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Abstract12

Experimental single-cell approaches are becoming widely used for many purposes, including inves-13

tigation of the dynamic behaviour of developing biological systems. Consequently, a large number14

of computational methods for extracting dynamic information from such data have been developed.15

One example is RNA velocity analysis, in which spliced and unspliced RNA abundances are jointly16

modeled in order to infer a ’direction of change’ and thereby a future state for each cell in the gene17

expression space.18

Naturally, the accuracy and interpretability of the inferred RNA velocities depend crucially on the19

correctness of the estimated abundances. Here, we systematically compare four widely used quan-20

tification tools, in total yielding twelve different quantification approaches, in terms of their estimates21

of spliced and unspliced RNA abundances in four experimental droplet scRNA-seq data sets. We22

show that there are substantial differences between the quantifications obtained from different tools,23

and identify typical genes for which such discrepancies are observed. We further show that these24

abundance differences propagate to the downstream analysis, and can have a large effect on estimated25

velocities as well as the biological interpretation.26

Our results highlight that abundance quantification is a crucial aspect of the RNA velocity anal-27

ysis workflow, and that both the definition of the genomic features of interest and the quantification28

algorithm itself require careful consideration.29
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Introduction30

Single-cell RNA-seq (scRNA-seq) enables high-throughput profiling of gene expression on a transcriptome-31

wide scale in individual cells. The increased resolution compared to bulk RNA-seq, where only average32

expression profiles of populations of cells are obtained, provides vastly improved potential to study33

a variety of biological questions. One such question concerns the dynamics of biological systems, re-34

flected in, e.g., cellular differentiation and development. While such dynamical processes would ideally35

be studied via repeated transcriptome-wide expression profiling of the same cells over time, this is not36

possible with current scRNA-seq protocols. Existing analysis methods for so called trajectory inference37

are instead applied to one or several snapshots of a population of cells, assumed to comprise all stages38

of the trajectory of interest. Many computational methods for trajectory inference from scRNA-seq have39

been presented in the literature (reviewed by Saelens et al. (2019)). These methods typically use the40

similarity of the gene expression profiles between cells to construct a (possibly branching) path through41

the observed set of cells, representing the trajectory of interest. Projecting the cells onto this path then42

provides an ordering of the cells by so called pseudotime.43

A different approach to the investigation of developmental processes in scRNA-seq data instead44

exploits the underlying molecular dynamics. The feasibility of such an approach is based on the obser-45

vation that, with several commonly used library preparation protocols, not only exonic, but also intronic46

and exon/intron boundary-spanning reads are observed (La Manno et al. 2018), and the insight that con-47

sidering these in combination with the exonic reads would allow for direct inference of developmental48

relationships among cells. Similar observations, coupled with a simple differential equation model of49

transcriptional dynamics, were previously used for investigation of pre-mRNA dynamics and transcrip-50

tional and post-transcriptional regulation of gene expression in exon arrays (Zeisel et al. 2011) and bulk51

RNA-seq (Gaidatzis et al. 2015), as well as estimation of transcription, processing and degradation rates52

in bulk RNA-seq (Gray et al. 2014). For scRNA-seq, La Manno et al. (2018) used the differential equation53

model of Zeisel et al. (2011), describing the rate of change of unspliced pre-mRNA as well as spliced54

mRNA molecules, as a basis for their investigations. They defined the RNA velocity for a given gene in55

a given cell, at a given time point, as the instantaneous rate of change of the spliced mRNA abundance.56

Combining the RNA velocities with the estimated mRNA abundances enables reconstruction of the state57

of each cell at a timepoint in the near future. With the increased popularity of RNA velocity applications58

in scRNA-seq studies, several computational tools have been developed, both for the preprocessing of59

the reads and for the RNA velocity estimation. The original velocyto software (La Manno et al. 2018)60

estimates velocities under a steady-state assumption, and provides both Python and R implementations.61

More recently, Bergen et al. (2019) relaxed the steady-state assumption and considered the full dynam-62

ical model, thereby enabling application of the RNA velocity framework to a broader set of biological63

systems and states. The dynamical model is implemented in their scVelo Python package, which also64

includes an efficient implementation of the steady-state model.65

The input to both velocyto and scVelo effectively consists of two gene-by-cell count matrices; one rep-66

resenting mRNA ("spliced") abundances and one representing pre-mRNA ("unspliced") abundances. In67

practice, these two types of abundances are typically represented by reads mapping to the exonic and68

intronic regions of the genome, respectively. Velocyto provides functions for parsing a BAM file of aligned69

reads (obtained by other tools such as CellRanger (Zheng et al. 2017)) and generating these two count ma-70

trices. Dedicated end-to-end functionality for estimation of spliced and unspliced abundances from raw71
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scRNA-seq reads are available within the kallisto|bustools software suite (Melsted, Ntranos, and Pachter72

2019; Melsted et al. 2019) and in STARsolo, the single-cell mode of the STAR aligner (Dobin et al. 2013).73

Furthermore, assuming a properly specified set of reference sequences, the required counts can also be74

obtained using other general-purpose tools for quantification of droplet scRNA-seq data, such as alevin75

(Srivastava et al. 2019a). To our knowledge, no critical evaluation of the differences between the count76

matrices generated by these tools, and the effects on the downstream RNA velocity estimates, has been77

performed to date. In this study, we therefore used four public experimental droplet scRNA-seq data78

sets, generated with the 10x Genomics platform, to compare spliced and unspliced abundance estimates79

obtained by velocyto, kallisto|bustools, STARsolo and alevin. Including alternative index definitions and80

parameter settings, we analyzed each of the four experimental data sets with a total of up to twelve dif-81

ferent quantification approaches (tool/parameter/index combinations). We illustrate that the estimates82

of spliced and unspliced abundances can be strongly affected by the choice of tool, as well as by the83

delineation of exonic and intronic regions; in particular, how genomic regions that are exonic in some84

annotated transcript isoforms and intronic in others are treated. Moreover, we show that abundance esti-85

mation is a critical step of the analysis workflow and that differences at this stage can have considerable86

effects on both the RNA velocity estimates and subsequent biological interpretation.87

Methods88

Data89

In this study, we used four public single-cell RNA-seq data sets, generated by different laboratories90

using popular droplet-based protocols from 10x Genomics. Three of the four data sets (Pancreas, Dentate91

gyrus and Spermatogenesis) comprise cells from dynamically developing systems, while the fourth (PFC)92

contains differentiated cells from adult mouse brain and was chosen as a negative control data set,93

assumed to not harbor a strong dynamic signal.94

• The Pancreas data set (Bastidas-Ponce et al. 2019) stems from a study of endocrine development95

in mouse, and was acquired with the 10x Genomics Chromium platform, using v2 chemistry. We96

downloaded the FASTQ files containing the reads from the cells at stage E15.5 from the Gene97

Expression Omnibus, accession number GSE132188. The RNA read length is 151 nt. A subset of98

this data set was used for illustration by Bergen et al. (2019), and is included as an example data99

set in the scVelo package. After the respective quantifications, we retained only the cells that are100

also included in the scVelo example data set, from which we also retrieved cell type labels. The final101

processed data set used for our analyses contains 3,696 cells.102

• The Dentate gyrus data set (Hochgerner et al. 2018) considers the developing mouse dentate gyrus,103

and was acquired with 10x Genomics v1 chemistry. The individual FASTQ files for cells from P12104

and P35 were downloaded from the Gene Expression Omnibus, accession number GSE95315, and105

the reads from each time point were combined in a single pair of FASTQ files, with cell barcodes106

and UMI sequences in one file and the read sequence in the other. The RNA read length is 98 nt.107

Similarly to the Pancreas data set, the Dentate gyrus data set is also available as an example data108

set in scVelo, and was used for illustration by Bergen et al. (2019). Only cells that were also studied109

in the scVelo paper were retained for our analysis, and cell type labels were obtained from the110
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scVelo example data set. CellRanger and velocyto were not run on this data set since the downloaded111

FASTQ files were not in the format expected by these tools. The final processed data set used for112

our analyses contains 2,914 cells.113

• The Spermatogenesis data set (Hermann et al. 2018) consists of steady-state spermatogenic cells114

from an adult mouse, and was processed with 10x Genomics Chromium v2 chemistry. The submit-115

ted BAM file was downloaded from the Gene Expression Omnibus, accession number GSE109033116

(sample accession number GSM2928341), and converted to FASTQ format using the bamtofastq util-117

ity (v1.1.2) from 10x Genomics (https://support.10xgenomics.com/docs/bamtofastq). The RNA118

read length is 100 nt. Cell type labels were obtained from the corresponding loupe browser file pro-119

vided by the authors, downloaded from https://data.mendeley.com/datasets/kxd5f8vpt4/1.120

Only cells that were also included in this file were retained for further analysis after quantification.121

The final processed data set used for our analyses contains 1,829 cells.122

• The PFC data set (Bhattacherjee et al. 2019) consists of cells from the prefrontal cortex of an adult123

mouse, and was generated using 10x Genomics Chromium v2 chemistry. Since only limited dy-124

namics is expected in this data set, it is used here as a negative control. The submitted BAM125

file was downloaded from the Gene Expression Omnibus, accession number GSE124952 (sample126

accession GSM3559979), and converted to FASTQ format using the bamtofastq utility (v1.1.2) from127

10x Genomics (https://support.10xgenomics.com/docs/bamtofastq). The RNA read length is128

98 nt. Only cells annotated to ‘PFC sample 2’ were used, and cell type labels assigned by the data129

generators were obtained from the GEO record metadata. The final processed data set used for our130

analyses contains 1,267 cells.131

Feature sequence extraction132

All analyses are based on reference files from Gencode, mouse release M21 (Frankish et al. 2019). The133

desired output from each quantification method is a pair of count matrices; one containing ‘spliced’ or134

‘exonic’ counts, and the other containing ‘unspliced’ or ‘intronic’ counts for each gene in each cell. For135

simplicity, in the remainder of this paper, the terms ‘spliced’ and ‘exonic’ will be used interchangeably to136

refer to the counts representing the processed mRNA abundances, and ‘unspliced’ and ‘intronic’ counts137

will similarly refer to the counts representing the unprocessed pre-mRNA abundances.138

To enable this type of quantification with alevin and kallisto|bustools (as opposed to the more standard,139

gene-level expression quantification), the Gencode reference files were processed as follows (also summa-140

rized in Table 1). First, we used the BUSpaRse R/Bioconductor package v1.0.0 (Moses and Pachter 2019)141

to extract transcript and intron sequences from the genome sequence and the Gencode annotation GTF142

file. While the definition of the transcripts is unambiguous, the BUSpaRse package supports two ways143

of defining the introns (see Fig. S1 for a schematic). The ‘separate’ approach considers each transcript144

separately when extracting the intronic regions (and thus, an intron can overlap with an exonic region145

of an alternate transcript), while the ‘collapse’ approach first collapses the isoforms of a gene (taking the146

union of all the exonic regions) before defining the introns as any regions of the gene locus that are not147

exonic in any of the annotated transcript isoforms of the gene. In effect, the ‘separate’ approach thus148

considers exonic and intronic regions on an equal footing, while the ‘collapse’ approach represents a149

prior belief that an ambiguous read is more likely to come from an exon than from an intron. A flanking150
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sequence of length L− 1 (where L is the RNA read length of the respective study) is added on each side151

of each intron to account for reads mapping across exon/intron boundaries. For comparison, we also152

reimplemented the extraction of transcript and intron sequences (for both the ‘separate’ and ‘collapse’153

approaches) directly using functions from the GenomicFeatures and BSgenome R/Bioconductor packages154

(Pagès 2019; Lawrence et al. 2013). Code used to extract the features has been included in the eisaR155

package (https://github.com/fmicompbio/eisaR), from v0.9, for convenience. In each case, the ex-156

tracted transcript and intron sequences were written to a joint FASTA file, summarized in Table 1. Upon157

comparison of the two implementations, we noticed that the current release version (v1.0.0) of BUSpaRse158

returned erroneous feature sequences for multi-exonic transcripts on the negative strand (Fig. S2). For159

this reason, the features extracted by BUSpaRse were not used for further analyses.160

FASTA file name Sequence extraction Description

BUSpaRse-separate BUSpaRse Introns extracted separately
from each transcript isoform

BUSpaRse-collapse BUSpaRse Introns extracted after collaps-
ing all transcripts of a gene

eisaR-separate eisaR Introns extracted separately
from each transcript isoform

eisaR-collapse eisaR Introns extracted after collaps-
ing all transcripts of a gene

Table 1: Summary of reference FASTA files containing exonic and intronic sequences. Only files gener-
ated by eisaR were used for creation of quantification indices.

Reference index generation161

The combined transcript and intron FASTA files were used to build the following quantification indices162

(summarized in Table 2):163

• a joint transcript and intron index for Salmon (v1.0.0) (Patro et al. 2017)164

• an index for Salmon, considering the transcripts as the features of interest and providing the introns165

as decoy sequences (Srivastava et al. 2019b)166

• an index for Salmon, considering the introns as the features of interest and providing the transcripts167

as decoy sequences168

• a joint transcript and intron index for kallisto (v0.46.0) (Bray et al. 2016)169

In addition to the indices based on transcripts and introns, we built one Salmon index from the170

original Gencode FASTA file with the annotated transcripts, and one Salmon index from a FASTA file171

combining the annotated transcripts and fully unspliced versions of all transcripts. For all Salmon in-172

dices, the complete genome sequence was provided as a decoy sequence (Srivastava et al. 2019b), with173

the aim to exclude reads coming from intergenic regions of the genome. Across data sets and reference174
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specifications, this excluded between 1 and 2.5% of the reads from the quantification. For the quantifica-175

tion based on spliced-only transcripts, in which the genome decoy would also capture unambiguously176

intronic reads, this number was between 2 and 10%. Finally, we built an index for CellRanger (v3.0.2)177

(Zheng et al. 2017) and one for STAR (v2.7.3a) (Dobin et al. 2013) based on the reference genome and178

GTF file from Gencode. The splice junction database overhang in the STAR index was set to 150nt, which179

is at least as long as the read length minus one for all data sets considered here.180

Index type Index building Input reference files
(Table 1)

Target sequences Decoy
sequences

salmon-joint Salmon eisaR-separate,
eisaR-collapse

spliced transcripts
and introns

genome

salmon-spliced Salmon transcriptome spliced transcripts genome
salmon-
spliced-
unspliced

Salmon transcriptome +
unspliced
transcripts

spliced and
unspliced
transcripts

genome

salmon-
spliced-decoy

Salmon eisaR-separate,
eisaR-collapse

spliced transcripts introns +
genome

salmon-
introns-decoy

Salmon eisaR-separate,
eisaR-collapse

introns spliced
transcripts +
genome

kallisto-joint kallisto eisaR-separate,
eisaR-collapse

spliced transcripts
and introns

N/A

cellranger CellRanger genome and GTF
file

whole genome N/A

star STAR genome and GTF
file

whole genome N/A

Table 2: Summary of reference indices. The full index name is constructed by concatenating the index
type to the FASTA file name, e.g. salmon-joint-eisaR-separate refers to the salmon-joint index built for
the sequences in the eisaR-separate FASTA file.

To investigate the effect of the choice of flank length in the intron definition, we further built Salmon181

indices (using the ’separate’ intron definition) with flank lengths equal to the read length minus 21bp,182

and the read length minus 41bp. We also built an index for kallisto|bustools using the kb-python wrapper183

(Bray et al. 2016; Melsted et al. 2019), which uses the ’separate’ intron definition and sets the flank length184

to 30 bp.185

Sequence uniqueness estimation186

Finally, to aid in the interpretation, we estimated the sequence uniqueness for each gene, relative to all187

other genes, separately for each FASTA file generated as described above (Table 1). The gene uniqueness188

was defined as the fraction of unique k-mers in the gene, that is, the fraction of the constituent k-mers189

that are not found in any other gene. For each data set, the k-mer length was set to be equal to the RNA190

read length minus 1. The sequence uniqueness for a gene was calculated in two different ways. In each191

case, the full FASTA file with transcript and intron sequences was used as input. First, we estimated192
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separate uniqueness values for the exonic and intronic parts of a gene, by assigning the transcripts and193

introns of a gene to distinct gene IDs in the uniqueness calculations. With this approach, k-mers that are194

exonic in one transcript and intronic in another (even if these are isoforms of the same gene) are classified195

as non-unique, and thus the uniqueness score of an exon sharing some of its sequence with an intron196

of another transcript from the same gene is reduced. Second, we estimated an overall gene uniqueness,197

by again considering all (exonic and intronic) sequences, but not penalizing shared sequence between198

introns and exons of the same gene.199

Quantification200

alevin201

For each of the Salmon indices described above, we ran alevin (v1.0.0) (Srivastava et al. 2019a) to esti-202

mate exonic and intronic abundances for each annotated gene. It is worth noting that for abundances203

obtained with the salmon-spliced-unspliced index, ‘exonic’ and ‘intronic’ abundances refer directly to204

spliced mRNA and unspliced pre-mRNA abundance estimates, respectively, while for all other indices,205

‘exonic’ abundances refer to exonic regions and ‘intronic’ abundances to intronic regions. This affects, for206

example, how reads aligning completely within an exon are used in the quantification: For the salmon-207

spliced-unspliced index, such a read could stem from either the spliced or the unspliced transcript (since208

also the latter contains the exons) and could contribute to the abundance of either (or both) of them,209

while with the other indices, it will be considered ‘exonic’.210

For the alevin quantifications, the transcripts and introns (or unspliced transcripts) from the same211

gene were manually annotated with different gene IDs, in order to obtain separate exonic and intronic212

gene-level abundances despite estimating them jointly. For the indices with decoys, the exonic gene213

counts were defined as the counts obtained when quantifying against the transcript index (with introns214

as decoys) and the intronic gene counts were similarly obtained by quantifying against the intron index215

(with transcripts as decoys). Hence, for these approaches, it is possible for a read that maps equally well216

to an exonic and an intronic sequence to be included in both the exonic and the intronic count matrices,217

and thus be counted twice.218

kallisto|bustools219

For each of the kallisto indices, we applied kallisto|bustools (v0.46.0) (Melsted, Ntranos, and Pachter 2019;220

Melsted et al. 2019) to generate a BUS file. Barcodes were corrected using the list of available cell221

barcodes from 10x Genomics for the appropriate chemistry version, and the BUS file was sorted using222

kallisto|bustools. Next, the BUS file was subset with the capture command of kallisto|bustools to generate223

separate BUS files to be used for the quantification of exonic and intronic features, respectively. The gene-224

level exonic and intronic counts were subsequently obtained using the count command. The capture was225

performed using two different approaches:226

• ‘include’, where the features of interest for the quantification at hand are provided to kallisto|bustools.227

In other words, the transcript IDs are provided as the -c argument to quantify the exonic abun-228

dances, and the intron IDs are provided to quantify the intronic abundances. In practice, this229

means that reads in equivalence classes containing at least one transcript are retained for the ex-230

onic quantification, and reads in equivalence classes containing at least one intron are retained for231

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.990069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990069
http://creativecommons.org/licenses/by/4.0/


the intronic quantification. Hence, equivalence classes containing both exonic and intronic features232

will be provided to both the exonic and intronic quantification steps.233

• ‘exclude’, where the features that are not of interest for the quantification at hand are provided234

to kallisto|bustools, and subsequently excluded. In other words, intron IDs are provided as the -c235

argument to quantify the exonic abundances, and the transcript IDs are provided to quantify the236

intronic abundances, and in addition the -x flag is used to indicate that the provided IDs represent237

sequences to be excluded. In practice, this means that only reads in equivalence classes that don’t238

contain any introns will be retained for the exonic quantification, and only reads in equivalence239

classes that don’t contain any transcripts will be retained for the intronic quantification. Hence,240

equivalence classes containing both exonic and intronic features will be excluded in both steps.241

In addition to the manual application of kallisto|bustools as described above, we applied the kb-242

python wrapper for quantification based on the corresponding index. With its default settings, it calls243

kallisto|bustools with the ‘exclude’ capture approach.244

Velocyto and STARsolo245

CellRanger (v3.0.2) (Zheng et al. 2017) and velocyto (v0.17) (La Manno et al. 2018) were run with default246

settings to generate exonic and intronic counts based on the CellRanger index. STARsolo (v2.7.3a) (Dobin247

et al. 2013) was run using the STAR index, specifying the SOLOfeatures argument to generate ’Velocity’248

(exonic and intronic), ’Gene’ (regular exonic gene expression) and ’GeneFull’ (reads with any overlap249

with the gene locus) counts. Based on these count matrices, we obtained exonic and intronic count250

matrices in two different ways. First, we directly used the ’Velocity’ count matrices as exonic and intronic251

counts (below referred to as starsolo). Second, we used the ’Gene’ count matrix as the exonic counts, and252

the difference between the ’GeneFull’ and ’Gene’ counts as the intronic counts (below referred to as253

starsolo_diff ). For genes where the ’Gene’ counts were higher than the ’GeneFull’ counts, the intronic254

count was set to zero. This can happen, for example, for a gene located in the intron of another gene.255

In the ’GeneFull’ quantification, reads mapping to such a gene are considered ambiguous and therefore256

discarded. However, they may be assigned in the ’Gene’ quantification, if they are compatible with the257

annotated gene model. An overview of the evaluated quantification approaches is provided in Table 3.258

Cell filtering and data processing259

For each quantification, we generated a SingleCellExperiment object (Lun and Risso 2019) containing260

the exonic and intronic counts. Only cells and genes included by all methods were retained for further261

analysis. For the Pancreas and Dentate gyrus data sets, we further subset the objects to only the cells262

analyzed by Bergen et al. (2019), for the PFC data we kept only cells annotated to PFC sample 2, and for263

the Spermatogenesis data set only cells with an assigned cell type label provided by the data generators264

were retained. For visualization purposes, we calculated a single low-dimensional representation based265

on the alevin quantification of only the spliced mRNAs (using the original transcriptome FASTA file266

from Gencode). After normalization with scater v1.14.6 (McCarthy et al. 2017), using the library sizes as267

size factors, we extracted 30 principal components from the log-transformed normalized count values.268

The scater package was then used to apply UMAP (McInnes, Healy, and Melville 2018) with default269
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Method ID Quant method Index Exonic/intronic
quantification

Capture type

alevin_coll_gtr alevin salmon-joint-eisaR-
collapse

joint N/A

alevin_coll_decoy_gtr alevin exonic: salmon-
spliced-decoy-eisaR-
collapse, intronic:
salmon-introns-
decoy-eisaR-collapse

separate N/A

alevin_sep_gtr alevin salmon-joint-eisaR-
separate

joint N/A

alevin_sep_decoy_gtr alevin exonic: salmon-
spliced-decoy-eisaR-
separate, intronic:
salmon-introns-
decoy-eisaR-
separate

separate N/A

alevin_spliced_unspliced_gtr alevin salmon-spliced-
unspliced

joint N/A

kallisto|bus_coll_excl kallisto|bustools kallisto-joint-eisaR-
collapse

separate exclude

kallisto|bus_coll_incl kallisto|bustools kallisto-joint-eisaR-
collapse

separate include

kallisto|bus_sep_excl kallisto|bustools kallisto-joint-eisaR-
separate

separate exclude

kallisto|bus_sep_incl kallisto|bustools kallisto-joint-eisaR-
separate

separate include

starsolo STAR star joint N/A
starsolo_diff STAR star exonic: Gene,

intronic:
GeneFull -
Gene

N/A

velocyto velocyto CellRanger joint N/A

Table 3: Summary of quantification approaches. In addition to the strategies included in this table, we
applied alevin_sep_gtr after using different flank length when defining the intronic reference sequences,
alevin_sep_gtr in unstranded mode, and the kb-python wrapper around kallisto|bustools. The effects of
these modifications are evaluated in Fig. S3.

parameters to the PCA output to obtain a two-dimensional representation that was used for visualization270

of estimated velocities.271
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Visualization272

In order to visualize the coverage pattern of reads within genomic regions, we subset the BAM file273

generated by CellRanger to only the reads assigned to the retained cell barcodes, using the subset_bam274

tool v1.0 from 10x Genomics (https://github.com/10XGenomics/subset-bam). Next, we used BEDTools275

v2.27.1 (Quinlan and Hall 2010) to calculate the coverage along the genome, separately for reads on the276

positive and negative strand. The bedGraphToBigWig script from Kent Tools v20190212 (Kent et al. 2010)277

was used to convert the resulting bedGraph file to bigwig format.278

Coverage patterns, together with annotated gene models, were visualized using the Gviz R/Bioconductor279

package v1.30.0 (Hahne and Ivanek 2016). In these figures, the annotated gene models are visualized by280

their genomic coordinates, together with coverage tracks of reads aligned to the positive and negative281

strand of the genome. The alignments are aggregated across all the retained cells in the data set. All282

alignments contained in the BAM file are included; hence, multimapping reads are represented in all the283

reported mapping locations. Moreover, no UMI deduplication is performed and thus the number of reads284

reported in the coverage tracks are often higher than the total UMI count returned by any of the counting285

methods. It is also important to note that while the gene models and coverage tracks are represented286

with respect to a genomic reference for ease of interpretation, both alevin and kallisto|bustools perform the287

quantification based on mapping to transcriptomic features, not alignment to the genome. Thus, these288

plots are not intended to provide an exact correspondence between mapped reads and estimated UMI289

counts, but rather serve as illustrations to aid in the understanding of the causes of differences between290

the counts from the various methods.291

RNA velocity estimation292

SingleCellExperiment objects with exonic and intronic gene-level UMI counts were converted to Ann-293

Data objects (Wolf, Angerer, and Theis 2018) using the anndata2ri package v1.0 (https://github.com/294

theislab/anndata2ri). The scVelo package v0.1.24 (Bergen et al. 2019) was then used to normalize the295

counts and select the 2,000 most highly variable genes separately for each quantification approach, after296

excluding all genes with less than 20 assigned reads across the exonic and intronic components (only297

summing across cells with nonzero exonic and intronic count). Note that by default, scVelo selects highly298

variable genes based on the spliced counts only. RNA velocity estimates were obtained using the dy-299

namical model implemented in scVelo. For comparison, we also performed downstream analysis and300

visualization of the RNA velocity using only the genes that were selected (and for which scVelo returned301

a finite velocity value) by scVelo with all the quantification approaches.302

The scVelo analysis returns a gene-by-cell matrix of estimated velocities, as well as corresponding303

matrices of normalized (spliced and unspliced) abundances. Based on these matrices, we estimated304

both gene- and cell-wise Spearman correlations between the different types of abundances, as well as305

between the abundances and the velocity estimates. It is worth noting that the velocity calculations are306

performed separately for each input gene, and the resulting values are therefore independent of which307

other genes are included in the data set (under the assumption that the normalized abundance values308

stay unchanged).309

Based on the estimated velocity vectors and the differences between the expression profiles of differ-310

ent cells, scVelo calculates a cosine correlation (πij) for each pair of ’neighboring’ cells. A high value of311
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πij indicates that the velocity vector of cell i points in the direction from cell i to cell j in gene expression312

space. Conversely, if, for a given i, πij is small for all j, the velocity vector of cell i does not point in the313

direction of any other cell in its neighborhood. With this in mind, we calculate maxj πij for each cell i314

and use this as a proxy for the presence of systematic dynamics in a data set. For each cell, scVelo further315

provides an estimate of the velocity confidence (representing the average correlation of the velocity vec-316

tor of the cell and those of its neighbors), and an estimated shared (across genes) latent time. The latter317

was used to contrast the negative control data with the other three data sets, based on the assumption318

that for a data set without continuous dynamics, the latent time estimates for cells of the same cell type319

would be more similar to each other than in a data set with a continuous dynamic signal.320

Low-dimensional embedding of velocities321

All velocity estimates were embedded into the same low-dimensional representation, calculated from the
spliced-only abundance quantification by alevin as described above. The embedded velocity vector for
cell i, calculated by scVelo, is given by

ṽi = ∑
j 6=i

(
π̃ij −

1
n

)
δ̃ij

where π̃ij is the transition probability from cell i to cell j (derived from the cosine correlation πij), n is
the number of cells, and

δ̃ij =
s̃j − s̃i

‖s̃j − s̃i‖

is the normalized difference of the coordinates of cells i and j in the low-dimensional embedding. The
fact that δ̃ij is normalized implies that the length of ṽi indicates to what extent the cells to which cell i
has high transition probabilities are all located in the same direction from cell i in the low-dimensional
representation. It further implies that the embedded velocities are potentially more comparable across
methods than the original velocity vectors, since the magnitudes of the latter depend on the normalized
abundance levels of the genes, and since the velocity vectors will only be directly comparable between
methods if they are based on the same set of input genes. In order to compare the velocity embeddings
across methods, we calculate a concordance score for each cell. The score for cell i is defined as the
ratio between the length of the sum of the embedded velocity vectors for cell i across all quantification
methods, and the sum of the lengths of the individual embedded velocity vectors. In other words, the
score for cell i is given by

ci =
‖∑m ṽ(m)

i ‖

∑m ‖ṽ
(m)
i ‖

where the sum is taken over all methods m, and ṽ(m)
i is the embedded velocity vector for cell i with322

method m. If all embedded velocity vectors for cell i point in the same direction in the low-dimensional323

representation, this ratio will be close to 1, while if there is less concordance between the different324

quantification methods, the ratio will be lower than 1.325
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Results326

The total UMI count varies between methods327

With the aim of characterizing global differences between the counting methods, we first directly com-328

pared the total UMI count assigned to exonic and intronic targets by each of the methods. We added up329

the counts across all cells, either across all genes or within gene subsets stratified by sequence uniqueness330

(Fig. 1, Pancreas data, similar values were obtained for the other three data sets). There are consider-331

able differences in the assigned UMI counts between the methods. Moreover, these differences are not332

confined to a small number of susceptible genes, but can be seen across a large fraction of the expressed333

genes (Fig. S4).334

Overall, starsolo_diff and the alevin-based quantification approaches based on transcript/intron an-335

notations gave the highest total UMI counts, mainly driven by higher counts for the exonic targets. As336

shown in Fig. 1, this is predominantly due to the assignment of reads to genes with a low fraction of337

unique k-mers. This is in contrast to kallisto|bustools, velocyto and starsolo, which by default exclude338

ambiguous reads that map to multiple genes from the quantification.339

Velocyto and starsolo_diff gave the highest UMI counts for genes whose transcripts are all shorter than340

the read length (genes in the ’NA’ category in Fig. 1, for which no uniqueness could be calculated since341

all transcripts were shorter than the employed k-mer length). However, velocyto considered most of these342

reads to be exonic, while starsolo_diff assigned them to the intronic features. This behaviour of starsolo_diff343

is likely due to the generation of the intronic counts by subtraction of the exonic count from the full gene344

locus count. A read which partly overlaps the gene locus but is not consistent with the annotated gene345

model would be included in the ‘GeneFull’ count but not in the ‘Gene’ count, and thus considered an346

intronic read, regardless of whether or not the gene actually contains any introns. Similarly, starsolo_diff347

assigned higher counts than both velocyto and the default ’Velocity’ counting of starsolo, for both exonic348

and intronic features.349

As expected, the alevin-based approaches where exonic and intronic features are quantified separately,350

as well as the ’include’ capture mode of the kallisto|bustools approaches, tend to give higher total UMI351

count than quantifying exonic and intronic features jointly with alevin or running kallisto|bustools in352

’exclude’ capture mode, especially for the ’separate’ intron definition. This is likely due to double-353

counting of some reads that map equally well to an exon and an intron. The difference between the354

‘include’ and ‘exclude’ capture approaches is smaller for the ‘collapse’ annotation, since in that case,355

no genomic regions are annotated as both intronic and exonic for the same gene. The same is true356

for the difference between the alevin quantifications employing joint and separate quantification. It is357

worth noting that the length of the flanking region chosen when constructing the intronic features for358

the quantification also influences the counts (Fig. S3). A shorter flank length typically leads to a lower359

unspliced count, since a larger fraction of the read must overlap the intron for the read to be considered360

potentially intronic.361

In addition to the absolute counts, also the fraction of UMIs assigned to unspliced targets varies362

between methods, with the largest fraction of intronic counts obtained by alevin_spliced_unspliced. This363

was expected, given that for this method, the ‘intronic’ features are the full pre-mRNA molecules and364

thus contain both exonic and intronic sequences. Hence, also reads falling in exons may be assigned to365

the unspliced features.366
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Figure 1: Total UMI count across genes and cells. The bars correspond to the total UMI count, and the
split of these into counts for exonic and intronic targets, for each quantification method in the Pancreas
data set. Similar patterns were seen in the other three data sets. In addition to the overall count (top row),
the figure shows the total count after stratifying genes by the overall fraction of unique k-mers (using
the ’collapse’ annotation), indicated in the vertical panel headers together with the number of genes in
the category. The genes for which no uniqueness information could be calculated (the ’NA’ category) are
those for which all transcripts are shorter than the chosen k-mer length (which was set to the read length
minus one; here 150nt).

13

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2020. ; https://doi.org/10.1101/2020.03.13.990069doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990069
http://creativecommons.org/licenses/by/4.0/


Individual genes exemplify methodological differences367

Next, we aimed to find individual genes whose count patterns exemplify the main methodological dif-368

ferences among the counting strategies. First, we restricted the set of genes to those that were selected as369

highly variable by scVelo, and thus used for velocity estimation, for at least one counting method. Notably,370

while a large fraction of these genes were selected across all quantification methods, there were non-371

negligible differences between the sets of selected genes (Fig. S5). In particular, alevin_spliced_unspliced372

gave the largest number of unique highly variable genes, followed by the starsolo variants and velocyto373

depending on the data set. For each of the retained genes, we calculated the fraction of the total counts374

that were assigned to unspliced features (summarized across all cells). Next, we calculated the standard375

deviation, across the quantification methods, of these intronic count fractions and selected the top 10%376

of the genes based on this measure. These genes were partitioned into 10 clusters based on the Pearson377

correlation dissimilarity (
√

2(1− ρ) where ρ is the Pearson correlation) between the fractions of intron-378

assigned counts across methods, using hierarchical clustering with complete linkage (Fig. 2). The gene379

clusters reveal typical cases where the methods yield different exonic and/or intronic counts. Repre-380

sentative genes for each cluster, selected among the genes with the highest correlation with the cluster381

centroid, are discussed below and illustrated in Figs. S6-S7.382

Genes with ambiguous regions (clusters 4, 5, 7, exemplified by Tspan3, Sirt3 and Ssr1 in Fig. S6).383

For genes in which many of the base positions are annotated to both exons and introns (in different384

isoforms), the choice of how to define introns (‘separate’ vs ‘collapse’ approaches) has a major effect on385

the quantifications. If exons are collapsed before the introns are defined, reads falling in ambiguous386

regions are considered exonic, leading to a higher exonic and a lower intronic count than with the387

‘separate‘ intron definition. This effect can be seen in approximately half of the genes with the highest388

variability in the fraction of unspliced counts (Fig. 2), and manifests itself via a low fraction of unspliced389

reads for the methods based on annotations obtained with the ‘collapse‘ intron definition approach. Also390

starsolo_diff falls in this category, since the intronic regions are not considered when the exonic counts391

are estimated (via the ‘Gene‘ count), and thus any read that is compatible with at least one transcript392

model is considered exonic.393

With the ‘separate‘ intron definition, running alevin with decoys or kallisto|bustools with the ‘include’394

capture double-counts many reads falling completely in ambiguous regions, giving high values of both395

exonic and intronic counts. Conversely, running kallisto|bustools with ‘exclude’ capture discards many396

reads in ambiguous regions, since they will typically be assigned to equivalence classes containing both397

exonic and intronic targets, and this counting strategy therefore often returns low counts for both types398

of features. While these effects can be seen in the absolute counts, they do not necessarily affect the ratio399

of spliced and unspliced counts (Fig. S6).400

For genes with many ambiguous regions, velocyto often returns a relatively low number of spliced401

counts, and consequently a large fraction of unspliced counts (clusters 4, 7). This follows from the402

default ‘permissive’ counting logic where, essentially, a read contributes to the spliced count only if it403

is consistent with the exonic region of a transcript model, but does not map to an intronic region or an404

exon/intron boundary of any other transcript model. Also starsolo often assigns a low total count for this405

group of genes.406

Genes overlapping (introns of) other genes (clusters 1, 2, 3, 6, 10, exemplified by Chkb, Gm21983,407

Rassf1, Cnot6 and Tmem120b in Fig. S7). Overlaps between genes can take many different shapes; exons408
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Figure 2: Clustering of genes based on the fraction of unspliced counts. Top panel: Heatmap showing
the unspliced UMI count fraction, across all cells, in the Pancreas data. The dendrogram was cut into 10
clusters, indicated by colors to the left of the heatmap. Bottom panel: Relative total count assigned to
each gene by the different methods, stratified by gene cluster.
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of one gene can overlap either introns or exons of other genes, and the overlap can be on the same or409

on opposite strands. Reads falling in an exon of one gene and in an intron of another gene on the same410

strand are considered ambiguous, and are therefore discarded, by kallisto|bustools, velocyto and starsolo.411

In contrast, alevin does not discard the reads, but instead distributes them between the two features.412

Thus, alevin tends to give a higher fraction of unspliced counts, and in many cases also a higher total413

count, for genes with other genes in their introns (cluster 6, exemplified by Cnot6 in Fig. S7). It is worth414

observing that alevin will often also assign reads to the gene located within the intron (Gm12191 in415

Fig. S7, which is the gene in the intron of Cnot6). As for the previous category of genes, alevin with416

the decoy approach double-counts reads mapping equally well to an exon and an intron, regardless of417

whether or not the exon and the intron belong to the same gene.418

In cases of exonic overlap between genes on the same strand (clusters 1 and 2, exemplified by Chkb419

and Gm21983 in Fig. S7), all methods except alevin consider the corresponding reads ambiguous and420

discards them, leading to a large difference in the total counts (Fig. 2). The main difference between421

clusters 1 and 2 is that in cluster 1, the gene of interest overlaps partly with an intron of the other gene,422

and the reads in the overlapping region may be counted by the ’Gene’ approach of starsolo-diff. In cluster423

2, the gene of interest overlaps only with exons of the other gene in the region.424

Reads falling in overlapping regions of genes on opposite strands are not considered ambiguous if the425

strandedness of the reads is taken into account. However, not accounting for the strandedness (illustrated426

here by the behaviour of kallisto|bustools) implies treating such overlaps similar to same-strand overlaps.427

For example, for a gene located inside the intron of another gene on the opposite strand, all reads not428

mapping across an exon-exon junction will map equally well to the two genes and thus be discarded429

(cluster 10, exemplified by Tmem120b in Fig. S7). Exonic overlaps between genes on opposite strands430

also leads to a decrease in the number of assigned reads if the strandedness is not taken into account431

(exemplified by Rassf1 in Fig. S7). The assigned count can also increase by performing the quantification432

in an unstranded manner. For example, reads mapping to the negative strand, not overlapping any433

feature there but overlapping a gene on the positive strand, can be assigned to the latter. Intronic reads434

resulting from discordant priming from poly-T sequences, as observed by La Manno et al. (2018), would435

also be incorporated with an strand-agnostic counting approach. The observation of La Manno et al.436

(2018) could be reproduced in our data sets (Fig. S8), and the incorporation of opposite-strand reads by437

kallisto|bustools is exemplified by Ssr1 and Brsk2 in Fig. S6.438

Genes with reads only partly overlapping the gene body (cluster 8, exemplified by 1810019D21Rik439

in Fig. S6). In some cases, reads extend outside the annotated gene body. The starsolo_diff ’GeneFull’440

count incorporates these reads, while the ’Gene’ count from the same method does not, since they are441

not compatible with the annotated gene model. As an effect, the difference between them (which is used442

as the intronic count) can be high, even in cases where the gene does not contain introns, and the total443

count assigned by starsolo_diff is higher than most of the other methods. Velocyto and, for some genes in444

the cluster, the kallisto|bustools methods, yield a high spliced count, while the alevin methods and starsolo445

return lower values.446

Reads falling in purely exonic regions. Across the clusters, alevin_spliced_unspliced often shows a447

different read assignment compared to the other methods. As previously noted, there is a fundamental448

difference between the reference used for alevin_spliced_unspliced (which considers full spliced and un-449

spliced transcripts) and those used for the other methods (which consider transcripts and introns). This450
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implies that reads falling completely in exonic regions, from the point of view of alevin_spliced_unspliced,451

are equally likely to come from a spliced as an unspliced molecule, while the other methods consider452

such reads unambiguously exonic. In practice, this can lead to a lower exonic count and a more even453

exonic/intronic count ratio for alevin_spliced_unspliced than for the other methods. This is exemplified by454

Map1b (cluster 9) in Fig. S6.455

Large differences in inferred velocities between quantification methods456

In the previous sections we showed that there are noticeable differences between the quantification meth-457

ods, in terms of the total number of UMI counts as well as the distribution of these between spliced and458

unspliced targets. Next, we asked whether these differences could be seen also in the velocity estimates459

from scVelo, and in the embedding of these in a low-dimensional representation of the cells, which is ar-460

guably the most widely used way of interpreting RNA velocity estimates. For our analyses, we provided461

scVelo with raw spliced and unspliced UMI count matrices. These were then filtered and normalized by462

scVelo, and the RNA velocity was estimated for each input gene and each cell. Velocities were estimated463

for either the individual sets of 2,000 highly variable genes from each quantification method, or the set464

of genes that were selected by scVelo (and obtained a valid velocity value) with all the quantifications.465

Interestingly, the estimated velocities consistently showed a lower correlation between methods than466

the normalized (spliced, unspliced or aggregated) abundances, when calculated across either cells or467

genes (Fig. S9). Within a cell, there was also a relatively strong correlation between the total gene abun-468

dance and the absolute value of the velocity (Fig. S10). This should be factored in when comparing469

absolute velocities across genes, and it may also suggest that velocity estimates are not directly compa-470

rable across quantification methods if the number of assigned reads are very different. For a given gene,471

the fraction of unspliced counts was also moderately positively correlated with the estimated velocity.472

The spliced and unspliced abundances were positively correlated for all quantification methods, suggest-473

ing that the intronic signal is indeed real and of potential biological relevance, rather than just the result474

of, e.g., contamination by genomic DNA. Finally, we noticed a moderate positive correlation between the475

abundance of a gene and the likelihood of the velocity fit in three of the four data sets (exemplified by476

the Pancreas data set in Fig. S11), while it was substantially lower in the Dentate gyrus data set (Fig. S12).477

The velocity estimates were visualized by embedding them into a UMAP representation based on478

the alevin_spliced quantification (note that the alevin_spliced counts are not used to estimate the velocity,479

since no intronic counts are estimated). The UMAP embedding was compared to other types of em-480

beddings (PCA, tSNE, UMAP based on aggregated abundances, unspliced abundances only or spliced481

and unspliced abundances concatenated), in terms of the length of the embedded velocity vectors as482

well as the average distance between the velocity vector of each cell and its 10 nearest neighbors. These483

comparisons suggested that the differences between embeddings were relatively minor, but that UMAP484

often provided a slightly more interpretable representation (Figs. S13-S14). Embeddings based solely on485

unspliced abundances were least interpretable from a velocity perspective.486

Differences in velocity estimates directly affect biological interpretation487

From the UMAP visualizations it is immediately apparent that the differences in the estimated abun-488

dances between the quantification methods directly influence interpretation, e.g., indicated by stream-489
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lines pointing in different directions in certain regions of the plots (Figs. S15-S17). These differences are490

not captured by the velocity confidence estimates returned by scVelo for an individual method, which are491

often high for all the cells (Figs. S18-S20), suggesting that the differences between methods are systematic492

rather than just the result of random fluctuations or uncertainty in the velocity estimation. The similarity493

among the low-dimensional velocity embeddings based on different quantification methods increased494

somewhat when they were derived from the set of shared genes (Fig. 3). However, considerable differ-495

ences were still seen, indicating that the quantification does not only influence the velocity interpretation496

via the selection of genes.497

The lack of unambiguous ground truth complicates a direct evaluation of the accuracy of velocity498

estimates from the different quantification methods. In addition, the typical way of interpreting velocity499

estimates by means of embedded stream lines in a low-dimensional space provides a relatively coarse-500

grained measure. Nevertheless, Figs. 3 and S15 suggest that for the Pancreas data, the largest differences501

between methods appear in the differentiated Alpha, Beta, Delta and Epsilon cell types (top left). Here,502

alevin_sep_decoy_gtr and the kallisto|bus methods induce (partly or fully) a ’back-flow’, with streamline503

arrows pointing from the differentiated cells back towards the pre-endocrine cells. A similar observation504

can be made for alevin_spliced_unspliced_gtr and kallisto|bus_sep_incl for the pre-endocrine cells. The505

cycling nature of the ductal cells is visible in the embeddings of velocities from most quantification506

methods, with the exception of alevin_spliced_unspliced_gtr, alevin_sep_decoy_gtr, kallisto|bus_coll_incl, and507

kallisto|bus_sep_incl.508

Also for the spermatogenesis data (Figs. 3, S16), the largest differences between methods are seen to-509

wards the end of the developmental trajectory. Again, many methods (with the exception of alevin_sep_gtr510

and kallisto|bus_sep_excl) induce a back-flow, with streamline arrows pointing from the late round sper-511

matids towards the mid round spermatid cluster. In most cases, this back-flow continues through (part512

of) the mid round spermatid cluster as well.513

In the dentate gyrus data, the lowest concordance between velocities based on different quantifica-514

tions is seen for the cells in the granule cell lineage (middle part). While some quantifications indicate515

a direction largely from neuroblasts to granule cells (e.g., alevin_sep_gtr, kallisto|bus_coll_incl), others in-516

dicate a strong movement in the opposite direction (e.g., alevin_sep_decoy_gtr, kallisto|bus_sep_incl). All517

methods except kallisto|bus_coll_excl, kallisto|bus_sep_excl and kallisto|bus_coll_incl show a strong dy-518

namic flow within the mature granule cells, and there is further disagreement within the astrocyte cell519

cluster. Overall, the results from these three data sets highlight that the biological interpretation can be520

strongly affected by the choice of quantification method.521

Negative control data522

The PFC data set was used to compare the methods in terms of their performance on a ‘negative control’523

data set, that is, a data set where no strong systematic dynamics are expected. Here, we chose to compare524

the methods in terms of the maximal cosine correlation between the estimated velocity vector for a cell525

and the displacement vector to other nearby cells, as calculated by scVelo. A low value of this quantity526

indicates that the velocity vector of a cell does not point in a direction compatible with the difference to527

any neighboring cell in the data set, which is used here as a proxy for a lack of systematic dynamics.528

While the maximal cosine correlation varied considerably among cell types (Fig. S21-S24), the value was529

typically slightly lower for the PFC data set than for the data sets with known dynamics (Fig. 4). The530
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Figure 3: Concordance of velocity projections. Each panel colors the UMAP embedding of the cells by
the concordance of velocity projections across methods for one of the three data sets expected to contain
systematic dynamics. The concordance for a given cell was defined as the ratio between the length of the
sum of the velocity embeddings for the different quantification methods, and the sum of the lengths of
the same embedding vectors. A value close to 1 indicates that the embedded velocity vectors all point
in the same direction, while a low value indicates larger deviations among them. For each data set,
the top panel shows the concordance between the velocity embeddings derived based on all the 2,000
genes selected by scVelo for each method, while the bottom panel shows the concordance between the
embeddings obtained when only the genes selected for all methods were considered (see also Fig. S5).

exceptions were velocyto, alevin_sep_decoy_gtr and kallisto|bus_sep_incl, for which the estimated velocities531

often correlated strongly with the displacement vector to at least one other cell in the negative control532

data set. We also estimated the standard deviation of the estimated latent times, within each cell type533

(Fig. S25). In a data set with no continuous trajectories, we would expect a low variation within a cell534

type (even if there are large differences between cell types). For all methods, the PFC data set indeed535

showed the lowest variation, as expected.536

Discussion and Conclusions537

In this study, we have compared different counting strategies for obtaining the spliced and unspliced538

count matrices required for RNA velocity analysis. Using four experimental droplet scRNA-seq data539

sets, we have shown that there are considerable differences between the count matrices obtained by540

different methods that are widely used in the field, and that these differences directly influence the541

downstream analysis and interpretation of the estimated velocities. This effect is mediated partly by an542
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Figure 4: Maximal cosine correlation. The box plots show the distribution, across cells, of the maximal
cosine correlation between the velocity vector and the displacement vector to other cells in the neighbor-
hood, estimated by scVelo for different quantification methods in the four data sets.

impact on the genes that are selected for inclusion by scVelo, but differences affecting the interpretation543

remain even when the same set of genes is used across all methods.544

Given the relative immaturity of the RNA velocity field, and the lack of a generally accepted method545

for generating realistic, simulated data with known ground truth for this application, it is challenging546

to rank the quantification methods in terms of absolute performance. However, some clear themes547

emerge from our analysis. First, counting exonic and intronic reads separately, without consideration548

of whether the read could have resulted from the other type of feature (exemplified here mainly by549

alevin_sep_decoy_gtr and kallisto|bus_sep_incl) leads to double-counting of reads, and velocities that agree550

less well with expectations. Second, not considering the strandedness of the reads from 10x Genomics551

(here exemplified by the kallisto|bustools variants and by explicitly running alevin in unstranded mode)552

implies that many reads in regions where genes on different strands overlap each other (exonically or553

intronically) are considered ambiguous. Depending on the method, these reads may consequently be554

excluded from the quantifications. However, at the same time it provides to ability to include reads555

resulting from discordant internal priming. Third, deriving the intronic reads by subtracting the ’Gene’556

count from STARsolo from the corresponding ’GeneFull’ count (here denoted starsolo_diff ) sometimes557

has unexpected consequences, since the ’GeneFull’ counting considers all reads that overlap the gene558

locus, while the ’Gene’ counting requires that the reads are consistent with the transcript model. Thus,559
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a gene can obtain a nonzero ’intronic’ count despite completely lacking annotated introns. Moreover,560

genes located within introns of other genes will often obtain a nominally negative intronic UMI count561

since non-junction-spanning reads mapping to the former will be considered ambiguous and discarded562

in the ’GeneFull’ counting. Fourth, for 3’ tag data such as the 10x Genomics data we have considered in563

this study, quantifying the spliced and unspliced transcripts (rather than spliced transcripts and introns564

only) implies that for a large fraction of the reads, it is difficult to resolve whether they stem from the565

spliced or unspliced target. Thus, this type of reference may be more suitable for full-length scRNA-seq566

protocols, where reads are sampled across the entire length of the transcript.567

Among the counting strategies contrasted in this manuscript, alevin_sep_gtr, kallisto|bus_sep_excl, star-568

solo and alevin_coll_gtr provided velocity embeddings most in line with expectations in the three real data569

sets. However, even among these methods, there are large differences in the assigned counts as well as in570

the handling of ambiguous reads and genomic regions. Going forward, we expect that improvements in571

counting strategies for scRNA-seq data, specifically tailored for RNA velocity preprocessing, will likely572

come alongside an increased understanding of the read generation process and the biases underlying573

specific scRNA-seq library preparation protocols, and that different counting strategies may be optimal574

for different types of scRNA-seq data. An increased understanding of the read generation process will575

also enable realistic simulation of sets of spliced and unspliced scRNA-seq reads, which in turn will576

provide an improved platform for objective evaluation of the performance of counting strategies.577

Data and code access578

The code used for our analyses is available on https://github.com/csoneson/rna_velocity_quant.579

The spermatogenesis data can be downloaded from GEO, accession number GSE109033. The pancreas580

data set was downloaded from GEO, accession number GSE132188. The dentate gyrus data set was581

downloaded from GEO, accession number GSE95315. The PFC data set is accessible from GEO under582

accession number GSE124952 (sample accession number GSM3559979).583
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