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1 MODELING REGULATORY NETWORK TOPOLOGY IMPROVES
2 GENOME-WIDE ANALYSES OF COMPLEX HUMAN TRAITS

3 BY XIANG ZHU AND ZHANA DUREN AND WING HUNG WONG

4 Stanford University

5 Genome-wide association studies (GWAS) have cataloged many sig-

6 nificant associations between genetic variants and complex traits. How-

7 ever, most of these findings have unclear biological significance, because

8 they often have small effects and occur in non-coding regions. Integra-

9 tion of GWAS with gene regulatory networks addresses both issues by
10 aggregating weak genetic signals within regulatory programs. Here we
11 develop a Bayesian framework that integrates GWAS summary statis-
12 tics with regulatory networks to infer enrichments and associations si-
13 multaneously. Our method improves upon existing approaches by ex-
14 plicitly modeling network topology to assess enrichments, and by au-
15 tomatically leveraging enrichments to identify associations. Applying
16 this method to 18 human traits and 38 regulatory networks shows that
17 genetic signals of complex traits are often enriched in networks spe-
18 cific to trait-relevant tissue or cell types. Prioritizing variants within
19 enriched networks identifies known and new trait-associated genes re-
20 vealing novel biological and therapeutic insights.

21 INTRODUCTION
22 Genome-wide association studies (GWAS) have catalogued many signifi-

23 cant associations between common genetic variants, notably single-nucleotide
24 polymorphisms (SNPs), and a full spectrum of human complex traits 2. How-
25 ever, it remains challenging to translate most of these findings into biological
26 mechanisms and clinical applications. In particular, most variants have small
27 effects® and are often mapped to non-coding regions?.

28 One possible interpretation is that non-coding variants cumulatively affect
20 complex traits through gene regulation. To test this hypothesis, large-scale
50 epigenomic®® and transcriptomic’® data have been made available span-
31 ning diverse human cell and tissue types. Exploiting these regulatory ge-
32 nomic data, many studies have shown enrichments of trait-associated SNPs
33 in chromatin regions%%1% and genes '3 that are active in trait-relevant tis-
32 sue or cell types. These studies often incorporate regulatory information into
35 effects of SNPs in a linear manner, and ignore potential functional interac-
36 tions among loci within regulatory programs.

37 Gene regulatory networks !4 17 have proven useful in mining functional
ss interactions of genes from genomic data. Further, context-specific regulatory
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30 networks are potentially informative to dissect the genetics of complex traits,
40 since, through cellular interactions, trait-associated variants are likely to be
a1 topologically related'®. Though promising, the full potential of regulatory
42 networks is yet to be unleashed in GWAS. For example, recent connectiv-
a3 ity analyses!®1? identify enrichments of genetic signals across many traits
42 and networks, but do not leverage observed enrichments to further enhance
5 trait-associated gene discovery 4.

46 To further exploit regulatory networks in GWAS, we develop a Bayesian
47 framework for simultaneous genome-wide enrichment and prioritization anal-
48 ysis. Through extensive simulations on the new method, we show its flexibil-
49 ity to various genetic architectures, its robustness to a wide range of model
so mis-specification, and its improved performance over existing methods. Ap-
51 plying the method to 18 human traits and 38 regulatory networks, we iden-
s2  tify strong enrichments of genetic associations in networks that are specific
53 to trait-relevant tissue or cell types. By prioritizing variants within the en-
s2 riched networks we identify trait-associated genes that were not implicated
55 by the same GWAS. Many of these putatively novel genes have strong sup-
s6 port from multiple lines of external biological and clinical evidence; some are
57 further validated by follow-up GWAS of the same traits with increased sam-
ss ple sizes. Together, these results demonstrate the potential for our method to
so yield novel biological and therapeutic insights from existing GWAS.

60 RESULTS

61 Method overview. Figure 1 provides a schematic method overview. In
62 brief, we develop a new prior distribution that dissects the total effect of a sin-
63 gle variant on a trait into effects of multiple (nearby or distal) genes through
62 a regulatory network, and then we combine this network-induced prior with
es a multiple-SNP regression likelihood based on single-SNP association sum-
s mary statistics?? to analyze regulatory networks and complex traits jointly.
67 We refer to this integrative framework as RSS-NET (Methods).

68 RSS-NET specifies the likelihood for SNP-level effects (3) based on single-
6o SNP effect estimates and their standard errors from GWAS (Fig. 1a), and
70 linkage disequilibrium (LD) estimates from an external reference panel with
71 ancestry matching the GWAS (Fig. 1b). For a given network (Fig. 1c), RSS-
72 NET uses its topology (nodes and edges) to specify a prior that decomposes
73 the total effect of each SNP (3) into effects of multiple interconnected genes.
7« This prior contains two independent enrichment parameters: # and o2, which
75 measures the extent to which, SNPs near network nodes have increased like-
76 lihood to be associated with the trait, and, SNPs near network edges have
77 larger effect sizes, respectively. See Methods for mathematical definitions.
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1. Public Input Data
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Fig 1: Schematic overview of RSS-NET. RSS-NET requires three types of input data: GWAS summary statistics (a), external
LD estimates (b) and gene regulatory network annotations (¢). Here a regulatory network is a bipartite graph that has two types of
nodes, transcription factor (TF) and target gene (T'G), and has directed edges from TF's to TGs through regulatory elements (REs).
RSS-NET uses a regulatory network to decompose the total effect of each SNP into effects of multiple genes. For example, the
expected total effect of SNP j shown in Panel ¢ can be represented as a sum of cis effects of three nearby genes, outside-network
gene (OG) &, TG u and TF g, and trans effects of three TGs (n, u, t) that are directly regulated by TF g. RSS-NET performs Bayesian
hierarchical modeling (d-f) under two models about two enrichment parameters (6 for nodes; o2 for edges): the “baseline model”
(M :6 =0 and o2 = 0) that each SNP has equal chance of being associated with the trait (0 = 0) and each trait-associated SNP
has the same effect size distribution (o2 = 0), and, the “enrichment model” (M7 : 6 > 0 or o2 > 0) that SNPs near network nodes
are more often associated with the trait (6 > 0) or SNPs near network edges have larger effect sizes (02 > 0). To assess network
enrichment, RSS-NET computes a Bayes factor (BF) comparing My and M; (g). RSS-NET also automatically prioritizes loci within
an enriched network by comparing the posterior distributions of genetic effects (3) under My and M; (h). For each locus, RSS-NET
summarizes the posterior of 3 as Py, the posterior probability that at least one SNP in this locus is associated with the trait (8; # 0).

Differences between P1 under My and M reflect the influence of a regulatory network on genetic associations, which can highlight
new trait-associated genes (h).
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78 RSS-NET provides a unified framework (Fig. 1d-f) for two tasks: (1) test-
79 ing whether a network is enriched for genetic associations; (2) identifying
so which genes within this network drive the enrichment. To assess network
s1 enrichment (Fig. 1g), RSS-NET computes a Bayes factor (BF) comparing the
s2 “enrichment model” (M7 : 0 > 0 or o2 > 0) against the “baseline model” (M :
83 0=0and o2 =0). To prioritize genes within enriched networks (Fig. 1h) RSS-
sa  NET contrasts posterior distributions of genetic effects (3) under My and M.
ss  RSS-NET outputs results for these two tasks simultaneously.

86 RSS-NET improves upon its predecessor RSS-E 3. Indeed RSS-NET in-
s7 cludes RSS-E as a special case where edge-enrichment o2 = 0 and only node-
ss enrichment 0 is learned from data. By estimating the additional parame-
8o ter 02, RSS-NET is more flexible than RSS-E, and thus, RSS-NET consis-
o0 tently outperforms RSS-E in various simulation scenarios, and often yields
o1 better fit on real data. Despite different treatments of 02, RSS-NET and
92 RSS-E share computation schemes (Supplementary Notes), which allows us
o3 to build RSS-NET on the efficient algorithm of RSS-E. Software is available
o4 athttps://github.com/suwonglab/rss-net.

95 Method comparison based on simulations. The novelty of RSS-NET
o6 liesin its use of regulatory network topology to infer enrichments from whole-
o7 genome association statistics, and more importantly, its automatic priori-
os tization of loci in light of inferred enrichments. We are not aware of any
oo published method with the same features. However, one could ignore topol-
100 ogy and simply create SNP-level annotations based on proximity to network
101 nodes (Supplementary Notes). On the node-based annotations, there are meth-
102 ods to test global enrichments or local associations using GWAS summary
103 data. Here we use Pascal?!, LDSC %22 and RSS-E 3 to benchmark RSS-NET
104 through genome-wide simulations on real genotypes?? (Methods).

105 We started with simulations where RSS-NET modeling assumptions were
106 satisfied. Here we considered two genetic architectures: a sparse scenario
107 with most SNPs being null (8 = 0), and, a polygenic scenario with most SNPs
108 being trait-associated (§ # 0); see Supplementary Figure 1 for details. For
100 each architecture, we simulated baseline datasets from M, and enrichment
110 datasets from three patterns of M1 (only 6 > 0; only 62 > 0; both # > 0 and o2 >
11 0), and used RSS-NET and existing methods to detect M from all datasets.
112 Figure 2 and Supplementary Figure 1 show the trade-off between false and
13 true enrichment discoveries for each method. Existing methods tend to per-
114 form well in select settings. For example, Pascal and LDSC perform poorly
115 when genetic signals are very sparse (Fig.2b) or weak (Supplementary Fig.
116 1); RSS-E performs poorly when enrichment patterns are inconsistent with
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17 its modeling assumptions (Fig.2c). In contrast, RSS-NET performs consis-
us tently well in all scenarios. This is expected because RSS-NET models are
110 sufficiently flexible to capture various genetic architectures and enrichment
120 patterns. In practice, one rarely knows in advance the correct genetic or en-
121 richment architecture. This makes the flexibility of RSS-NET appealing.

122 Genetic associations of complex traits are often enriched in regulatory re-
123 gions®®10-13.22 Qince a regulatory network is a set of genes linked by regula-
124 tory elements, it is important to confirm that network enrichments identified
125 by RSS-NET are not driven by general regulatory enrichments. Hence, we
126 performed simulations where baseline datasets had enriched associations in
127 random near-gene (Fig. 3a; Supplementary Fig. 2) or regulatory SNPs (Fig.
128 3b; Supplementary Fig. 3). The results show that RSS-NET is unlikely to
120 yield false discoveries due to arbitrary regulatory enrichments, and is yet
130 more powerful than other methods.

131 Regulatory network edges play important roles in driving context speci-
132 ficity'® and propagating disease risk?*, but existing methods largely focus
133 on network nodes (genes). In contrast, RSS-NET leverages information from
134 both edges and nodes. This topology-aware feature increases the potential of
135 RSS-NET to identify the most relevant network for a trait among candidates
136 that share many nodes but differ in edges. To illustrate this, we designed a
137 scenario where a real target network and random candidates had the same
138 nodes and edge counts, but different edges. We simulated enrichment and
130 baseline datasets where genetic associations were enriched in the target net-
140 work and random candidates respectively, and then tested enrichment of the
141 target network on all datasets. As expected, only RSS-NET can reliably dis-
142 tinguish true enrichments of the target network from enrichments of its edge-
13 altered counterparts (Fig. 3c; Supplementary Fig. 4).

144 To benchmark its prioritization component, we compared RSS-NET with
us gene-based association methods in RSS-E 12 and Pascal?!. Figure 4 and Sup-
146 plementary Figure 5 show the power of each method to identify genome-wide
147 gene-level associations. Consistent with previous work ', RSS-based meth-
s ods substantially outperform Pascal methods even without network enrich-
140 ment (Fig. 4a). This is because RSS-NET and RSS-E exploit a multiple regres-
150 sion framework2° to learn the genetic architecture from data of all genes and
151 assesses their effects jointly, whereas Pascal only uses data of a single gene to
152 estimate its effect. Similar to enrichment simulations (Fig. 2), RSS-NET out-
153 performs RSS-E methods in prioritizing genes across different enrichment
154 patterns (Fig. 4b-d). This again highlights the flexibility of RSS-NET.

155 Finally, since RSS-NET uses a regulatory network as is, and, most net-
156 works to date are algorithmically inferred, we performed simulations to as-
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157 sess the robustness of RSS-NET under noisy networks. Specifically we sim-
153 ulated datasets from a real target network, created noisy networks by ran-
150 domly removing edges from this real target, and then used the noisy net-
160 works, rather than the real one, in RSS-NET analyses. By exploiting retained
161 true nodes and edges, RSS-NET produces reliable results in identifying both
162 network enrichments and genetic associations, and unsurprisingly, its perfor-
163 mance drops as the noise level increases (Supplementary Fig. 6).

164 In conclusion, RSS-NET is flexible to perform well in various genetic ar-
165 chitectures and enrichment patterns, is robust to a wide range of model mis-
166 specification, and outperforms existing related methods. To further investi-
167 gate its real-world utility, we applied RSS-NET to analyze 18 complex traits
16e  and 38 regulatory networks.

169 Enrichment analyses of 38 networks across 18 traits. We first in-
170 ferred!” whole-genome regulatory networks for 38 tissue or cell types, using
171 public paired data of gene expression and chromatin accessibility (Methods;
172 Supplementary Table 1). Clustering analysis showed that networks recapit-
173 ulated context similarity, with immune cells and brain regions grouping to-
174 gether as two single units (Fig. 5a; Supplementary Fig. 7).

175 On these 38 networks, we then applied RSS-NET to analyze 1.1 million
176 common SNPs?? for 18 traits, using GWAS summary statistics from 20,883
177 to 253,288 European ancestry individuals (Supplementary Table 2). For each
w7s  trait-network pair we computed a BF assessing network enrichment. Full
179 results of 684 trait-network pairs are available online (Methods).

180 To check whether observed enrichments could be driven by general regu-
181 latory enrichments, we created a “near-gene” control network with 18,334
182 protein-coding autosomal genes as nodes and no edge, and then analyzed
183 this control with RSS-NET on the same GWAS data. For most traits, the
184 near-gene control has substantially weaker enrichment than the actual net-
155 works. In particular, 512 out of 684 trait-network pairs (one-sided Binomial
186 p =2.2x1074%) showed stronger enrichments than their near-gene counter-
17 parts (average logl0 BF increase: 13.94, one-sided p = 5.1 x 1071%), and, 16
188 out of 18 traits had multiple networks more enriched than the near-gene con-
180 trol (minimum 5; one-sided Wilcoxon p = 1.2 x 10~4; Supplementary Table 3).
100 Consistent with simulations (Fig. 3a-b), these results indicate that network
101 enrichments identified by RSS-NET are unlikely due to generic regulatory
102 enrichments harbored in the vicinity of genes.

103 Among 512 trait-network pairs passing the near-gene enrichment control,
104 we further examined whether the observed enrichments could be confounded
195 by network properties or genomic annotations. We associated the BFs with
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196 three network features and did not observe any correlation (proportion of
107 SNPs in a network: 7 = —=3.0 x 1072, p = 0.49; node counts: r = —5.4 x 1072,
10s  p =0.23; edge counts: r = —9.2 x 1073, p = 0.84). To check confounding ef-
100 fects of genomic annotations (e.g., promoter), we computed the correlation
200 between BFs and proportions of SNPs falling into a network and each of
201 73 functional categories'®?2, and we did not find any significant correla-
202 tion (-0.13 <r < —0.01, p > 0.05/73). Similar patterns hold for all 684 trait-
203 network pairs (Supplementary Tables 4-5). Together, these results suggest
204 that observed network enrichments are unlikely to be driven by known fea-
205 tures and the resulting model mis-specification.

206 For each trait-network pair, we also computed BFs comparing the base-
207 line (M) against three disjoint models where enrichments were contributed
208 by (1) only nodes (M17 : 6 > 0,02 = 0); (2) only edges (M19 : 0 = 0,02 > 0);
200 (3) both nodes and edges (M13: 60 > 0,02 > 0). We found that M3 was the
210 most supported model by data (with the largest BF) for 411 out of 512 trait-
211 network pairs (one-sided Binomial p = 1.2 x 1074%), corroborating the “omni-
212 genic” hypothesis?42% that genetic signals of complex traits tend to be spread
213 across the genome via regulatory interconnections. When stratifying results
214 by traits, however, we observed that enrichment patterns could vary consid-
215 erably (Fig. 5b; Supplementary Table 6). For type 2 diabetes (T2D), two of
216 five networks passing the near-gene enrichment control showed the strongest
217 support for node-only enrichment (M11). Many networks showed the strongest
218 support for edge-only enrichment (M12) in breast cancer (10), body mass in-
210 dex (BMI, 14), waist-hip ratio (37) and schizophrenia (38). Since one rarely
20 knows the true enrichment patterns a priori, and M includes the restricted
21 models (M11, M19, M13) as special cases, we used BFs based on M7 in this
22 study. Collectively, these results highlight the heterogeneity of network en-
223 richments across complex traits, which can be potentially learned from data
224 by flexible approaches like RSS-NET.

225 Top-ranked enrichments recapitulated many trait-context links reported
226 in previous GWAS. Genetic associations with BMI were enriched in the net-
227 works of pancreas (BF = 2.07 x 1013), bowel (BF = 8.02 x 1012) and adipose
228 (BF =4.73x10'?), consistent with the roles of obesity-related genes in insulin
20 biology and energy metabolism. Networks of immune cells showed enrich-
230 ments for rheumatoid arthritis (RA, BF = 2.95 x 10%%), inflammatory bowel
231 disease (IBD, BF = 5.07 x 10%°) and Alzheimer’s disease (BF = 8.31 x 10%%).
232 Networks of cardiac and other muscle tissues showed enrichments for coro-
233 nary artery disease (CAD, BF = 9.78 x 10%8), atrial fibrillation (AF, BF =
232 8.55 x 101%), and heart rate (BF = 2.43 x 107). Other examples include brain
235 network with neuroticism (BF = 2.12 x 10'9), and, liver network with high-
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236 density lipoprotein (HDL, BF = 2.81 x 102!) and low-density lipoprotein (LDL,
237 BF =17.66 x 10%7).

238 Some top-ranked enrichments were not identified in the original GWAS,
230 but they are biologically relevant. For example, natural killer (NK) cell net-
220 work showed the strongest enrichment among 38 networks for BMI (BF =
2a1 3.95 x 10'3), LDL (BF = 5.18 x 103°) and T2D (BF = 1.49 x 10”7). This result
222 supports a recent mouse study?’ revealing the role of NK cell in obesity-
243 induced inflammation and insulin resistance, and adds to the considerable
224 evidence unifying metabolism and immunity in many pathological states?8.
2s5  Other examples include adipose network with CAD2? (BF = 1.67 x 1029), liver
2s6  network with Alzheimer’s disease 3 (BF = 1.09 x 102°) and monocyte net-
27 work with AF31:32 (BF =4.84 x 1012).

248 Some networks show enrichments in multiple traits. To assess network
220 co-enrichments among traits, we tested correlations for all trait pairs us-
250 ing their BFs of 38 networks (Fig. 5¢; Supplementary Table 7). Among 153
251 trait pairs, 29 of them were significantly correlated (p < 0.05/153). Reas-
252 suringly, subtypes of the same disease showed strongly correlated enrich-
253 ments, as in IBD subtypes (r = 0.96, p = 1.3 x 1072%) and CAD subtypes
254 (r=0.90, p = 3.3 x 10714). The results also recapitulated known genetic cor-
25 relations including RA with IBD33 (r = 0.79, p = 5.3 x 107?), and, neuroti-
256 cism with schizophrenia ¥ (r=0.7 3, p=16x 10~ 7). Network enrichments of
257 CAD were correlated with enrichments of its established risk factors such as
258 heart rate®® (r = 0.75, p = 5.1 x 1078) and BMI?® (r = 0.71, p = 5.1 x 1077),
250 and its associated traits such as AF37 (r = 0.65, p = 9.2 x 107%) and height>®
260 (r=0.64, p=1.6x107%). Network enrichments of Alzheimer’s disease were
261 strongly correlated with enrichments of LDL (r = 0.90, p = 2.6 x 1071%) and
262 IBD (r =0.78, p = 8.3 x107?), consistent with recent data linking Alzheimer’s
263 disease to lipid metabolism?®® and immune activation*’. The results show
264 the potential of GWAS to highlight trait similarities via regulatory networks,
265 complementing previous work via SNPs#!, heritabilities*? and pathways 3.

266 Enrichment-informed prioritization of network genes. A key fea-
267 ture of RSS-NET, inherited from RSS-E13, is that inferred network enrich-
26 ments automatically contribute to prioritize genetic associations of network
260 genes. Specifically, for each locus RSS-NET produces Pi’ase, P and Pi‘et,
270 the posterior probability that at least one SNP in the locus is associated with
on1 the trait, assuming My, M1 for the near-gene control network, and M for a
272 given network, respectively (Method). When multiple networks are enriched,
2713 RSS-NET produces P{’ma by averaging P{‘et over all networks passing the
272 near-gene control, weighted by their BFs (Method). This allows us to assess
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275 genetic associations in light of enrichment without having to select a sin-
276 gle enriched network. Differences in estimates based on enrichment (P} or
277 Pll’ma) and reference (Pi’a‘Se or P7%") reflect the enrichment impact on a locus.
278 RSS-NET enhances genetic association detection by leveraging inferred
279 enrichments. To quantify this improvement, for each trait we calculated the
280 proportion of genes with higher mea than reference estimates (Plljase or P1¢"),
281 among genes with reference P passing a given cutoff (Fig. 5d). When using
282 Plfase as reference, we observed high proportions of genes with Pll’ma > Pll""s‘e
283 (median: 82 — 98%) across a wide range of P{’ase-cutoffs (0-10.9), and as ex-
284 pected, the improvement decreased as the reference cutoff increased. When
285 using P7*®" as reference, we observed less genes with improved P; than using
286 P;’ase (one-sided Wilcoxon p = 9.8 x 107%), suggesting the observed improve-
287 ment might be partially due to general near-gene enrichments, but propor-
288 tions of genes with Ptl’ma > P1%*" remained high (median: 74 — 94%) nonethe-
280 less. Similar patterns occurred when we repeated the analysis with P'l1et
200 across 512 trait-network pairs (Supplementary Table 8). Together the results
201 demonstrate the strong influence of network enrichments on nominating ad-
202 ditional trait-associated genes.

203 RSS-NET tends to promote more genes in networks with stronger enrich-
204 ments. For each trait the proportion of genes with P{** > P**" in a network
205 1s often positively correlated with its enrichment BF (r: 0.28 — 0.91; Supple-
20 mentary Table 9). When a gene belongs to multiple networks, its highest P**
207 often occurs in the top-enriched networks. We illustrate this coherent pattern
208 with MT1G, a liver-active” gene that was prioritized for HDL by RSS-NET
200 and also implicated in a recent multi-ancestry genome-wide sleep-SNP inter-
s00 action analysis of HDL*6. Although MTIG belongs to regulatory networks
so1  of 18 contexts, only the top enrichment in liver (BF = 2.81 x 1021) informs a
sz strong association between MT1G and HDL (P]** = 0.98), and remaining net-
303 works with weaker enrichments yield minimal improvement (P;’ase = 0.10,
304 P;‘et :0.14 - 0.19). Additional examples are shown in Figure 6.

305 RSS-NET recapitulates many genes previously implicated in the same
306 GWAS. For each analyzed dataset we downloaded the corresponding genes
307 from the GWAS Catalog?” and computed the proportion of these genes that
308 had high Pi’ma. With a stringent cutoff 0.9, we observed a significant overlap
300 (median across traits: 69%; median Fisher exact p = 1.24 x 10~26; Supplemen-
310 tary Table 10). Reassuringly, many recapitulated genes are well-established
sir for the traits (Supplementary Table 11), such as CACNA1C for schizophrenia,
s1i2 TCF7L2 for T2D, APOB for lipids and STAT4 for autoimmune diseases.

313 RSS-NET also uncovers putative associations that were not reported in
314 the same GWAS. To demonstrate that many of these new associations are
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Fig 6: RSS-NET gene prioritization results of select trait-network pairs. In the left column, each dot represents a
member gene of a given network. In the center and right columns, each dot represents a network to which a select gene
belongs. Numerical values are available online (Methods).
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Trait Gene (Role) Pll’z”s'e phear Pi’ma Pi‘et (Network, BF) Mouse trait Therapeutic/clinical evidence
BMI PAX2 (TF) 0.78 0.80 0.94 0.94 (Pancreas, 2.07 x 1013) Eye, Renal FSGS7, PAPRS
FLT3 (TG) 0.61 0.70 0.85 0.85 (Cerebellum, 8.70 x 1011) Growth, Immune Acute myeloid leukemia
WAIST LAMBI (TG) 097 097 098  0.98 (Esophagus, 6.78 x 10239) Neuron, NS Lissencephaly 5
BC KCTDI (TG) 0.89 0.93 0.98 0.98 (Heart, 8.08 x 107) CS Scalp-ear-nipple syndrome
CASPS8 (TG) 0.71 0.72 0.94 0.94 (Aorta, 8.27 x 108) Growth, Immune HCC, Glionitrin A
RA AIRE (TF) 054 061 084  0.84 (B cell, 3.31 x 10°7) Immune APS1
IBD LPP (TG) 0.98 0.94 0.99 0.99 (Monocyte, 6.28 x 1031) Cellular Acute myeloid leukemia
FOXPI (TF) 0.84 0.78 0.95 0.95 (NK cell, 5.07 x 1035) Immune, Neuron Language impairment
CCND3 (TG) 0.81 0.89 0.95 0.95 (NK cell, 5.07 x 1035) Immune
HDL ALOX5 (TG) 0.97 0.97 0.99 0.99 (Monocyte, 4.75 x 1015) Immune, Metab. Atherosclerosis
GPAM (TG) 092 095 098  0.98 (Liver, 2.81 x 10%1) Liver, Metab.
NROB2 (TG) 0.84 0.93 0.98 0.98 (Liver, 2.81 x 1021) Growth, Metab. Early-onset obesity
LDL CERS2 (TG) 0.99 0.99 1.00 1.00 (NK cell, 5.18 x 1030) Liver, Metab.
ABCAI (TG) 0.98 0.98 0.99 0.99 (Liver, 7.66 x 1027) Liver, Metab. Tangier disease, Probucol
ABCBI11 (TG) 0.68 0.72 0.88 0.88 (Liver, 7.66 x 1027) Liver, Metab. Cholestasis BRI2, PFI2
DLG4 (TG) 0.69 0.59 0.85 0.85 (NK cell, 5.18 x 1030) Metab., NS Tat-NR2B9c¢
SOX17 (TF) 052 065 0.82  0.84(CD8,5.86 x 1028) Liver, Metab. Vesicoureteral reflux 3
CAD TGFBI1 (TG) 0.92 0.99 0.99 0.99 (Adipose, 1.67 x 1029) CS, Growth Camurati-Engelmann disease
FNI1(TG) 058 079 091  0.92(GEJ, 9.78 x 1028) CS, Metab. GFND2, SMDCF
CDH13 (TG) 031 055 077  0.82 (Heart, 1.93 x 1028) CS, Metab.
EDNRA (TG) 0.57 0.79 0.80 0.82 (Aorta, 1.09 x 1027) CS, Muscle Ambrisentan , Macitentan
AF SCN5A (TG) 0.87 0.92 1.00  1.00 (Heart, 6.89 x 1012) CS, Muscle Brugada syndrome 1, FAF 10
ENPEP (TG) 050 076 092  0.94 (Uterus, 2.71 x 1011) QGC-001
ATXNI (TG) 045 062 090  0.90 (Colon, 7.54 x 1014) Muscle, NS Spinocerebellar ataxia 1
MYOT (TG) 055 0.66 0.86  0.87 (Muscle, 8.55 x 101%) Spheroid body myopathy, MFM3
SCZ FOXPI (TF) 1.00 1.00 1.00 1.00 (Colon, 1.20 x 10144) Growth, Neuron Mental retardation
BCL11A (TG) 1.00 1.00  1.00  1.00 (Spleen, 1.44 x 10141) Immune, NS Dias-Logan syndrome
SLC25A12 (TG) 0.79  0.81  0.88  0.88 (Muscle, 4.99 x 10127) Neuron, NS EIEE39
NEU TCF4 (TF) 0.72 0.88 0.95 0.95 (CDS8, 3.66 x 1020) Immune, NS Pitt-Hopkins syndrome
RAPSN (TG) 0.77 0.88 0.93 0.93 (Muscle, 8.20 x 1017) Muscle, NS CMS11
MEF2C (TF) 0.15 0.40 0.83 0.83 (Ileum, 8.56 x 1022) Growth, Neuron Mental retardation 20
SNCA (TG) 0.15 032 078  0.79 (Putamen, 2.12 x 1019) Neuron, NS  DLB, Parkinson 1, 4, BIIB054
PAX6 (TF) 0.10 0.22 0.62 0.64 (Putamen, 2.12 x 1019) NS, Vision Optic nerve hypoplasia
PCLO (TG) 0.06 0.17 0.63 0.63 (Ileum, 8.56 x 1022) Growth, NS Pontocerebellar hypoplasia 3

TABLE 1

Examples of RSS-NET highlighted genes that were not reported in GWAS of the same data

(p=5x 10~8) but were implicated in later GWAS with increased sample sizes (p <5 x 10
The “mouse trait” column is based on the Mouse Genome Informatics43. The

-8,

“therapeutic/clinical evidence” column is based on the Online Mendelian Inheritance in

Man

44 and Therapeutic Target Database 48 (Click blue links to view details online. Drugs

are highlighted in yellow . Abbreviations of GWAS traits are defined in Supplementary

Table 2. GEJ: gastroesophageal junction; CS: cardiovascular system; DS:

digestive/alimentary system; Metab.: metabolism; NS: nervous system.
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315 potentially real we exploited 15 analyzed traits that each had an updated
sie  GWAS with larger sample size. In each case we obtained newly mapped
a1z genes from the GWAS Catalog?” and computed the proportion of these genes
s1s  that were identified by RSS-NET (Pll’ma = 0.9). The overlap proportions re-
310 mained significant (median: 12%; median Fisher exact p = 1.93 x 107%; Sup-
320 plementary Table 10), showing the potential of RSS-NET to identify trait-
321 associated genes that can be validated by later GWAS with additional sam-
322 ples. Among these validated genes, many are strongly supported by multiple
323 lines of external evidence. A particular example is NROB2, a liver-active’
324 gene prioritized for HDL (BF = 2.81 x 1021, Pi’ase =0.84, P! = 0.98), which
;25 was not identified by standard GWAS*® of the same data (minimum single-
326 SNP p =1.4 x 10~7 within 100kb, n = 99,900). NROB2 is associated with var-
327 ious mouse lipid traits®*52 and human obesity®3, and was later identified
328 in a GWAS of HDL%* with larger sample size (p = 9.7 x 10716, n = 187,056).
320 Table 1 lists additional examples.

330 Biological and clinical relevance of prioritized genes. Despite sig-
331 nificant overlaps with GWAS-implicated genes, a large fraction of RSS-NET
332 prioritized genes (Pll’ma = 0.9) were not identified by GWAS (median: 70%;
333 Supplementary Table 10). To systematically assess their relevance, we cross-
334 referenced these genes with multiple orthogonal databases.

335 Mouse phenomics provides important resources to study genetics of human
336 traits®®. Here we evaluated overlap between RSS-NET prioritized genes and
337 genes implicated in 27 categories of knockout mouse phenotypes 3. Network-
338 informed genes (Plfma = 0.9) were significantly enriched in 128 mouse-human
330 trait pairs (FDR < 0.1; Supplementary Table 12). Fewer significant pairs were
340 1dentified without network information (119 for P'l1ea|r =>0.9; 80 for Pi’ase >0.9).
3a1 For many human traits, top enrichments of network-prioritized genes oc-
3a2 curred in closely related mouse phenotypes (Fig. 5e). Schizophrenia-associated
33  genes were strongly enriched in nervous, neurological and growth phenotypes
3aa (OR: 1.77 —2.04). Genes prioritized for autoimmune diseases were strongly
sas  enriched in immune and hematopoietic phenotypes (OR: 2.05 —2.35). The
a6 cardiovascular system showed strong enrichments of genes associated with
3a7  heart conditions (OR: 2.45 —2.92). The biliary system showed strong enrich-
sas  ments of genes associated with lipids, BMI, CAD and T2D (OR: 2.16 —10.78).
as0  The cross-species phenotypically matched enrichments strengthen the bio-
350 logical relevance of RSS-NET results.

351 Mendelian disease-causing genes have been recognized as an vital con-
ss2  tributor to complex traits®®57. Here we quantified overlap between RSS-
353 NET prioritized genes and genes causing 19 categories*? of Mendelian disor-


https://doi.org/10.1101/2020.03.13.990010
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.03.13.990010; this version posted March 14, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

17 /29
Trait Gene (Role) P;’ase pear P'fma P?et (Network, BF) Mouse trait Therapeutic/clinical evidence
BMI NEXN (TG) 0.71 0.79 0.89 0.90 (Muscle, 9.31 x 1012) CS, Muscle Cardiomyopathy D1CC, H20
CDX2 (TF) 061 070 0.83  0.86 (NK cell, 3.95 x 1013) DS, Growth
WAIST BSCL2 (TG) 0.80 0.68 0.87  0.87 (Esophagus, 6.78 x 10239)  Adipose, Growth Lipodystrophy CG2
FOXP2 (TF) 0.56 0.59 0.73 0.73 (Esophagus, 6.78 x 10239) Growth, NS Speech-language disorder 1
BC ADSL (TG) 0.76 0.80 0.91 0.92 (Aorta, 8.27 x 108) CS, Eye Adenylosuccinase deficiency
SYNE1 (TG) 0.57 0.63 0.89 0.90 (Esophagus, 6.30 x 107) Growth, Muscle AMCM, EDMD4, SCARS8
RA TALI1 (TF) 0.71 0.79 0.91 0.93 (CD4, 3.02 x 10°2) Immune, Tumor Acute lymphocytic leukemia
FHIT (TG) 0.30 0.60 0.90  0.91(CD4, 3.02 x 1052) Immune, Tumor
FLT3 (TG) 0.33 0.57 0.73 0.73 (B cell, 3.31 x 1057) Immune, Tumor Acute myeloid leukemia
IBD FHIT (TG) 0.63 0.87 095  0.95(CD4,5.32x10%3) Immune, Tumor
GATAS3 (TF) 0.85 0.83 0.94 0.94 (NK cell, 5.07 x 1035) Immune, Renal Barakat syndrome
RORA (TF) 0.66  0.78  0.87  0.90 (B cell, 1.49 x 1032) Immune, NS IDDECA
NFKB2 (TF) 0.74 0.85 0.84  0.88(Bcell, 1.49 x 1032) Immune CVID10, DIMS-0150
LRBA (TG) 0.42 0.58 0.72 0.72 (NK cell, 5.07 x 1035) Immune Immunodeficiency CV8
DOCK2 (TG) 038 053 0.71  0.71 (NK cell, 5.07 x 1035) Immune Immunodeficiency 40
HDL MTIG (TG) 0.10  0.09 098  0.98 (Liver, 2.81 x 1021) CS, Metab.
RETSAT (TG) 079 080 095  0.95 (Liver, 2.81 x 1021) Adipose, Metab.
ESRI1 (TF) 0.77 0.82  0.95  0.95 (Liver, 2.81 x 1021) CS, Metab. Myocardial infarction
HCAR3 (TG) 0.85 0.85 092  0.92 (Monocyte, 4.75 x 101%) Metab. ARI-3037MO
TNNCI(TG) 048 045 078  0.78 (Liver, 2.81 x 1021) CS, Muscle CMD1Z, CMH13, Levosimendan
LDL RAF1 (TG) 0.79 0.83  0.90  0.90 (Aorta, 3.71 x 10%7) CS, Immune CMDINN, Semapimod
APOAI (TG) 0.70 0.76 0.90 0.90 (Liver, 7.66 x 1027) CS, Metab. Amyloidosis, HDL deficiency
ACADVL (TG) 069 059 085  0.85(NK cell, 5.18 x 1039) Liver, Metab. VLCAD deficiency
T2D ITGB6 (TG) 0.75 099 099  0.99 (Ileum, 4.52 x 1052) Immune, Metab. AI1H
HR TKT (TG) 0.65 0.67 092  0.93 (Aorta, 2.43 x 107) CS, Growth SDDHD
CAD OSM (TG) 056 0.78 0.86  0.86 (Aorta, 1.09 x 1027) Immune, Metab. GSK2330811
TRIBI (TG) 0.43 0.68 0.85 0.85 (Adipose, 1.67 x 1029) Adipose, Metab.
TAB2 (TG) 0.19 0.43 0.61 0.61 (CDS8, 1.13 x 1025) CS Congenital heart defects
AF TPMT (TG) 0.88  0.93  0.99  0.99 (Ileum, 4.43 x 1013) Metab. THPM1
RUNXI1 (TF) 0.44 0.60 0.88 0.89 (Heart, 2.15 x 1014) CS, Immune  Acute myeloid leukemia, FPDMM
CSF3 (TG) 0.56 0.72 0.88 0.88 (Muscle, 8.55 x 1014) Blood, Immune Interleukin-3
LOAD  CASP2(TG) 099 1.00 100  1.00(CD8,8.31x1025) Cellular, NS Caspase-2
TTR (TG) 0.64 0.92 0.94 0.94 (Pancreas, 3.53 x 1020) Metab. FAP, Inotersen , Patisiran
SCZ RORA (TF) 1.00 1.00 1.00  1.00 (Cortex, 5.39 x 10128) Neuron, NS IDDECA
ERBB4 (TG) 1.00 1.00 1.00  1.00 (Putamen, 7.22 x 10116) Neuron, NS ALS19
NFIB (TF) 0.97 097 098  0.98 (Cortex, 5.39 x 10128) NS MACID
GRIK?2 (TG) 0.90 0.94 0.97 0.97 (Cerebellum, 3.15 x 10129 Neuron, NS Mental retardation 6
SYT1 (TG) 0.84 0.89 0.93 0.93 (Cerebellum, 3.15 x 10129) Neuron, NS Baker-Gordon syndrome
ESRI1 (TF) 0.80 0.84 0.93 0.93 (Colon, 1.07 x 10141) Neuron, NS Migraine
NTRK2 (TG) 0.78 0.84 091  0.91 (Cerebellum, 3.15 x 10129) Neuron, NS EIEE58
LRRK?2 (TG) 073 0.78  0.86  0.86 (Monocyte, 5.85 x 10131) Neuron, NS  Parkinson 8, DNL151 , DNL201
C9rf72 (TG)  0.74  0.78  0.83  0.83 (Spleen, 1.44 x 10141) Neuron, NS FTDALS1
SNCA (TG) 0.60 0.66 0.74  0.74 (Cerebellum, 3.15 x 10129) Neuron, NS DLB, Parkinson 1, 4
NEU LMBRDI (TG) 042 066 094  0.94 (Ileum, 8.56 x 1022) Metab. MAHCF
PRKCQ(TG) 036 056 090 091 (Spleen, 2.13 x 1019) Immune, NS
ATPIA2(TG) 0.33  0.39 0.76  0.78 (Putamen, 2.12 x 1019) Neuron, NS AHC1, FHM2

TABLE 2

Examples of RSS-NET highlighted genes that have not reached genome-wide significance in
the GWAS Catalog?” (p =5 x 1078) at the time of analysis. The rest is the same as Table 1.


http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1916060&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1916060&header=muscle
https://www.omim.org/entry/613122
https://www.omim.org/entry/613876
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:88361&header=digestive/alimentary%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:88361&header=growth/size/body
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1298392&header=adipose%20tissue
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1298392&header=growth/size/body
https://www.omim.org/entry/269700
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:2148705&header=growth/size/body
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:2148705&header=nervous%20system
https://www.omim.org/entry/602081
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:103202&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:103202&header=vision/eye
https://omim.org/entry/103050
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1927152&header=growth/size/body
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1927152&header=muscle
https://www.omim.org/entry/618484
https://www.omim.org/entry/612998
https://www.omim.org/entry/610743
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:98480&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:98480&header=neoplasm
https://www.omim.org/entry/187040
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1277947&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1277947&header=neoplasm
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:95559&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:95559&header=neoplasm
https://www.omim.org/entry/601626
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1277947&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1277947&header=neoplasm
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:95663&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:95663&header=renal/urinary%20system
https://www.omim.org/entry/146255
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104661&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104661&header=nervous%20system
https://www.omim.org/entry/618060
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1099800&header=immune%20system
https://www.omim.org/entry/615577
http://db.idrblab.net/ttd/data/drug/details/d0u1hx
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1933162&header=immune%20system
https://www.omim.org/entry/614700
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:2149010&header=immune%20system
https://www.omim.org/entry/616433
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97171&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97171&header=homeostasis/metabolism
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1914692&header=adipose%20tissue
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1914692&header=homeostasis/metabolism
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1352467&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1352467&header=homeostasis/metabolism
https://www.omim.org/entry/608446
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1933383&header=homeostasis/metabolism
http://db.idrblab.net/ttd/data/drug/details/d01vmz
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:98779&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:98779&header=muscle
https://www.omim.org/entry/611879
https://www.omim.org/entry/613243
http://db.idrblab.net/ttd/data/drug/details/d0c4hg
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97847&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97847&header=immune%20system
https://www.omim.org/entry/615916
http://db.idrblab.net/ttd/data/drug/details/d01wke
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:88049&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:88049&header=homeostasis/metabolism
https://www.omim.org/entry/105200
https://www.omim.org/entry/618463
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:895149&header=liver/biliary%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:895149&header=homeostasis/metabolism
https://www.omim.org/entry/201475
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:96615&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:96615&header=homeostasis/metabolism
https://omim.org/entry/616221
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:105992&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:105992&header=growth/size/body
https://www.omim.org/entry/617044
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104749&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104749&header=homeostasis/metabolism
http://db.idrblab.net/ttd/data/drug/details/d0d3tq
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:2443397&header=adipose%20tissue
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:2443397&header=homeostasis/metabolism
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1915902&header=cardiovascular%20system
https://www.omim.org/entry/614980
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:98812&header=homeostasis/metabolism
https://www.omim.org/entry/610460
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:99852&header=cardiovascular%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:99852&header=immune%20system
https://www.omim.org/entry/601626
https://www.omim.org/entry/601399
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1339751&header=hematopoietic%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1339751&header=immune%20system
http://db.idrblab.net/ttd/data/drug/details/d0ch1u
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97295&header=cellular
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97295&header=nervous%20system
http://db.idrblab.net/ttd/data/target/details/t09128
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:98865&header=homeostasis/metabolism
https://www.omim.org/entry/105210
http://db.idrblab.net/ttd/data/drug/details/d0r3bv
http://db.idrblab.net/ttd/data/drug/details/d0z3pc
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104661&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104661&header=nervous%20system
https://www.omim.org/entry/618060
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104771&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:104771&header=nervous%20system
https://www.omim.org/entry/615515
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:103188&header=nervous%20system
https://www.omim.org/entry/618286
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:95815&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:95815&header=nervous%20system
https://www.omim.org/entry/611092
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:99667&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:99667&header=nervous%20system
https://www.omim.org/entry/618218
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1352467&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1352467&header=nervous%20system
https://www.omim.org/entry/157300
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97384&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97384&header=nervous%20system
https://www.omim.org/entry/617830
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1913975&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1913975&header=nervous%20system
https://www.omim.org/entry/607060
http://db.idrblab.net/ttd/data/drug/details/d03ybq
http://db.idrblab.net/ttd/data/drug/details/d0k6uv
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1920455&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1920455&header=nervous%20system
https://www.omim.org/entry/105550
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1277151&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1277151&header=nervous%20system
https://www.omim.org/entry/127750
https://www.omim.org/entry/168601
https://www.omim.org/entry/605543
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:1915671&header=homeostasis/metabolism
https://www.omim.org/entry/277380
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97601&header=immune%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:97601&header=nervous%20system
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:88106&header=behavior/neurological
http://www.informatics.jax.org/diseasePortal/popup?isPhenotype=true&markerID=MGI:88106&header=nervous%20system
https://www.omim.org/entry/104290
https://www.omim.org/entry/602481
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354 ders**. Leveraging regulatory networks (Pi’ma = 0.9), we observed 47 signifi-
355 cantly enriched Mendelian-complex trait pairs (FDR < 0.1; 44 for P*" > 0.9;
356 31 for PllJase = 0.9; Supplementary Table 13), among which the top-ranked
357 ones were often phenotypically matched (Fig. 5f). Schizophrenia-associated
358 genes were strongly enriched in Mendelian development and psychiatric dis-
sso  orders (OR: 2.22 — 2.23). Genes prioritized for atrial fibrillation and heart
360 rate were strongly enriched in arrhythmia (OR: 7.16 — 8.28). Genes priori-
361 tized for autoimmune diseases were strongly enriched in monogenic immune
362 dysregulation (OR: 3.11 — 4.32). Monogenic cardiovascular diseases showed
363 strong enrichments of genes associated with lipids and heart conditions (OR:
364 2.69 —3.70). We also identified pairs where Mendelian and complex traits
36s  seemed unrelated but were indeed linked. Examples included Alzheimer’s
366 disease with immune dysregulation®’ (OR = 7.32) and breast cancer with in-
367 sulin disorders®® (OR = 9.71). The results corroborate that Mendelian and
3es complex traits are not dichotomous, but rather exist on a continuum.

369 Human genetics has proven valuable in therapeutic development for vali-
s70  dating molecular targets®® and improving success rates°. To evaluate their
31 potential in drug discovery, we examined whether RSS-NET prioritized genes
a2 are pharmacologically active targets with known clinical indications*®. We
373 identified genes with perfectly matched drug indications and GWAS traits.
372 The most illustrative identical match is EDNRA, a gene that is prioritized
375 for CAD (P{’ase =0.57, P]¢" = 0.82 for aorta network), and is also a successful
376 target of approved drugs for cardiovascular diseases (Table 1). We identified
a7z genes with closely related drug indications and GWAS traits. For example,
37 gene TTR is prioritized for Alzheimer (PE’E‘Se =0.64, P;’ma =0.94), and is also
379 a successful target of approved drugs for amyloidosis (Table 2). For early-
380 stage development, overlaps between drug indications and GWAS traits may
3s1  provide additional genetic confidence. For example, gene HCARS3 is priori-
32 tized for HDL (Pll’ase = 0.85, Pi’ma = 0.92), and is also a clinical trial target
383 for lipid metabolism disorders (Table 2). Other examples include CASP8 with
382 cancer, NFKB2 with IBD, and DLG4 with stroke (Tables 1-2). We also found
3ss  mismatches between drug indications and GWAS traits, which could suggest
ss6  drug repurposing opportunities®!. For example, gene CSF3 is prioritized for
7 AF (Pll""‘s‘e =0.56, Ptl’ma =0.88), and is also a successful target of an approved
sss drug for aplastic anemia (AA). Since CSF3 is associated with various blood
ss0  cell traits in mouse®? and human®?, and inflammation plays a role in both
300 AA and AF etiology 3264, it is tempting to assess effects of the approved AA
301 drug on AF. Overall, further evaluations are required to mechanistically un-
392 derstand the prioritized therapeutic genes, but the findings could be a useful
303 basis for future studies.
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304 DI1SCUSSION

395 We have presented RSS-NET, a new topology-aware method for integrative
396 analysis of regulatory networks and GWAS summary data. We have demon-
397 strated the improvement of RSS-NET over existing methods through a wide
308 variety of simulations, and illustrated its potential to yield novel insights via
390 extensive analyses of 38 networks and 18 traits. With multi-omics integra-
a00 tion becoming a routine in modern GWAS, we expect that researchers will
s01 find RSS-NET and its open-sourced software useful.

402 Compared with existing integrative approaches, RSS-NET has several key
403 strengths. First, unlike many methods that require loci passing a significance
s0s threshold®1465 RSS-NET uses data from genome-wide common variants.
a0s This potentially allows RSS-NET to identify subtle enrichments even in stud-
s06 ies with few significant hits. Second, RSS-NET models enrichments directly
w07 as increased rates (0) and sizes (62) of SNP-level associations, and thus by-
a0s passes the issue of converting SNP-level GWAS summary data to gene-level
a0 datal®1521 Third, RSS-NET inherits from RSS-E!3 an important feature
a10 that inferred enrichments automatically highlight which network genes are
a11 most likely to be trait-associated. This prioritization component, though use-
sz ful, is missing in current polygenic analyses!%1%15:19:22 Fourth, compared
ss  with RSS-E!2, RSS-NET makes more flexible modeling assumptions, and
a14 thus is more adaptive to unknown genetic and enrichment architectures.

415 RSS-NET provides a new view of complex trait genetics through the lens of
se regulatory topology. Complementing previous connectivity analyses 14-16:19:24,
a1z RSS-NET highlights a consistent pattern where genetic signals of complex
a1s  traits often distribute across genome via the regulatory topology. RSS-NET
a10  further leverages topology enrichments to enhance trait-associated gene dis-
420 covery. The topology awareness of RSS-NET relies on a novel model that de-
421 composes effect size of a single SNP into effects of multiple (cis or trans)
422 genes through a regulatory network. Other than similar perspective in a re-
223 cent theory paper2®, we are not aware of any published work implementing
224« and evaluating the topology-aware model in practice.

425 RSS-NET depends critically on the quality of input regulatory networks.
226 The more accurate networks are, the better performance RSS-NET achieves.
427 Currently our understanding of regulatory networks remains incomplete,
s2s and most of available networks are algorithmically constructed ™17 Artifact
420 nodes and edges of inferred networks can bias RSS-NET results; however our
430 simulations confirm the robustness of RSS-NET when input networks are
431 not severely deviated from ground truth. As more accurate networks become
432 available, the performance of RSS-NET will be markedly enhanced.
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433 Like any method, RSS-NET has several limitations in its current form.
43¢ First, despite its prioritization feature, RSS-NET does not attempt to pin-
435 point associations to single causal variants within prioritized loci. For this
a6 task we recommend using off-the-shelf fine-mapping methods®®. Second, RSS-
437 NET analyzes a single network at a time. Since a complex disease typically
433 manifests in various sites, multiple cellular networks are likely to mediate
430 disease risk jointly. To extend RSS-NET to incorporate multiple networks,
a20 an intuitive idea would be representing the total effect of a SNP as an av-
as1  erage of its effect size in each network, weighted by network relevance for a
422 disease. Third, RSS-NET does not leverage known genomic annotations, ei-
ams  ther at the level of SNPs %1922 or genes 113, Although our mis-specification
424 simulations and near-gene control analyses have confirmed that RSS-NET is
as5  robust to generic enrichments of known features, accounting for known anno-
a6 tations can help interpret observed network enrichments'®. Our preliminary
a7 experiments, however, showed that incorporating additional networks or an-
ass  notations in RSS-NET increased computation costs. Hence, we view the de-
420 velopment of more efficient multi-network, multi-annotation methods as an
450 important direction for future work.

451 METHODS

452 Gene and SNP information. This study used genes and SNPs from the

453 human genome assembly GRCh37. This study used 18,334 protein-coding au-

a2 tosomal genes (http://ftp.ensembl.org/pub/grch37/release-94/gtf/homo_
455 sapiens, accessed January 3, 2019). Simulations used 348,965 genome-wide

16 SNPs?3 (https://www.wtccc.org.uk), and data analyses used 1,289,786 genome-
ss7 wide HapMap32% SNPs (https://data.broadinstitute.org/alkesgroup/

ass  LDSCORE/w_hm3.snplist.bz2, accessed November 27, 2018). This study also

as0  excluded SNPs on sex chromosomes, SNPs with minor allele frequency less

a0 than 1%, and SNPs in the human leukocyte antigen region.

461 GWAS summary statistics and LD estimates. The GWAS summary
a2 statistics?¥67-7 (Supplementary Table 2) and LD estimates®® used in the
63 present study were processed in the same way as those in our previous work 2.
s64 Data download links are provided in Supplementary Notes.

465 Gene regulatory networks. We inferred 38 regulatory networks from
a66 paired high-throughput sequencing data of gene expression (e.g., RNA-seq)
467 and chromatin accessibility (e.g., DNAse-seq or ATAC-seq), using a regression-
s based method!?. We first constructed an “omnibus” network from paired data
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a0 of all available biological samples, and then reorganized this “omnibus” net-
a0 work in light of regulatory elements (REs) identified®! in each context to
ar1  generate context-specific networks for 5 immune cell types, 5 brain regions
472 and 27 non-brain tissues. The network-construction software is available at
473 https://github.com/suwonglab/PECA. The 38 networks are available at https:
472 //github.com/suwonglab/rss-net.

475 For simplicity we formulate a regulatory network as a bipartite graph
476 {V71r, V1o, ETr_1G}, where Vi denotes the node set of transcription factors
a7 (TFs), Vg denotes the node set of target genes (TGs), and E1p_1g denotes
a7s  the set of directed TF-to-TG edges, summarizing how TF's regulate TGs through
479 REs (but not vice versa). Each edge has a weight between 0 and 1, measuring
a0 the relative regulation strength of a TF on a TG. Each network file contains a
a1 list of REs, TFs, TGs, TF-to-TG edges and weights. On average each network
482 has 431 TFs, 3,298 TGs and 93,764 TF-to-TG edges. Additional information
483 of networks is provided in Supplementary Notes and Tables 14-16.

484 The sequencing data used for network construction were obtained from
sss ENCODES®? data portal (https://www.encodeproject.org, accessed De-
sss cember 14,2018) and GTEx” data portal (https://gtexportal .org, accessed
as7  July 13, 2019). Details are provided in Supplementary Table 1.

488 External databases for cross-reference. To validate and interpret

a0 RSS-NET gene-based results, we used the following external databases (ac-

a0 cessed November 28, 2019): GWAS Catalog47 (https://www.ebi.ac.uk/gwas/),
w01 Mouse Genome Informatics*® (http://www.informatics.jax.org/), phenotype-
a2 specific Mendelian gene sets*® (https://github.com/bogdanlab/gene_sets/),
403 Online Mendelian Inheritance in Man** (https://www.omim.org/), Thera-

soa  peutic Target Database*® (http://db.idrblab.net/ttd/).

495 Network-induced effect size distribution. We model the total effect
a0s of SNP j on a given trait, 8}, as

1) Bj~mj- N, a2)+(1—1;)-o,

a7 where 7; denotes the probability that SNP j is associated with the trait (5, #
a8 0), {1 j,ag} characterize the center and variability of a trait-associated SNP
00 j’s effect size, and § indicates point mass at zero (f; = 0).

500 We model the trait-association probability 7; as

(2) ]'Ogl()( )=00+aj‘0,

J
1-n j
501 where 0y < 0 captures the genome-wide background proportion of trait-associated
s02 SNPs, 0 > 0 reflects the increase in probability, on the logl10-odds scale, that
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sos a SNP inside a network is trait-associated, and a; indicates whether SNP j
sos is inside a network. Following previous analyses 21319 we let a j = 1if SNP
s0s j is within 100 kb of any element (TG, RE, or TF) in a given network. The
so06 idea of (2) is that if a tissue or cell type plays an important role in a trait
s07 then genetic associations may tend to occur more often in SNPs involved in
s0s the network of this context than expected by chance.

500 We model the mean effect size u; as
3) Bi= ) Wig Vi
g€0;

sio where O; is the set of all nearby or distal genes contributing to the total
su  effect of SNP j, w;, measures the relevance between SNP j and gene g, and
512 Y;jg denotes the effect of SNP j on a trait due to gene g. In this study we use
513 a pre-defined regulatory network to specify {0, w;g}:

(4) pi= ) lejg - (Vjg+ 3 var-vidl,
g€G; teT,
—— N———r
cis trans

s.4 where Gj is the set of all genes within 1 Mb cis window of SNP j, ¢, mea-
s15 sures the relative impact of a cis SNP j on gene g, T, is the set of all genes
si6 that are directly regulated by TF g in trans in a given network (T, = @ if gene
s17 g is not a TF), and vg; measures the relative impact of a TF g on its target
sis gene t. We use pre-defined network edges and weights!? to specify the trans
s19  interconnection Tg and impact vg; respectively. We use context-matching cis-
s20 eQTL data”®83 to specify the cis impact ¢ jg; see Supplementary Notes and
s21 Tables 17-18 for details. The idea of (3)-(4) is that the true effect of a SNP
522 may fan out through some regulatory network of multiple (nearby or distal)
s23  genes to affect the trait?426.

524 We model the random effect of SNP j due to gene g, v/, as

(5) Yig (0,07,

ss where the SNP-level subscript j in vy, ensures the exchangeability of §; in
s26 (1); see Supplementary Notes. The constant variance o2 in (5) is chosen for
s27 computational convenience. (One could potentially improve (5) by letting o2
s2s  depend on functional annotations'??2 of SNP j and/or context-specific ex-

s20 pression1!3 of gene g, though possibly at higher computational cost.)

530 Bayesian hierarchical modeling. Consider a GWAS with n unrelated
531 individuals measured on p SNPs. In practice we do not know the true SNP-
ss2  level effects 3 :=(f1,...,B,) in (1), but we can infer them from GWAS sum-
533  mary statistics and LD estimates. Specifically, we perform Bayesian inference
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53¢ for 3 by combining the network-based effect size prior (1)—(5) with the “Re-
s35  gression with Summary Statistics” (RSS) likelihood 2°:

(6) B8~ /(SRS™13, SRS),

s3s  where 3:= (B,... ,ﬁp)’ is a p x 1 vector, S := diag(s) is a p x p diagonal matrix
s37  with diagonal elements being §:=(1,...,§,), B 7 and §; are estimated single-
s3s  SNP effect size of each SNP j and its standard error from the GWAS, and
s R is the p x p LD matrix estimated from an external reference panel with
ss0 ancestry matching the GWAS.

541 RSS-NET, defined by the hierarchical model (1)—(6), consists of four un-
sa2  known hyper-parameters: {00,0,03,02}. To specify hyper-priors, we first in-
543 troduce two free parameters {n, p} € [0,1] to re-parameterize {03,02}:

-1 NS”;
Jj=1 J

» o\l . 2
(7) agzn-(l—p)-(zn—fz) : 02:77'»0'(2—@
=

saa  where, roughly,  represents the proportion of the total phenotypic variation
sa5  explained by p SNPs, and p represents the proportion of total genetic varia-
s46 tion explained by network annotations {O;,w;.}. Because n§j is roughly the
sa7 - ratio of phenotype variance to genotype variance, (7) ensures that genetic ef-
sas  fect sizes (3) do not rely on sample size n, and have the same measurement
sa0 unit as the trait. See Supplementary Notes for the derivation of (7). We then
ss0 place independent uniform grid priors on {6y,0,7n,p} (Supplementary Table
ss1 19). We verify that RSS-NET results are robust to grid choice (Supplementary
ss2  Fig. 8). (If one had specific information about {6y,0,n,p} in a given setting
553 then this could be incorporated here.)

554 Network enrichment. To assess whether a regulatory network is en-
sss  riched for genetic associations with a trait, we evaluate a Bayes factor (BF):

p_PBISR2,0,W,M)

(8) ——— ;
p(/@ | S7R>a’07W:MO)

ss6 where p(-) denotes probability densities, a is defined in (2), {O, W} are defined
ss7 in (3), M1 denotes the enrichment model where 6 > 0 or 02 > 0, and M de-
sss  notes the baseline model where 0 = 0 and o2 = 0. The observed data are BF
550  times more likely under M; than under My, and so the larger the BF, the
s60 stronger evidence for network enrichment. See Supplementary Notes for de-
s61  tails of computing BF. To compute BF's used in Figure 5b, we replace M in (8)
se2 with three restricted enrichment models (M11, M12, M13). Unless otherwise
s63 specified, all BF's reported in this work are based on M;.
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564 Locus association. To identify association between a locus and a trait,
s6s  we compute P1, the posterior probability that at least one SNP in the locus is
s6s associated with the trait:

9) P1=1-Pr(p;=0,Vj€locus | D,model),

567 where D is a shorthand for the input data of RSS-NET including GWAS sum-
s6s mary statistics {B, g}, LD estimates R and network annotations {a,0,W}. See
s6o  Supplementary Notes for details of computing P;. For a locus, Ptl’ase, prer
s7o and P]* correspond to P; evaluated under the baseline model My, the en-
571 richment model M1 for the near-gene control network with all genes as nodes
572 and no edges, and M for a given network. In this study a locus is defined as
573 the transcribed region of a gene plus 100 kb upstream and downstream.

574 For K networks with enrichments stronger than the near-gene control, we
575 use Bayesian model averaging (BMA) to compute Pi’ma for each locus:

YK  PrY(k)-BF(k)
YX  BF(k)

(10) pbma -

576 where Pi‘et(k) and BF(%) are enrichment P and BF for network 2 =1,...,K.
577 The ability to average across models in (10) is an advantage the Bayesian
578 approach, because it allows us to assess associations in light of the network
579 enrichment without having to select a single enrichment model.

580 Computation time. The total computational time of RSS-NET to ana-
ss1 lyze a pair of trait and network is determined by the number of SNPs ana-
ss2  lyzed, the size of hyper-parameter grid, and the number of variational itera-
583 tions till convergence, all of which can vary considerably among studies. It is
ss« thus hard to make general statements about computational time. However,
585 to give a specific example, we finished the analysis of 1.1 million HapMap3
sss SNPs and liver network for HDL within 12 hours in a standard computer
ss7  cluster (60 nodes, 8 CPUs and 32 Gb memory per node).

588 Simulation overview. Using genotypes of 348,965 genome-wide autoso-
ss0 mal SNPs from 1,458 individuals??, we simulated enrichment datasets under
soo M for the B cell regulatory network ®1782 (Fig.s 2-4; Supplementary Fig.s 1-
so1  6), and simulated baseline datasets in the following scenarios: (1) M, (Figs. 2,
502 4; Supplementary Fig.s 1, 5, 6); (2) random near-gene SNPs were enriched for
503 associations (Fig 3a; Supplementary Fig. 2); (3) random near-RE SNPs were
so4 enriched for associations (Fig 3b; Supplementary Fig. 3); (4) edge-altered
sos B cell networks were enriched for associations (Fig 3c; Supplementary Fig.
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s06 4). We matched enrichment and baseline datasets by the number of trait-
so7 associated SNPs and the proportion of phenotypic variation explained by all
s0s  SNPs. On the simulated datasets we assessed enrichments of the B cell net-
s00 work (Fig.s 2-3; Supplementary Fig.s 1-4) and tested gene-based associations
600 (Fig. 4; Supplementary Fig. 5). The only exception is the noisy network sim-
601 ulations (Supplementary Fig. 6) where we analyzed random subsets of the B
602 cell network. Simulation details are provided in Supplementary Figures 1-6.
603 This study used the following software packages in simulations: RSS-E
e0s (https://github.com/stephenslab/rss, accessed October 19, 2018), Pas-
605 cal (https://www2.unil.ch/cbg/index.php?title=Pascal, accessed Octo-
606 ber 5,2017) and LDSC (version 1.0.0, https://github.com/bulik/ldsc, ac-
607 cessed November 27, 2018). See Supplementary Notes for details.

608 Code availability. The RSS-NET software is available at https://github.
600 com/suwonglab/rss-net. Tutorials of installing and using RSS-NET are pro-

610 videdinhttps://suwonglab.github.io/rss-net. Results of this study were
611 generated from MATLAB version 9.3.0.713579 (R2017b), on a Linux system
612 with Intel E5-2650V2 2.6 GHz and E5-2640V4 2.4 GHz processors. All other
613 codes are specified in Methods and Supplementary Notes.

614 Data availability. Network files used in this study are available at https:
615 //github.com/suwonglab/rss-net. Analysis results of this study are avail-
616 able at https://xiangzhu.github.io/rss-peca. All other data are speci-
617 fied in Methods and Supplementary Notes.
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