Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV

View ORCID ProfileMeng Yuan, View ORCID ProfileNicholas C. Wu, View ORCID ProfileXueyong Zhu, View ORCID ProfileChang-Chun D. Lee, Ray T. Y. So, Huibin Lv, View ORCID ProfileChris K. P. Mok, Ian A. Wilson
doi: https://doi.org/10.1101/2020.03.13.991570
Meng Yuan
1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Meng Yuan
Nicholas C. Wu
1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicholas C. Wu
Xueyong Zhu
1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xueyong Zhu
Chang-Chun D. Lee
1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chang-Chun D. Lee
Ray T. Y. So
2HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Huibin Lv
2HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Chris K. P. Mok
2HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Chris K. P. Mok
Ian A. Wilson
1Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
3The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: wilson@scripps.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Preview PDF
Loading

ABSTRACT

The outbreak of COVID-19, which is caused by SARS-CoV-2 virus, continues to spread globally, but there is currently very little understanding of the epitopes on the virus. In this study, we have determined the crystal structure of the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein in complex with CR3022, a neutralizing antibody previously isolated from a convalescent SARS patient. CR3022 targets a highly conserved epitope that enables cross-reactive binding between SARS-CoV-2 and SARS-CoV. Structural modeling further demonstrates that the binding site can only be accessed when at least two RBDs on the trimeric S protein are in the “up” conformation. Overall, this study provides structural and molecular insight into the antigenicity of SARS-CoV-2.

ONE SENTENCE SUMMARY Structural study of a cross-reactive SARS antibody reveals a conserved epitope on the SARS-CoV-2 receptor-binding domain.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted March 14, 2020.
Download PDF

Supplementary Material

Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
Meng Yuan, Nicholas C. Wu, Xueyong Zhu, Chang-Chun D. Lee, Ray T. Y. So, Huibin Lv, Chris K. P. Mok, Ian A. Wilson
bioRxiv 2020.03.13.991570; doi: https://doi.org/10.1101/2020.03.13.991570
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV
Meng Yuan, Nicholas C. Wu, Xueyong Zhu, Chang-Chun D. Lee, Ray T. Y. So, Huibin Lv, Chris K. P. Mok, Ian A. Wilson
bioRxiv 2020.03.13.991570; doi: https://doi.org/10.1101/2020.03.13.991570

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Microbiology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4228)
  • Biochemistry (9107)
  • Bioengineering (6751)
  • Bioinformatics (23944)
  • Biophysics (12089)
  • Cancer Biology (9495)
  • Cell Biology (13740)
  • Clinical Trials (138)
  • Developmental Biology (7616)
  • Ecology (11661)
  • Epidemiology (2066)
  • Evolutionary Biology (15479)
  • Genetics (10618)
  • Genomics (14296)
  • Immunology (9463)
  • Microbiology (22792)
  • Molecular Biology (9078)
  • Neuroscience (48889)
  • Paleontology (355)
  • Pathology (1479)
  • Pharmacology and Toxicology (2565)
  • Physiology (3823)
  • Plant Biology (8308)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2290)
  • Systems Biology (6172)
  • Zoology (1297)