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DNA methylation is a ubiquitous chromatin feature — in maize, more than 25% of cytosines in the
genome are methylated. Recently, major progress has been made in describing the molecular mechanisms
driving methylation, yet variation and evolution of the methylation landscape during maize domestica-
tion remain largely unknown. Here we leveraged whole-genome sequencing (WGS) and whole-genome
bisulfite sequencing (WGBS) on populations of modern maize, landrace, and teosinte (Zea mays ssp.
parviglumis) to investigate the adaptive and phenotypic consequences of methylation variations in maize.
By using a novel estimation approach, we inferred the methylome site frequency spectrum (mSFS) to es-
timate forward and backward methylation mutation rates and selection coefficients. We only found weak
evidence for direct selections on methylations in any context, but thousands of differentially methylated
regions (DMRs) were identified in population-wide that are correlated with recent selections. Further in-
vestigation revealed that DMRs are enriched in 5’ untranslated regions, and that maize hypomethylated
DMRs likely helped rewire distal gene regulation. For two trait-associated DMRs, vgt1-DMR and tb1-
DMR, our HiChIP data indicated that the interactive loops between DMRs and respective downstream
genes were present in B73, a modern maize line, but absent in teosinte. And functional analyses suggested
that these DMRs likely served as cis-acting elements that modulated gene regulation after domestication.
Our results enable a better understanding of the evolutionary forces acting on patterns of DNA methyla-
tion and suggest a role of methylation variation in adaptive evolution.

INTRODUCTION

Genomic DNA is tightly packed in the nucleus and is functionally modified by various chromatin marks such as DNA methylation on
cytosine. DNA methylation is a heritable covalent modification prevalent in most species, from bacteria to humans [1, 2]. In mammals,
DNA methylation commonly occurs in the symmetric CG context with exceptions of non-CG methylation in specific cell types, such as
embryonic stem cells [3], but in plants it occurs in all contexts including CG, CHG and CHH (H stands for A, T, or C). Genome-wide
levels of cytosine methylation exhibits substantial variations across angiosperms, largely due to differences in the genomic composition
of transposable elements [4, 5], but broad patterns of methylation are often conserved within species [6, 7]. Across plant genomes,
levels of DNA methylation vary widely from euchromatin to heterochromatin, driven by the different molecular mechanisms for the
establishment and maintenance of DNA methylation in CG, CHG, and CHH contexts [8, 9].

DNA methylation is considered essential to suppress the activity of transposons [10], to regulate gene expression [11], and to
maintain genome stability [8]. Failure to maintain patterns of DNA methylation in many cases can lead to developmental abnormalities
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and even lethality [12, 13]. Nonetheless, variation of the DNA methylation has been detected both in natural plant [14] and human
populations [15]. Levels of DNA methylation can be affected by genetic variation and environmental cues [16]. Additionally, heritable
de novo epimutation — the stochastic loss or gain of DNA methylation — can occur spontaneously and has functional consequences
[17, 18]. Population methylome studies suggest that the spread of DNA methylation from transposons into flanking regions is one of
the major sources of epimutation, such that 20% and 50% of the cis-meQTL (methylation Quantitative Trait Loci) are attributable to
flanking structural variants in Arabidopsis [7] and maize [19].

In Arabidopsis, a multi-generational epimutation accumulation experiment [20] estimated forward (gain of DNA methylation) and
backward (loss of methylation) epimutation rates per CG site at about 2.56 × 10−4 and 6.30 × 10−4, respectively. Other than this
Arabidopsis experiment, there are no systematic estimates of the epimutation rates in higher plants, making it difficult to understand
the extent to which spontaneous epimutations contribute to methylome diversity in a natural population. Because the per base
rates of DNA methylation variation are several orders of magnitude larger than DNA point mutation, conventional population
genetic models which assume infinite sites models seemed inappropriate for epimutation modeling. As an attempt to overcome the
obstacle, Charlesworth and Jain [21] developed an analytical framework to address evolution questions for a high order of mutations.
Leveraging this theoretical framework, Vidalis et al. [22] constructed the methylome site frequency spectrum (mSFS) using worldwide
Arabidopsis samples, but they failed to find evidences for selections on genic CG epimutation under benign environments. The
confounding effect between DNA variation and methylation variation, as well as the high scaled epimutation rates become obstacles
to further dissect the evolutionary forces in shaping the methylation patterns at different timescales under different environments.

Maize, a major cereal crop species, was domesticated from its wild ancestor Teosinte (Z. mays ssp. parviglumis) near the Balsas
River Valley area in Mexico about 9,000 years ago. Genetic studies revealed that the selection of several major effect loci dramatically
changed the morphology of teosinte to the modern maize [23]. About 4,000 years ago, maize was introduced to the Southwest of the
United States from Mexico; after the initial introduction, however, for about 2,000 years, its territory was limited within the lowland
desert. Through sequencing of ancient maize cobs from Turkey Pen Shelter in the temperate Southwest United States, evidence
suggested that the ancient maize had finally adapted to the temperate environment in terms of flowering time and tillering phenotypes
and eventually enabled this species to spread out to a broader area of the temperate environment [24]. Flowering time, a trait that
directly affecting plant fitness, played a major role in this local adaptation process. Numerous QTLs and GWAS studies in maize
suggested that flowering time in maize was predominantly controlled by a large number of additive loci [25, 26]. Occasionally,
genotype-by-environment interaction was detected for flowering time traits [27]. However, the roles of methylation variation for
flowering time and other adaptation-related traits in a natural population, as well as the evolutionary forces in shaping the methylome
patterns in different timescales remain largely elusive.

Here, we sequenced genomes from a set of geographically widespread Mexican landraces and a natural population of teosinte
collected near Palmar Chico, Mexico [28], from which we generated genomic sequences and methylomes in base-pair resolution.
Additionally, we profiled the teosinte (accession no. Ames 21809) interactome using HiChIP method with two antibodies of H3K4me3
and H3K27ac. Together with the analysis from previously published genome [29], transcriptome [30], methylome [6], and interactome
[31] datasets, we estimated epimutation rates and the selection pressure in different timescales, investigated the DNA methylation
landscapes and variations, detected differentially methylated regions (DMRs), characterized the genomic features that are related with
DMRs, and functionally validated two DMRs that are associated with adaptation-traits. Our results suggested that DNA methylation is
likely under weak selection during evolution. The inferred phenotypic effects from some DMRs demonstrated that varied methylation
patterns may modulate the regulation of some domestication genes and thus affect maize adaptation.

RESULTS

Genomic distribution of methylation in maize and teosinte
To investigate genome-wide methylation patterns in maize and teosinte, we performed whole-genome bisulfite sequencing from a
panel of wild teosinte, domesticated maize landraces, and modern maize inbreds (Table S1). Using the resequenced genome of each
line, we created individual pseudo-references (see materials and methods) that alleviated potential bias of mapping reads to a single
reference genome [32] and improved overall read-mapping (Figure S1A). Using pseudo-references, on average about 25 million (5.6%)
more methylated cytosine sites were identified than using the B73 reference (Figure S1B). Across populations, average genome-wide
cytosine methylation levels were about 78.6%, 66.1% and 2.1% in CG, CHG, and CHH contexts, respectively, which are consistent
with previous estimations in maize [12] and are much higher than observed (30.4% CG, 9.9% CHG, and 3.9% CHH) in Arabidopsis [5].
We observed slightly higher levels of methylation in landraces, which may due to lower sequencing depth. We found no significant
differences between teosinte and maize as a group (Figure S2).

We found methylated cytosines in all contexts were significantly higher in the pericentromeric regions (0.54 ± 0.01 in a 10 Mb
window) than in chromosome arms (0.44 ± 0.04) (Students’ t test P-value < 2.2e − 16) (Figure S3). At gene level, we calculated the
average methylated CGs (mCG) level across gene bodies (from transcription start site to transcription termination site, including
exons and introns) in each population and observed a bimodal distribution of mCG in gene bodies (Figure S4A), with approximately
25% of genes (N = 6, 874) showing evidence of gene body methylation (gbm). While the overall distribution of gbm did not differ
across populations, genes with clear syntenic orthologs in Sorghum exhibited gbm (Figure S4B-C), consistent with previous reports
[5, 7, 33, 34].

Genome-wide methylation is only under weak selection
As the frequency of methylation may be affected by both selections and epimutation rates, we implemented a novel MCMC approach
to estimate these parameters using a population genetic model developed for highly variable loci [21]. We defined 100-bp tiles across
the genome as a DNA methylation locus and categorized individual tiles as unmethylated, methylated, or heterozygous alleles
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Fig. 1. Methylome site frequency spectra (mSFS) and population genetic parameters inference. (A-B) Observed and posterior
mSFS at CG (A) and CHG (B) sites. (C) Posterior estimators of mean values and standard errors for µ, ν, and Ne × s for CG and
CHG sites. The size of each tile was 100-bp. Values were estimated using MCMC approach with 25% burnin (see materials and
methods).

for outcrossed populations (i.e., teosinte and landrace populations) and as unmethylated and methylated alleles for modern maize
inbred lines (see materials and methods). To determine the thresholds for methylation calls, we employed the iterative expectation
maximization algorithm to fit the data [35]. We then constructed methylome site frequency spectra (mSFS) for CG and CHG sites
(Figure 1A-B). And sensitivity test results suggested that the mSFS were insensitive to the cutoffs used for the methylation calls
(Figure S5). As the vast majority (> 98%) of CHH sites were unmethylated (Figure S6), we excluded CHH sites from population
genetic analysis.

Because we found little differences among populations in genome-wide patterns, we estimated parameters using the combined
data; estimates from individual populations were nonetheless broadly similar (Figure S7). The predicted mSFS from our model was
largely similar to the observed data (Figure 1A-B), with differences likely attributable to deviations from the simple constant-size
population assumed in the model [21]. Model estimates of the epimutation rate µ for both CG (1.2 × 10−6) and CHG (2.5 × 10−6)
sites were more than an order of magnitude higher than the back-mutation rates (ν = 6.0 × 10−8 and 1.0 × 10−7), consistent with the
observed prevalence of both types of methylation. Estimates of the genome-wide selection coefficient s associated with methylation of
a 100-bp tile were 1.4 × 10−5 and 1.6 × 10−5 for CG and CHG tiles, respectively. Assuming an effective population size of ≈ 150, 000
for maize [36], the population-scaled selection coefficient Ne × s for CG and CHG tiles were 2.1 and 2.3, indicating relatively weak
selection for methylation in each context according to classical population genetic theory [37].

Population level DMRs are enriched in selective sweeps
Average genome-wide methylation data revealed few differences between teosinte and maize, but masks differentiation due to
selection at individual loci. To investigate whether individual genomic regions exhibit differential methylation among populations,
we employed metilene method [38] to identify population-based differentially methylated regions (DMRs) across the genome. This
approach allowed us to precisely define the boundaries of the DMRs by merging tiles recursively. Use this approach, we identified a
total of 5,278 DMRs, or about 0.08% (1.8 Mb) of the genome, including 3,900 DMRs between teosinte and modern maize, 1,019 between
teosinte and landrace, and 359 DMRs between landrace and modern maize (Table S2).

DNA methylation can have a number of functional consequences [14, 39, 40], and thus we tested whether differences in methylation
among populations were associated with selection at individual locus. To test this hypothesis, we used SNP data from each population
to scan for genomic regions showing evidence of selection (see materials and methods). We detected a total of 1,330 selective sweeps
between modern maize and teosinte (Figure 2 and Table S3, see Figure S8 for results of teosinte vs. landrace and landrace vs. modern
maize). Several classical domestication genes, e.g., tb1 [41], ZAG2 [42], ZmSWEET4c [43], RA1 [44], and BT2 [45] were among these
selective signals.

DMRs at CG and CHG sites were highly enriched in regions showing evidence of recent selection (Figure S9, P-value < 0.001),
particularly in intergenic regions (Figure S10A). These DMRs, both hypo- and hypermethylated in maize, exhibited significantly
higher allele frequency differentiations between maize and teosinte (Figure S10B, P-value < 0.001).
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Fig. 2. Selection on differentially methylated regions. Distributions of teosinte-maize selective sweeps, DMRs and other genomic
features across ten maize chromosomes. From outer to inner circles were 1© Chromosome names, 2© selective sweeps detected
between modern maize and teosinte, 3© the recombination rate, and the density of DMRs (number per 1-Mb) between modern
maize and teosinte in 4© CG and 5© CHG contexts. Red dots in circle 3© denote the centromeres.

Hypomethylated regions in maize are involved in distal gene regulation

Further investigation indicated that teosinte-maize CG DMRs were significantly enriched in mappable genic and intergenic (i.e.,
nongenic excluding 5-kb upstream and downstream of genes and transposons) regions for both hyper- and hypomethylated regions in
maize, but depleted from transposon regions (Figure 3A). We detected maize hyper- and hypomethylated DMRs in 0.01% and 0.02%
of mappable regions across the genome. In particular, 0.07% and 0.05% of maize hyper-DMR (DMR hypermethylated in maize) and
hypo-DMR (DMR hypomethylated in maize) were located within mappable exonic regions, which were 14-fold and 5-fold higher
than expected by chance (permutation P-values < 0.001, Figure S11A). These CG DMRs could be mapped to N = 229 unique genes
(Table S4). After examining the mapping locations based on the collapsed gene model, we found DMRs peaked at 5’ UTR (Figure 3B),
consistent with a pattern that was previously observed [47]. Using these DMR genes for a gene ontology (GO) analysis, we detected 15
molecular function terms were significantly enriched (Figure S11B). Interestingly, 14/15 of these significant terms were associated
with "binding" activities, including protein, nucleoside, and ribonucleoside binding. Furthermore, we found these exonic DMRs were
enriched at transcription factor binding sites which were identified using DAP-seq [48] (Permutation P-value < 0.001).

Li et al., recently profiled genomic regions colocalized with H3K4me3 and H3K27ac, two well-known chromatin marks for promoters
and enhancers [49, 50], to define the interactome in maize [31]. We leveraged these interactome data to study the relationship between
DMRs and physical interactions. First, we found the interactive anchor sequences were significantly enriched in DMRs that are
hypomethylated in maize, especially in the regulatory regions, including upstream 5-kb, downstream 5-kb, and intergenic regions
(Figure 3A). We also found DMRs located in transposon elements that were hypomethylated in maize more likely overlap with
interactive anchors than expected by chance (Permutation P-value < 0.001).

We hypothesized that the DMRs, especially the DMRs located within the intergenic regions, will alter the up- or downstream gene
expression through physical interactions. To test this hypothesis, we mapped the interactive anchors harboring maize hypomethylated
DMRs to their 1st, 2nd, and 3rd levels of contacts (Figure S12A). Interestingly, genes (N = 60) directly contacted (or the 1st level
contacts) with these maize hypomethylated intergenic DMRs (Table S5) showed significantly (Student’s paired t-test, P-value < 0.05)
increased expression levels in maize compared to teosinte using published data [30]. The results were insignificant for 2nd and 3rd
levels contacts (Figure S12A). We found 5/60 genes (Enrichment test P-value < 0.01) were domestication candidate genes as reported
previously [51–54]. Two of them were Zm00001d018036 gene associated with cob length (P-value = 6 × 10−25) and Zm00001d041948
gene associated with shank length (P-value = 5.6 × 10−10) [51]. Further investigation of these two candidates using recently published
chromatin data [46] detected the STARR (Self-Transcribing Active Regulatory Region, a sequencing technology for identifying and
quantifying enhancer activity [55]) and H3K27ac peaks at the DMR loci (Figure 3C and Figure S13A). Consistently with the enhancer
signals, the expression levels of these two genes had been significantly increased in maize relative to teosinte (Figure S12B and Figure
S13B).
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Fig. 3. Teosinte-maize CG DMRs and their associated functional features. (A) Breakdown of hyper-DMRs (DMR hypermethy-
lated in maize) and hypo-DMRs (DMR hypomethylated in maize) into genomic features and their overlaps with interactive anchors
using data obtained from Li et al., [31]. Blue and red stars indicated DMRs that were significantly enriched at genomic features and
interaction anchors (permutation P-value < 0.001). (B) The distribution of the number of DMRs along the collapsed gene model. Be-
low the figure shows a schematic gene model with three exons (black boxes). (C) Physical interactions (upper panel), colocalization
with H3K27ac and H3K4me3 (middle panels), and STARR profiles (lower panels) around Zm00001d018036 gene in B73. STARR-seq
data obtained from [46] showed the transcriptional output (STARR-RNA) and DNA input (STARR-input) around this region. Blue
curly lines indicate the interactive contacts between DMR and the candidate gene and grey curly lines indicate other interactive
contacts around the region. Horizontal thick blue lines denote the interactive anchors. Red and grey boxes indicate the DMR and
gene model, respectively.

DMRs explained disproportionally larger phenotypic variance and altered differential flowering time genes regulation

Next, we employed a variance component analysis approach by using SNP sets residing in DMRs (DMR-SNPs) to evaluate the relative
importance of DMRs (see materials and methods). By using NAM population with 41 publicly available phenotypes [56], we estimated
the variance explained by DMR-SNPs and explained by SNPs mapped to the rest of the genome. Results suggested that teosinte-maize
CG DMR-SNPs, although only accounting for 0.01% of the genome, could explain more than 1% of the phenotypic variances for
18 traits, including ear row number (12.1%), northern leaf blight (5.5%) and, stalk strength (8.9%) (Figure 4A). For landrace-maize
CG DMR-SNPs, we detected disproportionally larger phenotypic variances be explained for several yield and disease-related traits,
including tassel branch number, ear row number, Southern and Northern leaf blight (Figure 4B).

Interestingly, four flowering time related traits, i.e., photoperiod growing-degree days to silk, photoperiod growing-degree days to
anthesis, days to anthesis, and days to silk, showed consistently strong signals that can be explained by over 3.7% heritabilities (Figure
4A). We hypothesized that the disproportionally larger heritability explained by CG DMR-SNPs might be caused by some large effect
flowering time related genes. To test this hypothesis, we examined several known genes in the flowering time pathway [57]. Indeed,
we detected six DMRs located on four flowering time related genes (Figure S14) (Enrichment test P-value = 0.02).

Additionally, one DMR located 40-kb upstream of the ZmRAP2.7 gene and 20-kb downstream of the vgt1 locus that was hypomethy-
lated in modern maize and landrace but was hypermethylated in teosinte (Figure 4C). A MITE transposon insertion in the vgt1 locus
was considered as the causal variation for the down regulation of the ZmRAP2.7, which was a transcription factor in the flowering time
pathway [58]. Reanalysis of the published ChIP data revealed that the DMR colocalized with H3K27ac, the chromatin activation mark,
and there existed a physical interaction between the DMR and vgt1 locus in maize [31] (Figure 4D). To examine the interaction status
in teosinte, we then generated HiChIP data for a teosinte sample using the same tissue and antibodies (see materials and methods).
As expected, we failed to detect the physical interaction between vgt1-DMR and vgt1 itself in teosinte (Figure 4D), suggesting that
methylation might play a functional role in affecting physical interaction at vgt1-DMR locus.

To further validate the potential enhancer function of the 209-bp vgt1-DMR, we incorporated the vgt1-DMR sequence amplified
from B73 into a vector constructed as shown in (Figure 4E) and performed the dual-luciferase transient expression assay in maize
protoplasts (see materials and methods). The results of the transient expression assay revealed that the maize cells harboring the
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Fig. 4. Phenotypic effects of DMR-SNPs and the functional validation results. (A-B) Phenotypic variance explained (h2) by SNPs
residing in DMRs (red) and non-DMRs (grey) using teosinte-maize (A) and landrace-maize (B) CG DMRs. (C) Levels of CG methy-
lation around vgt1-DMR in maize (MZ), landrace (LR), and teosinte (TEO) populations. (D) The interactive contacts (upper panel)
and colocalization with H3K27ac and H3K4me3 (lower panel) around vgt1-DMR in a maize (B73) and a teosinte (Ames 21809) sam-
ples. (E) The vectors constructed for functional validation of the vgt1-DMR using the dual-luciferase transient expression assay
in maize protoplasts. (F) The expression ratios of LUC/REN using five biological replicates. Two asterisks indicate a significant
difference (Student’s t test P-value < 0.001).

DMR exhibited a significantly higher LUC and REN ratio than control (fold change= 2.2, P-value= 2.4e−8, Figure 4F), revealing that
the DMR might act as an enhancer to activate LUC expression.

A segregating tb1-DMR performed like a cis-acting element
One of the most significant teosinte-maize CG DMRs was located 30-kb upstream of the tb1 gene, which is a transcription factor
acting as a repressor of axillary branching (aka tillering) phenotype [41]. This 534-bp tb1-DMR was hypomethylated in modern maize,
hypermethylated in teosinte, and segregating in landraces (Figure 5A). Phenotypic analysis indicated that the DMR was associated
with the tillering phenotype using the phenotypic data observed for the 17 landraces (Fisher’s exact test P-value < 0.05). And the
phenotypic effect was consistent with previous observations that the hypermethylated (teosinte-like) genotypes were likely to grow
tillers.

The causal variation for this locus was previously mapped to a Hopscotch TE insertion 60-kb upstream (Figure 5B) of the tb1
gene. The TE was considered as an enhancer, as shown by a transient in vivo assay [41]. The interactome data support this claim
that there was a physical contact between Hopscotch and tb1 gene (Figure 5B) as have also been shown [31]. Interestingly, we also
detected a direct physical contact between the tb1-DMR and tb1 gene itself in maize line B73 but missing in teosinte using our newly
generated HiChIP data (Figure 5B). This observation was consistent with our previous result for the vgt1-DMR locus and suggested
the DMR might result in differential interactive loops. The colocalization of tb1-DMR with chromatin activation marks in the region
also suggested the tb1-DMR might perform like a cis-acting regulatory element (Figure 5B).

To understand the correlation among these genomic components, i.e., the tb1-DMR and tb1 gene, we conducted linkage disequilib-
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Fig. 5. A hypomethylated DMR that is upstream of tb1 gene. (A) Levels of mCG for the 534-bp tb1-DMR in each individual
methylome of the modern maize (MZ), landrace (LR), and teosinte (TEO) populations. Vertical red dashed lines indicate the bound-
aries of the tb1-DMR. (B) Interactive contacts (upper panel), average CG methylation levels (middle panel), and colocalization of
the tb1-DMR with H3k27ac and H3K4me3 (lower panel). Horizontal thick lines denote the interactive anchors and solid curly lines
on top of the annotations denote the interactive contacts in teosinte and maize. (C) Functional validation result of tb1-DMR using
dual-luciferase transient expression assay in maize protoplasts. Asterisk indicates a significant difference (Student’s t test P-value <
0.05).

rium (LD) analysis using landrace genomic and methylation data, which were segregating at this tb1-DMR locus (see materials and
methods). As a result, we failed to detect strong LD (R2 = 0.1) in this region (Figure S15), indicating the tb1-DMR might be originated
independently. Further, we found the highly methylated landraces were geographically closer to the Balsas River Valley in Mexico,
where maize was originally domesticated from (Figure S16A). As the landraces spread out from the domestication center, their CG
methylation levels were gradually reduced (Figure S16B).

Additionally, we conducted a dual-luciferase transient assay by constructing a vector similar to (Figure 4E). The results indicated
that the tb1-DMR significantly increased the LUC/REN ratio as compared to control (Figure 5C), suggesting that the tb1-DMR was
potentially act as a cis-acting element to enhance downstream gene expression.

DISCUSSION

In this study, we employed population genetics and statistical genomics approaches to infer the rates of epimutation, selection pressure
on DNA methylation, and the extent to which SNPs located within DMRs contributed to phenotypic variations. Our results revealed
that the forward epimutation rate (∼ 10−6) was about 10 times larger than the backward epimutation rate (∼ 10−7), which is several
magnitudes larger than that of the DNA mutation rate (∼ 10−8) in maize [59]. Our estimated epimutation rates were different from
the rates estimated in Arabidopsis using the epimutation accumulation experiments [60]. Partially because in this study, we used 100-bp
tile as an inheritance unit, while the Arabidopsis calculated the per base epimutation rates. Additionally, the genome-wide methylation
levels were dramatically different between maize and Arabidopsis, which may result in different epimutation rates for these two species.

Although population methylome modeling suggested that genome-wide DNA methylation was not under strong selection, we
detected a large number of DMRs by conducting population-wide comparisons. These DMRs are likely to explain adaptation and
domestication related phenotypes, demonstrated by both the global quantitative genetics analyses using DMR-SNPs and the functional
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validations of two well characterized loci vgt1 and tb1. In both functional validation cases, evidences showed that methylation
levels tend to affect the physical interactions. In particular, the domesticated alleles exhibiting low methylation levels in modern
maize associated with newly formed interactive loops in B73 as compared to the wild ancestor teosinte. Transient expression assays
demonstrated that two of these non-methylated alleles can increase the expression levels of the reporter genes. Accordingly, we
identified a set of new genes (about 60) that differentially expressed between maize and teosinte, in which their exonic regions directly
connect with hypo-DMRs. Taken together, these results suggested that methylations might modulate physical interactions and hence
likely affect gene expression. This speculation of methylation variation affected distal regulation fitted well with the previous results
from GWAS that 80% of explained variation could be attributable to trait-associated variants located in regulatory regions [61]. Our
variance component analysis results further suggested that DMR-SNPs (largely mapped to the genic and intergenic regions) explained
disproportionally larger phenotypic variations. Interestingly, teosinte-maize DMR-SNPs explained more phenotypic variances for
domestication related phenotypes, while landrace-maize DMR-SNPs explained more for improvement related phenotypes.

Unlike the low rate of DNA mutation, the high rate of the DNA methylation might provide an alternative mechanism for plant
adaptation. We showed that the hypomethylated regions tend to be involved in the distal regulations to activate or inactivate genes
expressions. They likely to have greater effects on phenotypic traits and, therefore, could be serve as potential targets of recent selection.
However, in this study, we could not rule out the possibility that DMRs might be the hitchhiking effects of the positive selection on
genomic variations.

Collectively, the fact that a large number of DMRs overlapped with the selective sweeps during domestication and improvement
processes, and the evidences that DMRs may function as cis-acting elements provide new insights into plant adaptive evolution. These
naturally occurring adaptive DMRs could possibly be leveraged for understanding gene regulation. Since some of the DMRs exhibited
favorable phenotypic consequences, they might also be the potential targets of artificial selection for further crop improvement.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.991117doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.991117
http://creativecommons.org/licenses/by/4.0/


Research Article Xu et al., 9

MATERIALS AND METHODS

Plant materials and DNA sequencing
We obtained a set of geographically widespread open pollinated landraces across Mexico (N = 17) from Germplasm Resources
Information Network (GRIN) (Table S1). The teosinte (Zea mays ssp. parviglumis; N = 20) were collected near Palmar Chico, Mexico
[28]. We harvested the third leaf of the teosintes and Mexican landraces for DNA extraction using a modified CTAB procedure [62].
The extracted DNA was then sent out for whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS) using
Illumina HiSeq platform. Additionally, we obtained WGBS data for 14 modern maize inbred lines [6] and WGS data for the same 14
lines from the maize HapMap3 project [29].

Sequencing data analysis
The average coverage for the WGS of the 20 teosintes and 17 landraces lines was about 20 ×. For these WGS data, we first mapped
the cleaned reads to the B73 reference genome (AGPv4) [63] using BWA-mem [64] with default parameters, and kept only uniquely
mapped reads. Then we removed the duplicated reads using Picard tools [65]. We conducted SNP calling using Genome Analysis
Toolkit’s (GATK, version 4) HaplotypeCaller [66], in which the following parameters were applied: QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < −12.5, and ReadPosRankSum < −8.0.

In order to improve the WGBS mapping rate and decrease the mapping bias, we replaced the B73 reference genome with filtered
SNP variants using an in-house developed software — pseudoRef (https://github.com/yangjl/pseudoRef). Subsequently, we mapped
reads to each corrected pseudo-reference genome using Bowtie2 [67] and kept only unique mapped reads. After filtering the duplicate
reads, we extracted methylated cytosines using the Bismark methylation extractor and only retained sites with more than three
mapped reads. The weighted methylation level was determined following the previously reported method [68].

Population epigenetics modeling
Spontaneous epimutation changes (i.e. gain or loss of cytosine methylation) exhibit higher rate than genomic mutation [20, 60]. The
standard population genetic methods designed for SNPs are thus inappropriate for population epigenetic studies. Here, we applied
the analytical framework for hypermutable polymorphisms developed by Charlesworth and Jain [21]. Under this framework, the
probability density of the methylated alleles was modeled as:

φ(q) = Ceγq(1 − q)α−1qβ−1

where α = 4Neµ, β = 4Neν, γ = 2Nes. Ne, effective population size; q, frequency of the hypermethylation alleles; µ, forward
epimutation rate (methylation gain); ν, backward epimutation rate (methylation loss); s, selection coefficient. The constant C is required
so that

∫ 1
0 φ(q)dq = 1.

We defined 100-bp tiles as a DNA methylation locus. To define the methylation status, we assumed that the methylation levels in
a heterozygote individual falling into three mixture distributions (unmethylated, methylated, and heterozygote distributions). We
employed an R add-on package "mixtools" and fitted the "normalmixEM" procedure to estimate model parameters [35]. Based on the
converged results of the iterative expectation maximization algorithm (using the "normalmixEM" function), we decided to use 0.7 and
0.3 thresholds for heterozygote individuals (i.e., average methylation value> 0.7 for a 100-bp tile was determined as a methylated call
and coded as 2; < 0.3 was determined as an unmethylated call and coded as 0; otherwise coded as 1). We also tested different cutoffs
and found that the final methylation site frequency spectrum (mSFS) was insensitive to the cutoffs used. Similarly, we assumed two
mixture distributions for inbred lines and used cutoff = 0.5 to determine methylated (coded as 1) and unmethylated (coded as 0) calls.
With these cutoffs, we then constructed mSFS on genome-wide methylation loci. We also constructed interspecific (i.e., across maize,
landrace, and teosinte populations) and intraspecific (i.e., within maize, landrace, and teosinte populations) mSFS.

To estimate three critical population epigenetic parameters (µ, ν, and s) from observed mSFS, we implemented a Markov Chain
Monte Carlo (MCMC) method (https://rpubs.com/rossibarra/mcmcbc). In the analyses, we assumed Ne = 150, 000 [69, 70] and used
normal prior distributions for µ, ν, and s with mean 10−8, 10−8, 10−5 and standard error 0.05, 0.05, and 0.05, respectively (Figure S17).
We ran the model using a chain length of N = 100, 000 iterations with the first 25% as burnin.

Genome scanning to detect selective signals
We called SNPs using our WGS data and performed genome scanning for selective signals using XP-CLR method [71]. In the XP-CLR
analysis, we used a 50-kb sliding window and a 5-kb step size. To ensure comparability of the composite likelihood score in each
window, we fixed the number assayed in each window to 200 SNPs. We evaluated evidence for selections across the genome in three
contrasts: teosinte vs landrace, landrace vs modern maize, and teosinte vs modern maize. We merged nearby windows falling into the
10% tails into the same window. After window merging, we considered the 0.5% outliers as the targets of selection.

We calculated FST using WGS data using VCFtools [72]. In the analysis, we used a 50-kb sliding window and a 5-kb step size.

DMR detection and GO term analysis
We used a software package ’metilene’ for DMR detection between two populations [38]. To call a DMR, we required it contained at
least eight cytosine sites with < 300-bp in distance between two adjacent cytosine sites, and the average of methylation differences
between two populations should be > 0.4 for CG and CHG sites. Finally, we required a corrected P-value < 0.01 as the cutoff.

We conducted gene ontology (GO) term analysis on selected gene lists using AgriGO2.0 with default parameters [73]. We used the
significance cutoff at P-value < 0.01.
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HiChIP sequencing library construction
We constructed the teosinte HiChIP library according to the protocol developed by Mumbach et al. [74] with some modifications. The
samples we used were two weeks aerial tissues collected from a teosinte accession (Ames 21809) that were planted in the growth
chamber under the long-day condition (15h day time and 9h night time) at the temperature (25°C at day time and 20°C at night time).
After tissue collection, we immediately cross-linked it in a 1.5 mM EGS solution (Thermo, 21565) for 20 min in a vacuum, followed by
10 min vacuum infiltration using 1% formaldehyde (Merck, F8775-500ML). To quench the EGS and formaldehyde, we added a final
concentration of 0.15 mM glycine (Merck, V900144) and infiltrated by vacuum for 5 min. Then, cross-linked samples were washed five
times in double-distilled water and flash-frozen in liquid nitrogen.

To isolate the nuclear from cross-linked tissues, we used the methods as described previously [31]. After obtaining the purified
nuclear, we resuspended it in 0.5% SDS and used 10% Triton X-100 to quench it, and then performed digestion, incorporation, and
proximity ligation reactions as previously described [74]. We used two antibodies H3K4me3 (Abcam, ab8580) and H3K27ac (Abcam,
ab4729) to pull down the DNA. And then, we purified DNA with the MinElute PCR Purification Kit (QIAGEN) and measured the
DNA concentration using Qubit. To fragment and capture interactive loops, we used the Tn5 transposase kit (Vazyme, TD502) to
construct the library with 5 ng DNA. We then sent the qualified DNA libraries for sequencing using the Illumina platform.

ChIP-seq and HiChIP data analysis
We obtained ChIP-seq data from the B73 shoot tissue [31] and then aligned the raw reads to B73 reference genome (AGPv4) using
Bowtie2 [75]. After alignment, we removed the duplicated reads and kept only the uniquely mapped reads. By using the uniquely
mapped reads, we calculated read coverages using deepTools [76].

For the teosinte HiChIP sequencing data, we first aligned the raw reads to the B73 reference genome (AGPv4) using HiC-Pro [77],
and then processed the valid read pairs to call interactive loops using hichipper pipeline [78] with a 5-kb bin size. After the analysis,
we filtered out the non-valid loops with genomic distance less than 5 kb or larger than 2 Mb. By using the mango pipeline [79], we
determined the remaining loops with three read pairs supports and the FDR < 0.01 as the significant interactive loops.

Kinship matrices and variance components analysis
We estimated the variance components explained by SNP sets residing in DMRs using the maize Nested Association Mapping (NAM)
population [25, 80]. We downloaded the phenotypic data (/iplant/home/glaubitz/RareAlleles/genomeAnnos/VCAP/phenotypes/NAM/
familyCorrected), consisting of Best Linear Unbiased Predictors (BLUPs) for 41 different traits ([56]), and imputed genotypic data
(/iplant/home/glaubitz/RareAlleles/genomeAnnos/VCAP/genotypes/NAM/namrils_projected_hmp31_MAF02mnCnt2500.hmp.txt.gz) [29] from
CyVerse database as described in Panzea (www.panzea.org).

In the analysis, we mapped SNPs to the DMR and non-DMR regions. We partitioned SNPs into two sets — SNPs located within
DMR and SNPs that were outside of DMRs (i.e., the rest of the genome). For each SNP set, we calculated an additive kinship matrix
using the variance component annotation pipeline implemented in TASSEL5 [81]. We then fed these kinship matrices along with the
NAM phenotypic data to estimate the variance components explained by SNP sets using a Residual Maximum Likelihood (REML)
method implemented in LDAK [82].

Dual-luciferase transient expression assay in maize protoplasts
To investigate the effect of DMRs on gene expression, we performed a dual-luciferase transient expression assay in maize protoplasts.
We used the pGreen II 0800-LUC vector [83] for the transient expression assay with minor modification, where a minimal promoter
from cauliflower mosaic virus (mpCaMV) was inserted into the upstream of luciferase (LUC) to drive LUC gene transcription. In the
construct, we employed the Renillia luciferase (REN) gene under the control of 35S promoter from cauliflower mosaic virus (CaMV) as
an internal control to evaluate the efficiency of maize protoplasts transformation. We amplified the selected DMR sequences from B73
and then inserted them into the control vector at the restriction sites KpnI/XhoI upstream of the mpCaMV, generating the reporter
constructs.

We isolated protoplasts from the 14-day-old leaves of B73 albino seedlings following the protocol [84]. Subsequently, we transformed
15 ug plasmids into the 100 ul isolated protoplasts using polyethylene glycol (PEG) mediated transformation method [84]. After 16
hours infiltration, we measured the LUC and REN activities using dual-luciferase reporter assay reagents (Promega, USA) and a
GloMax 20/20 luminometer (Promega, USA). Finally, we calculated the ratios of LUC to REN. For each experiment, we included five
biological replications.

Data availability
All datasets and analyzing scripts are available through GitHub (https://github.com/jyanglab/msfs_teo) and methylome data has been
submitted to the NCBI SRA.
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SUPPORTING INFORMATION

SUPPORTING TABLES

Table S1. Teosinte, landrace, modern maize samples used in this study. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_
S1_samples_for_sequencing.xlsx)

Table S2. Population-wide DMRs in the CG and CHG contexts. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_S2_
DMR.xlsx)

Table S3. Selective sweeps detected between populations. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_S3_Selective_
sweep.xlsx)

Table S4. The list of genes with CG teosinte-maize DMRs located at their exonic regions. (https://github.com/jyanglab/msfs_teo/blob/
master/table/Table_S4_229_Exonic_DMR_Genes.xlsx)

Table S5. The list of genes exhibiting interactive loops between genes and hypomethylated DMRs in maize located at the intergenic
regions. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_S5_60_Genes_interactive_with_intergenic_hypo_DMR.xlsx)
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SUPPORTING FIGURES

Fig. S1. Comparison of mapping rates (A) and number of methylated cytosine (mC) sites (B) with and without using pseudo-
reference genome in different populations. B73 reference genome (AGPv4) was used in the analyses.
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Fig. S2. Distributions of levels of DNA methylation in teosinte, landrace, and modern maize populations. Left panel denotes
results from CG sites and right panel denotes results from CHG sites.

Fig. S3. Genome-wide distributions of DNA methylation across 10 maize chromosomes. TEO, LR, and MZ represent teosinte,
landrace and modern maize populations, respectively. Red vertical lines indicated the pericentromeric regions.
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Fig. S4. Density plots of CG methylation in gene body for all the annotated maize genes (A) and for syntenic (B) and non-
syntenic genes (C). TEO, LR, and MZ represent teosinte, landrace and modern maize populations, respectively. The syntenic and
nonsyntenic orthologs was determined by comparing maize with Sorghum.
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Fig. S5. Sensitivity tests using different cutoffs. Distributions of mSFS using different thresholds to determine the methylated,
unmethylated, and heterozygote for the 100-bp tiles under CG (A) and CHG (B) contexts.
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Fig. S6. Methylome site frequency spectrum under the CHH context. The distribution is highly skewed towards the unmethy-
lated status for CHH sites.

0

2

4

6

Va
lu
e

Posterior Estimates
Fig. S7. Population genetic parameter inference using each individual population. Posterior estimators of mean values and stan-
dard errors for µ, ν, and Ne ×s for CG and CHG sites. Values were estimated using MCMC approach with 25% burnin.
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Fig. S8. Landscape of selection signals and DNA methylation variation across maize genome. Genome-wide distributions of
selective sweeps, DMRs across ten maize chromosomes detected by teosinte vs. landrace (A) and landrace vs. modern maize (B).
From outer to inner circles: 1© chromosome names, 2© selective sweeps, 3© recombination rate, and the density of DMRs (number
per 1-Mb) in 4© CG and 5© CHG contexts. Red dots at the second track indicated the physical positions of the known genes located
within the selective sweeps. Red dots at the third track indicated the centromeric regions.
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Fig. S9. The overlapped basepairs between DMRs and selective sweeps. Red horizontal bars indicated the observed values and
violin plots showed the 1,000 permutation results using randomly selected regions sharing the similar genomic features as the
DMRs. Red asterisks indicated the statistical significances with one asterisk denoting P-value < 0.05 and two asterisks denoting
P-value < 0.01. Hyper- and hypomethylation were defined based on maize.

Fig. S10. Selection on differentially methylated regions. (A) Overlaps between teosinte-maize DMRs and selective sweeps break-
ing down into different genomic features. (B) Mean FST values of teosinte-maize DMRs that were hyper- and hypomethylated in
maize. Red horizontal bars indicated the observed values and violin plots showed the 1,000 permutation results using randomly
selected regions sharing the similar genomic features as the DMRs. Red asterisks indicated the statistical significances with one
asterisk denoting P-value < 0.05 and two asterisks denoting P-value < 0.01.
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Fig. S11. Teosinte-maize CG DMRs and their associated functional features. (A) Fold changes of mappable DMR length relative
to the mean values from 1,000 permutations. (B) Result of GO term enrichment test using genes exhibiting an exonic DMR. Vertical
dashed line indicated the significance cutoff (P-value=0.01).

Fig. S12. Intergenic CG DMR altered downstream gene expression. (A) Contrast of the gene expression levels in maize relative to
teosinte. In the upper panel, the schematic diagram shows the genes that involved in the 1st, 2nd, and 3rd level interactions with
maize hypomethylated DMRs located in intergenic regions. Red asterisks indicated the statistically significant differences (P-value
< 0.01). (B) Gene expression level of Zm00001d018036 in teosinte and modern maize (P-value = 4.6e−141 according to [30]).
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Fig. S13. Interactive loops between a DMR and a gene model Zm0001d041948. (A) Chromatin interactions (the upper panel) and
ChIP-Seq profiles (the lower panels) at gene Zm00001d041948. Gray and red boxes indicated the physical position of the gene
model and the DMR. Gray and blue lines denoted the interactive loops. (B) RNA-seq read counts of gene model Zm00001d041948 in
teosinte and modern maize (P-value = 4.3e−3 according to [30]).

Fig. S14. Teosinte-maize DMRs located at flowering time genes. Distribution of methylation level within DMRs that located at
CONZ1 (A), LDL1 (B), ZmPRR37 (C) and ZMM4 (D) in teosinte (TEO), landrace (LR), and modern maize (MZ). Two nearby vertical
dashed red lines on the gene model indicated a teosinte-maize DMR.
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Fig. S15. The linkage disequilibrium (LD) analysis among the Hopscotch transposon, tb1-DMR, and tb1 gene. (A) The LD
heatmap using 17 landraces segregating at the tb1-DMR locus. The arrow indicated the position of the tb1-DMR. LD analysis was
performed using SNPs (coded with 0, 1, and 2) called from the WGS data and the mCG level of the tb1-DMR. (B) The SNP geno-
types of teosinte and landrace around the Hopscotch transposon insertion region.

Fig. S16. Correlation analysis between geographical distributions of landrace samples and their CG methylation level at tb1-
DMR. (A) Geographical distributions of the teosinte (triangle) and landrace (points) samples. Red denotes highly methylated
and blue denotes lowly methylated samples in the tb1-DMR. (B) Level of mCG correlated with distance to the origin (Balsas River
Valley) of maize.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2020. ; https://doi.org/10.1101/2020.03.13.991117doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.991117
http://creativecommons.org/licenses/by/4.0/


Research Article Xu et al., 25

Fig. S17. MCMC tracing plots for parameters estimation. Parameters estimations using the Markov Chain Monte Carlo (MCMC)
approach for forward epimutation rate (µ the left panels), backward epimutation rate (ν, the middle panels), and selection coeffi-
cient (s, the right panels) under CG (A) and CHG (B) contexts. In each plot, the top panels are the MCMC tracing plots with 25%
burnin, the middle panels are the prior (grey) and posterior (colored) parameter distributions and the bottom panels are the en-
larged posterior distributions.
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