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insulated wires was penetrated subcutaneously from the back of the neck to the chest in the 

lead II configuration (McCauley and Wehrens, 2010). The positive lead was placed in the left 

abdomen below the heart, while the negative lead was placed in the upper right chest. The mice 

were allowed for recovery (at least five days) before any test was introduced. 

Tetrode and Electrocardiogram (ECG) recording 

Each tetrode consisted of four wires (Fe-Ni-Cr, Stablohm 675, 13-μm diameter, or 90% 

platinum/10% iridium, 18-μm diameter, California Fine Wire), which were twisted together. The 

neural or ECG signals were pre-amplified, digitized, and recorded using the Blackrock 

Microsystems acquisition system or the Plexon Multichannel Acquisition Processor system. For 

the Blackrock Microsystems, local field potentials (LFPs) and ECGs were digitized at 2 kHz and 

filtered at 1–500 Hz, whereas spikes were digitized at 30 kHz and filtered at 600–6000 Hz. For 

the Plexon system, LFPs and ECGs were digitized at 1 kHz and filtered at 0.7–300 Hz, whereas 

spikes were digitized at 40 kHz and filtered at 400–7000 Hz. The behaviors of mice were 

recorded simultaneously. A total of 1–3 sites in the BLA were recorded from each mouse. 

Behavioral Paradigms 

Cup-handling. Mice were scooped up and allowed to walk freely over the experimenter’s open 

hands without direct physical restraint (Hurst and West, 2010).  

High place exposure. 1) A transparent high place (square platform, 10 × 10 cm) with 10- or 20-

cm height: mice were gently picked up from home cages and placed on the open high place for 

~3 min (in a few cases 20 min or longer; Figure S3). 2) A novel high-place test chamber 

consisting of a waiting room (15 × 20 cm) and a 20-cm high platform (square, 10 × 10 cm) with 

or without transparent Plexiglas walls: mice stayed in the waiting room for 5–10 min. Then upon 

opening of the sliding door by the experimenter, mice could walk freely in the open or enclosed 

high platform. Once the mouse was on the high platform, the sliding door was closed for ~3 min. 

Open field and enriched box exposure. A round chamber (40 cm in diameter, 35 cm in height) 

was used as the open field arena. Mice were transferred from home cages to the open field 

arena for a 30-min free exploration. A rectangle box (34 × 44 × 38 or 40 × 48 × 48 cm; divided 

into six or eight small rooms and enriched with toys) was used as the enriched box. The same 

experimental procedures as the open field test was used. 

Fear conditioning. The fear conditioning chamber was a square chamber (32 × 25 × 25 cm) with 

a 36-bar inescapable shock grid floor (Med Associates, Inc.). The behaviors of mice were 

recorded by using the Blackrock Microsystems NeuroMotive video recording and tracking 

system (30 frames per sec), while freezing responses were measured frame by frame. Mice 

were considered to be freezing if no movement was observed for at least 2 sec. On the training 

day (Day 1), mice were allowed to explore the conditioning chamber for ~3 min. Then the 

conditioned stimulus, CS, consisting of ten 100-ms pips (75 dB, 2 kHz) repeated at 1 Hz was 

delivered, followed by an unconditioned stimulus, US (a continuous 0.5-sec foot shock at 0.75 

mA) at the termination of the CS. This CS-US pairing was repeated for 5 times, with a 2-min 

interval between trials. On Day 2, mice were placed back to the conditioning chamber for a 5-

min contextual recall test. About 10 min later, the cued memory recall test was conducted in a 
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novel chamber: mice were allowed to explore freely for 3 min before the onset of the 10-sec CS 

(repeated seven times with a 1.5–2.5 min randomized intervals; no US was presented). The CS-

induced freezing responses was measured during the 30 sec after onset of the CS. 

Data analyses 

The recorded spike activities were sorted by using the MClust 3.5 program 

(http://redishlab.neuroscience.umn.edu/MClust/MClust.html) or the Plexon Offline Sorter, and 

sorted spikes were further analyzed in NeuroExplorer (Nex Technologies) and MATLAB 

(Mathworks). Z-score values were calculated by subtracting the average baseline firing rate 

established over the defined duration preceding the stimulus onset from individual raw values. 

Then, the difference was divided by the baseline standard deviation (SD; see Figure legends 1 

and 4). For measuring the population response significance, neural activity was calculated by 

comparing the firing rate after stimulus onset (in 1-sec bin size) with the firing rate during 

baseline periods, utilizing a Z-score transformation. A neuron was considered as a high-place 

fear neuron if the mean Z-score during high place exposure exceeded 3.29 (P < 0.001). 

Heart rate (HR) and heart rate variability (HRV) analyses were similar to previous publications 

(Liu et al., 2014; Liu et al., 2013). Briefly, the typical peaks in heart beats were identified with the 

timestamps of R-wave peaks. The discrete timestamps of R-wave maxima were obtained by 

peak detection algorithm. The R-R intervals were converted into instant HR (beats per minute).  

The variability of R-R intervals was graphically described as a Poincaré plot. Each heartbeat 

interval, R-R intervaln, was plotted on the X-axis against the subsequent heartbeat interval, R-R 

intervaln+1, on the Y-axis. The coefficient of variation (CV) of instant HR was based on the 

formula: 𝐶𝑉 = (𝑆𝐷/𝑥̅) × 100%, where 𝑥̅ (mean) and 𝑆𝐷 (standard deviation) were the 𝑥̅ and 𝑆𝐷 

of instant HR. 

For the comparisons of multiple means, one-way repeated measures ANOVA and post-hoc 

Bonferroni tests were conducted to assess the difference of means. Differences between two 

means were assessed with paired t-tests. Data were summarized using box plots showing 

median values and interquartile range. The default value of whiskers in the boxplot correspond 

to ±2.7σ and 99.3% coverage of the normally distributed data as per the data analysis tool in 

MATLAB. Differences were considered significant if P values were < 0.05. 

Histology 

At the end of the recording session, mice were anesthetized, and the final positions of the 

tetrode bundles was marked by applying a small current (10 μA, 15 sec) through two tetrodes. 

Then, mice were intracardially perfused with PBS followed by 4% paraformaldehyde (PFA). 

Brains were removed and post-fixed in 4% PFA, allowing for ≥24 h before slicing on a vibratome 

(50 µm coronal sections; Leica). The actual electrode positions were confirmed by histological 

DAPI staining using antifade mounting medium with DAPI (Vectashield, Vector Laboratories). 
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Figure S1. BLA high-place fear neurons exhibited little adaptation. (A) Activity of the same neuron as 

shown in Fig. 1B in response to cup handling on Day 2 (repeated for two sessions: three trials each). The 

durations of the handling were 37, 38, 36, 26, 28 and 27 sec, respectively. (B) Activity of the same neuron 

as shown in Fig. 1C upon high place exposure on Days 2 and 3. The durations of high place exposure 

were shown by red solid lines: 186 and 173 sec, respectively. (C) BLA high-place fear neurons showed 

significant activation above baseline upon high place exposure (***P < 0.001, one-way repeated ANOVA 

followed by Bonferroni post-hoc). No difference was observed across the 3 days (P > 0.77). 

 

Figure S2. A saturation of high-place fear neuronal responses. (A) Activity of one representative BLA 

high-place fear neuron in response to different heights from 5 to 20 cm. Left, 5-cm high place: this mouse 

voluntarily climbed up and down (4 and 11 sec for the 1st and 2nd trials, respectively). Middle and right, 

10- and 20-cm high places with durations of 193 and 216 sec, respectively. (B) BLA high-place fear 

neurons showed robust activation to both 10- and 20-cm heights. ***P < 0.001, one-way repeated 

ANOVA followed by Bonferroni post-hoc. There was no significant difference between the 10- and 20-cm 

high place exposures (P>0.99). One outlier is shown (red cross). For the 5-cm height, the data was not 

sufficient for statistical analysis because the mice would climb down easily, often within a few seconds. 
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Figure S3. Modality-specific BLA fear neurons. A–D, activity of four simultaneously recorded BLA 

neurons in response to loud noise (A), looming object (B), cat odor (C) and high place exposure (D). Note 

that each neuron responded preferentially to only one of the four fear-related stimuli in a long-lasting 

manner. The loud noise was consisted of 10 pips (2 kHz; 100 ms; 90 dB) delivered at 1 Hz; the looming 

stimulus was an overhead fast-approaching object; the cat odor was delivered by placing a live cat next to 

the mouse chamber (no physical or visual contact); and the high place was a 20-cm high platform.    

 

Animals 
Freezing (%) 

Tone recall Contextual recall 

1 63.81% 64.08% 

2 88.10% 44.75% 

3 68.57% 61.08% 

4 75.71% 63.06% 

Table S1 Individual freezing data of four mice.  
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