rather exist on a continuum.368

Human genetics has proven valuable in therapeutic development for vali-369

dating molecular targets59 and improving success rates60. To evaluate their370

potential in drug discovery, we examined whether RSS-NET prioritized genes371

are pharmacologically active targets with known clinical indications48. We372

identified genes with perfectly matched drug indications and GWAS traits.373

The most illustrative identical match is EDNRA, a gene that is prioritized374

for CAD (Pbase
1 = 0.57, Pnet

1 = 0.82 for aorta network), and is also a successful375

target of approved drugs for cardiovascular diseases (Table 1). We identified376

genes with closely related drug indications and GWAS traits. For example,377

gene TTR is prioritized for Alzheimer (Pbase
1 = 0.64, Pbma

1 = 0.94), and is also378

a successful target of approved drugs for amyloidosis (Table 2). For early-379

stage development, overlaps between drug indications and GWAS traits may380

provide additional genetic confidence. For example, gene HCAR3 is priori-381

tized for HDL (Pbase
1 = 0.85, Pbma

1 = 0.92), and is also a clinical trial target382

for lipid metabolism disorders (Table 2). Other examples include CASP8 with383

cancer, NFKB2 with IBD, and DLG4 with stroke (Tables 1-2). We also found384

mismatches between drug indications and GWAS traits, which could suggest385

drug repurposing opportunities61. For example, gene CSF3 is prioritized for386

AF (Pbase
1 = 0.56, Pbma

1 = 0.88), and is also a successful target of an approved387

drug for aplastic anemia (AA). Since CSF3 is associated with various blood388

cell traits in mouse62 and human63, and inflammation plays a role in both389

AA and AF etiology32,64, it is tempting to assess effects of the approved AA390

drug on AF. Overall, further evaluations are required to mechanistically un-391

derstand the prioritized therapeutic genes, but the findings could be a useful392

basis for future studies.393
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DISCUSSION394

We have presented RSS-NET, a new topology-aware method for integrative395

analysis of regulatory networks and GWAS summary data. We have demon-396

strated the improvement of RSS-NET over existing methods through a wide397

variety of simulations, and illustrated its potential to yield novel insights via398

extensive analyses of 38 networks and 18 traits. With multi-omics integra-399

tion becoming a routine in modern GWAS, we expect that researchers will400

find RSS-NET and its open-sourced software useful.401

Compared with existing integrative approaches, RSS-NET has several key402

strengths. First, unlike many methods that require loci passing a significance403

threshold9,14,65, RSS-NET uses data from genome-wide common variants.404

This potentially allows RSS-NET to identify subtle enrichments even in stud-405

ies with few significant hits. Second, RSS-NET models enrichments directly406

as increased rates (θ) and sizes (σ2) of SNP-level associations, and thus by-407

passes the issue of converting SNP-level GWAS summary data to gene-level408

data14,15,21. Third, RSS-NET inherits from RSS-E13 an important feature409

that inferred enrichments automatically highlight which network genes are410

most likely to be trait-associated. This prioritization component, though use-411

ful, is missing in current polygenic analyses10,12,15,19,22. Fourth, compared412

with RSS-E13, RSS-NET makes more flexible modeling assumptions, and413

thus is more adaptive to unknown genetic and enrichment architectures.414

RSS-NET provides a new view of complex trait genetics through the lens of415

regulatory topology. Complementing previous connectivity analyses14–16,19,24,416

RSS-NET highlights a consistent pattern where genetic signals of complex417

traits often distribute across genome via the regulatory topology. RSS-NET418

further leverages topology enrichments to enhance trait-associated gene dis-419

covery. The topology awareness of RSS-NET relies on a novel model that de-420

composes effect size of a single SNP into effects of multiple (cis or trans)421

genes through a regulatory network. Other than similar perspective in a re-422

cent theory paper26, we are not aware of any published work implementing423

and evaluating the topology-aware model in practice.424

RSS-NET depends critically on the quality of input regulatory networks.425

The more accurate networks are, the better performance RSS-NET achieves.426

Currently our understanding of regulatory networks remains incomplete,427

and most of available networks are algorithmically constructed14–17. Artifact428

nodes and edges of inferred networks can bias RSS-NET results; however our429

simulations confirm the robustness of RSS-NET when input networks are430

not severely deviated from ground truth. As more accurate networks become431

available, the performance of RSS-NET will be markedly enhanced.432
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Like any method, RSS-NET has several limitations in its current form.433

First, despite its prioritization feature, RSS-NET does not attempt to pin-434

point associations to single causal variants within prioritized loci. For this435

task we recommend using off-the-shelf fine-mapping methods66. Second, RSS-436

NET analyzes a single network at a time. Since a complex disease typically437

manifests in various sites, multiple cellular networks are likely to mediate438

disease risk jointly. To extend RSS-NET to incorporate multiple networks,439

an intuitive idea would be representing the total effect of a SNP as an av-440

erage of its effect size in each network, weighted by network relevance for a441

disease. Third, RSS-NET does not leverage known genomic annotations, ei-442

ther at the level of SNPs10,19,22 or genes11–13. Although our mis-specification443

simulations and near-gene control analyses have confirmed that RSS-NET is444

robust to generic enrichments of known features, accounting for known anno-445

tations can help interpret observed network enrichments19. Our preliminary446

experiments, however, showed that incorporating additional networks or an-447

notations in RSS-NET increased computation costs. Hence, we view the de-448

velopment of more efficient multi-network, multi-annotation methods as an449

important direction for future work.450

METHODS451

Gene and SNP information. This study used genes and SNPs from the452

human genome assembly GRCh37. This study used 18,334 protein-coding au-453

tosomal genes (http://ftp.ensembl.org/pub/grch37/release-94/gtf/homo_454

sapiens, accessed January 3, 2019). Simulations used 348,965 genome-wide455

SNPs23 (https://www.wtccc.org.uk), and data analyses used 1,289,786 genome-456

wide HapMap325 SNPs (https://data.broadinstitute.org/alkesgroup/457

LDSCORE/w_hm3.snplist.bz2, accessed November 27, 2018). This study also458

excluded SNPs on sex chromosomes, SNPs with minor allele frequency less459

than 1%, and SNPs in the human leukocyte antigen region.460

GWAS summary statistics and LD estimates. The GWAS summary461

statistics49,67–79 (Supplementary Table 2) and LD estimates80 used in the462

present study were processed in the same way as those in our previous work13.463

Data download links are provided in Supplementary Notes.464

Gene regulatory networks. We inferred 38 regulatory networks from465

paired high-throughput sequencing data of gene expression (e.g., RNA-seq)466

and chromatin accessibility (e.g., DNAse-seq or ATAC-seq), using a regression-467

based method17. We first constructed an “omnibus” network from paired data468
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of all available biological samples, and then reorganized this “omnibus” net-469

work in light of regulatory elements (REs) identified81 in each context to470

generate context-specific networks for 5 immune cell types, 5 brain regions471

and 27 non-brain tissues. The network-construction software is available at472

https://github.com/suwonglab/PECA. The 38 networks are available at https:473

//github.com/suwonglab/rss-net.474

For simplicity we formulate a regulatory network as a bipartite graph475

{VTF,VTG,ETF→TG}, where VTF denotes the node set of transcription factors476

(TFs), VTG denotes the node set of target genes (TGs), and ETF→TG denotes477

the set of directed TF-to-TG edges, summarizing how TFs regulate TGs through478

REs (but not vice versa). Each edge has a weight between 0 and 1, measuring479

the relative regulation strength of a TF on a TG. Each network file contains a480

list of REs, TFs, TGs, TF-to-TG edges and weights. On average each network481

has 431 TFs, 3,298 TGs and 93,764 TF-to-TG edges. Additional information482

of networks is provided in Supplementary Notes and Tables 14-16.483

The sequencing data used for network construction were obtained from484

ENCODE5,82 data portal (https://www.encodeproject.org, accessed De-485

cember 14, 2018) and GTEx7 data portal (https://gtexportal.org, accessed486

July 13, 2019). Details are provided in Supplementary Table 1.487

External databases for cross-reference. To validate and interpret488

RSS-NET gene-based results, we used the following external databases (ac-489

cessed November 28, 2019): GWAS Catalog47 (https://www.ebi.ac.uk/gwas/),490

Mouse Genome Informatics43 (http://www.informatics.jax.org/), phenotype-491

specific Mendelian gene sets45 (https://github.com/bogdanlab/gene_sets/),492

Online Mendelian Inheritance in Man44 (https://www.omim.org/), Thera-493

peutic Target Database48 (http://db.idrblab.net/ttd/).494

Network-induced effect size distribution. We model the total effect495

of SNP j on a given trait, β j, as496

(1) β j ∼π j ·N (µ j, σ2
0)+ (1−π j) ·δ0,

where π j denotes the probability that SNP j is associated with the trait (β j 6=497

0), {µ j,σ2
0} characterize the center and variability of a trait-associated SNP498

j’s effect size, and δ0 indicates point mass at zero (β j = 0).499

We model the trait-association probability π j as500

(2) log10

(
π j

1−π j

)
= θ0 +a j ·θ,

where θ0 < 0 captures the genome-wide background proportion of trait-associated501

SNPs, θ > 0 reflects the increase in probability, on the log10-odds scale, that502
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a SNP inside a network is trait-associated, and a j indicates whether SNP j503

is inside a network. Following previous analyses12,13,19, we let a j = 1 if SNP504

j is within 100 kb of any element (TG, RE, or TF) in a given network. The505

idea of (2) is that if a tissue or cell type plays an important role in a trait506

then genetic associations may tend to occur more often in SNPs involved in507

the network of this context than expected by chance.508

We model the mean effect size µ j as509

(3) µ j =
∑

g∈O j

w jg ·γ jg

where O j is the set of all nearby or distal genes contributing to the total510

effect of SNP j, w jg measures the relevance between SNP j and gene g, and511

γ jg denotes the effect of SNP j on a trait due to gene g. In this study we use512

a pre-defined regulatory network to specify {O j,w jg}:513

(4) µ j =
∑

g∈G j

[c jg︸ ︷︷ ︸
cis

· (γ jg +
∑

t∈Tg

vgt ·γ jt︸ ︷︷ ︸
trans

)],

where G j is the set of all genes within 1 Mb cis window of SNP j, c jg mea-514

sures the relative impact of a cis SNP j on gene g, Tg is the set of all genes515

that are directly regulated by TF g in trans in a given network (Tg =; if gene516

g is not a TF), and vgt measures the relative impact of a TF g on its target517

gene t. We use pre-defined network edges and weights17 to specify the trans518

interconnection Tg and impact vgt respectively. We use context-matching cis-519

eQTL data7,8,83 to specify the cis impact c jg; see Supplementary Notes and520

Tables 17-18 for details. The idea of (3)-(4) is that the true effect of a SNP521

may fan out through some regulatory network of multiple (nearby or distal)522

genes to affect the trait24,26.523

We model the random effect of SNP j due to gene g, γ jg, as524

(5) γ jg
i.i.d.∼ N (0,σ2),

where the SNP-level subscript j in γ jg ensures the exchangeability of β j in525

(1); see Supplementary Notes. The constant variance σ2 in (5) is chosen for526

computational convenience. (One could potentially improve (5) by letting σ2
527

depend on functional annotations10,22 of SNP j and/or context-specific ex-528

pression11–13 of gene g, though possibly at higher computational cost.)529

Bayesian hierarchical modeling. Consider a GWAS with n unrelated530

individuals measured on p SNPs. In practice we do not know the true SNP-531

level effects β := (β1, . . . ,βp)′ in (1), but we can infer them from GWAS sum-532

mary statistics and LD estimates. Specifically, we perform Bayesian inference533
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for β by combining the network-based effect size prior (1)–(5) with the “Re-534

gression with Summary Statistics” (RSS) likelihood20:535

(6) β̂ ∼N (ŜR̂Ŝ−1β, ŜR̂Ŝ),

where β̂ := (β̂1, . . . , β̂p)′ is a p×1 vector, Ŝ := diag(ŝ) is a p× p diagonal matrix536

with diagonal elements being ŝ := (ŝ1, . . . , ŝp)′, β̂ j and ŝ j are estimated single-537

SNP effect size of each SNP j and its standard error from the GWAS, and538

R̂ is the p× p LD matrix estimated from an external reference panel with539

ancestry matching the GWAS.540

RSS-NET, defined by the hierarchical model (1)–(6), consists of four un-541

known hyper-parameters: {θ0,θ,σ2
0,σ2}. To specify hyper-priors, we first in-542

troduce two free parameters {η,ρ} ∈ [0,1] to re-parameterize {σ2
0,σ2}:543

(7) σ2
0 = η · (1−ρ) ·

(
p∑

j=1

π j

nŝ2
j

)−1

, σ2 = η ·ρ ·
(

p∑
j=1

π j ·∑g∈O j w2
jg

nŝ2
j

)−1

,

where, roughly, η represents the proportion of the total phenotypic variation544

explained by p SNPs, and ρ represents the proportion of total genetic varia-545

tion explained by network annotations {O j,w jg}. Because nŝ2
j is roughly the546

ratio of phenotype variance to genotype variance, (7) ensures that genetic ef-547

fect sizes (β) do not rely on sample size n, and have the same measurement548

unit as the trait. See Supplementary Notes for the derivation of (7). We then549

place independent uniform grid priors on {θ0,θ,η,ρ} (Supplementary Table550

19). We verify that RSS-NET results are robust to grid choice (Supplementary551

Fig. 8). (If one had specific information about {θ0,θ,η,ρ} in a given setting552

then this could be incorporated here.)553

Network enrichment. To assess whether a regulatory network is en-554

riched for genetic associations with a trait, we evaluate a Bayes factor (BF):555

(8) BF= p(β̂ | Ŝ,R̂,a,O,W, M1)

p(β̂ | Ŝ,R̂,a,O,W, M0)
,

where p(·) denotes probability densities, a is defined in (2), {O,W} are defined556

in (3), M1 denotes the enrichment model where θ > 0 or σ2 > 0, and M0 de-557

notes the baseline model where θ = 0 and σ2 = 0. The observed data are BF558

times more likely under M1 than under M0, and so the larger the BF, the559

stronger evidence for network enrichment. See Supplementary Notes for de-560

tails of computing BF. To compute BFs used in Figure 5b, we replace M1 in (8)561

with three restricted enrichment models (M11, M12, M13). Unless otherwise562

specified, all BFs reported in this work are based on M1.563
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Locus association. To identify association between a locus and a trait,564

we compute P1, the posterior probability that at least one SNP in the locus is565

associated with the trait:566

(9) P1 = 1−Pr(β j = 0,∀ j ∈ locus | D,model),

where D is a shorthand for the input data of RSS-NET including GWAS sum-567

mary statistics {β̂, Ŝ}, LD estimates R̂ and network annotations {a,O,W}. See568

Supplementary Notes for details of computing P1. For a locus, Pbase
1 , Pnear

1569

and Pnet
1 correspond to P1 evaluated under the baseline model M0, the en-570

richment model M1 for the near-gene control network with all genes as nodes571

and no edges, and M1 for a given network. In this study a locus is defined as572

the transcribed region of a gene plus 100 kb upstream and downstream.573

For K networks with enrichments stronger than the near-gene control, we574

use Bayesian model averaging (BMA) to compute Pbma
1 for each locus:575

(10) Pbma
1 =

∑K
k=1 Pnet

1 (k) ·BF(k)∑K
k=1 BF(k)

,

where Pnet
1 (k) and BF(k) are enrichment P1 and BF for network k = 1, . . . ,K .576

The ability to average across models in (10) is an advantage the Bayesian577

approach, because it allows us to assess associations in light of the network578

enrichment without having to select a single enrichment model.579

Computation time. The total computational time of RSS-NET to ana-580

lyze a pair of trait and network is determined by the number of SNPs ana-581

lyzed, the size of hyper-parameter grid, and the number of variational itera-582

tions till convergence, all of which can vary considerably among studies. It is583

thus hard to make general statements about computational time. However,584

to give a specific example, we finished the analysis of 1.1 million HapMap3585

SNPs and liver network for HDL within 12 hours in a standard computer586

cluster (60 nodes, 8 CPUs and 32 Gb memory per node).587

Simulation overview. Using genotypes of 348,965 genome-wide autoso-588

mal SNPs from 1,458 individuals23, we simulated enrichment datasets under589

M1 for the B cell regulatory network5,17,82 (Fig.s 2-4; Supplementary Fig.s 1-590

6), and simulated baseline datasets in the following scenarios: (1) M0 (Figs. 2,591

4; Supplementary Fig.s 1, 5, 6); (2) random near-gene SNPs were enriched for592

associations (Fig 3a; Supplementary Fig. 2); (3) random near-RE SNPs were593

enriched for associations (Fig 3b; Supplementary Fig. 3); (4) edge-altered594

B cell networks were enriched for associations (Fig 3c; Supplementary Fig.595
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4). We matched enrichment and baseline datasets by the number of trait-596

associated SNPs and the proportion of phenotypic variation explained by all597

SNPs. On the simulated datasets we assessed enrichments of the B cell net-598

work (Fig.s 2-3; Supplementary Fig.s 1-4) and tested gene-based associations599

(Fig. 4; Supplementary Fig. 5). The only exception is the noisy network sim-600

ulations (Supplementary Fig. 6) where we analyzed random subsets of the B601

cell network. Simulation details are provided in Supplementary Figures 1-6.602

This study used the following software packages in simulations: RSS-E603

(https://github.com/stephenslab/rss, accessed October 19, 2018), Pas-604

cal (https://www2.unil.ch/cbg/index.php?title=Pascal, accessed Octo-605

ber 5, 2017) and LDSC (version 1.0.0, https://github.com/bulik/ldsc, ac-606

cessed November 27, 2018). See Supplementary Notes for details.607

Code availability. The RSS-NET software is available at https://github.608

com/suwonglab/rss-net. Tutorials of installing and using RSS-NET are pro-609

vided in https://suwonglab.github.io/rss-net. Results of this study were610

generated from MATLAB version 9.3.0.713579 (R2017b), on a Linux system611

with Intel E5-2650V2 2.6 GHz and E5-2640V4 2.4 GHz processors. All other612

codes are specified in Methods and Supplementary Notes.613

Data availability. Network files used in this study are available at https:614

//github.com/suwonglab/rss-net. Analysis results of this study are avail-615

able at https://xiangzhu.github.io/rss-peca. All other data are speci-616

fied in Methods and Supplementary Notes.617
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