Tape lures swell bycatch on a Mediterranean island

harbouring illegal bird trapping

- Matteo Sebastianelli1, Georgios Savva1, Michaella Moysi1, and
- 4 Alexander N. G. Kirschel_{1*}
- 5 1Department of Biological Sciences, University of Cyprus, PO Box 20537, Nicosia 1678,
- 6 Cyprus

7

11

12

1

- 8 Keywords: Cyprus, illegal bird hunting, Sylvia atricapilla, Sylvia melanocephala, playback
- 9 experiment, warbler.
- *Email of corresponding author: kirschel@ucy.ac.cy

Abstract 13 14 Mediterranean islands are critical for migrating birds, providing shelter and sustenance for millions of individuals each year. Humans have long exploited bird migration 15 through hunting and illegal trapping. On the island of Cyprus, trapping birds during 16 17 their migratory peak is considered a local tradition, but has long been against the law. Illegal bird trapping is a lucrative business, however, with trappers using tape lures that 18 broadcast species' vocalizations because it is expected to increase numbers of target 19 20 species. Yet, by how much the use of song playback increases capture rates remains 21 underappreciated. In particular, it is not known whether song playback of target species 22 affects bycatch rates. Here, we show with the use of playback experiments that song 23 playback is highly effective in luring birds towards trapping sites. We found that 24 playback increases six to eight times the number of individuals of target species 25 captured, but also significantly increases bycatch. Our findings thus show that in contrast to popular belief that tape lures are a selective trapping method, they also lead 26 27 to increased captures of non-target species, which can include species of conservation concern. 28 Background 29 Natural resources are globally threatened due to progressive overharvesting, with 30 animal diversity being particularly affected by its consequences. Birds are very sensitive 31 32 to anthropogenic impact, which has been a major cause of their decline [2,3]. In addition 33 to indirect impacts on numbers caused by habitat loss and environmental toxification, birds have also been impacted directly, by being targeted for food, the pet trade and 34

35

sport.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Every year, over two billion birds migrate along the Afro-Palearctic route and concentrate in large numbers around the Mediterranean Basin, which is an important biodiversity hotspot. Mediterranean islands are important stopover sites since they provide trophic resources and shelter for migrant bird species. Humans have long exploited this sudden, seasonal abundance of food resources through hunting. The need to supplement what would in the past have been a low-protein diet has made such habits widespread to the point of making them important culturally in several Mediterranean countries. The island of Cyprus is an important stopover site for many millions of migrant birds each year comprising over 200 species. Relative to its size, no other country has greater hunting pressure in the Mediterranean basin. Illegal trapping in Cyprus involves killing mostly passerines, and is a common practice well rooted in Cypriot culture. Birds are trapped for food consumption and because of high demand, it is a lucrative business. Eurasian blackcaps (Sylvia atricapilla), known locally as 'ambelopoulia', are most sought-after by illegal trappers in Cyprus. Though blackcaps are the main target, the use of non-selective trapping methods involving mist nets and lime sticks results in the demise of individuals of many other species. Indeed, of the 155 species recorded captured with mist nets and lime sticks in 2018 in Cyprus, 82 are listed as conservation priority species under the EU Bird Directive or in BirdLife International's Species of European Conservation Concern, which include the endemic Cyprus warbler Sylvia melanothorax. Capture rates are expected to be amplified by using tape lures: devices involving a loudspeaker to broadcast the songs of target species. Tape lures are usually set by trappers in order to increase catch rates. They are typically played at night to attract

nocturnally migrating birds that may hear and respond to the song from great distances, while also reducing detection rates by the authorities.

Use of tape lures to increase catch rates is thought to harm both migratory and resident bird communities, but the extent to which calling devices attract birds to traps has not been quantified. Furthermore, since playbacks are typically aimed at attracting certain target species, we still do not know whether their luring effect is limited to those species or whether they increase the catch rate of other species that may use heterospecific vocalisations as habitat quality cues and for detection of predators.

Here, we aim to quantify with playback experiments the effectiveness of playback of target species' song stimuli in luring birds into nets. We used recordings of Eurasian blackcap (hereafter blackcap) to determine effects of capture rates of blackcaps and other species compared to controls. We also tested whether playback of Sardinian warbler (*Sylvia melanocephala*) song - a local breeding species' - also increases capture rates of that species and non-target species. Both species may use vocalizations for conspecific and heterospecific interactions, including in competition for environmental resources. Because of this, we expect a strong response from conspecifics as well as competitor heterospecifics. Through this approach, we aim to determine the extent to which the use of such playback devices increases both catch rates and number of species caught. Our findings would inform authorities and conservation initiatives on the impact on wildlife of the use of tape lures in illicit trapping operations.

Methods

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Experimental design We conducted playback experiments between March and October 2016 and in September 2019 at 8 localities in Cyprus (Fig.1). For playback stimuli, we used recordings of blackcap and Sardinian warbler song. Blackcap is a medium sized migrant warbler that does not breed in Cyprus, but occurs in large numbers during migration peaks in spring and autumn, with some individuals overwintering. Sardinian warbler is partially migratory, and found year round in coastal and island populations, including in Cyprus, where it is common and increasing in numbers [30,31]. For each playback experiment session, we used two 12x2.5 m mist nets, with one acting as the experiment (with playback) and the other as control (without playback), and positioned about 100 m away from each other to reduce possible interference between the experiment and control nets. Blackcap and Sardinian warbler stimuli were alternately played in experimental sessions, where a session is an independent experimental period where playback is played continuously for one hour at one of the nets. In all cases, experimental sessions were paired, so that the experimental net in session one was then the control in session two, and vice versa. Illegal trappers are unlikely to use a large variety of stimuli for a given target species, instead using a single stimulus they have found works well throughout. We aimed to replicate the approach of trappers in using a small number of stimuli in our experiments. We sourced from Xenocanto online repository (www.xeno-canto.org) two blackcap recordings, XC269084 (RMS amplitude = 2712), and XC270439 (RMS amplitude = 2712). For Sardinian warbler we used XC98857 (RMS amplitude = 1180) and our own recording from western Cyprus (RMS amplitude = 1453). Amplitude values were obtained from Raven Pro 1.6.

Statistical analyses

We first conducted a t-test to determine whether there was an overall effect of playbacks on the total number of captured birds. We then compared Poisson and negative binomial generalized linear mixed models (GLMMs) implemented in R in the lme4 package to investigate how playbacks influence the number of captured birds. Given the slight overdispersion in our data, negative binomial GLMMs provided in all cases the best fit according to the lowest corrected Akaike Information Criterion (AICc) score calculated in the AICcmodavg package in R.

To assess whether playback attracted target species, we ran two models, one with number of captured blackcaps and the other with number of Sardinian warblers as dependent variables. In both models, we included as fixed factors the time, season, and type of playback: a categorical variable with three levels: 1) no playback, 2) blackcap playback and 3) Sardinian warbler playback.

To examine whether playback had an effect on non-target species, we specifically tested the effect of playbacks on all species captured excluding individuals of the species that emitted the given playback stimulus. Specifically, the effect of blackcap playback was tested using as dependent variable the total number of captured birds excluding blackcaps, whereas the effect of Sardinian warbler playback was tested using the total number of trapped birds minus Sardinian warblers. We included time and type of playback as fixed factors. We also included site as a random effect in all our models to account for variation among sites. Models with the best fit (lowest AICc score) for each set of GLMMs were validated by plotting residuals against predicted values and a qq-plot to detect possible deviations from the expected distribution. Model validation functions were provided in the DHARMa R package.

Results

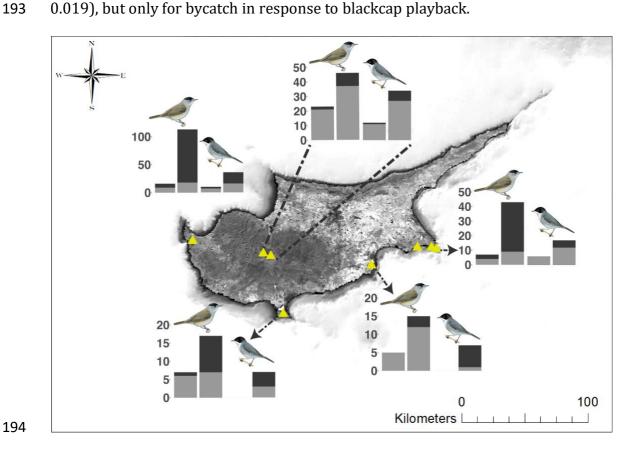

 We caught significantly more birds (t-test: t=-4.82; p = <0.001) in experimental nets (mean = 2.77, sd = 4.17), catching 333 birds of 31 species, than in controls (mean = 0.75, sd = 1.39), where we trapped 90 birds belonging to 24 species (Fig. 1, Table S1). Numbers of blackcaps were positively affected by both conspecific (GLMM: z = 8.33, p = <0.001) and Sardinian warbler (z = 2.66, p = 0.007) playback, with more caught per experiment in spring (z = 2.56, p = 0.01) compared to autumn (Table 1). By contrast, Sardinian warbler numbers caught were positively affected by conspecific playback (z = 5.60, p = <0.001) but not blackcap playback (z = 1.49, p = 0.133), while season also had no effect on their capture rates (Table 1).

TABLE 1. Results of negative binomial GLMMs investigating the effect of 1) blackcap and Sardinian warbler playback on the number of blackcaps caught, 2) blackcap and Sardinian warbler playback on number of Sardinian warblers caught, 3) blackcap playback on heterospecifics minus blackcaps and 4) Sardinian warbler playback on heterospecifics minus Sardinian warblers.

	Estimate	St. error	Z	P
1) Response:				
Blackcap				
Intercept	-2.6407	0.5273	-5.008	< 0.001
Time	-1.2525	0.3228	-3.880	< 0.001
Season: spring	1.5499	0.6039	2.567	0.010
Season: summer	-3.9445	1.1372	-3.469	< 0.001
Blackcap playback	2.4530	0.2942	8.337	< 0.001
Sardinian warbler	0.9892	0.3706	2.669	0.007
playback				
2) Response:				
Sardinian warbler				
Intercept	-3.2102	0.5253	-6.111	< 0.001
Time	-0.7189	0.3344	-2.149	0.031
Blackcap playback	0.7735	0.5160	1.499	0.133
Sardinian warbler	2.5011	0.4461	5.607	< 0.001
playback				

172	3) Response:						
173	All species,						
174	blackcap excluded						
175	Intercept	-0.7112	0.3095	-2.298	0.021		
176	Time	-0.3455	0.1475	-2.342	0.019		
177	Blackcap playback	0.5882	0.2504	2.350	0.018		
178							
179	4) Response:						
180	All species, Sardinian						
181	warbler excluded						
182	Intercept	-1.0185	0.3510	-2.902	0.003		
183	Time	0.1628	0.1620	1.005	0.315		
184	Sardinian warbler	0.9200	0.3081	2.986	0.002		
185	playback						
186							

By catch numbers were also significantly higher in experimental (n = 106 individuals of 29 species) than in control nets (n = 61 individuals of 22 species) (Fig. 1). Both blackcap (GLMM: z = 2.35, p = 0.018) and Sardinian warbler playback (z = 2.98, p = 0.002) elicited higher numbers. A significant negative effect of time was also found (z = -2.34, p =0.019), but only for bycatch in response to blackcap playback.

187 188

189

190

191

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

other passerines.

FIGURE 1. Map illustrating number of heterospecific (grey) and conspecific (black) individuals caught in control (left bar of pair) versus experimental (right bar of pair) nets with blackcap (left pair of bars) and Sardinian warbler (right pair of bars) playback stimuli at different localities: A) Agia Napa and Cape Greco, B) Larnaca Salt Lake, C) Akrotiri Salt Lake, D) Neo Chorio and E) Troodos mountains. Cyprus' background map illustrates Enhanced Vegetation Index for February 2020. Source: Esri. Bird illustrations courtesy of HBW [27,29]. Discussion Our study shows that the use of tape lures results in an increase from six to eight times capture rates of target species. Tape lures may have a detrimental effect on other avian species since they also attract individuals of non-target species, which would also meet their demise at trapping sites. Bird song functions in mate choice and territory defence [25,26], so theoretically should only attract conspecific breeding birds, and their close competitors[38]. Indeed, geographic variation in song has been shown to reduce response levels because of differences in dialects[39,40] or resulting from adaptation to habitat differences[41]. Song may also have a function during migration, however, and birds may use conspecific signals to assess environmental quality [42] and trophic resource availability[43]. Season also plays an important role in determining response rates. Spring represents a period of intense migratory activity for many species and this may explain why spring positively affects blackcaps responsiveness in our study. The approach of the breeding season may increase responsiveness as a consequence of increased hormone levels associated with increased territoriality, as demonstrated in

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

According to our results, Sardinian warbler playback also had a positive effect in attracting blackcaps into nets, whereas blackcap playback did not elicit the same response from Sardinian warblers. Blackcaps have been shown to recognize other species [24,28], and the strong response elicited by Sardinian warbler stimuli is likely to have arisen due to similar dietary requirements; both species feed mainly on fruits outside of the breeding season and shift towards an insect-based diet as the breeding season approaches [27,29]. Furthermore, some migrant species use resident species as indicators of habitat-quality and food availability[45] as well as to infer the presence of predators from the calls of resident prey species [46]. We suggest blackcap responses to Sardinian warbler playback also reflect migrants eavesdropping on heterospecific vocalisations for their own benefit. However, because Sardinian warblers are resident species, they are less likely to rely on other species to locate food resources and would not be expected to recognize vocalisations of a species that does not breed in Cyprus, such as blackcap. Notwithstanding, no response by Sardinian warbler to blackcap song might even reflect avoidance behavior, whereby resident species avoid migratory birds to escape competition for food, which has been shown in Sardinian warbler[47]. However, we did not find that Sardinian warbler avoided blackcap experimental nets more than controls. In our study, we also show that other species responded positively to both blackcap and Sardinian warbler playbacks. Related heterospecific birds such as Sylvia warblers (e.g. S. curruca and S. melanothorax) responded to the calls, possibly because of overlapping diet and habitat requirements [28], thus contributing to the strong positive response to both playbacks. Also, response to heterospecific vocalization might be directly related to phylogenetic relatedness since they tend to share similar song features, as demonstrated in other taxa[48]. Heterospecific responses of more distantlyrelated species such as willow warbler (*Phylloscopus trochilus*), spotted flycatcher (*Muscicapa striata*), European chaffinch (*Fringilla coelebs*) and common redstart (*Phoenicurus phoenicurus*) may also be elicited by a food expectancy or the advantages of safety in numbers and increased risk detection. Under the latter scenario, eavesdropping heterospecific signals such as warning signals may lead to important advantages such as a rapid response to threats and therefore an optimization of foraging[23].

In this paper, we show that tape lures boost capture rates at trapping sites. The

In this paper, we show that tape lures boost capture rates at trapping sites. The joint use of non-selective traps with tape lures increases the number of both individuals and range of species caught, which often include threatened species or local endemics such as the Cyprus warbler, which might already be in population decline because of other factors such as habitat disturbance and competition with recent colonizers[30]. The tradition of using lime sticks to catch migrant birds for a meal is illegal, much because of the non-selectivity of this methods and because the extensive use of these methods leads to a mass killing of birds in the Mediterranean[15,16,49]. The industrial level illicit trapping of millions of birds using playback devices to lure birds into vast mist nets needs immediate action by the authorities and the continued attention of conservation practitioners. Targeting the source of song playbacks is likely to be the most effective way of finding the traps – it is what attracts the birds into the traps in the first place.

Acknowledgments

We thank Chrystalla Costi, Sifiso Lukhele, and Emmanuel Nwankwo for assistance in the field, and Martin Hellicar and Stavros Christodoulides for helpful comments on the

manuscript. This research was supported by A. G. Leventis Foundation grants to MS and 268 269 MM. References 270 271 1. Gavin MC, Solomon JN, Blank SG. 2010 Measuring and monitoring illegal use of 272 natural resources. Conserv. Biol. 24, 89-100. (doi:10.1111/j.1523-273 1739.2009.01387.x) 2. Brochet AL et al. 2016 Preliminary assessment of the scope and scale of illegal 274 killing and taking of birds in the Mediterranean. *Bird Conserv. Int.* **26**, 1–28. 275 (doi:10.1017/S0959270915000416) 276 Kirby JS, Stattersfield AJ, Butchart SHM, Evans MI, Grimmett RFA, Jones VR, 277 3. O'sullivan I, Tucker GM, Newton I. 2008 Key conservation issues for migratory 278 279 land- and waterbird species on the world's major flyways. Bird Conserv. Int. 18, S49-S73. (doi:10.1017/S0959270908000439) 280 Xu Y, Si Y, Wang Y, Zhang Y, Prins HHT, Cao L, de Boer WF. 2019 Loss of functional 281 4. connectivity in migration networks induces population decline in migratory 282 birds. Ecol. Appl. 29, 1-10. (doi:10.1002/eap.1960) 283 5. Rosenberg K V. et al. 2019 Decline of the North American avifauna. Science (80-.). 284 **366**, 120–124. (doi:10.1126/science.aaw1313) 285 286 6. Whiteside M, Herndon JM. 2018 Aerosolized Coal Fly Ash: A Previously Unrecognized Primary Factor in the Catastrophic Global Demise of Bird 287 288 Populations and Species. *Asian J. Biol.* **6**, 1–21. (doi:10.9734/ajob/2018/44911) 289 7. Butchart SHM. 2008 Red List Indices to measure the sustainability of species use and impacts of invasive alien species. *Bird Conserv. Int.* **18**, S245–S262. 290

(doi:10.1017/S095927090800035X)

- 292 8. Eason P, Rabia B, Attum O. 2016 Hunting of migratory birds in North Sinai, Egypt.
- 293 *Bird Conserv. Int.* **26**, 39–51. (doi:10.1017/S0959270915000180)
- 9. Hahn S, Bauer S, Liechti F. 2009 The natural link between Europe and Africa 2.1
- billion birds on migration. *Oikos* **118**, 624–626. (doi:10.1111/j.1600-
- 296 0706.2008.17309.x)
- 297 10. Newton I. 2010 *The migration ecology of birds*. London: Academid Press.
- 298 11. Vickery JA, Ewing SR, Smith KW, Pain DJ, Bairlein F, Škorpilová J, Gregory RD.
- 299 2014 The decline of Afro-Palaearctic migrants and an assessment of potential
- 300 causes. *Ibis (Lond. 1859).* **156**, 1–22. (doi:10.1111/ibi.12118)
- 301 12. Jenkins HM, Mammides C, Keane A. 2017 Exploring differences in stakeholders'
- perceptions of illegal bird trapping in Cyprus. *J. Ethnobiol. Ethnomed.* **13**, 1–10.
- 303 (doi:10.1186/s13002-017-0194-3)
- 304 13. Briedis M et al. 2020 Broad-scale patterns of the Afro-Palaearctic landbird
- 305 migration. *Glob. Ecol. Biogeogr.*, geb.13063. (doi:10.1111/geb.13063)
- 306 14. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J. 2000 Biodiversity
- hotspots for conservation priorities. *Nature* **403**, 853–858.
- 308 15. Franzen J. 2010 Emptying the skies. *New Yorker (26 July)*. Retrieved from (http://
- 309 www.newyorker.com/magazine/2010/07/26/emptying-the-skies).
- 310 16. Franzen J. 2013 Last song for migrating birds. *Natl. Geogr. Mag.* Retrieved from
- 311 (http://ngm.nationalgeographic.com/2013/07/songbird-migration/franzen-
- 312 text).
- 313 17. Balmori A. 2019 Endangered bird mortality by gunshots: still a current problem.
- 314 *Biodivers. Conserv.* **28**, 2555–2564. (doi:10.1007/s10531-019-01778-9)
- 315 18. Hellicar MA, Anastasi V, Beton D, Snape R. 2014 Important Bird Areas of Cyprus.
- 316 Nicosia, Cyprus: BirdLife Cyprus.

19. Dimitriou AC, Forcina G, Papazoglou C, Panayides P, Guerrini M, Crabtree A, 317 Barbanera F, Sfenthourakis S. 2017 DNA barcoding of Bird species in Cyprus: A 318 tool for conservation purposes. *Bird Conserv. Int.* **27**, 483–494. 319 (doi:10.1017/S0959270916000472) 320 321 20. Shialis T, Charalambides M. 2019 Update on illegal bird trapping activity in Cyprus: Covering the autumn 2018 findings of BirdLife Cyprus' continuing 322 323 monitoring programme for illegal bird trapping in Cyprus and providing an overview of the latest developments regarding the problem. BirdLife Cyprus. 324 325 BirdLife International. 2017 European birds of conservation concern: 21. 326 populations, trends and national responsibilities. BirdLife International, Cambridge, UK. 327 Morinay J. Forsman JT, Doligez B. 2020 Heterospecific song quality as social 328 22. information for settlement decisions: an experimental approach in a wild bird. 329 *Anim. Behav.* **161**, 103–113. (doi:10.1016/j.anbehav.2020.01.002) 330 331 Magrath RD, Haff TM, Fallow PM, Radford AN. 2015 Eavesdropping on 23. 332 heterospecific alarm calls: From mechanisms to consequences. Biol. Rev. 90, 560-333 586. (doi:10.1111/brv.12122) 334 Matyjasiak P. 2005 Birds associate species-specific acoustic and visual cues: 24. Recognition of heterospecific rivals by male blackcaps. *Behav. Ecol.* **16**, 467–471. 335 (doi:10.1093/beheco/ari012) 336 Leedale AE, Collins SA, de Kort SR. 2015 Blackcaps (Sylvia atricapilla) increase the 337 25. 338 whistle part of their song in response to simulated territorial intrusion. *Ethology* 339 **121**, 403–409. (doi:10.1111/eth.12349) Kareklas K, Wilson J, Kunc HP, Arnott G. 2019 Signal complexity communicates 340 26. aggressive intent during contests, but the process is disrupted by noise. Biol. Lett. 341

15. (doi:10.1098/rsbl.2018.0841) 342 27. Aymí R, Gargallo G, Christie DA. 2019 Eurasian Blackcap (Sylvia atricapilla). In del 343 Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the 344 Birds of the World Alive, Barcelona: Lynx Edicions. 345 346 28. Shirihai H, Gargallo G, Helbig AJ. 2001 Sylvia Warblers. Identification, taxonomy and phylogeny of the genus Sylvia. London: Helm Identification Guides. 347 29. Aymí R, Gargallo G. 2019 Sardinian Warbler (Sylvia melanocephala). In del Hoyo, 348 349 J., Elliott, A., Sargatal, J., Christie, D.A. & de Juana, E. (eds.). Handbook of the Birds of 350 the World Alive, Barcelona: Lynx Edicions. 351 30. Hellicar M, Kirschel ANG. 2020 Grazing pressure and the interaction dynamics of the endemic Cyprus Warbler Sylvia melanothorax and its recently colonizing 352 congener the Sardinian Warbler S. melanocephala. Bird Conserv. Int. 353 354 31. Hellicar MA, Honold J, Kirschel AN. 2019 Comparison of land cover and farming intensity-based models for mapping High nature Value farmland in Cyprus. Bird 355 *Study* **66**, 317–328. 356 Center for Conservation Bioaciustics. 2019 Raven Pro: Interactive Sound Analysis 32. 357 358 Software (Version 1.6) [Computer software]. Ithaca, NY: The Cornell Lab of Ornithology. Available from http://ravensoundsoftware.com/. 359 Bates D, Maechler M, Bolker B, Walker S. 2015 Fitting Linear Mixed-Effects 360 33. Models Using lme4. J. Stat. Softw. 67, 1–48. 361 Lindén A, Mäntyniemi S. 2011 Using the negative binomial distribution to model 362 34. 363 overdispersion in ecological count data. *Ecology* **92**, 1414–1421. (doi:10.1890/10-1831.1) 364 Mazerolle MJ. 2019 AICmodavg: Model selection and multimodel inference based 365 35.

366

on (Q)AIC(c).

Harting F. 2019 DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / 367 36. Mixed) Regression Models. 368 NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology 369 37. Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) 370 371 Terra (MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006); NASA OB.DAAC, Greenbelt, MD, USA. 372 373 38. Kirschel ANG, Seddon N, Tobias JA. 2019 Range-wide spatial mapping reveals convergent character displacement of bird song. Proc. R. Soc. B Biol. Sci. 286, 17-374 375 19. (doi:10.1098/rspb.2019.0443) 376 39. Hamao S. 2016 Asymmetric response to song dialects among bird populations: 377 the effect of sympatric related species. *Anim. Behav.* **119**, 143–150. (doi:10.1016/j.anbehav.2016.06.009) 378 Parker TH, Greig EI, Nakagawa S, Parra M, Dalisio AC. 2018 Subspecies status and 379 40. methods explain strength of response to local versus foreign song by oscine birds 380 in meta-analysis. *Anim. Behav.* **142**, 1–17. (doi:10.1016/j.anbehav.2018.05.023) 381 41. Kirschel ANG, Slabbekoorn H, Blumstein DT, Cohen RE, Kort SR De, Buermann W, 382 383 Smith TB. 2011 Testing alternative hypotheses for evolutionary diversification in an african songbird: rainforest refugia versus ecological gradients. *Evolution (N.* 384 *Y*)., 3162–3174. (doi:10.5061/dryad.h8t3v) 385 Hoi-Leitner M, Nechtelberger H, Hoi H. 1995 Song rate as a signal for nest site 386 42. quality in blackcaps (Sylvia atricapilla). *Behav. Ecol. Sociobiol.* **37**, 399–405. 387 (doi:10.1007/BF00170587) 388 389 43. Ward MP, Schlossberg S. 2004 Conspecific attraction and the conservation of territorial songbirds. Conserv. Biol. 18, 519-525. (doi:10.1111/j.1523-390

1739.2004.00494.x)

Adreani NM, Goymann W, Mentesana L. 2018 Not one hormone or another: 392 44. Aggression differentially affects progesterone and testosterone in a South 393 American ovenbird. *Horm. Behav.* **105**, 104–109. 394 (doi:10.1016/j.yhbeh.2018.08.003) 395 396 45. Forsman JT, Thomson RL, Seppänen JT. 2007 Mechanisms and fitness effects of interspecific information use between migrant and resident birds. Behav. Ecol. 18, 397 398 888-894. (doi:10.1093/beheco/arm048) Fallow PM, Pitcher BJ, Magrath RD. 2013 Alarming features: Birds use specific 399 46. 400 acoustic properties to identify heterospecific alarm calls. Proc. R. Soc. B Biol. Sci. 401 **280**, 1–9. (doi:10.1098/rspb.2012.2539) Bensusan KJ, Shorrocks B, Hamer KC. 2011 Impacts of passage migrant songbirds 402 47. on behaviour and habitat use of resident Sardinian Warblers Sylvia 403 404 melanocephala in Gibraltar. *Ibis (Lond. 1859).* **153**, 616–621. (doi:10.1111/j.1474-919X.2011.01122.x) 405 48. De Kort SR, Ten Cate C. 2001 Response to interspecific vocalizations is affected by 406 degree of phylogenetic relatedness in Streptopelia doves. Anim. Behav. 61, 239-407 408 247. (doi:10.1006/anbe.2000.1552) 49. 2009 Directive 2009/147/EC of the European Parliament and of the Council of 30 409 November 2009 on the conservation of wild birds. 410