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Summary paragraph 5 

The Siberian Altai mountains have been intermittently occupied by both Neandertals and Denisovans, two 6 

extinct hominin groups1,2. While they diverged at least 390,000 years ago3,4, later contacts lead to gene flow  7 

from Neandertals into Denisovans5,6. Using a new population genetic method that is capable of inferring 8 

signatures of admixture from highly degraded genetic data, I show that this gene flow was much more 9 

widespread than previously thought. While the two earliest Denisovans both have substantial and recent 10 

Neandertal ancestry, I find signatures of admixture in all archaic genomes from the Altai, demonstrating that 11 

gene flow also occurred from Denisovans into Neandertals. This suggests that a contact zone between 12 

Neandertals and Denisovan populations persisted in the Altai region throughout much of the Middle 13 

Paleolithic. In contrast, Western Eurasian Neandertals have little to no Denisovan ancestry. As I find no 14 

evidence of natural selection against gene flow, this suggests that neutral demographic processes and 15 

geographic isolation were likely major drivers of human differentiation.  16 

Main text  17 

The discovery of Denisovans is one of the early successes of the burgeoning field of ancient DNA3,6–8. 18 

Denisovan remains have been retrieved from Denisova Cave (Siberia, Russia)3,6–9 and a putative specimen has 19 

been reported from Baishiya Karst Cave (Xianhe, China)10. Most insights into Denisovans are based on the 20 

sole high-coverage genome of Denisova 33: She was closely related to the Denisovans that interacted with the 21 

ancestors of present-day East Asians, but only distantly related to another population that interacted with the 22 

ancestors of present-day South-East Asians5,7. Much less is known for the three other Denisovans for which 23 

low-coverage genetic data has been retrieved (Denisova 2, Denisova 4 and Denisova 8)8,9, where substantial 24 

contamination by present-day human DNA precluded detailed nuclear genetic analyses (Figure 1a). 25 

Mitochondrial analyses revealed that Denisova 4 differs at just two positions from Denisova 3, in contrast to 26 

the much more diverged lineage in the earlier Denisova 2 and Denisova 8 genomes8,9.  27 

 28 

The Altai region has also been occupied by Neandertals, as evidenced by hominin remains, artifacts and DNA 29 

from multiple sites11–13. This co-occupation history resulted in gene flow from Neandertals into Denisovans: 30 

Comparisons  of the high-coverage Denisova 5 (“Altai”) Neandertal5 with Denisova 3 revealed a small 31 

proportion (0.5%) of net gene flow from Neandertals into Denisovans5. Direct evidence of contact was 32 

provided by the discovery of Denisova 11, the offspring of a Neandertal mother and a Denisovan father6. 33 

Additionally, tracts of homozygous Neandertal ancestry in this genome suggest that the father had additional 34 

Neandertal ancestors several hundreds of generations ago. 35 

 36 

While early methods to detect gene flow from ancient DNA used genome-wide summary statistics5,14, 37 

inference may also be based on directly detecting genomic regions where an individual harbors ancestry from 38 

a different population. Approaches using these “admixture tracts” are more sensitive when overall levels of 39 

gene flow are very low5, and have provided much evidence about when and where gene flow between archaic 40 

and modern humans happened15,16, and about the functional and phenotypical impact of that gene flow17. 41 

However, most current methods to infer admixture tracts assume high-quality genotypes15,18 and are thus not 42 

applicable to the majority of ancient genomic data sets, which are frequently low-coverage, and contaminated 43 

with present-day human DNA19,20.  44 
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 45 
Figure 1: a: Archaic genetic data from the Altai mountains. Solid lines give confidence intervals for dates of specimens1,2,13, dotted 46 
lines layer ages for DNA retrieved from Denisova cave sediments2. Xiahe is the only Denisovan not from the Altai and is added as a 47 
reference. For each sample, average genomic coverage and modern human contamination estimates are displayed. b: Schematic of 48 
local ancestry model used in admixfrog. Shown is a 2cM region of a simulated Denisovan chromosome with three introgression 49 
fragments (grey bars). The barplot depicts the posterior decoding obtained using admixfrog from low-coverage (0.1x) data. 50 
Heterozygous ancestry is called in regions where only one introgression fragment is present; homozygous Denisovan ancestry is called 51 
where they overlap. c: Overview of the genotype likelihood model, based on three SNPs in a heterozygous region of Denisova 2. We 52 
display the allele in two source populations (Denisovans and Neandertal) as well as Sub-Saharan Africans (AFR) as a proxy for the 53 
contamination source. Read data is split into three bins based on whether sequences carry a deamination (T~) and sequence length (~ 54 
vs ~~). Letters give the number of sequences with a particular base overlapping this position. The resulting posterior genotype shows 55 
that read bins with high contamination rates are efficiently downweighted, resulting in a posterior reflecting the archaic ancestry. 56 

 57 

The Admixfrog Model 58 

As recently introgressed tracts can stretch over thousands of informative SNPs, combining information 59 

between markers allows inference from low-coverage genomes21–23. Here, I combine a Hidden Markov Model 60 

for local ancestry inference with an explicit model of present-day human contamination in a program called 61 

admixfrog (Methods, Supplement 1). Briefly, I assume that the analyzed target individual has ancestry from 62 

two or more sources, that represent potentially admixing populations. The sources are represented by high-63 

quality genomes; in all applications I use two high-coverage Neandertals (NEA)4,5 and the high-coverage 64 

Denisova 3 (DEN)3 genomes. Admixfrog infers the tracts of the target individual’s genome that originated 65 

from each source (Figure 1b). In contrast to most previous approaches, I use a flexible empirical Bayes model 66 

to estimate all parameters directly from the data, thus alleviating the dependence on simulations or strong 67 

modelling assumptions about admixture times or past population sizes, which may introduce unwanted 68 

biases24,25. This local ancestry model is combined with a genotype likelihood model that incorporates present-69 

day human contamination (Figure 1c), taking into account that contamination rates are influenced by 70 

technical covariates such as sequence lengths26, terminal deaminations27 or differences between libraries.28,29  71 

Validation 72 

I validate admixfrog using simulations on scenarios of gene flow from Neandertals into Denisovans and 73 

modern humans (Methods, Extended Data Figs. 1-3). In cases without admixture, tracts longer than 0.1cM 74 

are inferred with precision of 96% even for 0.03x genomes, relatively independent of sample age. 75 

Contamination decreases the performance, but particularly in scenarios of gene flow between archaics, 76 

fragments longer than 0.2cM are highly accurately inferred. I also use experiments modifying real data5,8,30 to 77 

evaluate admixfrog under more realistic conditions, to compare it to other methods, and to assert its 78 

robustness to parameter choices (recombination map, SNP ascertainment, sources, etc.), (Extended Data Fig. 79 

4, Methods)8. In most tested cases, I find that admixfrog produces comparable results to those obtained from 80 

high-coverage data, and that long introgression tracts can be recovered even in ultra-low coverage genomes. 81 

This suggests that the program is well-suited for the analysis of ancient genetic data from both present-day 82 

and archaic hominins.  83 
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 84 
Figure 2: Neandertal ancestry in Early Denisovans. We show the admixfrog posterior decoding of a: Denisova 2 and b: Denisova 85 
8. Homozygous Denisovan ancestry, homozygous Neandertal ancestry and heterozygous ancestry are in orange, blue and brown, 86 
respectively.  87 

 88 
Recent Neandertal ancestry in early Denisovans 89 

The genomes of the two oldest Denisovans, Denisova 2 and Denisova 88,9 are both highly contaminated 90 

(Figure 1a, Extendend Data Fig. 5ab), with estimated coverage by endogenous molecules of 0.030x and 91 

0.087x, respectively. As even sequences starting with deaminations31 have significant amounts of 92 

contamination (Extended Data Fig. S5ab)8,9, previously used filtering techniques would fail26. Despite this, 93 

admixfrog identifies 212.6 cM (173Mb) of Neandertal ancestry in Denisova 2, and 258 cM (210Mb) in 94 

Denisova 8 (Figure 2, Extended Data Table 1).  95 

 96 

The longest inferred tract for Denisova 2 is located at chr11:18,791,748-36,393,966 (hg19), and has a 97 

recombination length of 25.7 cM. To confirm this finding, I perform a validation analysis insensitive to 98 

modern human contamination (Extended Data Fig. 7a): The data is restricted to SNPs where Denisova 2 99 

reads carry an allele never found in modern humans, and where either Denisovans or Neandertals, but not both 100 

match the non-human allele seen in Denisova 2. At 45 of these 81 sites, Denisova 2 carries the Neandertal 101 

allele, which is consistent with the 50% expected in a region of heterozygous Neandertal-Denisovan ancestry. 102 

The average length of Neandertal ancestry tracts in Denisova 2 suggests that most Neandertal ancestry dates 103 

to around 1,500 years prior to when Denisova 2 lived (50±10 generations, mean ± 2sd, generation time of 29 104 

years, Extended Data Table S1), but the longest tract is likely younger (14.1±14 generations), hinting at 105 

more recent Neandertal ancestors. Results for Denisova 8, are qualitatively similar, but the higher coverage of 106 

0.087x allows more accurate estimation of fragment boundaries (Figure 2b). Overall, Denisova 8’s 107 

Neandertal ancestry is more recent (22±6 generations), as evidenced by a 23.7Mb (22.5cM) tract on 108 

chr1:179,807,948-203,527,526, and seven other tracts longer than 10cM, including one on the haploid X 109 

chromosome (chrX:114,752,520-124,257,661, Extended Data Fig. 7b). The similar amount and tract lengths 110 

of Neandertal ancestry in Denisova 2 and Denisova 8 raise the possibility that they resulted from the same 111 

gene flow event, in particular since the stratigraphic location of Denisova 2 cannot be established 112 

conclusively, and so its age might be close to Denisova 81,2. To test this hypothesis, we compare the locations 113 

of Neandertal ancestry tracts between the genomes. If the tracts in both specimens traced back to the same 114 

introgression event, their spatial location should be correlated32. However, this is not the case (Fisher’s exact 115 

test, p=0.56), suggesting that they belonged to different populations with distinct Neandertal introgression 116 

events. The finding that the locations of introgressed tracts are uncorrelated also rules out the potential issue 117 

that gene flow into the reference Denisova 3 might be confounded with gene flow into the earlier Denisovans, 118 

as such a bias should be present in both genomes and thus cause a correlation between introgression tract 119 

locations. Such a signal is indeed observed in the HLA region on chromosome 6 (Extended Data Fig. 5), 120 

which is unsurprising given the age of haplotypes there. Similarly, the tract locations are also not significantly 121 

correlated with the homozygous Neandertal-ancestry tracts of Denisova 11, if the HLA region is removed 122 

(Extended Data Fig 8a), (Fisher’s exact test; p=0.05 and p=0.09 for Denisova 2 and 8, respectively). 123 
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124 
Figure 3: Evidence for later admixture. We show the 125 
admixfrog posterior decoding of a: Denisova 5, b: 126 
Chagyrskaya 8  and c: Denisova 3 (using fixed priors). 127 
Homozygous Denisovan ancestry, homozygous 128 
Neandertal ancestry and heterozygous ancestry are in 129 
orange, blue and brown, respectively. 130 

 131 

Gene flow into Neandertals 132 

In addition to the gene flow from Neandertals 133 

into Denisovans described here and 134 

previously, we also identify recent Denisovan  135 

ancestry in two Neandertals5,33 from the Altai 136 

Mountains. Although the overall proportion of 137 

inferred Denisovan ancestry in Denisova 5 is 138 

small (0.15%), six out of the 15 identified 139 

tracts exceed 1 cM in length (Figure 3a, 140 

Extended Data Fig. 7c). The longest 141 

fragment is a 2.0Mb (2.18cM) fragment on the 142 

X-chromosome (chrX:136,505,565-143 

138,501,953). The length of these fragments 144 

suggests that gene flow happened 4,500±2,100 145 

years before Denisova 5 lived. A lower total 146 

of 3.8 cM (4.8Mb) of Denisovan introgressed 147 

material is found in Chagyrskaya 8, a more 148 

recent Neandertal from the Altai mountains33. 149 

The inferred tracts are small, with the longest 150 

tract measuring 0.83 cM (Extended Data Fig. 151 

7d), suggesting that this gene flow happened 152 

several tens of thousands of years before 153 

Chagyrskaya 8 lived. In contrast, little to no 154 

Denisovan ancestry is detected in eight 155 

Western Eurasian Neandertal genomes4,20,29 156 

dating from between 40,000 and 120,000 157 

years ago (Extended Data Fig. 8, Extended 158 

Data Table 1, Supplementary Table 1). In three of these genomes (Goyet Q56-1, Spy 1 and Les Cottes), the 159 

centromere of chromosome 10, a region implicated in gene flow between archaic and modern humans34, is 160 

identified as introgressed from Denisovans. Thus, while Denisovan alleles survived for many millennia in 161 

Altai Neandertal populations, little to none of that ancestry made it into later Neandertal populations in 162 

Europe. 163 

Gene flow into late Denisovans 164 

As Denisova 3 is the sole reference for Denisovan ancestry, and coverage for the other late Neandertal, 165 

Denisova 4, is too low (<0.005x, Extended Data Figs. 6f, 8b), I screen for Neandertal ancestry in Denisova 3 166 

using a modified analysis using a fixed prior (Methods). This analysis amounts to scanning for large genomic 167 

regions where Denisova 3 has a large number of heterozygous sites, but few homozygous differences to 168 

Neandertals. We validate this analysis using two other high-coverage Neandertals (Extended Data Fig 9, 169 

Supplementary Table 1), finding that results for these genomes are  more noisy than the standard analysis, 170 

but qualitatively similar. to the standard analysis. This procedure discovers a total of 58 Neandertal 171 
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introgressed fragments in Denisova 3, amounting to 21.5 Mb (0.4% of the genome), roughly double the 172 

amount found in Denisova 5 (Figure 3c, Extended Data Fig. 9g).  173 

Diversification despite gene flow 174 

The presence of ancestry tracts in all analyzed genomes from the Altai suggests that gene flow between 175 

Neandertals and Denisovans was prevalent, and occurred recurrently over up to 100,000 years. For the first 176 

time, we demonstrate that Altai Neandertals have Denisovan ancestry, showing that their offspring must have 177 

been able to produce fertile offspring with both populations. As there is also no evidence for reduced 178 

introgressed ancestry on the X-chromosome (p=0.47, permutation test), no association of introgressed regions 179 

with levels of background selection35 (p>0.14, permutation test) and no evidence that introgressed tracts 180 

correlate with any functional annotation category (GO-enrichment analysis36, hypergeometric test, p>0.05 for 181 

all categories), and no significant association of introgression tracts with regions depleted for Neandertal 182 

ancestry in modern humans (p=0.317, permutation test), there is no evidence of negative fitness consequences 183 

of Neandertal-Denisova matings.  184 

This suggests that the genetic and morphological10,37 differentiation between Neandertals and Denisovans is 185 

substantially due to neutral processes, i.e. geography. A plausible scenario is one where the Altai Mountains 186 

are part of a relatively stable hybrid zone, that persisted through multiple warmer and colder periods2. While 187 

matings might have been locally common, migrations from the Altai to Europe were likely scarce, as 188 

evidenced by the almost complete absence of Denisovan ancestry in European Neandertals.  A similar 189 

scenario seems likely for Denisovans; as the later Denisova 3 has much less Neandertal ancestry than the 190 

earlier Denisova 2 and Denisova 8, it must have received substantial ancestry from a reservoir Denisovan 191 

population with little Neandertal ancestry. Similarly, the finding that the location of introgression tracts are 192 

independent between genomes suggests that the Denisovan occupation in the Altai region was not continuous. 193 

More speculatively, findings of early gene flow between modern humans and Neandertals38,39 perhaps 194 

suggests that a similar relationship of occasional gene flow followed by local extinctions also existed between 195 

modern humans and Neandertals, before early modern humans migrated out of Africa and displaced the 196 

resident Eurasian hominins.  197 
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Methods 198 

The admixfrog algorithm 199 

Inference is based on version 0.5.6 of the program admixfrog, which is available from 200 

https://github.com/BenjaminPeter/admixfrog/. Full details and derivation of the algorithm are given in 201 

Supplemental Text 1. Briefly, a target individual is modelled as a mixture of two or more sources, informed 202 

by the allele frequencies in a sample of high-quality genomes. The model is implemented as a Hidden Markov 203 

Model, where the hidden states are all diploid combinations of hetero- and homozygous states from the 204 

sources. Compared to similar approaches22,40, admixfrog mainly differs in that i) almost all parameters are 205 

directly learned from the data, ii) contamination and uncertainty due to low-coverage is modelled explicitly 206 

using a genotype-likelihood model and iii) multiple ancestries can be distinguished.  207 

 208 

Admixfrog models genetic drift and sampling uncertainty using a modified Balding-Nichols model41, and thus 209 

does not require phased genomes as input. For each source, two  nuisance parameters, τ and F, measure 210 

genetic drift before and after admixture. Two additional parameters, a0 and d0 are Beta-distribution priors and 211 

reflect how well the available sample from the source reflects the population allele frequency. This local 212 

ancestry model is combined with a genotype likelihood model that incorporates contamination. As 213 

contamination rates are expected to differ based on covariates such as the presence of terminal deaminations27, 214 

read lengths26, or library28,29. Reads are grouped into discrete bins based on these covariates. Contamination 215 

rates are then independently estimated for each bins. 216 

Data processing and references 217 

Admixfrog requires a set of high-quality reference panels consisting of one or multiple high-quality genomes, 218 
and ascertainment to a pre-specified set of single nucleotide polymorphisms (SNPs) that are variable between 219 
these references. These references are then either used as sources, i.e. potential donors of admixed material, or 220 
as putative contaminants. In all analyses presented here, the following references are used: AFR, consisting of 221 
the 44 Sub-Saharan Africans from Simons’ Genome Diversity Panel (SGDP)42, as a proxy for modern humans 222 
and contaminants. To model Denisovan ancestry, I use the high-coverage Denisova 33  genome (DEN), and 223 
for NEA, reflecting Neandertal ancestry, I use the two high-coverage Vindija 33.19 and Denisova 5 (“Altai”) 224 
Neandertals4,5. I also use the chimpanzee (panTro4) reference genome allele as a putative archaic allele. For 225 
supplementary analyses, I also use Vindija 33.19 (VIN), Chagyrskaya 8 and Denisova 5 (ALT) genomes 226 
individually, and use SGDP Europeans (EUR),  SGDP East Asians (EAS) or 1000 genomes Africans (AFK) 227 
for modern human ancestry. Throughout, I use a bin size of 0.005 cM for local ancestry inference, based on a 228 
linearly interpolated recombination map inferred from recombination patterns in African Americans43, 229 
obtained from https://www.well.ox.ac.uk/~anjali/AAmap/. 230 
 231 
For the target samples I start with aligned reads stored in bam files, obtained from the authors of the 232 
respective publications3–6,8,9,33. In all cases, I filtered for reads of lengths of at least 35 base pairs; and mapping 233 
quality >= 25, variable positions matching a C->T substitutions in the first three positions of the read, or a G-234 
>A substitutions at the end of a read were discarded. Only 2,974,930 positions known to be variable between 235 
the three high-coverage Neandertals and Denisova 3 are considered. Sites were pruned to be at least 50bp 236 
(415,546 SNPs removed), and 0.0001 cM  (261,587 SNPs removed) apart, resulting in 2,297,797 SNPs used 237 
for analyses. 238 
 239 
The exact command run is  240 
admixfrog --infile {infile} --ref ref_hcneaden.csv.xz -o {outname} --states NEA_DEN --cont-id AFR --241 
ll-tol 0.01  --bin-size 5000 --est-F --est-tau --freq-F 3 --freq-contamination 3 --e0 0.01 --est-242 
error --ancestral PAN --run-penalty 0.2 --max-iter 250 --n-post-replicates 200 --filter-pos 50 --243 
filter-map 0.000 244 
 245 
Where infile, and outname are substituted by the respective files for each analyzed specimen. The pipeline 246 
used to create all data except the simulations is available at 247 
https://github.com/BenjaminPeter/admixfrog/tree/master/pipeline.  248 

 249 

  250 
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Dating information 251 

No new dating is performed in this study, but.dating information is important for context. For most specimens, 252 

dates are taken from the papers describing the genetic data. For Denisova Cave specimens, I use Bayesian 253 

dates1, and for sediments the layer dating results2. For Vindija 33.19 and Chagyrskaya 8, I report results from 254 

the most recent reports13,44. 255 

  256 

Covariates for contamination rate estimation. Admixfrog co-estimates contamination from an assumed 257 

contaminant population, taking into account that contamination rates may vary with covariates such as read 258 

length26, terminal deaminations27  and library preparation methods28. For this reason, I group reads into 259 

discrete sets according to i) the library they are coming from, ii) whether the read has a terminal deamination 260 

or not and iii) the length (in bins of 15 bp, i.e. bin 1 contains reads with lengths between 35 and 49bp, bin 2 261 

between 50 and 64, etc). Contamination and sequencing error rates are then estimated for each of those sets of 262 

reads, independently.  263 

 264 

Calling fragments. By default, admixfrog returns a posterior decoding, i.e. the probability that a given bit of 265 

the genome has a particular local ancestry. To call tracts, I combine adjacent fragments using a simplified 266 

Needleman-Wunsch algorithm45, using the scoring function Si = max[ Si-1 + log(pi + r), 0]; S0 = 0, where pi is 267 

the posterior probability of being in any target state. In particular, I focus most of our evaluation on 268 

admixfrog’s ability to call introgressed ancestries, regardless of whether it is present as homozygous or 269 

heterozygous. Then, I can simply sum the posterior probabilities for the states NEA and NEADEN at each 270 

position. The parameter r models how generous I are at bridging short gaps; a high value of r tends to merge 271 

adjacent fragments, whereas a low value of r might split up fragments. All analyses use r=0.4. 272 

 273 

Based on Si  fragments are called using a simple backtracking algorithm: 274 

while any Si > 0: 275 

- Find end position: iend for which Si is maximized 276 

- Find start position: istart maxi i = 0, i < imax 277 

- Set p[istart : iend] to 0 278 

- Recalculate Si = max[ Si-1 + log(pi + r), 0] 279 

 280 

Estimating admixture time 281 

Under a simple model of archaic admixture at a single time point, the lengths of introgression tracts follow an 282 

exponential distribution with rate proportional to the admixture time. The maximum likelihood estimator for 283 

the mean admixture time (in generations) given n introgressed fragments Li at least c cM long, is, �̂�  =284 

100 (
1

𝑡
∑𝑡
𝑡=1 (𝑡

𝑡
−𝑡))

−1
. Throughout, I use a cutoff of c=0.2 cM, as our simulations indicate that the 285 

vast majority of fragments are detected above this length for recent admixture (Extended Data Figures S1, 286 

S2). 287 

 288 

To show that the most recent Neandertal ancestor of Denisova 2, was likely recent, I use a simulation based 289 

estimator.  I simulate a genome of size G=3740 cM. after t generations, it will have recombined tG times, and 290 

a proportion p=0.03 of fragments will be of Neandertal ancestry. I simulate 10,000 genomes each at each time 291 

point from one to 100 generations ago, and record the longest introgressed fragment L. For all fragments of a 292 

given lengths L, I record the mean, 5% and 95% quantile. 293 

 294 

Modified analysis using fixed site frequency spectrum prior 295 

As Denisova 3 is the only high-quality Denisovan genome available, the standard algorithm overfits the 296 

Denisovan ancestry of Denisova 3. To avoid this, I flatten the allele frequency priors by setting the site-297 

frequency-spectrum priors a0 = d0 = 0.1 instead of estimating these parameters from the data. This has the 298 

effect that the DEN source becomes uniformly less similar to Denisova 3, and allows the identification of 299 

regions that are much more similar to Neandertals than the genomic background. I validate this approach 300 
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using the the high-coverage  Denisova 5 and Vindija 33.19 genomes, using only a single Neandertal and 301 

Denisovan genome each as references. 302 

 303 

Functional annotation and selection analysis 304 

To investigate the functional consequences of gene flow between Neandertals and Denisovans, I perform a 305 

number of tests where I compare whether introgression tracts are significantly associated with a number of 306 

genomic features. Null distributions are obtained by randomly shuffling the observed fragment location 1,000 307 

times. 308 

B-statistics35. B-statistics are a measure of local background selection, and have been shown to be positively 309 

correlated with Neandertal ancestry in modern humans25. I perform a similar analysis by annotating each bin 310 

used for analysis with its mean B-statistic, lifted over to hg19 coordinates. I then calculate the proportion of 311 

introgressed material from all analyzed genomes in five quantiles of B-statistics. 312 

Overlap with deserts of Neandertal introgression. I compare introgression  tracts with regions where 313 

modern humans are deficient of Neandertal ancestry (‘deserts’)46. Four of these deserts have evidence of 314 

Neandertal ancestry in Denisovans, with Denisova 2, Denisova 3 and Denisova 11 having one, and Denisova 315 

8 having two fragments overlapping deserts. For two of the deserts (the ones on chromosomes 3 and 18) I do 316 

not find any overlapping introgressed fragments. Overall, there is no evidence that Neandertal introgression is 317 

more or less frequent than expected by chance (p=0.32). 318 

X-chromosome. When resampling all introgressed tracts, I assert the proportion of introgressed material on 319 

the X-chromosome. I do not find an enrichment, but note that the confidence intervals are very wide (0.035-320 

0,223); 321 

Functional enrichment. I perform functional enrichment using a hypergeometric test as implemented in the 322 

GOfuncR package 36. Enrichment is performed by i) inferring all genes contained in an introgressed region in 323 

any individual and ii) performing functional enrichment against all GO-categories. After controlling for 324 

family-wise error rates, all categories are non-significant. 325 

 326 

Empirical Tests 327 

To evaluate the performance of admixfrog under realistic conditions, I use computational experiments using 328 
two high-coverage and one low-coverage ancient genomes, under the premise that fragments should be 329 
reliably inferred using all available data. The genomes used are the ~45,000 year old Ust’-Ishim30, a modern 330 
human sequenced to 42x, the ~110,000 year old Denisova 5 Neandertal5 sequenced to 50x and the ~120,000 331 
year old Denisova 8 genome. For ease of presentation, only one chromosome is plotted (chr1 for Ust-Ishim 332 
Denisova 8, chr9 for Altai), although the model fitting was done using the full genome. The basic strategy 333 
here is to perform a series of analyses where the default parameters mimic those used in the main data 334 
analysis. Each run then modifies one or multiple parameters to test its impact. For Ust’-Ishim, the analyses are 335 
modified by i) adding AFR as a proxy for modern human ancestry, and ii) ascertaining SNPs according to the 336 
archaic admixture array 47. The following scenarios are presented in Figure S5: 337 
 338 
Previous methods. I compare our results with the approach of Fu et al.30, who simply plotted the location of 339 
SNPs where Africans are homozygous ancestral, and Denisova 5 carries at least one derived allele. I also 340 
compare the inferred fragments with those based on SNP-density in an ingroup, using a method proposed by 341 
Skov et al. 48, which uses a very different signal in the data but results in largely consistent calls (Fig S5b). 342 
 343 
Low coverage data: Lower coverage is achieved by downsampling the genomes by randomly discarding a 344 
fraction of the reads (using the --downsample option in admixfrog). In Denisova 5, 2%, 0.06%, 0.02% and 345 
0.01% of reads are retained. For the Ust’Ishim genome, 100%, 1%, 0.25% and 0.025% of reads are retained 346 
(Fig S5cd).  347 
 348 
Contamination. I also performed analyses of the genome downsampled to 10% of the original coverage, adding 349 
between 5 and 80% contamination for all read groups, directly from the contamination panel (Fig S5ef). 350 
 351 
Parameter settings. For Denisova 5, I explore some different settings. In particular, I i) fit admixfrog using  352 
called genotypes5 rather than the genotype likelihood model (“GTs”), ii) I add two additional states for inbred 353 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990523doi: bioRxiv preprint 

https://paperpile.com/c/3tKZp4/0Dpt8
https://paperpile.com/c/3tKZp4/0o3U0
https://paperpile.com/c/3tKZp4/6kKhU
https://paperpile.com/c/3tKZp4/urrLh
https://paperpile.com/c/3tKZp4/iB6HS
https://paperpile.com/c/3tKZp4/seY2e
https://paperpile.com/c/3tKZp4/5vD7T
https://paperpile.com/c/3tKZp4/iB6HS
https://paperpile.com/c/3tKZp4/adgnp
https://paperpile.com/c/3tKZp4/seY2e
https://doi.org/10.1101/2020.03.13.990523
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

Neandertal / Denisovan ancestry (“inbr.”), and I run analyses without estimating hyperparameters (“fixed”), and 354 
without an ancestral allele (“noanc”) (Fig S5g). 355 
 356 
Ascertainment schemes. As ancient data particularly from low-yield samples is frequently generated using 357 
capture enrichment49, I test a variety of SNP ascertainment schemes. Low-frequency or fixed SNPs have little 358 
impact on the likelihood, so ascertainments may be desirable to save memory even for shotgun data. I investigate 359 
four ascertainment schemes: i) the Archaic admixture array, containing 1.7M SNPs fixed between Africans and 360 
Denisova 5 / Denisova 3 (“AA”)49, ii) the 1240k array, which is widely used in the analysis of Neolithic and 361 
later human populations49, iii) the 3.7 M array, which is a combination of i and ii); iv) pANC, an ascertainment 362 
based on all segregating sites between Vindija, Altai Neandertal, Chagyrskaya 8 and Denisova 3 (Fig S5h). 363 
 364 
Sources. I also investigated the effect of different sources; either adding AFR as a source (“AFR”), or replacing 365 
the combined NEA ancestry with individual Neandertals (VIN/ CHA/ ALT) (Fig S5ij).  366 
 367 
Prior. The parameters a0 and d0 of the site-frequency-spectrum prior. 368 
 369 
Bin Size. I also investigate the effect of changing the size of each bin from 0.005 cM to 0.002, 0.01 or 0.05 cM 370 
(Fig S5kl). 371 
 372 
Recombination map. Besides the African American map43 used for most analyses, I use physical distance 373 
(“none”), the deCode map (“deCODE”)50, and a hapmap map based on Yorubans (YRI)51 (Fig S5op). 374 
 375 

Simulations 376 

I use computer simulations to ascertain the accuracy of admixfrog under a number of scenarios. Simulations 377 
are performed in a coalescent framework using msprime 0.7.052, which allows direct recording of which parts 378 
of the genome were introgressed. Throughout, I use a simple demographic model of archaic and modern 379 
humans, and replicate each simulation 20 times. The simulations are set up in a reproducible pipeline using 380 
snakemake53, available under https://www.github.com/benjaminpeter/admixfrog-sims 381 
 382 
Simulation settings. Here, I outline the baseline model used for all simulations. I assume a model where 383 
hominins split 6 Million years ago (ya) from the primate ancestor. 600kya the early modern humans split from 384 
the common ancestor of Neandertals and Denisovans, which themselves split 400kya. Within the modern human 385 
clade, Africans split from Non-Africans 70kya, and Asians and Europeans split 45kya. Effective population 386 
sizes are set to 10,000 for Africans and 1,000 for archaic populations. For Non-Africans, the present-day 387 
population size is 10,000 but I assume a size of 2,000 from 70ky-10kya, to model the out-of-Africa bottleneck. 388 
 389 
Gene flow. I model and investigate two gene flow events: Gene-flow from Neandertals into Europeans 390 
happened 50kya, and replaced 3% of genetic material. Gene flow between Denisovans and Neandertals is set to 391 
120kya, and replaces 5% of genetic material. Both gene flows are assumed to occur within one generation. 392 
 393 
Reference panel. Within this model, I create a reference panel that mimics the data used for the admixfrog 394 
analyses. In particular, I create a Neandertal source by sampling 3 Neandertals at 125kya, 90kya and 55kya, and 395 
a Denisovan source at 50kya, respectively. I sample further a reference panel of 20 diploid present-day Africans. 396 
A panel of 5 diploid European genomes is further simulated to model contamination. In addition, a single 397 
chromosome from the Chimpanzee is sampled as putative ancestral allele. 398 
 399 
Data generation. For each scenario, I generate genetic data from target individuals, which are single diploid 400 
samples. Two diploid Denisovan samples each are taken at 110 kya 100 kya. 70 kya and 50kya, and two diploid 401 
early modern human samples each are taken 45kya, 30kya, 15kya and at the present time.  I generate 20 402 
chromosomes of size 50 MB each, assuming a constant recombination rate of 10-8. SNP are ascertained either 403 
to be variable in archaics (for scenarios looking at gene flow within archaics) or to be variable between archaics 404 
and modern humans (for scenarios investigating gene flow into modern humans).  From the simulated target 405 
individual, read data is generated in one or multiple libraries independently, where each library l has a target 406 
coverage Dl and a contamination rate cl For each polymorphic site s in each library, I assume that coverage is 407 
Poisson distributed: Csl ~ Poisson(Dl [cl qs + (1-cl )ps]), where ps and qs denote the allele frequencies in the  408 
target individual and contaminant panel, respectively. In all tests including contamination, I simulated 10 409 
libraries with different contamination rates between 0 and 90%, as indicated in Extended Data Figures 1d, 2d. 410 

 411 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990523doi: bioRxiv preprint 

https://paperpile.com/c/3tKZp4/hNcJc
https://paperpile.com/c/3tKZp4/hNcJc
https://paperpile.com/c/3tKZp4/hNcJc
https://paperpile.com/c/3tKZp4/x7BWN
https://paperpile.com/c/3tKZp4/MtBqA
https://paperpile.com/c/3tKZp4/Ed7lo
https://paperpile.com/c/3tKZp4/kVI1I
https://paperpile.com/c/3tKZp4/aMVSN
https://www.github.com/benjaminpeter/admixfrog-sims
https://doi.org/10.1101/2020.03.13.990523
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

Running admixfrog in simulations. I run admixfrog using the following command (strings in curly brackets 412 
are replaced depending on the scenario), estimating all hyperparameters.  413 
admixfrog --infile {input.sample} --ref {input.ref} -o {outfile} --states {state_str} --414 
cont-id AFR --ll-tol 0.001 --bin-size {bin_size} --est-F --est-tau --freq-F 3 --freq-415 
contamination 3 --e0 0.01 --est-error --ancestral PAN --max-iter 100 --n-post-replicates 416 
100 --run-penalty 0.4 417 
 418 
Evaluation of Simulations. The main purpose of admixfrog is the identification of genomic regions that are 419 
introgressed, and so I are interested under which condition I may expect to successfully recover these admixture 420 
tracts. As msprime simulations allow us to record when and which bits of an individual’s genome are 421 
introgressed from another population, I can compare the admixfrog results with the ground truth from the 422 
simulation. 423 

 424 

In particular, I classify fragments as 425 

1. True positives are fragments that are detect in some shape or form, I further subdivide them as 426 

a. Strict true positives are fragments that are correctly inferred as a single fragment 427 

b. “Overlap”-fragments occur when introgressed fragments on the two chromosomes of an 428 

individual overlap, so they cannot be distinguished under the admixfrog model 429 

c. “Gap”-fragments are introgressed fragments that are erroneously split into two or more 430 

different introgressed fragment 431 

d. “Merged” fragment are two adjacient introgressed fragments that are erroneously inferred as 432 

one 433 

2. False positives are non-introgressed fragments that are inferred to be introgressed 434 

3. False negatives are introgressed fragments that are undetected by admixfrog 435 

 436 

Depending on the analysis, I are interested in the precision, (proportion of true positives among inferred 437 

fragments), which measures how much I can trust the detected fragments, the sensitivity (proportion of true 438 

positives over all true fragments), and the proportion of true positives (proportion of strict true positives + 439 

overlap over all true positives), which measures how often I split or merge fragments.  440 

 441 

Findings 442 

I evaluate the performance of admixfrog in scenarios of admixture from Neandertals into Denisovans 443 

(Extended Data Figures 1, 3) and modern humans (Extended Data Figures 2, 3). 444 

 445 

Gene flow into modern humans. For modern humans, I assume a larger effective size of N=2,000, and 446 

admixture 50,000 years ago (generation time 25 years). Under such conditions, precision for 200kb tracts is 447 

above 95% in all scenarios, even at the lowest coverage of just 0.03x (Extended Data Figure 1a). Sensitivity is 448 

more strongly impacted by coverage. While 2x coverage is sufficient for detection of admixture tracts in all 449 

scenarios, low-coverage fragments become harder to detect in older genomes. In the scenario where gene flow 450 

occurs just 5,000 years after admixture, around 25% of fragments of 0.5Mb length  are missed at 0.03 451 

coverage. At contamination levels below 20%, contamination levels are accurately estimated (Extended Data 452 

Figure 1d), and classification accuracy for fragments longer than 200kb remains very high. However, for 453 

higher contamination scenarios, the estimates become flattened, in that the differences between libraries are 454 

not correctly recovered, and more false positives are observed. As this is not the case when adding 455 

contamination from the “correct” contamination panel (Extended Data Figure 4ef), this is likely due to 456 

genetic differences between the simulated contaminant (Europeans) and the one used for inference (Africans).  457 

 458 

Gene flow into Denisovans. This scenario differs from modern humans in that the effective population size is 459 

smaller (N=1,000), admixture is older (120,000 years ago), and that the contaminant is more distinct from the 460 

sample (African contamination in a Denisovan individual). The smaller effective size results in high genetic 461 

drift (the two more recent samples are taken >2N generations after gene flow), and thus most fragments are 462 

short, and difficult to infer from low-coverage data, where sensitivity is close to zero (Extended Data Figure 463 
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2) and samples are frequently inferred as having no introgression at all. However, at higher coverages of 0.5x 464 

and 2x, introgressed fragments are detected and sensitivity approaches 50%. For the two sampling points 465 

closer to the admixture time, both precision and sensitivity are higher; and at coverages 0f 0.5x and 2x both 466 

sensitivity and precision are above 0.75 for fragments longer than 200kb. Thus, I find admixture between 467 

archaics is mainly detectable in the first few tens of thousands of years after gene flow, but I may struggle to 468 

detect older admixture. In contrast to the scenario where I simulate admixture into modern humans, I find that 469 

contamination rates are accurately estimated in all scenarios, but with a slight underestimate, most likely also 470 

due to the conservative misspecification of the admixing population. Similarly, classification results remain 471 

largely the same, except in the scenario with 45% contamination where the number of false-positives does 472 

increase. 473 

 474 
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fragments. Three-letter abbreviations are described in text. chrom: chromosome,  pos, pos_end, pos_len: start, 488 

end position and length (in BP). Map, map_end, and map_len: start, end position and length (in cM); genes: 489 
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 492 

Specimen Target Age Range n(A/X) Tot(cM) Tot(Mb) Max(cM) Max(Mb) Gen Years Reference 

Denisova 2 NEA 122,700–194,400 95/1 212.6 173 25.72 17.6 50±10 1400±300 9 

Denisova 8 NEA 105,600–136,400 54/1 258 210 22.57 23.72 22±6 600±200 8 

Denisova 5 DEN 90,900–130,000 15/3 15.2 10.2 2.17 2 155±73 4500±2100 5 

Denisova 5 DEN* 90,900–130,000 18/3 14.1 10 2.17 2 212±92 6100±2700 5 

Denisova 3 NEA* 51,600–76,200 58/0 32.6 21.5 4.61 5.05 276±72 8000±2100 3 

Denisova 11 NEA(h) 115,700–140,900 51/0 16.6 13.3 1.01 1.12 795±223 23100±6500 6 

Denisova 11 DEN(h) 115,700–140,900 0/0 0 0 - - - - 6 

Chagyrskaya 8 DEN 71,000–87,000 12/0 3.8 4.6 0.83 1.15 839±484 24300±14100 33 

Mezmaiskaya 1 DEN 60,000–70000 1/0 0.5 0.8 0.46 0.83 - - 5 

Mezmaiskaya 2 DEN 42,960–44,600 2/0 0.5 1.1 0.24 0.83 - - 29 

Goyet Q56-1 DEN 42,080–43,000 3/0 0.7 1.6 0.32 1.29 - - 29 

Vindija 33.19 DEN 43,100–47,600 0/0 0 0 - - - - 4 

HST DEN 62,000–183,000 0/0 0 0 - - - - 20 

Les Cottés Z4-

1514 DEN 42,720–43,740 2/0 0.4 1.2 0.25 1.17 - - 29 

Spy 1 DEN 37,876–39,154 1/0 0.3 1.4 0.28 1.41 - - 29 

Scladina DEN 95,000–173,000 0/0 0 0 - - - - 20 

Denisova 4 NEA 55,200–84,100 0/0 0 0 - - - - 8 

Extended Data Table 1: Data - Sample Summary Table. target: one of NEA: for Neandertal ancestry, NEA(h): Homozygous 493 
Neandertal ancestry; DEN: Denisovan ancestry. NEA*/DEN*: Ancestry using fixed prior. n(A/X): number of inferred autosomal/ X-494 
chromosome fragments; Tot: Total amount of introgressed material in cM and Mb; Max: Length of longest tract; Gen, Years: Mean 495 
estimated age of admixture tracts in generations/years (rounded to 100).   496 
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Extended Data Figure 1 Simulations in human scenario for admixture 50,000 years ago. a: Precision, sensitivity and strict 497 
positive classification depending on coverage. b: Classification depending on sampling time (panel rows) and coverage (panel 498 
columns).  TP: True Positives, FN: False Negatives, FP: False Positives. GAP: Single fragment inferred as multiple fragments. 499 
MERGED: Disjoint fragments inferred as a single fragment. OVERLAP: Multiple overlapping fragments inferred as single fragment 500 
(see Methods). c: Classification depending on sampling time (panel rows) and contamination rate (panel columns) for 2x samples. d: 501 
Contamination estimates for the ten simulated libraries for all five scenarios (panel columns). Grey lines give simulated contamination 502 
rates, boxplots give estimates for each library. 503 
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 504 
Extended Data Figure 1 Simulations in archaic scenario for admixture 120,000 years ago. a: Precision, sensitivity and strict 505 
positive classification depending on coverage. b: Classification depending on sampling time (panel rows) and coverage (panel 506 
columns).  TP: True Positives, FN: False Negatives, FP: False Positives. GAP: Single fragment inferred as multiple fragments. 507 
MERGED: Disjoint fragments inferred as a single fragment. OVERLAP: Multiple overlapping fragments inferred as single fragment 508 
(see Methods). c: Classification depending on sampling time (panel rows) and contamination rate (panel columns) for 2x samples. d: 509 
Contamination estimates for the ten simulated libraries for all five scenarios (panel columns). Grey lines give simulated contamination 510 
rates, boxplots give estimates for each library.  511 
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 512 
Extended Data Figure 3 Simulations - Fragment length estimation in human scenario. a: Simulated (black) vs estimated 513 
distribution of inferred admixture fragment lengths depending on bin size (panel columns, in kb), age (panel rows, in years) and 514 
coverage (color). Densities are given on log-plot, so an exponential distribution appears as a line. The distribution is truncated at 515 
0.2cM. b: Same as a, with contamination at 2x coverage. c, d: Mean error in fragment length estimation depending on bin size for a 516 
sample taken 30,000 years before present.   517 
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 518 
Extended Data Figure 4: Empirical Experiments. I show posterior decodings of chr9 of Denisova 5 (c, e, g, i, k, m, o)  chr1 of Ust’-519 
Ishim (b, d, f, h) and Denisova 8 (j, l, n, p), and under varying conditions. a: Color legend; b: Inferences using previous 520 
approaches30,48; c/d: Downsampling to lower coverages e/f: adding contamination from the given contamination panel. g: inference 521 
using additional options: GTs: using called genotypes instead of read data; inbr: adding states for inbreed ancestry; fixed: no 522 
estimation of F/𝜏; noanc: no ancestral allele;  error estimation; error: with error estimation; fix: All drift parameters fixed a priori. 523 
GTs: Inference done using called genotypes. h: SNP ascertainment: pARC: polymorphic in archaics (used for most analyses); 1240: 524 
modern human array from49; 3.7M: full array from 49; AAdm: archaic array from 49; i/j: Alternative sources using a single Neandertal 525 
(VIN/CHA/ALT), all Neandertals (NEA) or allowing AFR as an additional source (AFR). k/l: Size of bin (in cM). m: Fixing prior 526 
a0/d0 to 0.1, 0.5, 1 vs. estimating it from data (EB). n: Contamination panel EAS: East Asians, EUR Europeans AFR: Sub-Saharan 527 
Africans (from SGDP). AFK: Sub-Saharan Africans (from 1000g54). o/p: Effect of recombination map on inference: using no map 528 
(‘none’), HapMap-map using YRI55, deCODE-map50 and (AA) African-American map43.  529 
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 530 
 531 

Extended Data Figure 5: MHC locus on chromosome 6. I show the admixfrog decoding for 532 

chr6:28,000,000-40,000,000, a region overlapping the MHC region (chr6:28,477,797-33,448,354) and where 533 

an excess of admixture signals, in both directions, are detected. Given the prevalence of balancing selection 534 

and other potentially confounding issues, the admixture history of this locus can currently not be resolved.535 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990523doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990523
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

 536 
Extended Data Figure 6 Data - Contamination estimates and coverage for samples analyzed in this 537 

study. Blue: estimated endogenous coverage. Red: Estimated contaminant coverage. Left bar represents reads 538 

carrying a deamination in the first three base pairs (‘deam’), right bar all other reads. 539 
  540 
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 541 
Extended Data Figure 7: Validation of tracts. Shown are a subset of informative SNPs in inferred ancestry tracts. SNP fixed in 542 
Neandertals and Denisovans are colored blue and orange, respectively. The inferred tract is displayed in saturated colors; flanking 543 
regions are faded. In each panel, the top row displays the proportion of derived allele reads in the target genome. Numbers give the 544 
total number of reads for low-coverage genomes. Black line in Denisova 2 indicates the posterior expected allele frequency in 545 
Denisova 2. Other rows give allele frequency in reference panels. a Denisova 2: Only SNPs where at least one non-AFR read is 546 
present in Denisova 2, and where DEN and NEA are differentially fixed are plotted. b Denisova 8: Same ascertainment as for 547 
Densiova 2. c Denisova 5: Displayed are all SNP fixed between Vindija 33.19 and Denisova 3, and the reads in Denisova 5. d 548 
Chagyrskaya 8: A partially homozygous introgressed region on Chromosome 11, shown are all SNPs where Altai or Denisova 3 are 549 
fixed for an allele that differs from Vindija 33.19. 550 
 551 

  552 
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 553 

554 
Extended Data Figure 8: Admixfrog local ancestry posterior decoding for other archaic genomes. 555 
Homozygous Denisovan ancestry, homozygous Neandertal ancestry and heterozygous ancestry are in orange, blue and brown, 556 
respectively.    557 
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558 
Extended Data Figure 9: Denisova 3 overview. Admixfrog posterior decodings of Denisova 3 (a,b), Denisova 5 (c, d) and 559 
Vindija 33.19 (e, f) using a fixed (a, b, d, f)  and empirical Bayes prior (c, e). Homozygous Denisovan ancestry, homozygous 560 
Neandertal ancestry and heterozygous ancestry are in orange, blue and brown, respectively. For the Neandertals, results are consistent 561 
between analyses, but more noisy using the fixed prior. g: Four fragments on chr6 that are candidates for introgression, due to the high 562 
number of heterozygous sites and absence of fixed differences between Neandertals and Denisova 3. Called fragments are marked with 563 
grey horizontal lines. 564 

 565 

  566 
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