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Abstract

One of the reasons for the fast spread of SARS-CoV-2 is the lack of accuracy

in detection tools in the clinical field. Molecular techniques, such as quantita-

tive real-time RT-PCR and nucleic acid sequencing methods, are widely used

to identify pathogens. For this particular virus, however, they have an overall

unsatisfying detection rate, due to its relatively recent emergence and still not

completely understood features. In addition, SARS-CoV-2 is remarkably simi-

lar to other Coronaviruses, and it can present with other respiratory infections,

making identification even harder. To tackle this issue, we propose an assisted

detection test, combining molecular testing with deep learning. The proposed

approach employs a state-of-the-art deep convolutional neural network, able to

automatically create features starting from the genome sequence of the virus.

Experiments on data from the Novel Coronavirus Resource (2019nCoVR) show

that the proposed approach is able to correctly classify SARS-CoV-2, distin-

guishing it from other coronavirus strains, such as MERS-CoV, HCoV-NL63,

HCoV-OC43, HCoV-229E, HCoV-HKU1, and SARS-CoV regardless of missing

information and errors in sequencing (noise). From a dataset of 553 complete

genome non-repeated sequences that vary from 1,260 to 31,029 bps in length,

the proposed approach classifies the different coronaviruses with an average ac-
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curacy of 98.75% in a 10-fold cross-validation, identifying SARS-CoV-2 with an

AUC of 98%, specificity of 0.9939 and sensitivity of 1.00 in a binary classifica-

tion. Then, using the same basis, we classify SARS-CoV-2 from 384 complete

viral genome sequences with human host, that contain the gene ORF1ab from

the NCBI with a 10-fold accuracy of 98.17% , a specificity of 0.9797 and sen-

sitivity of 1.00. Furthermore, an in-depth analysis of the results allow us to

identify base pairs sequences that are unique to SARS-CoV-2 and do not ap-

pear in other virus strains, that could then be used as a base for designing new

primers and examined by experts to extract further insights. These preliminary

results seem encouraging enough to identify deep learning as a promising re-

search venue to develop assisted detection tests for SARS-CoV-2. At this end

the interaction between viromics and deep learning, will hopefully help to solve

global infection problems. In addition, we offer our code and processed data

to be used for diagnostic purposes by medical doctors, virologists and scientists

involved in solving the SARS-CoV-2 pandemic. As more data become available

we will update our system.

Keywords: convolutional neural networks, coronavirus, deep learning,

SARS-CoV-2

1. Introduction

The Coronaviridae family presents a positive sense, single-strand RNA genome.

This viruses have been identified in avian and mammal hosts, including humans.

Coronaviruses have genomes from 26.4 kilo base-pairs (kbps) to 31.7 kbps, with

G + C contents varying from 32% to 43%, and human-infecting coronaviruses5

include SARS-CoV, MERS-CoV, HCoV-OC43, HCoV-229E, HCoV-NL63 and

HCoV-HKU1 [1]. In December 2019, SARS-CoV-2, a novel, human-infecting

Coronavirus was identified in Wuhan, China, using Next Generation Sequenc-

ing [2].

As a typical RNA virus, new mutations appears every replication cycle of10

Coronavirus, and its average evolutionary rate is roughly 10-4 nucleotide sub-
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stitutions per site each year [2]. In the specific case of SARS-CoV-2, RT-qPCR

testing using primers in ORF1ab and N genes have been used to identified the

infection in humans. However, this method presents a high false negative rate

(FNR), with a detection rate of 30-50% [3, 4]. This low detection rate can be15

explained by the variation of viral RNA sequences within virus species, and the

viral load in different anatomic sites [5]. Population mutation frequency of site

8,872 located in ORF1ab gene and site 28,144 located in ORF8 gene gradually

increased from 0 to 29% as the epidemic progressed [6].

As of March 6th of 2020, the new SARS-CoV-2 has 98,192 confirmed cases20

across 88 countries, with 17,481 cases outside of China [7]. In addition, SARS-

CoV-2 has an estimated mortality rate of 3-4%, and it is spreading faster than

SARS-CoV and MERS-CoV [8]. SARS-CoV-2 assays can yield false positives

if they are not targeted specifically to SARS-CoV-2, as the virus is closely re-

lated to other Coronavirus organisms. In addition, SARS-CoV-2 may present25

with other respiratory infections, which make it even more difficult to iden-

tify [9, 10]. Thus, it is fundamental to improve existing diagnostic tools to

contain the spread. For example, diagnostic tools combining computed tomog-

raphy (CT) scans with deep learning have been proposed, achieving an improved

detection accuracy of 82.9% [11]. Another solution for identifying SARS-CoV-230

is additional sequencing of the viral complementary DNA (cDNA). We can use

sequencing data with cDNA, resulting from the PCR of the original viral RNA;

e,g, Real-Time PCR amplicons (Fig. 1) to identify the SARS-CoV-2 [12].

Classification using viral sequencing techniques is mainly based on align-

ment methods such as FASTA [13] and BLAST [14]. These methods rely on the35

assumption that DNA sequences share common features, and their order pre-

vails among different sequences [15, 16]. However, these methods suffer from the

necessity of needing base sequences for the detection [17]. Nevertheless, it is nec-

essary to develop innovative improved diagnostic tools that target the genome

to improve the identification of pathogenic variants, as sometimes several tests,40

are needed to have an accurate diagnosis. As an alternative deep learning meth-

ods have been suggested for classification of DNA sequences, as these methods
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Figure 1: PCR Amplicons sequencing procedure.

do not need pre-selected features to identify or classify DNA sequences. Deep

Learning has been efficiently used for classification of DNA sequences, using

one-hot label encoding and Convolution Neural Networks (CNN) [18, 19], albeit45

the examples in literature are featuring DNA sequences of length up to 500 bps,

only.

In particular, for the case of viruses, Next Generation Sequencing (NGS)

genomic samples might not be identified by BLAST, as there are no reference

sequences valid for all genomes, as viruses have high mutation frequency [20].50

Alternative solutions based on deep learning have been proposed to classify

viruses, by dividing sequences into pieces of fixed lengths, from 300 bps [20]

to 3,000 bps [21]. However, this approach has the negative effect of poten-

tially ignoring part of the information contained in the input sequence, that is

disregarded if it cannot completely fill a piece of fixed size.55

Given the impact of the world-wide outbreak, international efforts have been

made to simplify the access to viral genomic data and metadata through interna-

tional repositories, such as; the 2019 Novel Coronavirus Resource (2019nCoVR)

repository [6] and the National Center for Biotechnology Information (NCBI) [22],

expecting that the easiness to acquire information would make it possible to de-60
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velop medical countermeasures to control the disease worldwide, as it happened

in similar cases earlier [23, 24, 25]. Thus, taking advantage of the available

information of international resources without any political and/or economic

borders, we propose an innovative system based on viral gene sequencing.

Differently from previous works in literature, that use of deep learning with65

fixed length features and one-hot label encoding, in this work we propose the use

of a different encoding to input the full sequence as a whole. In addition, we use

as base input 31,029 as an input vector, which is the maximum length of available

DNA sequences for Coronavirus. Finally, we propose a novel architecture for

the deep network, inspired by successful applications in cancer detection starting70

from miRNA [26].

2. Methods

2.1. Data

2.1.1. Classification of Coronaviruses

SARS-CoV-2 identification can give wrong results, as the virus is difficult75

to distinguish from other Coronaviruses, due to their genetic similarity. In

addition, people with SARS-CoV-2 may present other infections besides the

virus [9, 10]. Therefore, it is important to be able to properly classify SARS-

CoV-2 from other Coronaviruses.

From the repository 2019 Novel Coronavirus Resource (2019nCoVR) [6], we80

downloaded all the available sequences with the query Nucleotide Complete-

ness=“complete” AND host=“homo sapiens”, for a total of 588 samples. Next,

we removed all repeated sequences, resulting in 553 unique sequences of variable

length (1,260-31,029 bps). The data was organized and labeled as summarized

by Table 1. We grouped HCoV-229E and HCoV-OC43 in the same class, as they85

are mostly known as Coronaviruses responsible for the common cold [27]; the

two available samples of HCoV-4408 were also added to the same class, as it is

a Betacoronavirus 1, as HCoV-OC43. In a similar fashion, we grouped HCoV-

NL63 and HCoV-HKU1, as they are both associated with acute respiratory
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infections (ARI) [28]. Finally, we grouped SARS-CoV/SARS-CoV-P2/SARS-90

CoV HKU-39849 [29]/SARS-CoV GDH-BJH01 organisms together, as they are

all strains of SARS.

Table 1: Organism, assigned label, and number of samples in the unique sequences obtained

from the repository [6]. We use the NCBI organism naming convention [30].

Organism Label Number of Samples

SARS-CoV-2 0 66

MERS-CoV 1 240

HCoV-OC43 2 140

HCoV-229E 2 22

HCoV-4408 2 2

HCoV-NL63 3 58

HCoV-HKU1 3 17

SARS-CoV 4 7

SARS-CoV P2 4 1

SARS-CoV HKU-39849 4 1

SARS-CoV GDH-BJH01 4 1

To encode the cDNA data into an input tensor for the CNN, we assigned

numeric values to the different bases; C=0.25, T=0.50, G=0.75, A=1.0 (see

Fig. 2). All missing entries were assigned the value 0.0. This procedure is95

different from previous methods, that relied upon one-hot encoding [21, 20],

and has the advantages of making the input more human-readable and do not

multiply the amount of memory required to store the information. We divide the

available samples in two parts, 90% for training and validation (80% training,

10% validation), and 10% for testing, in a 10-fold cross-validation scheme. k-100

fold cross-validation is a procedure by which available data is divided into k

parts, called folds. At each iteration i, the i-th fold is used as a test set, while

all the other folds are used as training. At the end of the k-th iteration, the

average performance of the model in test over all folds provides a good estimate

of the generality of the results. In this particular case, we use stratified folds,105

that preserve the same proportion of classes in every fold. The procedure is

summarized by Fig. 3.
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Figure 2: Coding for the input sequences.

Figure 3: Scheme of a k-fold cross-validation. Available data is divided into k parts. At each

iteration i, the i-th fold is used for testing, while all the others are used as a training set.
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2.1.2. Separating SARS-CoV-2 from other viruses containing gene ORF1ab

Two thirds of the Coronaviruses’ genome contain the ORF1ab gene [1].

Therefore, it is important that we are able to differentiate SARS-CoV-2 from110

similar viruses, like Astroviruses. From the NCBI repository [30], we down-

loaded the genome sequences corresponding to the following search: gene=“ORF1ab”

AND host=“homo sapiens” AND “complete genome”. This resulted in 402 se-

quences, distributed as described in Table 2. For this data, we assigned SARS-

CoV-2 label 0, and grouped the rest of the organisms together in label 1. Next,115

we removed all the repeated sequences, obtaining a total of 384 unique se-

quences, with 45 samples belonging to SARS-CoV-2. The genomic data was

translated to digits using the encoding previously described in Subsection 2.1.1.

Table 2: Organism, assigned label, and number of samples in the unique sequences obtained

from the repository NCBI [30].

Virus Label Number of Samples

SARS-CoV-2 0 45

MERS-CoV 1 180

HCoV-OC43 1 105

HCoV-NL63 1 29

HCoV-HKU1 1 13

HCoV-4408 1 2

HCoV-229E 1 3

HCoV-EMC 1 3

HAstV-VA1 1 1

HAstV-BF34 1 1

HMO-A 1 1

HAstV-SG 1 1

2.2. Convolutional Neural Network

The deep learning model used for the experiments is a CNN with a con-120

volutional layer with max pooling, a fully connected layer, and a final soft-

max layer, as described in Fig. 4. The input is a vector of 31,029 elements,
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which is the maximum size of the genome sequences in the dataset. The con-

volutional layer is characterized by three hyperparameters, as shown in Fig. 5:

w = 12, wd = 21, h = 148. The fully connected layer has 196 ReLu units and it125

is set with a dropout probability of pd = 0.5 during training, to improve gen-

erality; moreover, a l2 regularization is applied to the cross-categorical entropy

loss function, considering all weights in the convolutional layer, with β = 10−3 .

The optimizer used for the weights is Adaptive Moment Estimation (Adam) [31],

with learning rate lr = 10−5, run for 500 epochs. The hyper-parameters used130

in the experiments were selected after a set of preliminary trials. All the neces-

sary code was developed in Python 3, using the tensorflow [32] and keras [33]

libraries for deep learning, and has been made available on an open GitHub

repository1.

Figure 4: Architecture of the deep convolutional neural network used in the experiments.

3. Results135

3.1. Classification of SARS-CoV-2 among Coronaviruses

In the first test, we separated the SARS-CoV-2 from other sequences avail-

able at the repository 2019 Novel Coronavirus Resource (2019nCoVR) [6]. We

obtained a 10-fold mean test accuracy of µ = 0.9875 with σ = 0.0160. The

1https://github.com/albertotonda/deep-learning-coronavirus-genome
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Figure 5: Structure of a convolutional layer in the network. For each of the w = 12 filters,

the convolution window of size wd = 21 is slid over the data, one step at a time. The results

of the convolution are then passed through a max pooling layer of size h = 148, that helps

making the representation approximately invariant to small translations of the input.

resulting confusion matrix (Fig. 6) shows that only 3 out of the 66 SARS-CoV-2140

sequences were mistakenly assigned to another class. The binarized curve of the

test (Fig. 7) has an area under the curve (AUC) of 0.98, with a specificity of

0.9939 and sensitivity of 1.00. This is considered an outstanding performance,

according to the guidelines provided by [34, 35].

As viruses are characterized by high mutation frequencies, to assess the ro-145

bustness of our approach, we performed further experiments where we added

noise to the dataset, simulating possible future mutations. 5% noise was added

by randomly selecting 1,551 positions from each sequence, from the 31,029 avail-

able, and modifying each selected base to another, or to a missing value, ran-

domly. A new 10-fold cross-validation classification run on the noisy dataset150

yields an average accuracy µ = 0.9674 with a σ = 0.0158. Figs. 8 and 9 show

the resulting confusion matrix and ROC curve, respectively. This gives a AUC

of 0.97, with a specificity of 0.9939 and sensitivity of 0.90.
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Figure 6: Confusion matrix resulting from the test of a 10-fold cross-validation, comprising

553 samples belonging to 5 different classes.
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Figure 7: Binarized ROC curve of the 553 sequences, where we consider samples belonging to

SARS-CoV-2 as class 0, and all the rest as class 1.

3.2. Separating SARS-CoV-2 from other viruses containing gene ORF1ab

In a next batch of experiments, we aim to distinguish SARS-CoV-2 from155

other genome sequences from NCBI [30], with the following search parameters:

gene=”ORF1ab” AND host=”homo sapiens” AND ”complete genome”. We

get a 10-fold average accuracy of µ = 0.9817 with a σ = 0.0167. The resulting

confusion matrix (Fig. 6) shows that 7 out of the 45 SARS-CoV-2 sequences,

were classified in another class. The ROC curve of the test (Fig. 11) has an area160

under the curve (AUC) of 0.92 , with a specificity of 0.9797 and sensitivity of

1.00.
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Figure 8: Confusion matrix resulting from the test of a 10-fold cross-validation, comprising

553 samples belonging to 5 different classes, with a 5% noise in the dataset.
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Figure 9: Binarized ROC curve of the 553 sequences, where we consider samples belonging to

SARS-CoV-2 as class 0, and all the rest as class 1, with 5% added noise.
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Figure 10: Confusion Matrix of the proposed approach on the 384 NCBI sequences, binarizing

the problem with only two classes. Label 0 corresponds to SARS-CoV-2, label 1 to all the

other virus strains.
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Figure 11: ROC curve of the proposed approach classifying the 384 NCBI sequences, where

we consider SARS-CoV-2, as class 0 and the rest as 1.
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4. Feature Detection

The convolutional layers of CNNs de-facto learn new features to characterize

the problem, directly from the data. In this specific case, the new features are165

specific sequences of base pairs that can more easily separate different virus

strains (Fig. 12). By analyzing the result of each filter in a convolutional layer,

and how its output interacts with the corresponding max pooling layer, it is

possible to detect human-readable sequences of base pairs that might provide

domain experts with important information. It is important to notice that170

these sequences are not bound to specific locations of the genome; thanks to its

structure, the CNN is able to detect them and recognize their importance even

if their position is displaced in different samples.

Figure 12: Overall procedure to find the specific SARS-CoV-2 sequences.

For this purpose, we use the trained CNN described in Subsection 2.2, that

obtained an accuracy of 98.75% in a 10-fold cross-validation. In a first step,175

we plot the inputs and outputs of the convolutional layer, to visually inspect

for patterns. As an example, in Fig. 13 we report the visualization of the first

2,500 bps of each of the 553 samples considered in the first experiment. Each

filter slides a 21-bps window over the input, and for each step produces a single

value. The output of a filter is thus a sequence of values in (0, 1): Fig. 14,15180
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shows the outputs of four out of the twelve filters in the CNN, for the first 2,500

bps of all 553 samples, mapped to a monochromatic image where the closest a

value is to 1, the whiter the corresponding pixel is.

Sequence 0-1250 bps

Sequence 1250-2500 bps

Figure 13: cDNA visualization for the first 2,500 bps from the input dataset, for each of

the 553 samples. Each sample is represented by a horizontal line of pixels. Colored pixels

represent bases: G=green, C=blue, A=red, T=orange, missing=black.

The output of the max pooling layer for each filter is then further inspected

for patterns. An example of the output of the max pooling layer for the first185

two filters is displayed in Fig. 16: it is noticeable how the different classes can

be already visually distinguished. At this step, we identify filter 1 as the most
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Sequence 0-1250

Sequence 1250-2500

Figure 14: The output of convolutional filter 0, for the input given in Fig. 13. The output of

the filters is a series of continuous values in (0, 1), here represented in grayscale, with higher

values closer to white.
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Sequence 0-1250

Sequence 1250-2500

Figure 15: The output of convolutional filter 1, for the input given in Fig. 13. The output of

the filters is a series of continuous values in (0, 1), here represented in grayscale, with higher

values closer to white
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promising, as it seems to focus on the a few relevant points in the genome, and

it is thus most likely able to identify meaningful sequences.

Figure 16: Visualization of the output of the max pooling for the first two filters of the

CNN, with the data from the convolutional filters (Fig. 14,15) in input. Different patterns for

samples from different classes are recognizable from a simple visual inspection.

Given this data, it is now possible to identify the 21-bps sequences (created190

by the first convolutional filter) that obtained the highest output values in the

max pooling layer of filter 1, in a section of 148 positions. This process results

in 210 (31,029 divided by 148) max pooling features, each one identifying the
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21-bps sequence that obtained the highest value from the convolutional filter,

in a specific 148-position interval of the original genome: the first max pooling195

feature will cover positions 1-148, the second will cover position 149-296, and

so on. We graph the whole set of max pooling features for the complete data,

Fig. 17.

Sequence 0 - 2,205

Sequence 2,205 - 2,210

Figure 17: cDNA visualization for the selected 210 21-bps-long sequences selected from the

input dataset. Each sample is represented by a horizontal line of pixels. Colored pixels

represent bases: G=green, C=blue, A=red, T=orange, missing=black. We divide the whole

information, for visualization purposes; from visual inspection we can see the similarity of the

patterns between the classes.

Analyzing the different sequence values appearing in the max pooling feature

space, a total of 3,827 unique 21-bps cDNA sequences, that can potentially be200

very informative for identifying different virus strains. For example, sequence

“AGGTAACAAACCAACCAACTT” is only found inside the class of SARS-

CoV-2, in 59 out of 66 available samples. Sequence “CACGAGTAACTCGTC-

TATCTT” is present only in SARS-CoV-2, in 63 out of the 66 samples.

The combination of the convolutional and max pooling layer allows the CNN205

to identify sequences even if they are slightly displaced in the genome (by up
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to 148 positions). As some samples might present sequences that are displaced

even more, in the next experiments we decided to just consider the relative

frequency of the 21-pbs sequences identified at the previous step, creating a

sequence feature space, to verify whether the appearance of specific sequences210

could be enough to differentiate between virus strains.

4.1. Example 1

We downloaded the dataset from the NGDC repository [6] on March 1515

2020. We removed repeated sequences and applied the whole procedure to trans-

late the data into the sequence feature space. This leave us with a frequency215

table of 3,827 features with 583 samples (Table 3). Next, we ran a state-of-the-

art feature selection algorithm [36], to reduce the sequences needed to identify

different virus strain to the bare minimum. Remarkably, we are then able to

classify exactly all samples using only 53 of the original 3,827 sequences, ob-

taining a 100% accuracy in a 10-fold cross-validation with a simpler and more220

traditional classifier, such as Logistic Regression.

Table 3: Organism, assigned label, and number of samples in the unique sequences obtained

from the repository [6]. We use the NCBI organism naming convention [30].

Organism Label Number of Samples

SARS-CoV-2 0 96

MERS-CoV 1 236

HCoV-OC43 2 136

HCoV-229E 2 22

HCoV-EMC 2 6

HCoV-4408 2 2

HCoV-NL63 3 58

HCoV-HKU1 3 17

SARS-CoV 4 7

SARS-CoV P2 4 1

SARS-CoV HKU-39849 4 1

SARS-CoV GDH-BJH01 4 1

4.2. Example 2

We downloaded data from NCBI [22] on March 15th 2020, with the following

query=gene=”ORF1ab” AND host=”homo sapiens” AND ”complete genome”.
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The query resulted in 407 non-repeated sequences (Table 4), with 68 sequences225

belonging to SARS-CoV-2. Then, we applied the whole procedure to translate

the data into the sequence feature space, and we run the same state-of-the-art

feature selection algorithm [36]. This give us a list of 10 different sequences:

just checking for their presence is enough to differentiate between SARS-CoV-2

and other viruses in the dataset with a 100% accuracy. Each of the sequences230

only appears in SARS-CoV-2.

Table 4: Organism, assigned label, and number of samples in the unique sequences obtained

from the repository NCBI [30].

Virus Label Number of Samples

SARS-CoV-2 0 68

MERS-CoV 1 180

HCoV-OC43 1 105

HCoV-NL63 1 29

HCoV-HKU1 1 13

HCoV-4408 1 2

HCoV-229E 1 3

HCoV-EMC 1 3

HAstV-VA1 1 1

HAstV-BF34 1 1

HMO-A 1 1

HAstV-SG 1 1

4.3. Example 3

We downloaded data from NCBI [22] on March 17th 2020, with the following

query=”virus AND host=”homo sapiens” AND ”complete genome”, restricting

the size from 1,000 to 35,000. This gives us a total of 20,603 results, where only235

32 samples are SARS-CoV-2 samples and 20,571 are from other taxa, includ-

ing; Hepatitis B, Dengue, Human immunodeficiency, Human orthopneumovirus,

Enterovirus A, Hepacivirus C, Chikungunya virus, Zaire ebolavirus, Human

respirovirus 3, Orthohepevirus A, Norovirus GII, Hepatitis delta virus, Mumps

rubulavirus, Enterovirus D, Zika virus, Measles morbillivirus, Enterovirus C,240
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Table 5: Sequences that only exist in SARS-CoV-2, that help differentiate between the virus

and other taxa as displayed in Table 4.

TAGCACTCTCCAAGGGTGTTC

CATCTACTGATTGGACTAGCT

AATGAATTATCAAGTTAATGG

CACGTAGGAATGTGGCAACTT

TGAGCAGTGCTGACTCAACTC

CAACTTTTAACGTACCAATGG

CTAAAGCATACAATGTAACAC

GATGGTCAAGTAGACTTATTT

TGCCACTTGGCTATGTAACAC

TATTAGTGATATGTACGACCC

Human T-cell leukemia virus type I, Yellow fever virus, Adeno-associated virus,

rhinovirus (A, B and C), for more than 900 viruses. Then, we we applied the

whole procedure to translate the data into the sequence feature space and run

the feature reduction algorithm [36]. This results in 2 sequences of 21 bps: just

by checking for their presence, we are able to separate SARS-CoV-2 from the245

rest of the samples with a 100% accuracy. The sequences are: AATAGAA-

GAATTATTCTATTC and CGATAACAACTTCTGTGGCCC.

4.4. Example 4

From the GISAID repository [37], we downloaded the last 323 sequences

available for SARS-CoV-2, from different countries. Then, we calculate the250

frequency table of the 21-bps sequences from examples 2 and 3, to see which

sequences remain and could be use for detection. The results are in Table 6 in

percentage of appearance in the GISAID sequences.
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Table 6: Frequency table in percentages for the sequences in examples 2 and 3 in the 323

sequences from GISAID [37].

TAGCACTCTCCAAGGGTGTTC 100.00%

AATGAATTATCAAGTTAATGG 100.00%

TATTAGTGATATGTACGACCC 100.00%

AATAGAAGAATTATTCTATTC 100.00%

CACGTAGGAATGTGGCAACTT 99.69%

CAACTTTTAACGTACCAATGG 99.69%

CTAAAGCATACAATGTAACAC 99.69%

GATGGTCAAGTAGACTTATTT 99.69%

TGAGCAGTGCTGACTCAACTC 99.38%

CGATAACAACTTCTGTGGCCC 99.07%

CATCTACTGATTGGACTAGCT 98.76%

TGCCACTTGGCTATGTAACAC 95.04%
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4.5. Biological features and molecular techniques

After deep learning analysis, we identify that the sequence TAGCACTCTC-255

CAAGGGTGTTC is exclusive for SARS-CoV-2 and shows a frequency of 100%

in viral genomes available from different countries in the GISAID [37] and

NCBI [22]. Using NC045512.2 as reference SARS-CoV-2 sequence, we iden-

tify this unique sequence is located from 25604 to 25624 nucleotides in ORF3a

gene. In SARS-CoV, this gene encodes a protein of 274 aa, that is related with260

necrotic cell death [38], chemokine production, inflammatory response [39] and

may play an important role in virus life cycle [40]. With this information, we

design a specific primer set for detection of SARS-CoV-2 using Primer3plus [41].

We use TAGCACTCTCCAAGGGTGTTC as forward primer and GCAAAGC-

CAAAGCCTCATTA as reverse primer. Then, we run an In silico PCR test265

using FastPCR 6.7 [42] with default parameters, this yields the results from

Fig. 18.

These primers (Forward 5’ TAGCACTCTCCAAGGGTGTTC 3’ and Re-

verse 5’ GCAAAGCCAAAGCCTCATTA 3’) could identify and differentiate

SARS-CoV-2 from other coronavirus species through the PCR method. Fur-270

thermore, we propose to create a multiplex PCR using the 21 nt. unique se-

quences for SARS-CoV-2 identified through deep learning to develop accurate

molecular diagnostic techniques. However, it is necessary to test it in laboratory

and carry out the validation with patients samples.
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Figure 18: In silico PCR Test results using TAGCACTCTCCAAGGGTGTTC and

GCAAAGCCAAAGCCTCATTA sequences as primers in NC045512.2 as reference SARS-

CoV-2 sequence using FastPCR 6.7 program [42].
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Severity Identification275

Experiment 5: Severity Detection

The data collected from the GISAID repository [37], also reports metadata,

including the status of patients. While most of the metadata is missing, we

selected 169 patients for which the status is reported; in the dataset, 52 are an-

notated as asymptomatic and 117 as hospitalized. We reached to the submitters280

of some of the sequences, and they reported that hospitalized meant that the

patients presented evident symptoms of SARS-CoV-2, and could thus be con-

sidered symptomatic. We then applied the previously described methodology to

discover specific sequences to separate asymptomatic from symptomatic (hospi-

talized) patients, and reduced the number of 21-bps sequences to the necessary285

minimum, using a feature reduction algorithm [36]. The algorithm ultimately re-

turns an optimal set of 32 sequences, of 21 bps each: Simply checking for their

presence inside a patient sample makes it possible to separate asymptomatic

from symptomatic patients with 94% accuracy.

For each of the discovered sequences we then calculate the frequency of ap-290

pearance in both asymptomatic and symptomatic patients. The results are

reported in Table 7. It is important to notice that the sequences discovered for

this experiment do not overlap with those identified in previous validations, as

the objective of this last test is considerably different: While in previous exper-

iments the aim was to separate SARS-CoV-2 samples from other virus strains,295

here the goal is to separate SARS-CoV-2 patients that require hospitalization

from those who do not.

In contrast to Experiments 1-4 where the 21-length bps sequences were scat-

tered, in Experiment 5, seven of the sequences are clustered together in the

symptomatic cases Fig. 19, and four of the sequences in asymptomatic cases300

Fig. 20. These sequences are located in the same region of ORF1ab gene, but

contain a mutation that discriminates between symptomatic and asympotomatic

patients (c.11083G > T ). This transversion results in the substitution of leucine

to phenylalanine (p.L3606F). A previous report identified the same mutation in
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Table 7: Appearance frequency table for the 169 sequences. We only show the sequences with

the biggest percentage differences between symptomatic and asymptomatic patients.

Sequence Asymptomatic Symptomatic Absolute Difference

TTTTTATGAAAATGCCTTTTT 94.23% 17.95% 76.28%

TTTATGAAAATGCCTTTTTAC 94.23% 17.95% 76.28%

TTTTATGAAAATGCCTTTTTA 94.23% 17.95% 76.28%

TTTTTTTTTTATGAAAATGCC 94.23% 17.95% 76.28%

TGTATGAAAATGCCTTTTTAC 5.77% 81.20% 75.43%

GTATGAAAATGCCTTTTTACC 5.77% 81.20% 75.43%

TTTTGTATGAAAATGCCTTTT 5.77% 81.20% 75.43%

GTTCTTTTTTTTGTATGAAAA 5.77% 81.20% 75.43%

TTTGTTCTTTTTTTTGTATGA 5.77% 81.20% 75.43%

TTGTATGAAAATGCCTTTTTA 5.77% 81.20% 75.43%

TGTTCTTTTTTTTGTATGAAA 5.77% 81.20% 75.43%

AAACCAACCAACTTTCGATCT 19.23% 63.25% 44.02%

TTAAAGGTTTATACCTTCCCA 0.00% 26.50% 26.50%

TCGTAACTATATAGCACAAGT 26.92% 0.85% 26.07%

GATCTGTTCTCTAAACGAACT 76.92% 94.87% 17.95%

CAACCAACTTTCGATCTCTTG 59.62% 69.23% 9.62%
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the ORF1ab gene [43]. ORF1ab proteins play an important role in pathogenesis305

and viral replication. These might be through the interaction of structural and

non-structural proteins, besides the regulatory sequences in viral RNA. Further-

more, it has been described that mutations in ORF1ab are positively selected

during trans-species transmission of SARS-CoV and SARS-like coronaviruses.

Thus, we suggest that the missense mutation in ORF1ab gene (c.11083G > T )310

could alters the viral load during the infection between symptomatic and asym-

potomatic patients [44].

Fig. 21. In summary, we get the Table 8. With one extra symptomatic case

the presents a missing value, giving the following sequence; TTTGTTCTTTTTTT-

TNTATGAAAATGCCTTTTTACC.315

Figure 19: 7 of the first 16 sequences clustered together in a 36-bps sequence, which primarily

appears in symptomatic cases.

Table 8: Frequency of appearance of the sequences in asymptomatic and symptomatic cases.

Sequences Asymptomatic Symptomatic

TTTTTTTTTTATGAAAATGCCTTTTTAC 94.23% 5.77%

TTTTTTTTGTATGAAAATGCCTTTTTAC 17.95% 81.20%

Finally, using NC045512.2 as the reference SARS-CoV-2 sequence, and

TTTTTTTT[G/T]TATGAAAATGCCTTTTTAC as target sequence,
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Figure 20: 4 of the first 16 sequences clustered together in a 28-bps sequence, which primarily

appears in asymptomatic cases.

Figure 21: Single-nucleotide polymorphism (SNP) between two discovered sequences, that

separates asymptomatic from symptomatic patients with a 85% accuracy.
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we generate a primer set using Primer3plus [41]. This outputs 5’TTCCAAAGT-

GCAGTGAAAAGAA3’ as forward primer and 5’TTGCAAAAGCAGA-

CATAGCAA3’ as reverse primer with a total length of 175 bps. Then, we320

run an in-silico PCR test using FastPCR 6.7 [42] with default parameters, this

yields the results reported in Fig. 22. Nevertheless, the results of the PCR

Amplicons will need to be sequenced, to differentiate between the two possible

sequences.

Figure 22: In-silico PCR test results from the FastPCR 6.7 software [42] using sequences

TTCCAAAGTGCAGTGAAAAGAA and TTGCAAAAGCAGACATAGCAA as primers, in

NC045512.2 used as a reference SARS-CoV-2 sequence.
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5. Conclusion325

Being able to reliably identify SARS-CoV-2 and distinguish it from other

similar pathogens is important to contain its spread. The time of processing

samples and the availability of reliable diagnostic tests is a challenge during

an outbreak. Developing innovative diagnostic tools that target the genome

to improve the identification of pathogens, can help reduce health costs and330

time to identify the infection, instead of using unsuitable treatments or testing.

Moreover, it is necessary to perform an accurate classification to identify the

different species of Coronavirus, the genetic variants that could appear in the

future, and the co-infections with other pathogens.

Given the high transmissibility of the SARS-CoV-2, the proper diagnosis of335

the disease is urgent, to stop the virus from spreading further. Considering the

false negatives given by the standard nucleic acid detection, better implemen-

tations such as using deep learning are necessary in order to to properly detect

the virus. While the accuracy of current nucleic acid testing is around 30-50%,

and CT scans with deep learning go up at 83%, we believe that the use of the340

sequences detected by a CNN-based system has the potential to improve the

accuracy of the diagnosis above 95%.

Our results, show that by targeting only 12 21-bps specific sequences, we are

able to distinguish SARS-CoV-2, from any other virus (> 99%). In addition,

with 85% accuracy is possible to predict if an infected person will need to be345

hospitalized or will be asymptomatic. These findings could help to identify pa-

tients with SARS-CoV-2 that are susceptible to develop severe acute respiratory

infection and make a better clinical management. Nevertheless, our conclusions

hold only for the data currently at our disposal. Further testing is necessary

to confirm these promising results so it is essential to create multidisciplinary350

groups that work to stop the outbreak. Finally, as an interesting remark, by

comparing the discovered sequences against other hosts, we noticed that from

the 12 sequences exclusive to SARS-CoV-2, 1 of them appears in all of the 9

sequences from Manis Javanina. In contrast, 5 of the sequences of SARS-CoV-2
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appear in the only sample available from Rhinolophus Affinis. The addition of355

these sequences sum up to 6 of the 12 sequences that we used to characterized

the SARS-CoV-2. This is consistent with the findings of Zhang et al. [45], and

could point to the zootonic origin of the virus.
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