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DNA methylation is a ubiquitous chromatin feature — in maize, more than 25% of cytosines in the
genome are methylated. Recently, major progress has been made in describing the molecular mecha-
nisms driving methylation, yet variation and evolution of the methylation landscape during maize do-
mestication remain largely unknown. Here we leveraged whole-genome sequencing (WGS) and whole
genome bisulfite sequencing (WGBS) on populations of modern maize, landrace, and teosinte (Zea mays
ssp. parviglumis) to investigate the adaptive and phenotypic consequences of methylation variations in
maize. By using a novel estimation approach, we inferred the methylome site frequency spectrum (mSFS)
to estimate forward and backward epimutation rates and selection coefficients. We found weak evidence
for direct selection on DNA methylation in any context, but thousands of differentially methylated re-
gions (DMRs) were identified in population-wide that are correlated with recent selection. Further in-
vestigation revealed that DMRs are enriched in 5’ untranslated regions, and that maize hypomethylated
DMRs likely helped rewire distal gene regulation. For two trait-associated DMRs, vgt1-DMR and tb1-
DMR, our HiChIP data indicated that the interactive loops between DMRs and respective downstream
genes were present in B73, a modern maize line, but absent in teosinte. Functional analyses suggested that
these DMRs likely served as cis-acting elements that modulated gene regulation after domestication. Our
results enable a better understanding of the evolutionary forces acting on patterns of DNA methylation
and suggest a role of methylation variation in adaptive evolution.

INTRODUCTION

Genomic DNA is tightly packed in the nucleus and is functionally modified by various chromatin marks such as DNA methylation of
cytosine residues. DNA methylation is a heritable covalent modification prevalent in most species, from bacteria to humans [1, 2].
In mammals, DNA methylation commonly occurs in the symmetric CG context with exceptions of non-CG methylation in specific
cell types, such as embryonic stem cells [3], but in plants it occurs in all contexts including CG, CHG and CHH (H stands for A,
T, or C). Genome-wide levels of cytosine methylation exhibit substantial variation across angiosperms, largely due to differences
in the genomic composition of transposable elements [4, 5], but broad patterns of methylation are often conserved within species
[6, 7]. Across plant genomes, levels of DNA methylation vary widely from euchromatin to heterochromatin, driven by the different
molecular mechanisms for the establishment and maintenance of DNA methylation in CG, CHG, and CHH contexts [8, 9].

DNA methylation is considered essential to suppress the activity of transposons [10], to regulate gene expression [11], and to
maintain genome stability [8]. Failure to maintain patterns of DNA methylation in many cases can lead to developmental abnormalities
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and even lethality [12–14]. Nonetheless, variation in DNA methylation has been detected both in natural plant [15] and human
populations [16]. Levels of DNA methylation can be affected by genetic variation and environmental cues [17]. Additionally, heritable
de novo epimutation — the stochastic loss or gain of DNA methylation — can occur spontaneously and has functional consequences
[18, 19]. Population methylome studies suggest that the spread of DNA methylation from transposons into flanking regions is one of
the major sources of epimutation, such that 20% and 50% of the cis-meQTL (methylation Quantitative Trait Loci) are attributable to
flanking structural variants in Arabidopsis [7] and maize [20].

In Arabidopsis, a multi-generational epimutation accumulation experiment [21] estimated forward (gain of DNA methylation) and
backward (loss of methylation) epimutation rates per CG site at about 2.56 × 10−4 and 6.30 × 10−4, respectively. Other than this
Arabidopsis experiment, there are no systematic estimates of the epimutation rates in higher plants (but see recently estimates for
poplar and dandelion [22]), making it difficult to understand the extent to which spontaneous epimutations contribute to methylome
diversity in a natural population. Because the per base rates of DNA methylation variation are several orders of magnitude larger
than DNA point mutation, conventional population genetic models which assume infinite sites models seemed inappropriate for
epimutation modeling. As an attempt to overcome the obstacle, Charlesworth and Jain [23] developed an analytical framework to
address evolution questions for epimutations. Leveraging this theoretical framework, Vidalis et al. [24] constructed the methylome
site frequency spectrum (mSFS) using worldwide Arabidopsis samples, but they failed to find evidence for selection on genic CG
epimutation under benign environments. The confounding effect between DNA variation and methylation variation, as well as the
high scaled epimutation rates become obstacles to further dissect the evolutionary forces in shaping the methylation patterns at
different timescales under different environments.

Maize, a major cereal crop species, was domesticated from its wild ancestor teosinte (Z. mays ssp. parviglumis) near the Balsas River
Valley area in Mexico about 9,000 years ago. Genetic studies reveal that the dramatic morphological differences between maize and
teosinte are largely due to selection of several major effect loci [25]. As maize spread across the Americas, many additional loci have
played an important role in local adaptation [26]. Flowering time, a trait that directly affects plant fitness, played a major role in this
local adaptation process [27–29]. Previous research, however, has focused almost entirely on DNA variation, and the contributions of
methylation variation to maize domestication and adaptation remain largely elusive.

Here, we collected a set of geographically widespread Mexican landraces and a natural population of teosinte near Palmar Chico,
Mexico [30], from which we generated genome and methylome sequencing data. Additionally, we profiled the teosinte interactome
using HiChIP. Together with the analysis from previously published genome [31], transcriptome [32], methylome [6], and interactome
[33] datasets, we estimated epimutation rates and selection pressures across different timescales, investigated the DNA methylation
landscape in maize and teosinte, detected differentially methylated regions (DMRs), characterized the genomic features that are related
with DMRs, and functionally validated two DMRs that are associated with adaptive traits. Our results suggest that DNA methylation
genome-wide is likely only under relatively weak selection, but that methylation differences at a subset of key loci may modulate the
regulation of domestication genes and affect maize adaptation.

RESULTS

Genomic distribution of methylation in maize and teosinte

To investigate genome-wide methylation patterns in maize and teosinte, we performed whole-genome bisulfite sequencing from
a panel of wild teosinte, domesticated maize landraces, and modern maize inbreds (Table S1). Using the resequenced genome of
each line, we created individual pseudo-references (see methods) that alleviated potential bias of mapping reads to a single reference
genome [34] and improved overall read-mapping (Figure S1A). Using pseudo-references, on average about 25 million (5.6%) more
methylated cytosine sites were identified than using the B73 reference (Figure S1B). Across populations, average genome-wide
cytosine methylation levels were about 78.6%, 66.1% and 2.1% in CG, CHG, and CHH contexts, respectively, which are consistent
with previous estimations in maize [13] and are much higher than observed (30.4% CG, 9.9% CHG, and 3.9% CHH) in Arabidopsis
[5]. We observed slightly higher levels of methylation in landraces, which may be due to lower sequencing depth [35]. We found no
significant differences between teosinte and maize as a group (Figure S2).

We found methylated cytosines in CG and CHG contexts were significantly higher in pericentromeric regions (0.54 ± 0.01 in a 10
Mb window) than in chromosome arms (0.44 ± 0.04) (Students’ t test P-value < 2.2e − 16) (Figure S3). We calculated the average
methylated CG (mCG) level across gene bodies (from transcription start site to transcription termination site, including exons and
introns) in each population and observed a bimodal distribution of mCG in gene bodies (Figure S4A), with approximately 25% of
genes (N = 6, 874) showing evidence of gene body methylation (gbm). While the overall distribution of gbm did not differ across
populations, genes with clear syntenic orthologs in Sorghum [36] exhibited little gbm (Figure S4B-C), consistent with previous reports
[5, 37].

Genome-wide methylation is only under weak selection

As the frequency of methylation may be affected by both selection and epimutation rates, we implemented a novel MCMC approach
to estimate these parameters using a population genetic model developed for highly variable loci [23]. We defined 100-bp tiles across
the genome as a DNA methylation locus and categorized individual tiles as unmethylated, methylated, or heterozygous alleles for
outcrossed populations (i.e., teosinte and landrace populations) and as unmethylated and methylated alleles for modern maize inbred
lines (see methods). To determine the thresholds for methylation calls, we employed an iterative expectation maximization algorithm
to fit the data [38]. We then constructed methylome site frequency spectra (mSFS) for CG and CHG sites (Figure S5). Sensitivity test
results suggested that the mSFS was insensitive to the cutoffs used for the methylation calls (Figure S6). As the vast majority (> 98%)
of CHH sites were unmethylated (Figure S7), we excluded CHH sites from population genetic analysis.
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Fig. 1. Population genetic parameters inference. (a) Posterior estimates of mean values and standard deviations for µ, ν, and Ne × s
for CG and CHG sites using four different effective population size (Ne) values. (b) Posterior estimates for different genomic fea-
tures. Up 5k, the upstream 5k region of a gene; Down 5k, the downstream 5k region of a gene. (c) Posterior estimates by defining
teosinte as the ancestral epiallele. Values were estimated using MCMC approach with 20% burnin (see methods). Error bars indi-
cate standard deviations. Source Data underlying (a-c) are provided in a Source Data file. (N = 1,600 for each bar).

After testing a set of prior values, we found the initial prior rates had little impact on the posteriors, except for extremely large
values (Figure S8), for which convergence was difficult. Because we found little difference among populations in genome-wide
patterns, we estimated parameters using the combined data; estimates from individual populations were nonetheless broadly similar
(Figure S9). Effective population size (Ne) in maize is difficult to estimate because of rapid demographic change during and post-
domestication. Previous estimates of Ne in maize range from ∼ 50k [39] to ∼ 370k − 1M [40]. To account for this uncertainty, we
ran the models with a set of different Ne values (50k, 100k, 500k, and 1M). Model estimates of the epimutation rate µ for both CG
(3.6 × 10−6 − 1.8 × 10−7) and CHG (7.6 × 10−6 − 3.8 × 10−7) sites were more than an order of magnitude higher than the backward
epimutation rates (ν = 1.8 × 10−7 − 9.0 × 10−9 and 3.0 × 10−7 − 1.5 × 10−8) using different Ne values (Figure 1A), consistent with the
observed prevalence of both types of methylation. Estimates of the genome-wide selection coefficient s associated with methylation of
a 100-bp tile for both CG and CHG tiles depended on the assumption of Ne. However, the population-scaled selection coefficient (or
Ne × s) stayed largely constant with values of 2.0 and 2.2 for CG and CHG tiles, indicating relatively weak selection for methylation in
each context according to classical population genetic theory [41].

We then sought to test whether the population-scaled selection coefficient differs across genomic features. After fitting mSFS models
separately for different genomic features, results showed that population-scaled selection coefficients in genic regions (exon, intron,
upstream 5k, and downstream 5k) were below or close to 1, and the values were above 1 for non-genic regions (i.e., 2.4 for intergenic
regions and 3.5 for TE regions) (Figure 1B), suggesting stronger selection on methylation variation outside of genes. If we consider
the most common variant in teosinte as the ancestral epiallele, selection was higher in ancestrally hypermethylated regions in CG
contexts, especially in TE and intergenic regions, while it was close to neutrality for ancestrally hypomethylated regions, especially for
the exonic regions (Figure 1C). In CHG contexts, selection was weak in most regions, including TE and intergenic regions, for both
ancestral hyper- and hypomethylated sites.
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Regions with variable methylation contribute to phenotypic variation
Our observed CG mSFS revealed that 2% and 7% of 100-bp tiles were completely unmethylated and methylated, while 91% of
tiles were variable (Figure S5A). These variable methylation regions can be further divided into rarely unmethylated (frequency of
methylated tiles > 90%), rarely methylated (frequency of methylated tiles < 10%), and high-frequency variable regions (frequency
of methylated tiles >= 10% and <= 90%), composing 69%, 2%, and 20% of the genome, respectively. To investigate whether regions
of the genome exhibiting variable methylation, especially the high-frequency variable regions, are functionally relevant, we used
SNP sets residing in these five regions to estimate their contribution to phenotypic variation using published data from a large maize
mapping population [42]. We estimated kinship matrices for SNPs in different genomic regions and then partitioned the genetic
variance for plant phenotypes using LDAK [43]. Consistent with an important functional role for genic regions and a lack of functional
importance in permanently methylated regions, our results find that sites that are hypomethylated (uniformly unmethylated and rarely
methylated), mainly from the genic areas, explained disproportionally larger genetic variances (Figure S10A). While hypermethylated
regions (uniformly methylated and rarely unmethylated), although accounting for 76% of the genome, contribute only a fraction of the
genetic variance for 7/23 traits. The proportion of variance explained by high-frequency sites polymorphic for methylation, ranged
from 0% to 57%, with a mean value of 29%. Variance component analysis results for CHG sites were largely consistent with the results
for CG sites (see Figure S10B).

Population level DMRs are enriched in selective sweeps
Although genome-wide selection on epimutation appears relatively weak, the observation that sites exhibiting methylation polymor-
phism contribute meaningfully to quantitative trait variation suggested that stronger selection could be acting at specific differentially
methylated regions (DMRs). We employed the metilene software [44] to identify a total of 5,278 DMRs (see Table 1 for numbers broken
down by context and type), or about 0.08% (1.8 Mb) of the genome, including 3,900 DMRs between teosinte and modern maize, 1,019
between teosinte and landrace, and 359 DMRs between landrace and modern maize (Table S2). To check the tissue-specificity of the
detected DMRs, we examined the methylation levels of these DMRs in B73 across different tissue types using published WGBS data
[45]. Our results suggested that methylation levels of the DMRs were largely conserved in B73 across three tissue types (Figure S11),
consistent with the previous studies [20, 46, 47].

Table 1. Number of differentially methylated regions (DMRs) broken down by context and type.

Comparison Context Type1 DMR NO. Sweep DMR2 Interacting
DMR3

Interacting DMRs
in sweeps4

Teosinte vs. Landrace

CG
Hypo in landrace 287 80 (27.8%) ** 96 (33.4%) ** 18 (18.7%) *

Hyper in landrace 144 36 (25%) ** 61 (42.3%) ** 6 (9.8%) **

CHG
Hypo in landrace 438 121 (27.6%) ** 115 (26.2%) ** 22 (19.1%) *

Hyper in landrace 150 45 (30%) ** 39 (26%) ** 8 (20.5%)

Landrace vs. Maize

CG
Hypo in maize 143 29 (20.2%) ** 45 (31.4%) ** 9 (20%)

Hyper in maize 28 13 (46.4%) 3 (10.7%) 1 (33.3%)

CHG
Hypo in maize 158 36 (22.7%) ** 46 (29.1%) ** 10 (21.7%)

Hyper in maize 30 13 (43.3%) * 5 (16.6%) 1 (20%)

Teosinte vs. Maize

CG
Hypo in maize 998 281 (28.1%) ** 396 (39.6%) ** 67 (16.9%) **

Hyper in maize 544 147 (27%) ** 259 (47.6%) ** 32 (12.3%) **

CHG
Hypo in maize 1,855 490 (26.4%) ** 594 (32%) ** 104 (17.5%) **

Hyper in maize 503 159 (31.6%) ** 124 (24.6%) ** 19 (15.3%) **
1Hypo and hyper indicate hypomethylated and hypermethylated regions in a given population.
2,3Number of DMR overlapped with selective sweeps (Sweep DMR / total DMR)2 and involved in interactive loops (Interacting DMR
/ total DMR)3. Statistical significance was determined using one-sided permutation test (*P<0.05 and **P<0.01).
4Number of interacting DMR overlapped with selective sweeps (Interacting DMRs in sweeps / total interacting DMR, Chi-squared
test, *P<0.05 and **P<0.01).

DNA methylation can have a number of functional consequences [15, 48, 49], and thus we tested whether differences in methylation
among populations were associated with selection at individual locus. To test this hypothesis, we used SNP data from each population
to scan for genomic regions showing evidence of selection (see methods). We detected a total of 1,330 selective sweeps between
modern maize and teosinte (Figure 2 and Table S3, see Figure S12 for results of teosinte vs. landrace and landrace vs. modern maize).
Several classical domestication genes, e.g., tb1 [50], ZAG2 [51], ZmSWEET4c [52], RA1 [53], and BT2 [54] were among these selective
signals.

We found that DMRs at CG and CHG sites were highly enriched in regions showing evidence of recent selection (Figure S13,
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P-value < 0.001), particularly in intergenic and TE regions (Figure S14A). DMRs overlapping sweeps, both hypo- and hypermethylated
in maize, exhibited significantly higher allele frequency differentiation between maize and teosinte (Figure S14B, see Table 1 for other
comparisons). We then asked whether DMRs in sweep regions were in linkage disequilibrium with nearby SNPs (see methods), as
might be expected if most DMRs were the result of an underlying genetic change such as a TE insertion. Indeed, the rate of sweep
DMRs in LD with local SNPs was significantly higher than expected by chance (Table S4).

Additionally, we detected 72 genes located in sweep DMRs (maize vs. teosinte under CG context) that were hypomethylated in
maize, 24 (42/72 with expression data) of which showed significantly (Student’s paired t-test, P-value < 0.05) increased expression
levels in maize compared to teosinte using published data [32]. For the 56 genes located in sweep DMRs that were hypermethylated in
maize, however, we failed to detect the significant expression differences between maize and teosinte.

Fig. 2. Selection on differentially methylated regions. Distributions of teosinte-maize selective sweeps, DMRs and other genomic
features across ten maize chromosomes. From outer to inner circles were 1© Chromosome names, 2© selective sweeps detected be-
tween modern maize and teosinte, 3© the recombination rate, and the density of DMRs (number per 1-Mb) between modern maize
and teosinte in 4© CG and 5© CHG contexts. Red dots in circle 3© denote the centromeres. Source Data underlying are provided in a
Source Data file.

Hypomethylated regions in maize are associated with interacting loops
Further investigation indicated that teosinte-maize CG DMRs were significantly enriched in mappable genic and intergenic (i.e.,
nongenic excluding 5-kb upstream and downstream of genes and transposons) regions for both hyper- and hypomethylated regions in
maize, but depleted from transposon regions (Figure 3A). We detected maize hyper- and hypomethylated DMRs in 0.01% and 0.02%
of mappable regions across the genome. In particular, 0.07% and 0.05% of maize hyper-DMR (DMR hypermethylated in maize) and
hypo-DMR (DMR hypomethylated in maize) were located within mappable exonic regions, which were much higher than expected
by chance (permutation P-values < 0.001, Figure S15A). These CG DMRs could be mapped to N = 229 unique genes (Table S5).
After examining the mapping locations based on collapsed gene models, we found that DMRs were most abundant in at 5’ UTRs
(Figure 3B), consistent with a pattern that was previously observed [56]. Using these DMR genes for a gene ontology (GO) analysis,
we detected 15 molecular function terms that were significantly enriched (Figure S15B). The vast majority (14/15) of these significant
terms were associated with "binding" activities, including protein, nucleoside, and ribonucleoside binding. Furthermore, we found
that exonic DMRs were enriched at transcription factor binding sites identified via DAP-seq [57] (permutation P-value < 0.001).

These findings suggested a potential role for DMRs affecting regulatory regions. To investigate this possibility, we made use of
recent data using long-read ChIA-PET to profile genomic regions colocalized with H3K4me3 and H3K27ac to define the interactome
in maize [33]. We found that interactive anchor sequences were significantly enriched in DMRs that are hypomethylated in maize,
especially in regulatory regions, including upstream 5-kb, downstream 5-kb, and intergenic regions (Figure 3A). We also found that
DMRs located in transposable elements that were hypomethylated in maize more likely overlap with interactive anchors than expected
by chance (permutation P-value < 0.001).

We hypothesized that these hypomethylated DMRs, especially intergenic DMRs overlapped with the regulatory regions, will alter
the up- or downstream gene expression through physical interactions. To test this hypothesis, we mapped the interactive anchors
harboring maize hypomethylated DMRs to their 1st, 2nd, and 3rd levels of contacts (Figure S16A). Interestingly, among the 60 genes
in direct contact with maize hypomethylated intergenic DMRs (Table S6), we found that 30 (43/60 with expression data) showed
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Fig. 3. Teosinte-maize CG DMRs and their associated functional features. (a) Breakdown of hyper-DMRs (DMR hypermethy-
lated in maize) and hypo-DMRs (DMR hypomethylated in maize) into genomic features and their overlaps with interactive anchors
using data obtained from Li et al., [33]. Blue and red stars indicated DMRs that were significantly enriched at genomic features
and interaction anchors (one-sided permutation test: *P-value < 0.05, **P-value < 0.01). The numbers above the asterisks indi-
cate the exact test P-values. (b) The distribution of the number of DMRs along the collapsed gene model. Below the figure shows
a schematic gene model with three exons (black boxes). (c) Physical interactions (upper panel), colocalization with H3K27ac and
H3K4me3 (middle panels), and STARR profiles (lower panels) around Zm00001d018036 gene in B73. STARR-seq data obtained from
[55] showed the transcriptional output (STARR-RNA) and DNA input (STARR-input) around this region. Blue curly lines indicate
the interactive contacts between DMR and the candidate gene and grey curly lines indicate other interactive contacts around the
region. Horizontal thick blue lines denote the interactive anchors. Red and grey boxes indicate the DMR and gene model, respec-
tively. Source Data underlying (a, b) are provided in a Source Data file.

significantly (Student’s paired t-test, P-value < 0.05) increased expression levels in maize compared to teosinte using published data
[32]. The results were not significant for 2nd and 3rd level contacts (Figure S16A). We found 5/60 genes (Enrichment test P-value
< 0.01) were domestication candidate genes as reported previously [58–61]. Two of them were Zm00001d018036 (a gene associated
with cob length, P-value = 6 × 10−25) and Zm00001d041948 (a gene associated with shank length, P-value = 5.6 × 10−10) [58]. Further
investigation of these two candidates using recently published chromatin data [55] to detect enhancer activity [62] identified H3K27ac
peaks at both DMR loci (Figure 3C and Figure S17A). Consistent with these enhancer signals, the expression levels of these two genes
is significantly increased in maize relative to teosinte (Figure S16B and Figure S17B). Despite this functional evidence, however, we
found that interacting DMRs in selective sweeps were significantly less often than expected by chance (Table 1).

DMRs associated with flowering time variation
Analyses above found that high-frequency regions polymorphic for methylation in our samples accounted for 15% and 17% genetic
variances for two flowering time traits, days to anthesis and days to silk, respectively (Figure S10A). Upon closer inspection of our
DMRs, we found a number of candidate flowering time genes located in sweep DMRs or interacting DMRs (Table S7), including
three genes found in both (i.e., Zm00001d029946, Zm00001d015884, Zm00001d025979). We also examined several known genes in
the flowering time pathway [63] and detected six DMRs located near four additional flowering time related genes (Figure S18)
(Enrichment test P-value < 0.05).

One DMR was located 40-kb upstream of ZmRAP2.7, a well characterized flowering time gene, and 20-kb downstream of the vgt1
locus, that was hypomethylated in modern maize and landrace but was hypermethylated in teosinte (Figure 4A). A MITE transposon
insertion in the vgt1 locus is considered as the causal variant for the down regulation of ZmRAP2.7, which encodes a transcription
factor in the flowering time pathway [64]. We did not detect vgt1 as a selective sweep because it is not considered a domestication or
improvement candidate and our maize lines include both tropical and temperate lines [65]. We further examined LD in this regions
and detected strong signals between the vgt1-DMR and local SNPs, suggesting that the vgt1-DMR is not a pure epiallele. Reanalysis of
published ChIP data [33] revealed that the DMR colocalized with a H3K27ac peak and there is a physical interaction between the DMR
and the vgt1 locus in maize [33] (Figure 4B). Additionally, we reanalyzed the maize and sorghum sequence data at the vgt1 locus and
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Fig. 4. Functional analysis of vgt1-DMR. (a) Levels of CG methylation around vgt1-DMR in maize (MZ), landrace (LR), and
teosinte (TEO) populations. Vertical red lines indicate the boundaries of the vgt1-DMR. (b) The interactive contacts (upper panel)
and colocalization with H3K27ac and H3K4me3 (lower panel) around vgt1-DMR in a maize (B73) and a teosinte (Ames 21809) sam-
ples. (c) The vectors constructed for functional validation of the vgt1-DMR using the dual-luciferase transient expression assay in
maize protoplasts. (d) The expression ratios of LUC/REN using five biological replicates. Error bars indicated standard deviations.
Statistical significance was determined by a two-sided t-test (**P-value = 3.6e − 8). Source Data underlying (a, d) are provided in a
Source Data file.

found two conserved non-coding sequences (CNSs) located 1kb downstream of the vgt1-DMR (Figure S19). To examine the interaction
status in teosinte, we then generated HiChIP data for a teosinte sample using the same tissue and antibodies (see methods). Although
our teosinte HiChIP data identified similar peaks of H3K27ac and H3K4me3 near the region, we failed to detect a physical interaction
between the vgt1-DMR and vgt1 itself in teosinte (Figure 4B), suggesting that methylation at this locus might play a functional role in
affecting physical interaction.

To further validate the potential enhancer function of the 209-bp vgt1-DMR, we incorporated the vgt1-DMR sequence amplified
from B73 into a vector constructed as shown in (Figure 4C) and performed a dual-luciferase transient expression assay in maize
protoplasts (see methods). The results of the transient expression assay revealed that the maize cells harboring the DMR exhibited a
significantly higher LUC and REN ratio than control (fold change= 2.2, P-value= 2.4e−8, Figure 4D), revealing that the DMR might
act as an enhancer to activate LUC expression.

A segregating tb1-DMR acts like a cis-acting element
One of the most significant teosinte-maize CG DMRs was located 40-kb upstream of the tb1 gene, which encodes a transcription
factor acting as a repressor of axillary branching (aka tillering) phenotype [50]. This 534-bp tb1-DMR was hypomethylated in modern
maize, hypermethylated in teosinte, and segregating in landraces (Figure 5A). Chop-PCR (DNA methylation-sensitive restriction
endonuclease digestion followed by PCR) analysis using a modern maize (inbred line W22) and a teosinte accession (PI 8759) suggested
that DNA methylation presents in both leaf and immature ear tissues in teosinte, but is absent in W22 (Figure S20). The physical
location of the tb1-DMR overlapped with the MNase hypersensitive site [66] and a H3K9ac peak [67]. Phenotypic analysis of our
17 landraces indicated that the DMR was associated with the tillering (Fisher’s exact test P-value < 0.05), consistent with previous
observations that the hypermethylated (teosinte-like) genotypes were likely to grow tillers [50].

The causal variation for this locus was previously mapped to a Hopscotch TE insertion 60-kb upstream (Figure 5B) of the tb1
gene. The TE was considered as an enhancer, as shown by a transient in vivo assay [50]. Interactome data support this claim, finding
physical contact between Hopscotch and the tb1 gene (Figure 5B) [33]. Direct physical contact between the tb1-DMR and the tb1 gene
itself in maize line B73 was also detected using ChIA-PET data [33], but this interaction is missing in teosinte based on our newly
generated HiChIP data (Figure 5B). By employing the 4C-seq method [68], we further confirmed the absence of interaction between the
tb1-DMR and the tb1 gene using landrace samples showing hypermethylation at the tb1-DMR locus (Figure S21). The colocalization
of tb1-DMR with chromatin activation marks in the region also suggested the tb1-DMR might act as a cis-acting regulatory element
(Figure 5B). Additionally, we conducted a dual-luciferase transient assay by constructing a vector similar to the vgt1-DMR (Figure 4E).
The results indicated that the tb1-DMR significantly increased the LUC/REN ratio as compared to control (Figure 5C), suggesting that
the tb1-DMR was potentially act as a cis-acting element to enhance downstream gene expression.

To understand the correlation among these genomic components, i.e., the tb1-DMR, the TE insertion, and the tb1 gene, we conducted
linkage disequilibrium (LD) analysis using landrace genomic and methylation data segregating at this tb1-DMR locus (see methods).
As a result, we failed to detect strong LD (R2 = 0.1) between the tb1-DMR and SNPs located at the Hopscotch locus (Figure S22),
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Fig. 5. A hypomethylated DMR that is upstream of tb1 gene. (a) Levels of mCG for the 534-bp tb1-DMR in each individual methy-
lome of the modern maize (MZ), landrace (LR), and teosinte (TEO) populations. Vertical red lines indicate the boundaries of the
tb1-DMR. (b) Interactive contacts (upper panel), average CG methylation levels (middle panel), and colocalization of the tb1-DMR
with H3k27ac and H3K4me3 (lower panel). Horizontal thick lines denote the interactive anchors and solid curly lines on top of the
annotations denote the interactive contacts in teosinte and maize. (c) Functional validation result of tb1-DMR using dual-luciferase
transient expression assay in maize protoplasts. Five biological replicates were performed. Error bars indicated standard deviations.
Statistical significance was determined by a two-sided t-test (*P-value = 3.4e − 2). Source Data underlying (a, c) are provided in a
Source Data file.

indicating the tb1-DMR might be independent from the Hopscotch locus. Reanalysis of published tb1 mapping data [50] confirmed
a significant QTL signal around the Hopscotch TE (Figure S23A), and a two-dimensional QTL scan detected epistasis between
Hopscotch and the tb1-DMR (Figure S23B). Further, we found that highly methylated landraces were geographically closer to the
Balsas River Valley in Mexico, where maize was originally domesticated from (Figure S24A). As the landraces spread out from the
domestication center, their CG methylation levels were gradually reduced (Figure S24B).

DISCUSSION

In this study, we employed population genetics and statistical genomics approaches to infer the rates of epimutation and selection
pressure on DNA methylation, and the extent to which SNPs located within DMRs contributed to phenotypic variation. Our results
revealed that the forward epimutation rate was about 10 times larger than the backward epimutation rate. These estimates from 100-bp
tiles are lower than epimutation rates estimated at nucleotides in Arabidopsis from epimutation accumulation experiments [69]. Even
so, our estimated epimutation rates are more than an order of magnitude higher than the per-nucleotide mutation rate in maize [70].

Although population methylome modeling suggested that genome-wide DNA methylation was not under strong selection, we
nonetheless show that regions harboring polymorphic methylation contribute to functionally relevant phenotypic variation. To
prioritize loci likely exhibiting evolutionarily relevant methylation variation, we identified individual differentially methylated regions
(DMRs). These DMR were enriched in likely functional sequence, including regulatory regions near genes, putative enhancers, and
intergenic regions showing evidence of chromatin interactions. We further identified several dozen new genes that are differentially
expressed between maize and teosinte, for which exonic regions directly interact with maize hypo-DMRs. We also found a strong
enrichment of DMRs in regions targeted by recent positive selection. Patterns of linkage disequilibrium between DMRs and nearby
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SNPs make it difficult to assign causality, i.e., the DMRs associated with the flowering time traits maybe not the causal variants, but
are consistent with the idea that many DMRs are the result of genetic changes, consistent with previous studies [7, 20]. Taken together,
these results suggest that methylation might modulate physical interactions and hence likely affect gene expression. This idea fits
well with previous results from GWAS that 80% of the explained variation could be attributable to trait-associated variants located
in regulatory regions [71]. In total, our DMR results provide a list of candidate genes to be further tested, especially those found in
selective sweeps and interacting regions. To tease apart real DMR-phenotype associations from false, future efforts should focus
on genotyping the methylation status of such loci across mapping populations while modeling SNP and DMR associations with
phenotypes jointly.

In addition to our genome-wide approaches that identify a large number of novel DMRs, we also conducted functional validation
at two well-studied candidate loci: vgt1 and tb1. In both cases, our evidence showed that methylation affects physical interactions
between the gene and intergenic regulatory regions. In particular, the maize alleles having low methylation levels exhibit interactive
loops and increased expression of the downstream gene compared to highly methylated alleles in teosinte.

Collectively, our results suggest a meaningful functional role for methylation variation in maize. Genome-wide variation in
methylation shows signs of weak natural selection and regions exhibiting variation explain considerable phenotypic variation. We also
identify a large number of DMRs, many of which overlap with signals of selection during maize domestication and improvement
as well as regions of the genome important for chromatin interaction. These results suggest that further investigation of the role of
methylation in affecting genome-wide patterns of chromatin interaction and gene regulation is warranted, and that naturally occurring
DMRs may provide a useful source of regulatory variation for crop improvement.
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METHODS

Plant materials and DNA sequencing.
We obtained a set of geographically widespread open pollinated landraces across Mexico (N = 17) from Germplasm Resources
Information Network (GRIN) (Table S1). The teosinte (Zea mays ssp. parviglumis; N = 20) were collected near Palmar Chico, Mexico
[30]. We harvested the third leaf of the teosintes and Mexican landraces at the third leaf stage for DNA extraction using a modified
CTAB procedure [72]. The extracted DNA was then sent out for whole genome sequencing (WGS) and whole genome bisulfite
sequencing (WGBS) using Illumina HiSeq platform. Additionally, we obtained WGBS data for 14 modern maize inbred lines [6] and
WGS data for the same 14 lines from the maize HapMap3 project [31].

Sequencing data analysis.
The average coverage for the WGS of the 20 teosintes and 17 landraces lines was about 20 ×. For these WGS data, we first mapped
the cleaned reads to the B73 reference genome (AGPv4) [73] using BWA-mem [74] with default parameters, and kept only uniquely
mapped reads. Then we removed the duplicated reads using Picard tools [75]. We conducted SNP calling using Genome Analysis
Toolkit’s (GATK, version 4.1) HaplotypeCaller [76], in which the following parameters were applied: QD < 2.0, FS > 60.0, MQ < 40.0,
MQRankSum < −12.5, and ReadPosRankSum < −8.0.

In order to improve the WGBS mapping rate and decrease the mapping bias, we replaced the B73 reference genome with filtered
SNP variants using an in-house developed software — pseudoRef (https://github.com/yangjl/pseudoRef). Subsequently, we mapped
reads to each corrected pseudo-reference genome using Bowtie2 [77] and kept only unique mapped reads. After filtering the duplicate
reads, we extracted methylated cytosines using the Bismark methylation extractor and only retained sites with more than three
mapped reads. The weighted methylation level was determined following the previously reported method [78].

Population epigenetics modeling.
Spontaneous epimutation changes (i.e. gain or loss of cytosine methylation) exhibit higher rate than genomic mutation [21, 69]. The
standard population genetic methods designed for SNPs are thus inappropriate for population epigenetic studies. Here, we applied
the analytical framework for hypermutable polymorphisms developed by Charlesworth and Jain [23]. Under this framework, the
probability density of the methylated alleles was modeled as:

φ(q) = Ceγq(1 − q)α−1qβ−1

where α = 4Neµ, β = 4Neν, γ = 2Nes. Ne, effective population size; q, frequency of the hypermethylation alleles; µ, forward
epimutation rate (methylation gain); ν, backward epimutation rate (methylation loss); s, selection coefficient. The constant C is required
so that

∫ 1
0 φ(q)dq = 1.

We defined 100-bp tiles as a DNA methylation locus. To define the methylation status, we assumed that the methylation levels in
a heterozygote individual falling into three mixture distributions (unmethylated, methylated, and heterozygote distributions). We
employed an R add-on package "mixtools" and fitted the "normalmixEM" procedure to estimate model parameters [38]. Based on the
converged results of the iterative expectation maximization algorithm (using the "normalmixEM" function), we decided to use 0.7 and
0.3 thresholds for heterozygote individuals (i.e., average methylation value> 0.7 for a 100-bp tile was determined as a methylated call
and coded as 2; < 0.3 was determined as an unmethylated call and coded as 0; otherwise coded as 1). We also tested different cutoffs
and found that the final methylation site frequency spectrum (mSFS) was insensitive to the cutoffs used. Similarly, we assumed two
mixture distributions for inbred lines and used cutoff = 0.5 to determine methylated (coded as 1) and unmethylated (coded as 0) calls.
With these cutoffs, we then constructed mSFS on genome-wide methylation loci. We also constructed interspecific (i.e., across maize,
landrace, and teosinte populations) and intraspecific (i.e., within maize, landrace, and teosinte populations) mSFS.

To estimate three critical population epigenetic parameters (µ, ν, and s) from observed mSFS, we implemented a Markov Chain
Monte Carlo (MCMC) method (https://rpubs.com/rossibarra/mcmcbc). In the analyses, we selected a set of Ne = 50, 000, 100, 000, 500, 000,
and 1, 000, 000 [39, 40, 79, 80]. To test the prior values on the posterior distributions, we sampled µ, ν, and s from exponential
proposal distributions with different prior values of 102, 104, 105, 108, and 1010 (Figure S8A and lambda values of the scaled proposal
distribution of 0.01, 0.05, and 0.1 (Figure S8B). We ran the model using a chain length of N = 1, 000, 000 iterations with the first 20% as
burnin.

Genome scanning to detect selective signals.
We called SNPs using our WGS data and performed genome scanning for selective signals using XP-CLR method [81]. In the XP-CLR
analysis, we used a 50-kb sliding window and a 5-kb step size. To ensure comparability of the composite likelihood score in each
window, we fixed the number assayed in each window to 200 SNPs. We evaluated evidence for selections across the genome in three
contrasts: teosinte vs landrace, landrace vs modern maize, and teosinte vs modern maize. We merged nearby windows falling into the
10% tails into the same window. After window merging, we considered the 0.5% outliers as the targets of selection.

We calculated FST using WGS data using VCFtools [82]. In the analysis, we used a 50-kb sliding window and a 5-kb step size.

DMR detection and GO term analysis.
We used a software package ’metilene’ for DMR detection between two populations [44]. To call a DMR, we required it contained at
least eight cytosine sites with < 300-bp in distance between two adjacent cytosine sites, and the average of methylation differences
between two populations should be > 0.4 for CG and CHG sites. Finally, we required a corrected P-value < 0.01 as the cutoff.

We conducted gene ontology (GO) term analysis on selected gene lists using AgriGO2.0 with default parameters [83]. We used the
significance cutoff at P-value < 0.01.
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Linkage disequilibrium (LD) analysis between DMR and local SNPs.

To test the relationship between DMRs and selective sweeps, we conducted LD analysis using SNPs located 1 kb upstream and
downstream of each DMR. A DMR was determined as in LD if there are at least three SNPs displayed significant correlations with this
DMR (permutation P-value < 0.01).

HiChIP sequencing library construction.

We constructed the teosinte HiChIP library according to the protocol developed by Mumbach et al. [84] with some modifications. The
samples we used were two weeks aerial tissues collected from a teosinte accession (Ames 21809) that were planted in the growth
chamber under the long-day condition (15h day time and 9h night time) at the temperature (25°C at day time and 20°C at night time).
After tissue collection, we immediately cross-linked it in a 1.5 mM EGS solution (Thermo, 21565) for 20 min in a vacuum, followed by
10 min vacuum infiltration using 1% formaldehyde (Merck, F8775-500ML). To quench the EGS and formaldehyde, we added a final
concentration of 150 mM glycine (Merck, V900144) and infiltrated by vacuum for 5 min. Then, cross-linked samples were washed five
times in double-distilled water and flash-frozen in liquid nitrogen.

To isolate the nuclear from cross-linked tissues, we used the methods as described previously [33]. After obtaining the purified
nuclear, we resuspended it in 0.5% SDS and used 10% Triton X-100 to quench it, and then performed digestion, incorporation, and
proximity ligation reactions as previously described [84]. We used two antibodies H3K4me3 (Abcam, ab8580) and H3K27ac (Abcam,
ab4729) to pull down the DNA. And then, we purified DNA with the MinElute PCR Purification Kit (QIAGEN, Cat No. 28006) and
measured the DNA concentration using Qubit. To fragment and capture interactive loops, we used the Tn5 transposase kit (Vazyme,
TD501) to construct the library. We then sent the qualified DNA libraries for sequencing using the Illumina platform.

ChIP-seq and HiChIP data analysis.

We obtained ChIP-seq data from the B73 shoot tissue [33] and then aligned the raw reads to B73 reference genome (AGPv4) using
Bowtie2 [85]. After alignment, we removed the duplicated reads and kept only the uniquely mapped reads. By using the uniquely
mapped reads, we calculated read coverages using deepTools [86].

For the teosinte HiChIP sequencing data, we first aligned the raw reads to the B73 reference genome (AGPv4) using HiC-Pro [87],
and then processed the valid read pairs to call interactive loops using hichipper pipeline [88] with a 5-kb bin size. After the analysis,
we filtered out the non-valid loops with genomic distance less than 5 kb or larger than 2 Mb. By using the mango pipeline [89], we
determined the remaining loops with three read pairs supports and the FDR < 0.01 as the significant interactive loops.

4C-seq library construction and data analysis.

To validate the physical interaction between tb1-DMR and tb1 gene, we performed 4C-seq experiments using landrace samples. We
constructed the 4C-seq libraries using restriction enzymes of NlaIII and DpnII. The primer sequences for the tb1 bait region were
the same as previously described [33]. After sequencing, we aligned the reads to the B73 reference genome and then processed the
uniquely mapped reads using 4C-ker program [90].

Kinship matrices and variance components analysis.

We estimated the variance components explained by SNP sets residing in DMRs using the maize Nested Association Mapping
(NAM) population [91, 92]. We downloaded the phenotypic data (/iplant/home/glaubitz/RareAlleles/genomeAnnos/VCAP/phenotypes/
NAM/familyCorrected), consisting of Best Linear Unbiased Predictors (BLUPs) for different traits ([42]), and imputed genotypic data
(/iplant/home/glaubitz/RareAlleles/genomeAnnos/VCAP/genotypes/NAM/namrils_projected_hmp31_MAF02mnCnt2500.hmp.txt.gz) [31] from
CyVerse database as described in Panzea (www.panzea.org).

In the analysis, we mapped SNPs to the invariable hypermethylated, invariable hypomethylated, and variable methylated regions.
For each SNP set, we calculated an additive kinship matrix using the variance component annotation pipeline implemented in
TASSEL5 [93]. We then fed these kinship matrices along with the NAM phenotypic data to estimate the variance components explained
by SNP sets using a Residual Maximum Likelihood (REML) method implemented in LDAK [43].

Dual-luciferase transient expression assay in maize protoplasts.

To investigate the effect of DMRs on gene expression, we performed a dual-luciferase transient expression assay in maize protoplasts.
We used the pGreen II 0800-LUC vector [94] for the transient expression assay with minor modification, where a minimal promoter
from cauliflower mosaic virus (mpCaMV) was inserted into the upstream of luciferase (LUC) to drive LUC gene transcription. In the
construct, we employed the Renillia luciferase (REN) gene under the control of 35S promoter from cauliflower mosaic virus (CaMV) as
an internal control to evaluate the efficiency of maize protoplasts transformation. We amplified the selected DMR sequences from B73
and then inserted them into the control vector at the restriction sites KpnI/XhoI upstream of the mpCaMV, generating the reporter
constructs.

We planted B73 in the growth chamber and kept the plants in the darkness at the temperature of about 20°C (night) and 25°C (day)
to generate etiolated plants. Protoplasts were isolated from the 14-day-old leaves of B73 etiolated seedlings following the protocol
[95]. Subsequently, we transformed 15 ug plasmids into the 100 ul isolated protoplasts using polyethylene glycol (PEG) mediated
transformation method [95]. After 16 hours infiltration, we measured the LUC and REN activities using dual-luciferase reporter assay
reagents (Promega, USA) and a GloMax 20/20 luminometer (Promega, USA). Finally, we calculated the ratios of LUC to REN. For
each experiment, we included five biological replications.
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Experimental validation of the tb1-DMR.
We performed Chop-PCR (DNA methylation-sensitive restriction endonuclease digestion followed by PCR) to validate DNA methy-
lation at tb1-DMR locus in different tissues of modern maize inbred line W22 and teosinte 8759. We collected the leaf tissue at the
third leaf stage and immature ears of ≈5 cm in length. To evaluate the methylation level of tb1-DMR locus, we treated 1 µg purified
genomic DNA using the EpiJETTM DNA Methylation Analysis Kit (MspI/HpaII) (Thermo Scientific, K1441) following manufacturer’s
instructions. The primer sequences for PCR were ACACGCACGAAGGGTTACAG (forward) and CAGTGCTCCCTGGGTCAAA
(reverse).

Statistical analyses.
All the statistical tests were performed using R software (V3.6.2, https://www.r-project.org/).

CODE AVAILABILITY

The code used for analyses can be accessed through GitHub (https://github.com/jyanglab/msfs_teo).
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SUPPORTING INFORMATION

SUPPORTING TABLES

Table S1. Teosinte, landrace, modern maize samples used in this study. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_
S1_samples_for_sequencing.xlsx)

Table S2. Population-wide DMRs in the CG and CHG contexts. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_S2_
DMR.xlsx)

Table S3. Selective sweeps detected between populations. (https:https://github.com/jyanglab/msfs_teo/blob/master/table/Table_S3_
Selective_sweep.xlsx)

Table S4. Linkage disequilibrium (LD) analysis between DMR and local SNP. (https://github.com/jyanglab/msfs_teo/blob/master/table/
Table_S4_DMR_LD.xlsx)

Table S5. The list of genes with CG teosinte-maize DMRs located at their exonic regions. (https://github.com/jyanglab/msfs_teo/blob/
master/table/Table_S5_229_Exonic_DMR_Genes.xlsx)

Table S6. The list of genes exhibiting interactive loops between genes and hypomethylated DMRs in maize located at the intergenic
regions. (https://github.com/jyanglab/msfs_teo/blob/master/table/Table_S6_60_Genes_interactive_with_intergenic_hypo_DMR.xlsx)

Table S7. Flowering time candidate genes located at sweep and interacting DMRs. (https://github.com/jyanglab/msfs_teo/blob/master/
table/Table_S7_FT_candidate_gene_at_sweep_interaction_DMR.xlsx)
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SUPPORTING FIGURES

Fig. S1. Comparison of mapping rates (A) and number of methylated cytosine (mC) sites (B) with and without using pseudo-
reference genome in different populations. B73 reference genome (AGPv4) was used in the analyses.
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Fig. S2. Distributions of levels of DNA methylation in teosinte, landrace, and modern maize populations. Left panel denotes
results from CG sites and right panel denotes results from CHG sites.

Fig. S3. Genome-wide distributions of DNA methylation across 10 maize chromosomes. TEO, LR, and MZ represent teosinte,
landrace and modern maize populations, respectively. Red vertical lines indicated the pericentromeric regions.
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Fig. S4. Density plots of CG methylation in gene body for all the annotated maize genes (A) and for syntenic (B) and non-
syntenic genes (C). TEO, LR, and MZ represent teosinte, landrace and modern maize populations, respectively. The syntenic and
nonsyntenic orthologs was determined by comparing maize with Sorghum.

Fig. S5. Observed and posterior methylome site frequency spectra. The posterior mSFS was calculated using parameters drawn
from the 1,000,000th iteration (Ne=50,000).
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Fig. S6. Sensitivity tests using different cutoffs. Distributions of mSFS using different thresholds to determine the methylated,
unmethylated, and heterozygote for the 100-bp tiles under CG (A) and CHG (B) contexts.
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Fig. S7. Methylome site frequency spectrum under the CHH context. The distribution is highly skewed towards the unmethy-
lated status for CHH sites.
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Fig. S8. The effect of prior values on posterior parameter estimations. (A) Prior values of 102, 104, 105, 108, and 1010 were used for
the exponential proposal distributions. (B) Lambda values of the scaled proposal distribution of 0.01, 0.05, and 0.1 were used. Error
bars indicate standard deviations. Data available at (N = 1,600 for each bar).
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Fig. S9. Population genetic parameter inference using each individual population. Posterior estimators of mean values and stan-
dard deviations for µ, ν, and Ne ×s for CG and CHG sites. Values were estimated using MCMC approach with 25% burnin. Error
bars indicate standard deviations. Data available at (N = 1,600 for each bar).

Fig. S10. Proportion of genetic variances explained by SNP subsets residing in different genomic regions with different DNA
methylation status. The proportion of genetic variance explained (h2) by different SNP subsets under CG (A) and CHG (B) con-
texts.
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Fig. S11. The methylation patterns of the DMRs across different tissues. DNA methylation levels in CG (A) and CHG (B) of each
DMR across three tissues. The colors in the heatmap indicate the high (red) or low (blue) DNA methylation levels.
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Fig. S12. Landscape of selection signals and DNA methylation variation across maize genome. Genome-wide distributions of
selective sweeps, DMRs across ten maize chromosomes detected by teosinte vs. landrace (A) and landrace vs. modern maize (B).
From outer to inner circles: 1© chromosome names, 2© selective sweeps, 3© recombination rate, and the density of DMRs (number
per 1-Mb) in 4© CG and 5© CHG contexts. Red dots at the second track indicated the physical positions of the known genes located
within the selective sweeps. Red dots at the third track indicated the centromeric regions.
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Fig. S13. Comparison between DMRs and selective sweeps. (A) The overlapped base-pairs between DMRs and selective sweeps.
(B) The number of sweeps that overlapped with DMRs. Red horizontal bars indicated the observed values and violin plots showed
the 1,000 one-sided permutation results using randomly selected mappable regions from the genome. Red asterisks indicated the
statistical significance with one asterisk denoting P-value < 0.05 and two asterisks denoting P-value < 0.01. The numbers above the
asterisks indicate the exact P-values. Hyper- and hypomethylation were defined based on maize.
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Fig. S14. Selection on differentially methylated regions. (A) Overlaps between teosinte-maize DMRs and selective sweeps break-
ing down into different genomic features. (B) Mean FST values of teosinte-maize DMRs that were hyper- and hypomethylated in
maize. Red horizontal bars indicated the observed values and violin plots showed the 1,000 one-sided permutation results using
randomly selected regions sharing the similar genomic features as the DMRs. Red asterisks indicated the statistical significance
with one asterisk denoting P-value < 0.05 and two asterisks denoting P-value < 0.01. The numbers above the asterisks indicate the
exact P-values.

Fig. S15. Teosinte-maize CG DMRs and their associated functional features. (A) Fold changes of mappable DMR length relative
to the mean values from 1,000 permutations. (B) Result of GO term enrichment test using genes exhibiting an exonic DMR. Vertical
dashed line indicates the significance cutoff (Fisher’s exact test, P-value=0.01).
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Fig. S16. Intergenic CG DMR altered downstream gene expression. (A) Contrast of the gene expression levels in maize relative
to teosinte. In the upper panel, the schematic diagram shows the genes that involved in the 1st, 2nd, and 3rd level interactions
with maize hypomethylated DMRs located in intergenic regions. Red asterisk indicates the statistically significance (two-sided
paired t-test: P-value < 0.05). (B) Gene expression level of Zm00001d018036 in teosinte and modern maize (Binomial test, P-value
= 4.6e−141).

Fig. S17. Interactive loops between a DMR and a gene model Zm0001d041948. (A) Chromatin interactions (the upper panel) and
ChIP-Seq profiles (the lower panels) at gene Zm00001d041948. Gray and red boxes indicated the physical position of the gene model
and the DMR. Gray and blue lines denoted the interactive loops. (B) Gene expression level of Zm00001d041948 in teosinte and
modern maize (Binomial test, P-value = 4.3e−3).
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Fig. S18. Teosinte-maize DMRs located at flowering time genes. Distribution of methylation level within DMRs that located at
CONZ1 (A), LDL1 (B), ZmPRR37 (C) and ZMM4 (D) in teosinte (TEO), landrace (LR), and modern maize (MZ). Two nearby vertical
dashed red lines on the gene model indicated a teosinte-maize DMR.

Fig. S19. CNSs between the maize and sorghum orthologous around vgt1-DMR. Sequence identity of the maize sequence span-
ning Vgt1 and the two proximal genes with corresponding sorghum sequences. Red peaks denote CNSs identified using a window
size of 100 bp. The thin blue lines indicate physical interaction between two anchor sequences (thick blue lines).

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.03.13.991117doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.991117
http://creativecommons.org/licenses/by/4.0/


Research Article Xu et al., 29

Fig. S20. Experimental validation of the tb1-DMR using Chop-PCR. Chop–PCR analysis of tb1-DMR in different tissues of W22
(A) and teosinte 8759 (B). Failure to detect a PCR product reflects the loss of DNA methylation. CG methylation was detected using
HpaII and CHG methylation was detected using MspI. Three independent biological replicates are shown, each with three technical
replicates. No digested DNA is used as a control.
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Fig. S21. The 4C-seq results of regions interacted with tb1 gene in tb1-DMR hypermethylated landrace samples. The titles show
the CG methylation levels of the tb1-DMR. The green rectangle indicates hopscotch TE; the red rectangle indicates tb1-DMR; and
the blue rectangle indicates tb1 gene.
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Fig. S22. The linkage disequilibrium (LD) analysis among the Hopscotch transposon, tb1-DMR, and tb1 gene. (A) The LD
heatmap using 17 landraces segregating at the tb1-DMR locus. The arrow indicated the position of the tb1-DMR. LD analysis was
performed using SNPs (coded with 0, 1, and 2) called from the WGS data and the mCG level of the tb1-DMR. The horizontal black
line indicates the physical positions of the SNPs. (B) The SNP genotypes of teosinte and landrace around the Hopscotch transposon
insertion region.

Fig. S23. The QTL scannings for the tillering phenotype around tb1 locus. (A) The conventional single-QTL mapping result.
Ticks above the x-axis indicated the physical positions of the markers. (B) Two-dimensional QTL scanning result. The lower tri-
angle denoted the LOD scores for the joint two-locus; the upper left triangle denoted the LOD score for the epistasis of the two loci.
The color scale on the right indicated LOD scores for the joint two-locus (right) and epistasis (left), separately.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 9, 2020. ; https://doi.org/10.1101/2020.03.13.991117doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.991117
http://creativecommons.org/licenses/by/4.0/


Research Article Xu et al., 32

Fig. S24. Correlation analysis between geographical distributions of landrace samples and their CG methylation level at tb1-
DMR. (A) Geographical distributions of the teosinte (triangle) and landrace (points) samples. Red denotes highly methylated
and blue denotes lowly methylated samples in the tb1-DMR. (B) Level of mCG correlated with distance to the origin (Balsas River
Valley) of maize, with grey error bands marking the 95% confidence interval.
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