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Abstract 50 

Enterococcus faecium is one of the leading pathogens in the world. In this study, we proposed 51 

a strategy to rapidly and accurately distinguish vancomycin-resistant Enterococcus faecium 52 

(VREfm) and vancomycin-susceptible E. faecium (VSEfm) to help doctors correctly determine 53 

the use of vancomycin by a machine learning (ML)-based algorithm. A predictive model was 54 

developed and validated to distinguish VREfm and VSEfm by analyzing MALDI-TOF MS 55 

spectra of unique E. faecium isolates from different specimen types. Firstly, 5717 mass spectra, 56 

including 2795 VREfm and 2922 VSEfm, were used to develop the algorithm. And 2280 mass 57 

spectra of isolates, namely 1222 VREfm and 1058 VSEfm, were used to externally validate the 58 

algorithm. The random forest-based algorithm demonstrated good classification performances 59 

for overall specimens, whose mean AUROC in 5-fold cross validation, time-wise validation, 60 

and external validation was all greater than 0.84. For the detection of VREfm in blood, sterile 61 

body fluid, urinary tract, and wound, the AUROC in external validation was also greater than 62 

0.84. The predictions with algorithms were significantly more accurate than empirical 63 

antibiotic use. The accuracy of antibiotics administration could be improved by 30%. And the 64 

algorithm could provide rapid antibiotic susceptibility results at least 24 hours ahead of routine 65 

laboratory tests. The turn-around-time of antibiotic susceptibility could be reduced by 50%. In 66 

conclusion, a ML algorithm using MALDI-TOF MS spectra obtained in routine workflow 67 

accurately differentiated VREfm from VSEfm, especially in blood and sterile body fluid, which 68 

can be applied to facilitate the clinical testing process due to its accuracy, generalizability, and 69 

rapidness. 70 

  71 
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Introduction 72 

Enterococcus spp. is one of the leading pathogens in healthcare-associated infection.1 73 

Enterococcal infection could cause urinary tract infection, blood stream infection, and even 74 

mortality.2 Until recently, vancomycin was virtually the only drug that could be consistently 75 

relied on for treating multidrug-resistant enterococcal infections3,4. Vancomycin-resistant 76 

Enterococcus (VRE) has led to heavy burden on healthcare worldwide since its first-time 77 

isolation.5,6 Enterococcus faecalis and E. faecium are the 2 most commonly isolated 78 

Enterococcus spp. in clinical practice.1 VRE faecium (VREfm) has received considerably more 79 

attention than VRE faecalis (VREfs) because most of the clinically isolated VRE is E. faecium 80 

in the recent decades4,7 and VREfm causes more severe infection than VREfs8,9. Early detection 81 

of vancomycin resistance is essential for successfully treating VREfm infection.10 Vancomycin 82 

could be discontinued, and antimicrobial agents could be replaced with other antibiotics (eg, 83 

linezolid and daptomycin) based on the laboratory results of vancomycin resistance11,12. 84 

Patients’ prognosis could be improved and further drug resistance development could be 85 

avoided by using susceptible antibiotics.11 However, typical tests in clinical microbiology 86 

laboratories, such as the minimal inhibitory concentration test or agar-diffusion test, fail to 87 

provide results for antibiotic susceptibility rapidly. The antibiotic susceptibility test (AST) of 88 

vancomycin is time-consuming, and the Clinical and Laboratory Standards Institute 89 

recommended a full 24 hours should be held for accurate detection of vancomycin resistance 90 

in enterococci.13 This would considerably delay accurate prescription of antibiotics against E. 91 

faecium. Furthermore, prescribing antibiotics based on empirical prescription, without 92 

determining AST, would result in low effectiveness (approximately 50%), depending on the 93 

local epidemiology of VREfm.12 Thus, a new tool is needed to provide AST for VREfm rapidly 94 

and accurately. 95 
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Recently, matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass 96 

spectrometry (MS) has become popular among clinical microbiology laboratories worldwide 97 

because of its reliability, rapidity, and cost-effectiveness in identifying bacterial species.14-16 In 98 

addition to species identification, MALDI-TOF MS has been promising in other applications, 99 

such as strain typing or AST.17-19 MALDI-TOF MS can generate massive data comprising 100 

hundreds of peak signals on the spectra.17,20 The complex data of MALDI-TOF spectra are 101 

overwhelming to even an experienced medical staff.19 Studies have attempted to identify the 102 

characteristic peak through visual inspection.21,22 The results of the studies have been 103 

discordant, which has limited the clinical utility.23-25 104 

Machine learning (ML) is a good analytical method for solving classification problems 105 

through identification of implicit data patterns from complex data.26 The ML method 106 

outperforms traditional statistical methods because of its excellent ability to handle complex 107 

interactions between large amount of predictors and good performance in non-linear 108 

classification problems27 ML has been successfully applied in several clinical fields.27-36 Thus, 109 

the ML algorithm is especially appropriate for analyzing complex data such as MALDI-TOF 110 

spectra. However, to our knowledge, few studies have used ML in the analysis of MALDI-111 

TOF spectra for rapidly reporting VREfm, and the case numbers in these studies were 112 

insufficient, and so, ML algorithm generalization has been limited.37-39 Moreover, to date, no 113 

study has validated AST prediction ML algorithms by using large real-world data. 114 

In this study, we aimed to develop and validate a VREfm prediction ML model by using 115 

consecutively collected real-world data from 2 tertiary medical centers (Chang Gung Memorial 116 

Hospital [CGMH], Linkou branch and CGMH, Kaohsiung branch). Using the largest MALDI-117 

TOF spectrum clinical data to date, the ML algorithm could predict VREfm accurately, rapidly, 118 

and in a ready-to-use manner based on the real-world evidence, which is more representative 119 

for clinical practice.40 Moreover, we confirmed the robustness and generalization of the ML 120 
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algorithm through several validation methods, namely cross-validation, time-wise internal 121 

validations (unseen independent testing dataset classified according to time), and external 122 

validation (unseen independent testing dataset from another medical center). According to the 123 

real-world evidence-based validation, our VREfm prediction ML models are ready to be 124 

incorporated into routine workflow. 125 

Materials and methods 126 

Data source 127 

We designed a novel machine learning approach which can improve accuracy of 128 

antibiotics administration and reduce the turn-around-time of antibiotics susceptibility test. We 129 

summarized the comparison between the machine learning approach and the traditional 130 

approach used in current clinical microbiology laboratory. We schematically illustrated the 131 

study design in Figure 1(b). The data used in this retrospective study was consecutively 132 

collected from the clinical microbiology laboratories of 2 tertiary medical centers in Taiwan, 133 

namely CGMH Linkou branch and CGMH Kaohsiung branch between January 1, 2013 and 134 

December 31, 2017. The clinical microbiology laboratories collected and processed all the 135 

routine specimens obtained from the hospitals. In total, 7997 E. faecium cases were identified 136 

and included in this study, whereas 5717 (VREfm: 48.89%) and 2280 (VREfm: 53.60%) cases, 137 

respectively, were obtained from Linkou and Kaohsiung branches of CGMH. The E. faecium 138 

strains were isolated from blood, urinary tract, sterile body fluids, and wound. The detailed 139 

description of specimen types is provided in eTable 1 in the Supplement. The study was 140 

approved by the Institutional Review Board of Chang Gung Medical Foundation (No. 141 

201900767B0). We followed the Standards for Reporting of Diagnostic Accuracy 201541 and 142 

the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or 143 

Diagnosis reporting guidelines.42 144 

 145 
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Definition of E. faecium and vancomycin susceptibility 146 

E. faecium was identified using MALDI-TOF spectra measured using a Microflex LT 147 

mass spectrometer and analyzed using Biotyper 3.1 (Bruker Daltonik GmbH, Bremen, 148 

Germany). A log score (generated through Biotyper 3.1) larger than 2 was used for confirming 149 

E. faecium.17-19 We tested vancomycin susceptibility of E. faecium by using the paper disc 150 

method. The details of E. faecium identification and AST are given in the eMethods in the 151 

Supplement. 152 

 153 

MALDI-TOF mass spectrum data collection and preprocessing 154 

The details were described in the Supplements.  155 

 156 

Peak selection from MALDI-TOF mass spectra for model development 157 

We applied the embedded feature-selection method to select the most important peaks 158 

from MALDI-TOF mass spectra.43 The peaks were ranked using the p-values of the chi-square 159 

test of homogeneity, which was employed to determine whether frequency counts were 160 

distributed identically across VREfm and vancomycin-susceptible E. faecium (VSEfm). 161 

Preliminarily, we selected top 10 important peaks to plot a heat map based on the hierarchical 162 

clustering (eMethods in the Supplement). All the ranked peaks were incorporated in the model 163 

accordingly until the performance did not increase. Consequently, we could obtain the 164 

important peaks that were highly related to differentiation of VREfm and VSEfm isolates. 165 

For determining the number of peaks included in the ML models, we forwardly added 166 

them into the ML models and calculated the performance using accuracy as the metric. First, 167 

the predictor candidates were sorted in a descending order according to the importance score, 168 

and one predictive peak was added at a time into the ML models. On the basis of predictive 169 

peak composition, we used different algorithms, namely random forest (RF), support vector 170 
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machine (SVM) with a radial basis function kernel, and k-nearest neighbor (KNN) and applied 171 

5-fold cross validation (CV) in the data from the CGMH Linkou branch. The accuracies of the 172 

ML models were calculated to determine the adequate number of predictive peaks included in 173 

the models. 174 

 175 

Development and validation of VREfm prediction models 176 

We aimed to develop and validate a robust VREfm prediction model capable of 177 

detecting VREfm earlier than the AST report. Three commonly used ML algorithms, namely 178 

RF, SVM with a radial basis function kernel, and KNN, were used for developing the VREfm 179 

prediction model. These ML algorithms have demonstrated their successful applications (either 180 

classification or prediction) in clinical practice.17-19,27,28,35,36 The details of these ML algorithms 181 

and model training processes are attached in the eMethods in the Supplement. 182 

We thoroughly evaluated the performance and robustness of the VREfm prediction 183 

models using 5-fold CV, time-wise internal validation, and external validation. Data from the 184 

CGMH Linkou branch were used for 5-fold CV and time-wise internal validation; by contrast, 185 

data from the CGMH Kaohsiung branch served as the unseen independent testing data for 186 

external validation. For 5-fold CV, data were randomly divided into 5 datasets. Each one of the 187 

5 datasets served as the testing dataset to evaluate the performance of the model developed by 188 

the other 4 datasets. In 5-fold CV, we obtained 5 measurements of metrics for evaluating the 189 

robustness of VREfm prediction models. Moreover, to evaluate performance using 190 

prospectively collected data, we conducted time-wise internal validation: we used data 191 

collected between January 1, 2013 and December 31, 2016 as the training dataset for 192 

developing VREfm prediction models, while data from January 1, 2017 to December 31, 2017 193 

served as the testing dataset. To test the generalizability of the models, we used data from the 194 

CGMH Linkou branch to develop VREfm prediction models and used data from the CGMH 195 
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Kaohsiung branch to test the models’ performance in a different institute. Additionally, we 196 

evaluated the performance of the VREfm prediction model using different types of specimens, 197 

namely blood, urinary tract, sterile body fluid, and wound, by using data from the CGMH 198 

Kaohsiung branch. We adopted metrics including sensitivity, specificity, accuracy, positive 199 

predictive value (PPV), negative predictive value (NPV), receiver operating characteristic 200 

(ROC) curve, and area under the receiver operating characteristic curve (AUROC) to access 201 

and compare the performance of the VREfm prediction model. 202 

 203 

Statistical analysis 204 

The confidence intervals for sensitivity, specificity, and accuracy were estimated 205 

using the calculation of the confidence interval for a proportion in one sample situation. 206 

Specifically, the critical values followed the Z-score table. To compare the percentages in 207 

matched samples, Cochran's Q test, a nonparametric approach, was implemented in this 208 

study.44 Then, we employed pairwise McNemar's tests45 for post hoc analysis and adopted 209 

the false discovery rate proposed by Benjamini and Hochberg (1995) to adjust the P value.46 210 

Furthermore, the confidence intervals of AUROCs were determined using the nonparametric 211 

approach, and the AUROC comparisons mainly adopted the nonparametric approach 212 

proposed by Delong et al.47 213 

 214 

Results 215 

Predictive peaks for detecting VREfm 216 

We defined crucial predictive peaks when the occurrence frequency of a peak was 217 

significantly different (defined by the chi-square test) in VREfm and VSEfm. In the step of 218 

extracting predictor candidates, 876 predictor candidates were extracted. From the predictor 219 

candidates, we used the chi-square method to select important predictive peaks. 220 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990978


9 

 

We selected 10 most critical predictive peaks and plotted a heat map to preliminarily 221 

visualize the difference between VREfm and VSEfm (Figure 2). Peaks of m/z 3172, 3302, 3645, 222 

6342, 6356, 6603, and 6690 were found more frequently in VREfm; by contrast, m/z 3165, 223 

3681, and 7360 occurred more frequently in VSEfm. Although these important predictive peaks 224 

were statistically significant, we found them in both VREfm and VSEfm. The full list of crucial 225 

predictive peaks is provided in eTable 2 in the Supplement. 226 

 We selected several important predictive peaks from the predictor candidate list, which 227 

was ordered according to the chi-square score. eFigure 4 in the Supplement shows the change 228 

in ML models performance when the number of critical predictive peaks increased. For all the 229 

ML algorithms used in the study, a similar trend of performance was observed: the accuracies 230 

of the ML models reached a steady plateau when the included number of important predictive 231 

peaks was larger than 100 (eFigure 4 in the Supplement). Thus, the top 100 crucial predictive 232 

peaks were selected as the peak composition for the following experiments. 233 

 234 

Performance of VREfm prediction models 235 

We summarized the ML models’ performance in Table 1, Table 2, and Figure 3. The 236 

details of comparison between different algorithms are described in the Supplement. The RF 237 

model outperformed SVM and KNN in 5-fold CV, time-wise internal validation, and external 238 

validation (eTable 3 in the Supplement), where the AUROC ranged from 0.8463 to 0.8553 and 239 

accuracy ranged from 0.7769 to 0.7855. Moreover, performance robustness was also observed 240 

in SVM and KNN. Figure 3 shows typical ROC curves for the 3 algorithms in all the 3 241 

validations. We used Youden’s index to select the threshold from the ROC curves in search of 242 

balanced sensitivity and specificity. In external validation, the sensitivity and specificity of RF 243 

were 0.7791 (95% confidence interval: 0.7620-0.7961) and 0.7930 (95% confidence interval: 244 
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0.7764-0.8096). On the basis of the resistance rate (VREfm: 53.60%) in the external validation 245 

dataset, the PPV was 0.8130 and the NPV was 0.7565. 246 

 Given that the RF algorithm attained the highest performance, additionally, we tested 247 

the performance of the RF-based VREfm prediction model using different types of specimens 248 

in the independent testing dataset (ie, external validation by using data of the CGMH 249 

Kaohsiung branch) (Table 2). The RF-based VREfm prediction model attained higher 250 

performance in predicting VREfm in blood and sterile body fluid specimens than the other 251 

specimen types. The AUROC of blood specimens reached 0.9103 (95% confidence interval: 252 

0.8727-0.9480), whereas that of sterile body fluid specimens reached 0.8714 (95% confidence 253 

interval: 0.8321-0.9106). Moreover, the sensitivity (0.8870, 95% confidence interval: 0.8436-254 

0.9303) and specificity (0.8000, 95% confidence interval: 0.7452-0.8548) of the RF-based 255 

VREfm prediction model for the blood specimen were also balanced and significantly higher 256 

than those for other specimens. By contrast, the performance of the RF-based VREfm 257 

prediction model for urinary tract specimens (0.8494, 95% confidence interval: 0.8258-0.8731) 258 

was similar to that for overall specimens (0.8553, 95% confidence interval: 0.8399-0.8706). 259 

 260 

Discussion 261 

We developed ML-based models for predicting VREfm rapidly and accurately based 262 

on MALDI-TOF MS data. The models were especially effective in predicting VREfm in 263 

invasive infections (ie, blood and sterile body fluid). We used the largest up-to-date real-world 264 

data to validate the robustness and generalization of the ML-based models by using k-fold CV, 265 

time-wise internal validation, and external validation. The rapid and accurate AST of 266 

vancomycin is promising for determining antibiotics against VREfm infection. 267 

 Our results suggested that AST could be predicted accurately by using ML algorithms 268 

to analyze MALDI-TOF MS data. MALDI-TOF MS is a powerful analytical tool in current 269 
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clinical microbiology laboratories because of its rapidness and cost-effectiveness in identifying 270 

bacterial species.14-16 On the basis of the massive data produced by MALDI-TOF MS, 271 

moreover, some studies have demonstrated that subspecies typing could be predicted from a 272 

specific pattern of MS spectra only.17,19 Furthermore, other studies have shown a good 273 

correlation between AST and specific patterns of MS spectra.18,23-25,48 However, some issues 274 

have limited the generalization of these results. First, most of the studies have adopted an 275 

additional protein extraction step before analytical measurement of MALDI-TOF MS. The 276 

protein extraction step could enhance data quality; however, it is not routinely used in clinical 277 

practice because it is labor-intensive, time-consuming, and expensive.17,18 By contrast, we used 278 

the direct deposition method, which is recommended by the manufacturer and is used for 279 

everyday works. Thus, our models are more feasible for the existing workflow because they 280 

were trained using real-world data. Second, the data sizes in these studies were too small to be 281 

representative. We demonstrated that the ML-based models for predicting VREfm can be 282 

applied as a clinical decision support tool by using the largest up-to-date datasets collected 283 

through the direct deposition method and various validation methods. 284 

Identifying crucial predictive peaks in VREfm classification may not be essential in 285 

clinical application; however, the specific combination of crucial predictive peaks would 286 

inspire further studies investigating the molecular mechanism of VREfm. Typically, the vanA 287 

cluster is the most common mediator of vancomycin resistance in enterococci,49 although many 288 

vancomycin resistance genes have been identified.50 In brief, many factors together attribute to 289 

antibiotic resistance. Moreover, the complex mechanisms of antibiotic resistance would evolve 290 

in response to the selective pressures of their competitive environment (eg, antibiotic use).49 291 

Thus, identifying the important predictive peaks for VREfm could help us understand the 292 

mechanism behind resistance. In this study, for example, peaks of m/z 6603, 6631, and 6635 293 

were found frequently for VREfm (eTable 2 in the Supplement). The finding is consistent with 294 
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a previous study where Griffin et al. reported m/z 6603 is specific for vanB-positive VREfm, 295 

while m/z 6631 and 6635 are specifically found for vanA-positive VREfm.38 These peaks are 296 

worthy of further identification in future investigations. Moreover, new antibiotics against 297 

VREfm can be developed based on these predictive peaks for VREfm. 298 

Our ML models persistently performed well in 5-fold CV, time-wise internal validation, 299 

and external validation. Moreover, all the ML algorithms used in this study exhibited good 300 

performance (AUROC > 0.8). It could be explained that discriminating VREfm from VSEfm 301 

is generally achievable after adequate feature extraction and feature selection processes. In 302 

time-wise internal validation, we intended to simulate a prospective study for a model trained 303 

by the “past data” to analyze the “future data.” Based on the performance of time-wise internal 304 

validation, we concluded that the trained ML models could also perform well on the 305 

prospectively collected data, which are unseen in the training process. Previous study results 306 

differentiating VREfm from VSEfm by using MALDI-TOF MS spectra could not be 307 

generalized.23-25,38 The inconsistent results could be because less features (<10) were used. A 308 

review article reported that peak-level reproducibility of MALDI-TOF mass is approximately 309 

80%.51 The classification performance is compromised when essential peaks are few and 310 

happen to be absent on the mass spectra. In our study, the ML models performed stably when 311 

the included peaks were more than 100 (eFigure 4 in the Supplement). The steady and good 312 

performance of our ML models could be explained by the much more included peaks: when 313 

some of the essential peaks are not reproduced in the mass spectra, we can still use other 314 

alternative essential peaks to conduct an accurate classification. The number of essential peaks 315 

somehow compensated the insufficient reproducibility of MALDI-TOF mass. By contrast, 316 

regarding predicting VREfm for various specimens, we found that the RF-based model 317 

performed especially well in blood and sterile body fluids. The superior prediction performance 318 

could be attributed to the relatively fewer number of VREfm strains in blood and sterile body 319 
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fluids. Bacterial infection in blood or sterile body fluids is typically regarded as invasive 320 

infection.52 Only a few VREfm strains (sequence type (ST)17, ST18, ST78, and ST203) cause 321 

invasive infections in blood or sterile body fluids according to the studies in Taiwan53 and 322 

Ireland.54 The nature of the classification problem would be more simple when the number of 323 

labels is fewer. 324 

 325 

Limitations 326 

This study has several limitations. First, although the models were evaluated using 327 

unseen external data from different medical centers, all the training data and testing data were 328 

collected from only 2 tertiary medical centers in Taiwan. Directly applying the ML models in 329 

hospitals of other areas or countries as well as in primary care institutes may not be appropriate. 330 

However, we believe that the method, but not the trained model, could be generalized. 331 

Although our ML models were validated comprehensively using 3 different approaches and 332 

the results show that the difference in MALDI-TOF mass spectra between VREfm and VSEfm 333 

can be distinguished through all the ML algorithms we used, we suggest others collecting their 334 

locally relevant data for training and validating the VREfm predicting model given that the 335 

epidemiology of VREfm could be fairly different site by site. Second, our primary goal was to 336 

develop and validate a practical and ready-to-use ML model in real-world practice. We found 337 

some crucial predictive peaks for VREfm; however, we did not confirm the identities for these 338 

peaks. It is worthy of identifying these peaks in further investigations. Third, we did not use 339 

the deep learning (DL) algorithm for predicting VREfm, although DL has been successful in 340 

the image classification or radiology field.32,33 In this study, VREfm could be accurately 341 

predicted using several classic algorithms (ie, RF, SVM, and KNN) that require less resource 342 

and time in training and using models. Moreover, DL usually requires more training samples 343 

and is financially and computationally more expensive than classical ML algorithms.55 DL 344 
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utility in analyzing MS data rather than image data could be another promising issue in the 345 

bioinformatics field. Fourth, no strain typing data were included. Thus, the molecular 346 

epidemiology of VREfm used in this study is unknown. 347 

 348 

Conclusions 349 

 We developed and validated robust ML models capable of discriminating VREfm from 350 

VSEfm based on MALDI-TOF MS spectra. These models were especially good at detecting 351 

VREfm causing invasive diseases. The accurate and rapid detection of VREfm by using the ML 352 

models would facilitate more appropriate antibiotic prescription. 353 

 354 

Acknowledgments 355 

This manuscript was edited by Wallace Academic Editing. 356 

 357 

Author Contributions 358 

HYW, KPL, and CRC had full access to all the data in the study and take responsibility for the 359 

integrity of the data and the accuracy of data analysis. HYW, KPL, CRC, and YJT 360 

analyzed/interpreted the data, performed experiments, designed the study, and wrote the 361 

manuscript. HYW, CRC, YJT, JTH, TYL, THC, MHW, TPL, and JJL reviewed/edited the 362 

manuscript for important intellectual content and provided administrative, technical, or 363 

material support. JJL obtained funding and supervised the study. 364 

 365 

Funding 366 

This work was supported by Chang Gung Memorial Hospital (CMRPG3F1721, 367 

CMRPG3F1722, CMRPD3I0011) and the Ministry of Science and Technology, Taiwan 368 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990978


15 

 

(MOST 107-2320-B-182A-021-MY3, MOST 108-2636-E-182-001, and MOST 107-2636-E-369 

182-001). 370 

 371 

Competing interests 372 

The authors have no affiliations with or involvement in any organization or entity with any 373 

financial interest or non-financial interest in the subject matter or materials discussed in this 374 

manuscript. 375 

  376 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.990978


16 

 

References 377 

1 Arias, C. A. & Murray, B. E. The rise of the Enterococcus: beyond vancomycin 378 

resistance. Nat Rev Microbiol 10, 266-278, doi:10.1038/nrmicro2761 (2012). 379 

2 Marra, A. R. et al. Nosocomial Bloodstream Infections in Brazilian Hospitals: Analysis 380 

of 2,563 Cases from a Prospective Nationwide Surveillance Study. Journal of Clinical 381 

Microbiology 49, 1866-1871, doi:10.1128/JCM.00376-11 (2011). 382 

3 Cetinkaya, Y., Falk, P. & Mayhall, C. G. Vancomycin-Resistant Enterococci. Clinical 383 

Microbiology Reviews 13, 686-707, doi:10.1128/CMR.13.4.686 (2000). 384 

4 Arias, C. A., Contreras, G. A. & Murray, B. E. Management of multidrug-resistant 385 

enterococcal infections. Clin Microbiol Infect 16, 555-562, doi:10.1111/j.1198-386 

743X.2010.03214.x (2010). 387 

5 Leclercq, R., Derlot, E., Duval, J. & Courvalin, P. Plasmid-mediated resistance to 388 

vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319, 157-161, 389 

doi:10.1056/NEJM198807213190307 (1988). 390 

6 Sahm, D. F. et al. In vitro susceptibility studies of vancomycin-resistant Enterococcus 391 

faecalis. Antimicrobial Agents and Chemotherapy 33, 1588-1591, 392 

doi:10.1128/aac.33.9.1588 (1989). 393 

7 Sader, H. S., Moet, G. J., Farrell, D. J. & Jones, R. N. Antimicrobial susceptibility of 394 

daptomycin and comparator agents tested against methicillin-resistant Staphylococcus 395 

aureus and vancomycin-resistant enterococci: trend analysis of a 6-year period in US 396 

medical centers (2005–2010). Diagnostic Microbiology and Infectious Disease 70, 397 

412-416, doi:10.1016/j.diagmicrobio.2011.02.008 (2011). 398 

8 Lodise, T. P., McKinnon, P. S., Tam, V. H. & Rybak, M. J. Clinical outcomes for 399 

patients with bacteremia caused by vancomycin-resistant enterococcus in a level 1 400 

trauma center. Clin Infect Dis 34, 922-929, doi:10.1086/339211 (2002). 401 

9 Ghanem, G., Hachem, R., Jiang, Y., Chemaly, R. F. & Raad, I. Outcomes for and Risk 402 

Factors Associated With Vancomycin-Resistant Enterococcus faecalis and 403 

Vancomycin-Resistant Enterococcus faecium Bacteremia in Cancer Patients. Infection 404 

Control & Hospital Epidemiology 28, 1054-1059, doi:10.1086/519932 (2015). 405 

10 Ozsoy, S. & Ilki, A. Detection of vancomycin-resistant enterococci (VRE) in stool 406 

specimens submitted for Clostridium difficile toxin testing. Braz J Microbiol 48, 489-407 

492, doi:10.1016/j.bjm.2016.12.012 (2017). 408 

11 Balli, E. P., Venetis, C. A. & Miyakis, S. Systematic Review and Meta-Analysis of 409 

Linezolid versus Daptomycin for Treatment of Vancomycin-Resistant Enterococcal 410 

Bacteremia. Antimicrobial Agents and Chemotherapy 58, 734-739, 411 

doi:10.1128/AAC.01289-13 (2014). 412 

12 Crank, C. & O'Driscoll, T. Vancomycin-resistant enterococcal infections: 413 

epidemiology, clinical manifestations, and optimal management. Infection and Drug 414 

Resistance, doi:http://dx.doi.org/10.2147/IDR.S54125 (2015). 415 

13 CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 27th ed. CLSI 416 

supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute (2017). 417 

14 Hrabak, J., Chudackova, E. & Walkova, R. Matrix-assisted laser desorption ionization-418 

time of flight (maldi-tof) mass spectrometry for detection of antibiotic resistance 419 

mechanisms: from research to routine diagnosis. Clin Microbiol Rev 26, 103-114, 420 

doi:10.1128/CMR.00058-12 (2013). 421 

15 Idelevich, E. A., Sparbier, K., Kostrzewa, M. & Becker, K. Rapid detection of antibiotic 422 

resistance by MALDI-TOF mass spectrometry using a novel direct-on-target 423 

microdroplet growth assay. Clin Microbiol Infect, doi:10.1016/j.cmi.2017.10.016 424 

(2017). 425 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

http://dx.doi.org/10.2147/IDR.S54125
https://doi.org/10.1101/2020.03.13.990978


17 

 

16 Suarez, S. et al. Ribosomal proteins as biomarkers for bacterial identification by mass 426 

spectrometry in the clinical microbiology laboratory. J Microbiol Methods 94, 390-396, 427 

doi:10.1016/j.mimet.2013.07.021 (2013). 428 

17 Wang, H.-Y. et al. Application of a MALDI-TOF analysis platform (ClinProTools) for 429 

rapid and preliminary report of MRSA sequence types in Taiwan. PeerJ 6, 430 

doi:10.7717/peerj.5784 (2018). 431 

18 Wang, H. Y. et al. Rapid Detection of Heterogeneous Vancomycin-Intermediate 432 

Staphylococcus aureus Based on Matrix-Assisted Laser Desorption Ionization Time-433 

of-Flight: Using a Machine Learning Approach and Unbiased Validation. Front 434 

Microbiol 9, 2393, doi:10.3389/fmicb.2018.02393 (2018). 435 

19 Wang, H. Y. et al. A new scheme for strain typing of methicillin-resistant 436 

Staphylococcus aureus on the basis of matrix-assisted laser desorption ionization time-437 

of-flight mass spectrometry by using machine learning approach. PLoS One 13, 438 

e0194289, doi:10.1371/journal.pone.0194289 (2018). 439 

20 Lopez-Fernandez, H. et al. Mass-Up: an all-in-one open software application for 440 

MALDI-TOF mass spectrometry knowledge discovery. BMC Bioinformatics 16, 318, 441 

doi:10.1186/s12859-015-0752-4 (2015). 442 

21 Lasch, P. et al. Insufficient discriminatory power of MALDI-TOF mass spectrometry 443 

for typing of Enterococcus faecium and Staphylococcus aureus isolates. Journal of 444 

microbiological methods 100, 58-69, doi:10.1016/j.mimet.2014.02.015 (2014). 445 

22 Wolters, M. et al. MALDI-TOF MS fingerprinting allows for discrimination of major 446 

methicillin-resistant Staphylococcus aureus lineages. International journal of medical 447 

microbiology : IJMM 301, 64-68, doi:10.1016/j.ijmm.2010.06.002 (2011). 448 

23 Burckhardt, I. & Zimmermann, S. Susceptibility Testing of Bacteria Using Maldi-Tof 449 

Mass Spectrometry. Front Microbiol 9, 1744, doi:10.3389/fmicb.2018.01744 (2018). 450 

24 Vrioni, G. et al. MALDI-TOF mass spectrometry technology for detecting biomarkers 451 

of antimicrobial resistance: current achievements and future perspectives. Ann Transl 452 

Med 6, 240, doi:10.21037/atm.2018.06.28 (2018). 453 

25 Kostrzewa, M., Sparbier, K., Maier, T. & Schubert, S. MALDI-TOF MS: an upcoming 454 

tool for rapid detection of antibiotic resistance in microorganisms. Proteomics Clin 455 

Appl 7, 767-778, doi:https://doi.org/10.1002/prca.201300042 (2013). 456 

26 Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J. Data Mining: Practical machine 457 

learning tools and techniques.  (Morgan Kaufmann, 2016). 458 

27 Lo-Ciganic, W.-H. et al. Evaluation of Machine-Learning Algorithms for Predicting 459 

Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions. 460 

JAMA Network Open 2, doi:10.1001/jamanetworkopen.2019.0968 (2019). 461 

28 Tseng, Y.-J. et al. Predicting breast cancer metastasis by using serum biomarkers and 462 

clinicopathological data with machine learning technologies. International Journal of 463 

Medical Informatics, doi:10.1016/j.ijmedinf.2019.05.003 (2019). 464 

29 Kuppermann, N. et al. A Clinical Prediction Rule to Identify Febrile Infants 60 Days 465 

and Younger at Low Risk for Serious Bacterial Infections. JAMA Pediatr, 466 

doi:10.1001/jamapediatrics.2018.5501 (2019). 467 

30 Norgeot, B. et al. Assessment of a Deep Learning Model Based on Electronic Health 468 

Record Data to Forecast Clinical Outcomes in Patients With Rheumatoid Arthritis. 469 

JAMA Network Open 2, doi:10.1001/jamanetworkopen.2019.0606 (2019). 470 

31 Karter, A. J. et al. Development and Validation of a Tool to Identify Patients With Type 471 

2 Diabetes at High Risk of Hypoglycemia-Related Emergency Department or Hospital 472 

Use. JAMA Internal Medicine 177, doi:10.1001/jamainternmed.2017.3844 (2017). 473 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

https://doi.org/10.1002/prca.201300042
https://doi.org/10.1101/2020.03.13.990978


18 

 

32 Gulshan, V. et al. Development and Validation of a Deep Learning Algorithm for 474 

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Jama 316, 475 

doi:10.1001/jama.2016.17216 (2016). 476 

33 Hwang, E. J. et al. Development and Validation of a Deep Learning-Based Automated 477 

Detection Algorithm for Major Thoracic Diseases on Chest Radiographs. JAMA Netw 478 

Open 2, e191095, doi:10.1001/jamanetworkopen.2019.1095 (2019). 479 

34 Elfiky, A. A., Pany, M. J., Parikh, R. B. & Obermeyer, Z. Development and Application 480 

of a Machine Learning Approach to Assess Short-term Mortality Risk Among Patients 481 

With Cancer Starting Chemotherapy. JAMA Netw Open 1, e180926, 482 

doi:10.1001/jamanetworkopen.2018.0926 (2018). 483 

35 Lin, W. Y. et al. Predicting post-stroke activities of daily living through a machine 484 

learning-based approach on initiating rehabilitation. Int J Med Inform 111, 159-164, 485 

doi:10.1016/j.ijmedinf.2018.01.002 (2018). 486 

36 Wang, H. Y. et al. Cancers Screening in an Asymptomatic Population by Using 487 

Multiple Tumour Markers. PLoS One 11, e0158285, 488 

doi:10.1371/journal.pone.0158285 (2016). 489 

37 Nakano, S. et al. Differentiation of vanA-positive Enterococcus faecium from vanA-490 

negative E. faecium by matrix-assisted laser desorption/ionisation time-of-flight mass 491 

spectrometry. Int J Antimicrob Agents 44, 256-259, 492 

doi:10.1016/j.ijantimicag.2014.05.006 (2014). 493 

38 Griffin, P. M. et al. Use of matrix-assisted laser desorption ionization-time of flight 494 

mass spectrometry to identify vancomycin-resistant enterococci and investigate the 495 

epidemiology of an outbreak. J Clin Microbiol 50, 2918-2931, 496 

doi:10.1128/JCM.01000-12 (2012). 497 

39 Huang, T. S. et al. Evaluation of a matrix-assisted laser desorption ionization-time of 498 

flight mass spectrometry assisted, selective broth method to screen for vancomycin-499 

resistant enterococci in patients at high risk. PLoS One 12, e0179455, 500 

doi:10.1371/journal.pone.0179455 (2017). 501 

40 Corrigan-Curay, J., Sacks, L. & Woodcock, J. Real-World Evidence and Real-World 502 

Data for Evaluating Drug Safety and Effectiveness. Jama 320, 503 

doi:10.1001/jama.2018.10136 (2018). 504 

41 Bossuyt, P. M. et al. STARD 2015: an updated list of essential items for reporting 505 

diagnostic accuracy studies. BMJ 351, h5527, doi:10.1136/bmj.h5527 (2015). 506 

42 Collins, G. S., Reitsma, J. B., Altman, D. G. & Moons, K. G. Transparent reporting of 507 

a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the 508 

TRIPOD statement. BMJ 350, g7594, doi:10.1136/bmj.g7594 (2015). 509 

43 Saeys, Y., Inza, I. & Larranaga, P. A review of feature selection techniques in 510 

bioinformatics. Bioinformatics 23, 2507-2517, doi:10.1093/bioinformatics/btm344 511 

(2007). 512 

44 Cochran, W. G. The Comparison of Percentages in Matched Samples. Biometrika 37, 513 

doi:10.2307/2332378 (1950). 514 

45 McNemar, Q. Note on the sampling error of the difference between correlated 515 

proportions or percentages. Psychometrika 12, 153-157, doi:10.1007/BF02295996 516 

(1947). 517 

46 Benjamini, Y. & Hochberg, Y. Controlling the False Discovery Rate: A Practical and 518 

Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society: Series 519 

B (Methodological) 57, 289-300, doi:https://doi.org/10.1111/j.2517-520 

6161.1995.tb02031.x (1995). 521 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1101/2020.03.13.990978


19 

 

47 DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the Areas under 522 

Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric 523 

Approach. Biometrics 44, doi:10.2307/2531595 (1988). 524 

48 Mather, C. A., Werth, B. J., Sivagnanam, S., SenGupta, D. J. & Butler-Wu, S. M. Rapid 525 

Detection of Vancomycin-Intermediate Staphylococcus aureus by Matrix-Assisted 526 

Laser Desorption Ionization-Time of Flight Mass Spectrometry. J Clin Microbiol 54, 527 

883-890, doi:10.1128/JCM.02428-15 (2016). 528 

49 Miller, W. R., Munita, J. M. & Arias, C. A. Mechanisms of antibiotic resistance in 529 

enterococci. Expert Review of Anti-infective Therapy 12, 1221-1236, 530 

doi:10.1586/14787210.2014.956092 (2014). 531 

50 Lebreton, F. et al. D-Ala-d-Ser VanN-type transferable vancomycin resistance in 532 

Enterococcus faecium. Antimicrob Agents Chemother 55, 4606-4612, 533 

doi:10.1128/AAC.00714-11 (2011). 534 

51 Croxatto, A., Prod'hom, G. & Greub, G. Applications of MALDI-TOF mass 535 

spectrometry in clinical diagnostic microbiology. FEMS microbiology reviews 36, 380-536 

407, doi:10.1111/j.1574-6976.2011.00298.x (2012). 537 

52 Lee, J. H. et al. Etiology of invasive bacterial infections in immunocompetent children 538 

in Korea (1996-2005): a retrospective multicenter study. J Korean Med Sci 26, 174-539 

183, doi:10.3346/jkms.2011.26.2.174 (2011). 540 

53 Kuo, A. J. et al. Vancomycin-resistant Enterococcus faecium at a university hospital in 541 

Taiwan, 2002-2015: Fluctuation of genetic populations and emergence of a new 542 

structure type of the Tn1546-like element. J Microbiol Immunol Infect 51, 821-828, 543 

doi:https://doi.org/10.1016/j.jmii.2018.08.008 (2018). 544 

54 Ryan, L. et al. Epidemiology and molecular typing of VRE bloodstream isolates in an 545 

Irish tertiary care hospital. J Antimicrob Chemother 70, 2718-2724, 546 

doi:https://doi.org/10.1093/jac/dkv185 (2015). 547 

55 Liu, P., Choo, K.-K. R., Wang, L. & Huang, F. SVM or deep learning? A comparative 548 

study on remote sensing image classification. Soft Computing 21, 7053-7065, 549 

doi:https://doi.org/10.1007/s00500-016-2247-2 (2016). 550 

 551 

  552 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.990978doi: bioRxiv preprint 

https://doi.org/10.1016/j.jmii.2018.08.008
https://doi.org/10.1093/jac/dkv185
https://doi.org/10.1007/s00500-016-2247-2
https://doi.org/10.1101/2020.03.13.990978


20 

 

Figure legends 553 

 554 

Figure 1(a). Scheme of using the VREfm Model. We plotted a timeline of bacterial culture 555 

test in current clinical microbiology laboratory (i.e., traditional approach) and a 556 

modified timeline when the VREfm model is incorporated (i.e., machine learning 557 

approach). In the traditional approach, specimens are collected for bacterial culture 558 

test. One day is usually needed for growth of a single colony for species 559 

identification (by MALDI-TOF MS). Antibiotics susceptibility test (AST) of 560 

vancomycin for VREfm will cost another day to report. By contrast, in the machine 561 

learning approach, the VREfm model can provide preliminary AST at the time when 562 

bacterial species is identified by MALDI-TOF MS. For treating VREfm, the machine 563 

learning approach can improve accuracy of antibiotics use by around 30% (from 564 

50% accuracy of empirical antibiotics use in the traditional approach to 80% 565 

accuracy of preliminary AST provided by the machine learning approach). 566 

Meanwhile, the turn-around-time of bacterial culture test can be reduced to one day, 567 

which is 50% reduction. 568 
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 570 

Figure 1(b). Schematic Illustration of the Study Design. We developed and validated a VREfm 571 

prediction model. The study included several steps, namely data collection, data 572 

preprocessing, predictor candidate extraction and important predictor selection, model 573 

training, evaluation, and testing. In data collection, data were obtained from 2 tertiary 574 

medical centers (Linkou and Kaohsiung branches of CGMH). The data included mass 575 

spectra and results of the vancomycin susceptibility test of E. faecium. Data from the CGMH 576 

Linkou branch were used for model training and validation, while data from the CGMH 577 

Kaohsiung branch served as an independent testing data. In the steps of data preprocessing 578 

and predictor candidate extraction and important predictor selection, a specific set of crucial 579 

predictors would be used for model training. K-fold, time-wise CV, and external validation 580 

were used to confirm the models’ robustness. The VREfm prediction model can detect 581 

VREfm accurately at least 1 day earlier than the current method. 582 
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 584 

Figure 2. Heat map. We selected top 10 discriminative peaks by chi-square testing the occurrence 585 

frequency of peaks in VREfm and VSEfm. The heat map was plotted based on the hierarchical 586 

clustering of all the VREfm and VSEfm isolates from the CGMH Linkou branch. Rows 587 

represent the isolates, and columns represent the top 10 discriminative peaks. The values in 588 

the heat map represent the MS spectral intensity which was log10-normalized and z-score 589 

standardized. Red color indicates relatively higher peak intensity while blue color indicates 590 

lower peak intensity. The isolates are grouped into 5 clusters. VREfm and VSEfm isolates can 591 

be visually differentiated by using the top 10 discriminative peaks. 592 
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 594 

Figure 3(a). ROC Curves for Different Algorithms in Terms of Linkou 5-Fold CV 595 
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 597 

Figure 3(b). ROC Curves for Different Algorithms in Terms of Time-Wise Validation 598 
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 600 

Figure 3(c). ROC Curves for Different Algorithms in Terms of External Validation 601 
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 603 

Figure 3(d). ROC Curves for the RF-Based VREfm Model With Different Types of 604 

Specimens 605 
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Table 1. Performance of VREfm Prediction Models in Terms of k-Fold CV, Time-Wise 607 

Validation, and External Validation 608 

 609 

AUROC, area under the receiver operating characteristic curve. 610 

  611 

AUROC RF SVM KNN

5-fold CV 0.8495 (0.8397, 0.8594) 0.8367 (0.8264, 0.8471) 0.7908 (0.7792, 0.8024)

Time-wise validation 0.8463 (0.8273, 0.8654) 0.8368 (0.8169, 0.8566) 0.7908 (0.7690, 0.8127)

External validation 0.8553 (0.8399, 0.8706) 0.8407 (0.8246, 0.8569) 0.8050 (0.7872, 0.8227)

Accuracy

5-fold CV 0.7769 (0.7660, 0.7878) 0.7610 (0.7499, 0.7721) 0.7248 (0.7131, 0.7364)

Time-wise validation 0.7840 (0.7640, 0.8039) 0.7815 (0.7615, 0.8016) 0.7228 (0.7011, 0.7445)

External validation 0.7855 (0.7687, 0.8024) 0.7781 (0.7610, 0.7951) 0.7355 (0.7174, 0.7536)

Sensitivity

5-fold CV 0.8054 (0.7951, 0.8517) 0.7826 (0.7719, 0.7934) 0.7873 (0.7767, 0.7980)

Time-wise validation 0.8153 (0.7965, 0.8341) 0.8415 (0.8238, 0.8592) 0.7491 (0.7281, 0.7702)

External validation 0.7791 (0.7620, 0.7961) 0.7954 (0.7789, 0.8120) 0.8044 (0.7881, 0.8207)

Specificity

5-fold CV 0.7497 (0.7384, 0.7609) 0.7403 (0.7289, 0.7517) 0.6649 (0.6526, 0.6772)

Time-wise validation 0.7477 (0.7266, 0.7688) 0.7120 (0.6900, 0.7340) 0.6922 (0.6698, 0.7146)

External validation 0.7930 (0.7764, 0.8096) 0.7580 (0.7405, 0.7756) 0.6560 (0.6365, 0.6755)
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Table 2. Performance of the RF-Based VREfm Detection Model With Different Types of 612 

Specimens in Terms of External Validation 613 

 614 

 615 

Type

Metrics Blood Urinary tract Sterile body fluid Wound

AUROC 0.9103 (0.8727, 0.9480) 0.8494 (0.8258, 0.8731) 0.8714 (0.8321, 0.9106) 0.8432 (0.8121, 0.8743)

Accuracy 0.8488 (0.7997, 0.8978) 0.7743 (0.7482, 0.8004) 0.8077 (0.7657, 0.8497) 0.7740 (0.7436, 0.8043)

Sensitivity 0.8870 (0.8436, 0.9303) 0.7672 (0.7409, 0.7936) 0.7788 (0.7345, 0.8230) 0.7339 (0.7018, 0.7659)

Specificity 0.8000 (0.7452, 0.8548) 0.7805 (0.7547, 0.8063) 0.8222 (0.7815, 0.8630) 0.8676 (0.8430, 0.8922)
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