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Abstract

In vivo 1-photon calcium imaging is an increasingly prevalent method in behavioural neuroscience. 
Numerous analysis pipelines have been developed to improve the reliability and scalability of pre-
processing and ROI extraction for these large calcium imaging datasets. Despite these advancements 
in pre-processing methods, manual curation of the extracted spatial footprints and calcium traces of 
neurons remains important for quality control.  Here, we propose an additional semi-automated 
curation step for sorting spatial footprints and calcium traces from putative neurons extracted using 
the popular CNMF-E algorithm. We used the automated machine learning tools TPOT and 
AutoSklearn to generate classifiers to curate the extracted ROIs trained on a subset of human-labeled 
data. AutoSklearn produced the best performing classifier, achieving an F1 score > 92% on the 
ground truth test dataset. This automated approach is a useful strategy for filtering ROIs with 
relatively few labeled data points, and can be easily added to pre-existing pipelines currently using 
CNMF-E for ROI extraction. 

1 Introduction

Advances in one-photon (1p) miniaturized fluorescence microscopy in terms of utility, cost, and 
ease-of-use have increased the accessibility and popularity of in vivo calcium imaging in freely 
behaving rodents (Cai et al., 2016; Ghosh et al., 2011; Hamel et al., 2015; Jacob et al., 2018). 
Consequently, researchers are able to track the activity of neuronal populations across days, weeks, 
or even months (Gonzalez et al., 2019; Rubin et al., 2015). Concurrent with the growing usage of 1p 
microendoscopy in neuroscience, there is an increasing demand for high-throughput software that 
accurately and efficiently processes the very large raw calcium imaging datasets now being 
produced. To address this challenge, a number of algorithms and analysis pipelines have been 
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developed to automate the extraction of cells and calcium activity traces across time in a robust 
manner―a necessary step for downstream analyses (Pnevmatikakis, 2019).

Motion correction, source extraction, and cell registration (across multiple recording sessions) are 
important steps in pre-processing raw 1p calcium imaging data. Source extraction, the task of 
identifying the locations and activity of neurons in the imaged field of view (FOV), is arguably the 
most challenging of these steps is arguably the most challenging of these steps, as evidenced by the 
number of different algorithms published with the aim of improving this critical step. Nevertheless, 
two main methods of source extraction have been widely adopted in the field: principal component 
analysis/independent component analysis (PCA/ICA) (Mukamel et al., 2009) and the more recent 
extended constrained non-negative matrix factorization for microendoscopic data (CNMF-E) (Zhou 
et al., 2018). CNMF-E explicitly models background signals present in 1p microendoscopic 
recordings, and, therefore results in more accurate signal detection from neurons compared to 
PCA/ICA (Zhou et al., 2018). 

Our lab has successfully applied CNMF-E to recordings from our open-source Compact Head-
mounted Endoscope (CHEndoscope) in order to identify neuron locations (or spatial footprints) and 
extract their calcium activity traces from freely-behaving mice performing different behavioural 
tasks. CNMF-E has proven to be a reliable tool across multiple imaging sessions and experimental 
paradigms conducted in the lab with minimal parameter tuning in our hands (Jacob et al., 2018). 
However, like PCA/ICA, CNMF-E may still produce some false-positives in the output of detected 
cells (i.e., non-neuronal spatial footprints or calcium traces), which can be filtered out of the final 
dataset manually. We initially found success in filtering CNMF-E-extracted spatial footprints and 
traces by adding a manual curation step that involved visual inspection of each ROI and calcium 
trace (previously described in (Jacob et al., 2018)). While this type of manual curation can reduce the
number of false-positives in CNMF-E’s output, visual inspection of potentially tens of thousands of 
extracted cells can be time-consuming, and this method is not free from human error. Here, we 
propose an automated machine learning (AutoML) approach built on top of the CNMF-E algorithm’s
outputs to filter out potential false-positives. We implemented a semi-automated classification tool to
limit the amount of manual curation required during pre-processing, without completely removing 
the ability to fine-tune the process with human-labeled datasets.

The main outputs of CNMF-E’s source extraction algorithm are: 1) the extracted calcium traces 
representing cellular activity, and, 2) the spatial footprint of putative neurons. As mentioned 
previously, manual curation of these outputs involves identifying both aberrant traces that do not 
have stable baseline fluorescence (Resendez et al., 2016), transient durations inconsistent with the 
expressed calcium indicator (e.g., GCAMP6f) (Badura et al., 2014), and/or spatial footprints that are 
not consistent with the shape and size of neurons in the brain region being recorded (Resendez et al., 
2016). We trained and validated our classifiers on a dataset of 14 000 manually curated spatial 
footprints and traces output from CNMF-E. The final model chosen was then used to automate the 
curation of ROIs from other recording sessions. From the two AutoML libraries, we chose the best 
performing model to train on the full training set to evaluate on the test set. We find our model can 
accurately predict whether a cell would be included or excluded at a rate of 92%.
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The potential time savings of manually curating thousands of cells makes this approach a method 
worth employing as part of a typical 1p calcium imaging pipeline. While our AutoML-based curation
pipeline was primarily developed to be used with CHEndoscope data, our model takes the output of 
CNMF-E and as a result, allows this method to be readily applied to data acquired using other 1p 
miniature endoscopes. 

2 Methods
Dataset preparation and pre-processing

The dataset used for model training was acquired from multiple hippocampal CA1 recordings 
captured across different mice and recording sessions using methods described in Jacob et al. 2018. 
From these recordings, we used CNMF-E (Zhou et al., 2018) to extract spatial footprints and calcium
traces of 14 000 ROIs.  We then manually reviewed and labeled these ROIs as neuronal (included for
further analysis) or artefact (excluded from analysis). The labels were generated by two human expert
raters that inspected the calcium transients and spatial footprints based on previously reported 
criteria:

1. fast rise and slow decay of calcium transients with stable baseline fluorescence (Resendez et 
al., 2016).

2. calcium transient durations consistent with GCaMP6f (or appropriate GCaMP variant) 
(Badura, Sun, Giovannucci, Lynch, & Wang, 2014).

3. spatial footprints consistent with appropriate neuronal shape and size (Resendez et al., 2016).

Interrater agreement for the dataset was 87% across the two raters on a subset of the data (1073 
putative ROIs extracted from CNMF-E) (Figure 1).

Spatial footprints consisted of the maximum projection of the identified cell from all frames in the 
video. We found that location of the footprint in the FOV was not important in our labelling criteria 
(compared to shape and size of footprint), we cropped the spatial footprints to remove empty space. 
Each spatial footprint was reduced to an 80x80 pixel image centered on the peak intensity of the 
footprint. Furthermore, recordings were of varying lengths, so all trace data was cropped at 500 
frames (equivalent to 100s of recording at 5fps). The 2 dimensional footprints were reduced to a 1 
dimensional vector (6400 pixels) and concatenated to the trace data. 

We aggregated the labeled ROIs into a dataset split into training and test sets, which comprised 80% 
(~11 000 ROIs) and 20% (~3 000 ROIs) of the data, respectively.

Model optimization and selection

We used two automated machine learning (AutoML) methods, TPOT (Olson et al., 2016; Olson & 
Moore, 2019) and AutoSklearn (Feurer et al., 2019) that are based on the popular Python machine 
learning toolbox, scikit-learn (Pedregosa et al. 2011) to select optimal classification models. While 
other AutoML tools exist that may outperform the ones we chose (Truong et al., 2019), TPOT and 
AutoSklearn are both free open-source, and easy to use, making them accessible for labs to 
incorporate into their existing analysis pipelines. 

The key advantage of AutoML tools such as TPOT and AutoSklearn is that they do the extensive 
work of finding the best type(s) of data transformation and models to build a pipeline for classifying 
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the input data, as well as the hyperparameters associated with these steps. TPOT is a tree-based 
optimization tool that builds and optimizes machine learning pipelines using genetic programming 
(Olson et al., 2016; Olson & Moore, 2019). TPOT generates pipelines of pre-processing steps and 
classification models in order to maximize classification performance while prioritizing simpler 
pipelines. AutoSklearn performs algorithm selection and hyperparameter tuning using Bayesian 
optimization, meta-learning and ensemble construction (Feurer et al., 2019) and as a result, the final 
classifier is an ensemble of many different model types and their associated hyperparameters. We 
primarily used default TPOT and AutoSklearn parameters, with a max evaluation time for a single 
pipeline of 10 minutes, and a total search time of 2 days. 

During training, we used 10-fold cross-validation using stratified folds that preserved the relative 
proportions of “include” and “exclude” labels (i.e., during each run of training, 9 of 10 folds were 
used for training, and the 10th fold was used to test the performance of the model). This process was 
repeated for all 10 folds, resulting in an averaged performance metric for the data. We optimized the 
models to maximize the F1 score, the harmonic average of precision and recall, where high precision 
indicates a low false positive rate, and high recall indicates a low false negative rate. In our dataset, a 
true positive is an extracted ROI that both the trained model and a “ground truth” human scorer 
define as suitable to be included for further analysis (i.e., it satisfies the three selection criteria listed 
above). A true negative is an extracted ROI that is excluded for further analysis by both the model 
and our ground truth scoring.

3 Results

To determine the efficacy of an AutoML approach for classification of CNMF-E extracted ROIs, we 
tested the ability of TPOT and AutoSklearn to build classifiers that can label the pre-processed spatial
footprints and calcium traces of putative ROIs. Both TPOT and AutoSklearn were trained on 11 000 
labeled ROIs in the training set split into 10 folds for cross-validation, repeated 5 times. The best 
models obtained during training were used to determine the F1 score on the test set. Table 1 reports 
the performance of the best models obtained by TPOT and AutoSklearn across the training folds and 
on the test set. 

Next we assessed the transferability of the best classifier pipelines identified by TPOT and 
AutoSklearn using fewer samples. We used the top performing classifier pipelines and 
hyperparameters chosen by TPOT and AutoSklearn and trained the initialized pipelines using 
datasets of increasing ROI number. The training set size ranged from 150 to 10 000 ROIs. Using a 
change point analysis algorithm (PELT, Killick et al. 2012), we determined that AutoSklean and 
TPOT classifiers approached a maximal F1 score with 719 and 1000 labeled ROIs, respectively 
(Figure 2).  The pipelines found using our much larger labeled dataset may be easily incorporated 
into other pipelines with minimal computational effort to train and finetune on CNMF-E extracted 
ROIs from other 1p experiments, using fewer labeled ROIs. 

To examine the classifier performance in terms of false positives and false negatives, we created 
confusion matrices to visualize the rate of true positives, true negatives, false positives and false 
negatives from the TPOT and AutoSklearn predictions compared to ground truth. We found that the 
classifier built with Autosklearn (0.922 F1, Table 1) performs better in terms of both reducing false 
positives and false negatives (Figure 3). 
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To further assess the nature of the classification errors, we looked at the class confidences or 
probabilities of the test set predictions from the trained TPOT and AutoSklearn models (Figure 4). 
Class probabilities indicate the classifier’s certainty (using confidence score for TPOT and class 
probability for AutoSklearn) that a sample belongs to a particular class label. We tested whether 
mislabeled ROIs were also those which the classifiers expressed less confidence in classifying. We 
examined the size of the difference between certainty scores (true positives versus false positives, 
true negatives versus false negatives) in TPOT and AutoSklearn using Cohen’s d (Cohen, 2013; 
Sawilowsky, 2009) (Table 2). The AutoSklearn classifier―which outperformed the TPOT classifier 
based on F1 scores― showed large differences in certainty scores when labeling ROIs as positive 
(d=1.36) or negative (d=2.34).  By contrast, the TPOT classifier was relatively less confident on both 
types of classification (positive d=0.63, negative d=1.68). In other words, the AutoSklearn classifier 
was more certain in applying labels to ROIs than was the TPOT classifier. This indicates that false 
negatives and false positives in the higher performing AutoSklearn classifier may arise from “edge-
cases” ROIs in the dataset which the classifier was not as certain about the label. In contrast, the 
poorer performance of the TPOT classifier may simply be due to poor generalization on the test set. 

To investigate the nature of the false positives and false negatives from the best TPOT and 
AutoSklearn models, we looked at the underlying spatial footprints and calcium traces for mislabeled
ROIs from both AutoML tools (Figure 5). Representative examples of excluded ROIs from the 
ground truth dataset show that some cells may be excluded (i.e., true negatives) because of poor trace
data and/or poor spatial footprints, which possibly represent non-neuronal imaging artefacts and/or 
ROIs representing areas of background fluorescence. While some false positives from AutoSklearn 
shared similar features with true negative ROIs, others were more ambiguous. Upon inspection, these
ROIs sometimes were high-quality spatial footprints with poor-quality calcium traces, or vice-versa, 
or were composed of spatial footprints and calcium traces of true neuronal-origin mixed with 
additional non-neuronal noise. These examples represent “edge-cases” which may be difficult to 
judge even by a human rater. 

4 Discussion

Automated curation of ROIs provides a fast, accurate method for classifying neural data generated in 
1p calcium imaging experiments. We show that AutoML tools such as the open source TPOT and 
AutoSklearn packages provide an easy way to build effective classifiers for ROIs extracted from the 
widely used CNMF-E algorithm. Spatial footprints and calcium traces from CNMF-E can be used to 
train these models with minimal data preprocessing. Furthermore, it may be possible to apply the top 
performing classifiers generated from this work to other experimental datasets taken from different 
1p imaging setups, while requiring relatively few labeled samples. Other analyses pipelines such as 
MIN1PIPE (Lu et al. 2018) have been developed to improve source extraction by reducing false 
positive ROIs without increasing the rate of false negatives. However, given the more widespread 
adoption of CNMF-E, the approach described here prevents labs from having to adopt entirely new 
analysis pipelines. Our approach provides a balance between the need to manually review the output 
of CNMF-E ROIs to maximize the number of detected cells, while still allowing some further 
automation of the otherwise laborious curation process. 

An AutoML approach to reviewing these traces may be useful for curating traces from labeled data 
of the extracted ROIs from CNMF-E and can be implemented on top of pre-existing analysis 
pipelines without much need to adapt the software. However, there are a number of limitations to this
approach. Firstly, we emphasize the automated aspect of this machine learning classifier approach 
and little need for hand-tuning, but we recognize that the best models still make errors. Cases in 
which the best performing classifier generated by AutoSklearn failed to detect true positives or true 
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negatives were further reviewed and were typically seen to be edge cases where it may be difficult 
for a human reviewer to make a judgment. Similarly, we found that a second expert scorer looking at 
the same data may not make the exact same judgments on such edge cases (having an interrater 
reliability score of 87%).  While the AutoML classifiers were trained on the data that had relatively 
little preprocessing beyond cropping and downsampling, future work could address whether feature 
engineering over the spatial footprints and trace data could further improve accuracy and reduce 
training time for model selection and hyperparameter tuning. Better curation of a training dataset for 
the models may help reduce ambiguous cases that make it difficult for a classifier to make accurate 
predictions. 

In conclusion, we present here a demonstration and benchmark of an AutoML approach for curation 
of CNMF-E extracted ROIs. The methods described here can provide a flexible, free open-source, 
and easy-to incorporate curation step for other researchers using CNMF-E for source extraction of 
their 1p datasets, while requiring few changes to their existing analysis pipelines. 
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Figures

Figure 1. Interrater agreement of ROI labels. A confusion matrix comparing the manually 
reviewed labels (include of exclude) for putative ROIs extracted from CNMF-E determined by two 
different raters. Each cell of the matrix is annotated with the proportion of ROIs.
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Figure 2. F1 score performance with increasing training size. Graph of the F1 test scores versus 
the number of training samples used to train the best models output by AutoSklearn (blue) and TPOT
(green). (Inset) A graph of the same plot with a smaller range of training sizes and the change point is
marked on each algorithm type.

306
307
308
309

310

311

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2020. ; https://doi.org/10.1101/2020.03.13.991216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.13.991216
http://creativecommons.org/licenses/by-nc-nd/4.0/


11

AutoML for 1p ROI Curation

Figure 3. Confusion matrices of AutoML tools: TPOT and AutoSklearn. Each cell in the matrix 
is annotated with the proportion of ROIs labeled as Include or Exclude according to the predicted and
true labels. Colors indicate the relative proportions of the labels where lower proportions are darker 
in color and higher proportions are lighter in color. The confusion matrices were made from 
predictions on the test set from the best models output by TPOT (left) and AutoSklearn (right).
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Figure 4. Classifier confidence (TPOT) and class probabilities (AutoSklearn) on predicted false
positives and false negatives. Violin plots of the distribution of (A) TPOT classifier confidence or 
(B) AutoSklearn class probabilities on predicted ROI labels (Include or Exclude) in the test set. Each 
half of the violin plot is the distribution of values for labels that were correct (True, left/blue) or 
incorrect (False, right/green) based on the ground truth labels. 
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Figure 5. Representative false positives and negatives compared to ground truth ROIs. Example
calcium traces (top) and spatial footprints (bottom) from ground truth ROIs labeled as Include (left) 
or Exclude (right). Example calcium traces (top) and spatial footprints (bottom) of false positive and 
false negative ROIs predicted from the AutoSklearn (middle row) or TPOT (bottom row) classifiers. 
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Tables

Table 1. Mean F1 scores of AutoML methods on training cross-validation and final F1 scores 
on the test set.

TPOT AutoSklearn

Training CV (10-fold, 5x) Test Training CV
(10-fold, 5x)

Test

F1 Score 0.906 0.904 0.917 0.922

Table 2. Cohen’s d of certainty scores between predicted labels that were correct or incorrect 
compared to ground truth in TPOT or AutoSklearn.

Include (Positive) Exclude (Negative)

TPOT AutoSklearn TPOT AutoSklearn

Cohen’s d 0.63 1.36 1.68 2.34
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