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Abstract 
Complete and accurate genome assemblies form the basis of most downstream genomic 
analyses and are of critical importance. Recent genome assembly projects have relied on a 
combination of noisy long-read sequencing and accurate short-read sequencing, with the former 
offering greater assembly continuity and the latter providing higher consensus accuracy. The 
recently introduced PacBio HiFi sequencing technology bridges this divide by delivering long 
reads (>10 kbp) with high per-base accuracy (>99.9%). Here we present HiCanu, a significant 
modification of the Canu assembler designed to leverage the full potential of HiFi reads via 
homopolymer compression, overlap-based error correction, and aggressive false overlap 
filtering. We benchmark HiCanu with a focus on the recovery of haplotype diversity, major 
histocompatibility complex (MHC) variants, satellite DNAs, and segmental duplications. For 
diploid human genomes sequenced to 30× HiFi coverage, HiCanu achieved superior accuracy 
and allele recovery compared to the current state of the art. On the effectively haploid CHM13 
human cell line, HiCanu achieved an NG50 contig size of 77 Mbp with a per-base consensus 
accuracy of 99.999% (QV50), surpassing recent assemblies of high-coverage, ultra-long Oxford 
Nanopore reads in terms of both accuracy and continuity. This HiCanu assembly correctly 
resolves 337 out of 341 validation BACs sampled from known segmental duplications and 
provides the first preliminary assemblies of 9 complete human centromeric regions. Although 
gaps and errors still remain within the most challenging regions of the genome, these results 
represent a significant advance towards the complete assembly of human genomes. 
 
Availability: HiCanu is implemented within the Canu assembly framework and is available from 
https://github.com/marbl/canu. 

Introduction 
Genome assembly is the process of reconstructing continuous genomic regions from shorter 
overlapping fragments, called reads (Nagarajan and Pop 2010; Miller et al. 2010). Recently, 
long-read sequencing technologies have significantly simplified assembly by generating multi-
kilobase reads, which span most common genomic repeats (Koren et al. 2013; Chin et al. 2013; 
Koren and Phillippy 2014; Gordon et al. 2016; Bickhart et al. 2017; Kronenberg et al. 2018). 
Despite the per-base error rate of the input reads exceeding 10%, state of the art assembly 
methods are able to resolve instances of longer repeats with sequence divergence as low as 
2% (Koren et al. 2017; Kolmogorov et al. 2019). However, a significant fraction of the human 
genome is represented by long segmental duplications of higher sequence identity. According to 
the current annotation of the human reference (Bailey et al. 2001, 2002), approximately 208 
Mbp of sequence is contained within repeats longer than 20 kbp with sequence identity greater 
than 98%. Low accuracy of the long read technologies has also made continuous reconstruction 
of individual haplotypes very challenging since humans can average less than one 
heterozygous variant per 1 kbp. Typical assembly strategies collapse the genome first and 
phase afterwards by calling variants, partitioning the reads, and re-assembling (Chin et al. 2016; 
Seo et al. 2016). State-of-the-art methods integrate different sequencing technologies 
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(Chaisson et al. 2019; Kronenberg et al. 2019) or parental information (Koren et al. 2018) to 
obtain chromosome-scale, haplotype-resolved assemblies. However, these approaches have 
the downside of collapsing multi-copy repeats in the assembly or not resolving alleles which 
differ at only a few positions. 
 
Recently, Pacific Biosciences introduced a new data type, referred to as HiFi reads (Wenger et 
al. 2019). The process of generating HiFi reads involves DNA fragmentation; adapter ligation 
and fragment circularization; and multi-pass sequencing of the circularized fragments. The 
resulting signal is then computationally processed to obtain an accurate consensus sequence 
for each individual fragment. To ensure that each fragment undergoes sufficient sequencing 
passes to obtain a high consensus accuracy, HiFi sequencing libraries are size selected for a 
target fragment size (currently up to 25 kbp). 
 
While the resulting read lengths are modest by the modern long read sequencing standards—
PacBio CLR reads frequently exceed 50 kbp, and ultra-long Oxford Nanopore reads can exceed 
even 100 kbp (Jain et al. 2018b)—HiFi is a major leap forward in terms of long-read read 
accuracy. As the accuracy of other long-read technologies have not exceeded 95%, the median 
accuracy of current HiFi reads can exceed 99.9% (>Q30), making them a promising data type 
for separating highly similar repeat instances and alleles.  
 
Early studies adopting HiFi sequencing demonstrated improved variant calling and repeat 
resolution (Wenger et al. 2019; Vollger et al. 2020). However, these early assemblies were 
limited to resolving repeats with greater than 1% sequence divergence, due to limitations of 
existing tools (Wenger et al. 2019). The recently developed Peregrine assembler (Chin and 
Khalak 2019) greatly reduced assembly runtime and improved consensus accuracy, removing 
the need for post-processing, but did not address the issue of suboptimal repeat resolution or 
allele separation. Other recent work combined HiFi sequencing with complementary data types, 
such as parental information (Wenger et al. 2019), Hi-C (Garg et al. 2019), and Strand-seq 
(Porubsky et al. 2019) to obtain chromosome-scale, haplotype-resolved assemblies. 
 
In the following sections we present HiCanu, a modification of the Canu assembler (Koren et al. 
2017) designed to take full advantage of the high accuracy of HiFi reads. By mitigating the 
remaining sequencing errors in the input data (including previously unreported recurrent 
sequence-specific errors), HiCanu is able to achieve the resolution of up to 99.99% identical 
genomic repeats. As a result, HiCanu surpasses both other HiFi and recent ultra-long Oxford 
Nanopore-based human assemblies in terms of both repeat resolution and per-base consensus 
accuracy. These prior assemblies have also required a final “polishing” step to improve 
consensus accuracy, which can introduce errors in repeat instances due to ambiguous read 
mappings (Miga et al. 2019). Due to the initial accuracy of HiFi reads, and the precise resolution 
of allelic variants and repeats, HiCanu assemblies do not require polishing. Furthermore, in 
contrast with most previous assemblers that implicitly ignore small heterozygous variants in a 
diploid genome, HiCanu accurately captures both alleles in large phase blocks. In particular, we 
demonstrate that HiCanu consistently recovers both haplotypes for the six canonical MHC 
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typing genes in the human genome, improving upon recently developed HiFi-based methods for 
haplotype-resolved assembly (Garg et al. 2019; Porubsky et al. 2019). 
 

Results 

HiCanu overview 
HiCanu builds on the original Canu pipeline, replacing or significantly modifying its core 
methods. Here we provide an overview of the new pipeline, highlighting the introduced changes, 
while a more detailed description of individual steps can be found in the Methods section. 
Whereas the original Canu pipeline starts with read self-correction, which can homogenize 
reads from different alleles or near-identical repeat instances, HiCanu begins by compressing 
all consecutive copies of the same nucleotide to a single base (e.g. “AA...” becomes “A”). In 
accordance with the earlier observation that misestimation of homopolymer length is the primary 
error mode of HiFi technology (Wenger et al. 2019), the resulting homopolymer-compressed 
reads (or “compressed reads” for short) accurately encode the transitions between different 
bases of the underlying genomic regions. The compressed reads are then trimmed based on 
their overlaps to other reads to remove any chimeric sequences or sequencing adapters (see 
Overlap Based Trimming in (Koren et al. 2017)), and the overlaps are recomputed on the 
trimmed reads. The Overlap Error Adjustment (OEA) module (Holt et al. 2002; Koren et al. 
2017) examines read overlap pileups to identify remaining sequencing errors in the individual 
reads and recomputes overlap alignment identities. Following our observation that microsatellite 
repeat arrays are also prone to HiFi read errors, the OEA procedure was modified to ignore any 
differences within these regions when computing the final alignment identity of two overlapping 
reads. Together, homopolymer compression, pileup-based read correction, and ignoring 
differences in microsatellite repeats result in a drastic reduction of observed sequencing errors 
(Figure 1). Draft contigs are then formed from the adjusted overlaps using Canu’s Bogart 
module (Koren et al. 2017), modified to better handle heterozygous variants and consider only 
high-identity read overlaps. The final contig sequences are obtained by computing a consensus 
across the original, uncompressed reads, arranged according to the layout of their compressed 
versions. Similar to many modern assemblers, when faced with a diploid genome, HiCanu 
outputs contigs as “pseudo-haplotypes” that preserve local allelic phasing but may switch 
between haplotypes across longer distances. A single set of contigs representing all resolved 
alleles is output regardless of ploidy, and additional processing with a tool such as Purge_dups 
(Guan et al. 2020) is required to partition the contigs into primary and alternate allele sets. 
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Figure 1. Impact of HiCanu processing on observed read quality. Left: A) Two hypothetical reads are shown with 
sequencing errors highlighted in red. B) The first step of HiCanu is to compress homopolymers, which obscures 
homopolymer length errors but retains enough information to accurately distinguish reads from different genomic loci. 
C) Overlaps are then computed for the compressed reads, and remaining errors are identified by examining the 
alignment pileups (gray rectangle). D) Finally, after correcting the identified errors (blue) and ignoring indels in 
regions of known systematic error (gray), the resulting overlap is 100% identical. Right: Sequence identity of reads 
from a 20 kbp HiFi library measured against the CHM13 chromosome X reference sequence v0.7 (Miga et al. 2019) 
after each step of HiCanu processing (Supplementary Note 1). Separate boxplots are shown for raw HiFi reads (init), 
homopolymer-compressed reads (compressed), OEA-corrected reads (corrected), and corrected reads after ignoring 
differences in microsatellite repeats (masked). The median read identity, indicated by solid segments, increases from 
less than 99.9% to 100% (note that the plots show an y-range of 99.65–100%). Supplementary Table 1 also shows 
how HiCanu processing increases the percentage of perfectly-aligned (100% identity) HiFi reads from less than 1% to 
over 97%. 

Drosophila genome assembly 
We first evaluated HiCanu on a 24 kbp HiFi library from a Drosophila melanogaster F1 hybrid 
(ISO1×A4) (Data Availability). To match typical coverage, the HiFi dataset was downsampled to 
40× and assembled with the HiFi-specific tools, HiCanu and Peregrine (Chin and Khalak 2019), 
as well as the conventional long-read assembler, Canu. Canu was chosen as it was previously 
shown to achieve the highest assembly continuity and superior repeat resolution among other 
popular long-read assemblers on HiFi data (Wenger et al. 2019). For comparison, we also 
include a Canu assembly of 200× PacBio single-pass reads (CLR) for the same organism. 
Contigs less than 50 kbp were filtered from the assemblies in order to exclude low-quality 
sequences consisting of only a few reads. 
 
Total assembly size varied between HiCanu (301 Mbp), Canu (293 Mbp), Peregrine (162 Mbp), 
and CLR (294 Mbp). Besides Peregrine, the assembly sizes were more than twice that of the 
144 Mbp D. melanogaster haploid reference genome (Hoskins et al. 2015), suggesting that both 
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haplotypes of the highly heterozygous F1 were successfully assembled (heterozygosity 
estimated at 0.7% by Genomescope (Vurture et al. 2017), Supplementary Figure 1). The large 
fraction of duplicated BUSCO (Waterhouse et al. 2018) genes also supported the hypothesis 
that the assemblies captured alleles from both haplotypes (Supplementary Table 2). To facilitate 
like-for-like comparison of all assemblies, we ran Purge_dups (Guan et al. 2020) to identify 
alleles and divide the assemblies into primary and alternate contig sets (Methods). Assembly 
statistics were then computed for both contig sets and the results summarized in Table 1. Per-
base consensus accuracy was estimated using Merqury (Rhie et al. 2020) with Illumina 
sequencing data from the D. melanogaster F1 parental strains (Supplementary Note 2). 
 
The primary contig sets across all assemblies reported high BUSCO completeness (>98%). 
BUSCO duplication values were <2% across all contig sets. The HiCanu primary contig set was 
noticeably more continuous than any other assembly as measured by NG50 (N such that half 
the haploid genome size is represented by contigs of this size or greater). Canu and HiCanu 
showed very similar per-base consensus accuracy, radically improving on both Peregrine and 
CLR assemblies. The Peregrine assembly collapsed both haplotypes together and output few 
alternate contigs (total length <21 Mbp). HiCanu improved over all other assemblies with 
respect to the total size, BUSCO completeness, and continuity of the alternate set (including a 
3-fold improvement in NG50 over Canu).  
 
To assess the integrity of the assemblies we used QUAST v5.02 (Gurevich et al. 2013) to 
compare the assemblies against the chromosome arms of the D. melanogaster ISO1 reference. 
Since Purge_dups can split and/or trim the initial contigs, but has a negligible effect on 
continuity, we report structural correctness of the original assemblies. Considering that one of 
the haplotypes (derived from the A4 parental strain) is expected to differ significantly from the 
reference, we adjusted QUAST’s parameters to detect only large scale genomic differences 
(Methods). While the HiCanu assembly reported three more structural discrepancies than Canu 
(7 vs 4), it maintained the highest NG50 and alternate contig BUSCO completeness. 
 
 
Table 1. D. melanogaster ISO1×A4 assembly benchmarking results for PacBio CLR and HiFi. 

Assembly 
Size 

(Mbp) 
NG50 
(Mbp) 

Quality 
(QV) 

BUSCO 
complete 

Haploblock 
NG50 (Mbp) 

Intra-block 
switch error 

QUAST 
(diffs per 

Mbp) 

Canu + Purge_dups 
CLR 

141.81 
128.15 

14.09 
0.31 

37.4 
35.5 

98.5% 
86.7% 

0.42 
0.25 

3.86% 
2.97% 0.018 

Peregrine 
HiFi 

141.59 
20.53 

12.68 
0.00 

32.9 
33.5 

98.2% 
1.0% 

0.07 
0.00 

1.78% 
3.71% 0.062 

Canu + Purge_dups 
HiFi 

145.19 
130.23 

13.72 
1.28 

51.9 
46.9 

98.7% 
93.7% 

2.04 
1.26 

0.03% 
0.03% 0.015 

HiCanu + Purge_dups 
HiFi 

146.27 
132.53 

20.16 
4.54 

51.0 
46.7 

98.8% 
95.5% 

7.62 
4.45 

0.03% 
0.02% 0.025 
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A genome size of 143,726,002 was used for NG50 computation. Only contigs ≥ 50 kbp were used for all analyses 
except QUAST. Each assembly is reported after running Purge_dups with the primary reported on top and alts on the 
bottom of each row. Phred-style consensus quality values are QV = -10 log P(error), e.g. QV40 = 99.99% accuracy. 
QUAST diffs reports the number of large structural discrepancies observed between the assemblies prior to 
Purge_dups (and therefore have only one entry per assembly) and the D. melanogaster ISO1 reference genome 
normalized by the assembly size (in Mbp). 
 
In general, HiFi reads alone cannot be used to infer phasing across homozygous regions longer 
than the read length, so the contigs produced by HiCanu (and Canu) represent “pseudo-
haplotypes”, which may switch between haplotypes. However, for highly heterozygous genomes 
with short regions of homozygosity, HiCanu is expected to produce a low number of haplotype 
switches and mostly preserve long-range phasing. We used Merqury (Rhie et al. 2020) to split 
the initial contigs into continuous phase blocks, based on haplotype-specific k-mer markers 
inferred from parental Illumina reads (Supplementary Note 2). As a baseline, we considered a 
haplotype-resolved assembly produced by TrioCanu (Koren et al. 2018) generated using a 
combination of CLR reads and parental Illumina data. The HiCanu primary (alternate) contig set 
has an estimated phase block NG50 of 7.62 Mbp (4.45 Mbp), a maximal block length of 25.4 
Mbp (10.1 Mbp), and a low percentage of discordant markers within predicted haplotype blocks 
(switch rate) of 0.03% (0.02%). For comparison, the TrioCanu assembly, has a paternal-ISO 
(maternal-A4) phase block NG50 of 13.9 Mbp (21.39 Mbp), a max block size of 24.7 Mbp (27.7 
Mbp), and an intra-block switch rate of 0.1% (0.04%). In contrast, the phase blocks of all other 
considered assemblies are much less continuous (at least a 3.5-fold drop in phase block NG50 
compared to HiCanu) and, in the case of Peregrine and CLR assemblies, a much higher switch 
error (Table 1). 

Human genome assemblies 
We next ran HiCanu, Canu, and Peregrine on three different human datasets (Data Availability): 
a 20 kbp library of the completely homozygous cell line CHM13 (Kronenberg et al. 2018; Miga et 
al. 2019; Vollger et al. 2020), a 15 kbp library of the Ashkenazic cell line HG002 from the 
Personal Genome Project (Church 2005; Wenger et al. 2019), and a combined library (12% 10 
kbp, 62% 15 kbp, 26% 20 kbp) for the Puerto Rican cell line HG00733 from the 1000 Genomes 
Project (1000 Genomes Project Consortium et al. 2012; Porubsky et al. 2019). All datasets 
consist of approximately 30× HiFi sequencing coverage. For the HG002 dataset, we re-used the 
best assembly from a recent study (Wenger et al. 2019) as it reflects a Canu 1.7.1 assembly 
prior to HiCanu’s development and the associated improvements to Canu’s core modules. We 
additionally included the most continuous published (pseudo-haplotype) assemblies of the same 
genomes, which relied on ultra-long Oxford Nanopore (ONT) reads to achieve state-of-the-art 
repeat resolution (Shafin et al. 2019; Miga et al. 2019). As before, contigs less than 50 kbp were 
excluded from analysis. As the sizes of HiCanu assemblies for the diploid datasets HG002 and 
HG00733 were 5.30 Gbp and 5.46 Gbp, respectively, compared to a haploid genome size of 3.2 
Gbp, we again post-processed all diploid assemblies with Purge_dups and computed statistics 
for both primary and alternate contig sets.  
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Per-base consensus quality was estimated by Merqury (Rhie et al. 2020) using Illumina data 
from the corresponding genome (Supplementary Note 2). To assess the structural correctness 
of the assemblies we followed the methodology of (Shafin et al. 2019). Namely, structural 
differences reported by QUAST v5.0.2 versus the human reference genome GRCh38 
(Schneider et al. 2017) were post-processed to ignore breakpoints in centromeric regions and 
annotated segmental duplications, in order to reduce the number of false positives (Methods, 
Supplementary Table 3). As before, since Purge_dups may introduce or correct mis-assemblies 
as it modifies the contigs, the structural correctness assessment was performed on the original 
assemblies. 
 
Primary contig summary statistics for the three human genomes are presented in Table 2. The 
continuity of HiCanu assemblies, as measured by NG50, exceeded that of all other HiFi-based 
assemblies and even rivaled the continuity of Nanopore ultra-long read assemblies. Reported 
rates of structural differences for HiCanu was on par with the other assemblies. For consensus 
accuracy, the HiCanu primary contig sets exceeded QV50 (99.999% accuracy) and alternate 
contigs sets exceeded QV40 (99.99% accuracy), while the unpolished Nanopore assemblies 
failed to exceed QV30 (99.9%). Although Nanopore assemblies currently require polishing with 
complementary technologies to maximize consensus accuracy, we discourage polishing HiCanu 
HiFi assemblies, because the available polishing pipelines may map reads back to the wrong 
repeat copies and actually introduce errors during polishing. 
 
Total length of the HiCanu alternate contig sets exceeded 2 Gbp, highlighting its ability to 
separate human alleles (corresponding values across other assemblies did not exceed 400 
Mbp). The following section “Human haplotype phasing” further explores allele separation and 
phasing across these assemblies. The drastic improvements in consensus accuracy and allele 
separation for Canu versus HiCanu assemblies of HG002 is likely due to Canu improvements 
and bug fixes made during the HiCanu development process, whereas the CHM13 and 
HG00733 assemblies represent the latest Canu version and the differences are less 
pronounced.  
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Table 2. Human assembly benchmarking results for ultra-long Nanopore (ONT) and PacBio HiFi. 

Genome Assembly 
Size 

(Gbp) 
NG50 
(Mbp) 

Quality 
(QV) 

QUAST 
(diffs per Gbp) 

CHM13 

ONTa 2.98 74.06 28.9 35.2 

Peregrine 2.87 37.30 50.7 40.8 

Canu 3.03 45.63 61.7 40.6 

HiCanu 3.05 77.12 58.1 45.9 

HG002 

ONTb 2.83 
0.07 

32.34 
0.00 

23.2 
23.4 59.0 

Peregrine 2.82 
0.04 

32.09 
0.00 

46.0 
33.5 35.7 

Canuc  2.92 
0.12 

26.67 
0.00 

33.7 
43.2 51.4 

HiCanu 2.99 
2.15 

46.39 
0.18 

51.8 
45.1 44.6 

HG00733 

ONTb  
 

2.83 
0.06 

40.55 
0.00 

23.9 
23.8 68.5 

Peregrine 
 

2.81 
0.04 

31.53 
0.00 

46.3 
34.2 75.4 

Canu 
 

2.95 
0.36 

23.00 
0.00 

50.5 
41.5 76.1 

HiCanu 
 

2.97 
2.32 

38.43 
0.23 

50.6 
43.3 57.5 

A genome size of 3,098,794,149 was used for computing NG statistics. As in Table 1, only contigs ≥ 50 kbp were 
used for all analyses except QUAST. Each assembly is reported after running Purge_dups with the primary reported 
on top and alts on the bottom of each row. Structural differences in centromeric regions and segmental duplications 
were ignored due to instability in these regions, and diffs were normalized by assembly size (in Gbp). Supplementary 
Table 4 includes results for a different 10 kbp HiFi library. Superscripts mark previously published assemblies: aMiga 
et al. 2019, bShafin et al. 2019, cWenger et al. 2019. 
 
For CHM13 and HG00733 genomes, we additionally validated the assemblies against long 
continuous fragments of the corresponding genome, earlier reconstructed via bacterial artificial 
chromosome (BAC) sequencing (Data Availability, no BACs were available for HG002). Many of 
these so-called “challenge” BACs were deliberately selected from genomic regions which pose 
significant assembly challenges (i.e. regions with segmental duplications), making them useful 
for assembly benchmarking (Chin and Khalak 2019; Shafin et al. 2019; Miga et al. 2019; Vollger 
et al. 2020). Table 3 summarizes how well the challenge BACs are captured by different 
assemblies. To recognize a BAC as “resolved” within the assembly, we required 99.5% of the 
BAC length to be aligned to a single contig by Minimap2 (Li 2018) (Methods). Note that HiCanu 
resolved the highest number of BACs across all considered assemblies and also achieved the 
highest BAC alignment quality (Table 3). 
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Table 3. “Challenge” BAC validation of human assemblies. 

Genome Assembly 
 #BACs 

Resolved 
Median 

QV 

CHM13 

ONTa 314/341 23.3 

Peregrine 136/341 37.3 

Canu 308/341 40.6 

HiCanu 326/341 40.7 

HG00733 

ONTb 124/179 18.9 

Peregrine 74/179 27.0 

Canu 122/179 28.2 

HiCanu 164/179 33.9 
The criteria for considering a BAC “resolved” is described in the main text and Methods. The alignment identity of 
each resolved BAC was computed individually and the median of these values reported as a Phred-style quality 
value. No validation BACs were available for HG002. Superscripts mark previously published assemblies: aMiga et al. 
2019), bShafin et al. 2019. 
 
A deeper investigation of the unresolved CHM13 BAC sequences indicated that 11 BACs likely 
contain assembly errors or cloning artifacts themselves (Supplementary Note 3 and 
Supplementary Figures 2–5). Manual inspection of HiFi read alignments did not reveal any 
standard mis-assembly signatures in the corresponding regions of the HiCanu assembly, 
providing evidence that HiCanu was correct in these cases and able to resolve 337 out of 341 
(99%) of the CHM13 challenge BACs (Supplementary Table 5). 
 
While the challenge BACs are useful for validation, they do not represent the full landscape of 
human repeats. To further assess the ability of HiFi reads and different assemblers to resolve 
genomic repeats, we used the method of (Vollger et al. 2019) to identify collapsed repeat 
instances in the CHM13 assemblies. We identified approximately 21.7 Mbp of collapsed repeats 
corresponding to at least 56 Mbp of unresolved repetitive sequence. The HiCanu assembly had 
the lowest number of bases in regions identified as collapsed repeats, and the smallest amount 
of repetitive sequence predicted to be missing from the assembly (Supplementary Table 6, 
Supplementary Figure 6). A complementary mapping-based analysis confirmed the 
comparatively high completeness of the HiCanu assembly and classified the majority (80%) of 
missing sequence as satellite repeats, suggesting good recovery of all other human repeat 
classes (Supplementary Figure 6). 

Human haplotype phasing 
When assembling a diploid genome, an assembler must choose to either collapse alleles into a 
single sequence or preserve them as two separate sequences. Collapsing heterozygosity 
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results in a mosaic consensus that may not faithfully represent any allele and can introduce 
frameshifting errors within coding sequence. 
 
HiCanu assemblies of the diploid human genomes included more than 2 Gbp of alternate 
contigs, with high BUSCO completeness for both primary and alternate contig sets (>94% and 
>75%, respectively, Supplementary Table 7). We again used Merqury (Rhie et al. 2020) to 
analyze the phase blocks using parental Illumina data (Supplementary Note 2). The phase block 
NG50s of HiCanu primary (0.6 Mbp) and alternate (0.1 Mbp) contig sets were the highest 
across all considered assemblies (2.5-fold higher than next best, Supplementary Table 7). Note 
that the human phase block NG50s are significantly shorter than for the D. melanogaster F1 
hybrid, but are longer than a typical human gene. For comparison, Supplementary Table 7 also 
includes statistics for the recently obtained haplotype-resolved assemblies of HG002 (Garg et 
al. 2019) and HG00733 (Porubsky et al. 2019). These recent studies have shown that multi-
megabase NG50 phase blocks can be obtained by integrating HiFi data with long-range linking 
information derived from Hi-C (Garg et al. 2019) or Strand-seq data (Porubsky et al. 2019). 
 
To assess the ability of different tools to accurately recover complex, clinically relevant alleles, 
we compared assembly typing results for the six classical human leukocyte antigen (HLA) 
genes (Dilthey et al. 2019) to the known alleles for HG002 and HG00733, obtained by previous 
studies (Chin et al. 2019; Shafin et al. 2019) (Supplementary Table 8). Only HiCanu and 
TrioCanu were able to recover all alleles with 100% sequence identity (Supplementary Tables 8 
and 9). The HiCanu contigs expectedly switch between the haplotypes, but there is only one 
switch in the MHC region. The Hi-C-phased HG002 assembly from (Garg et al. 2019) is phased 
across the length of the MHC region but contains consensus errors (e.g. both HLA-DRB1 
alleles). The Strand-seq-phased HG00733 assembly from (Porubsky et al. 2019) is also phased 
across the length of the MHC region but incorrectly represents HLA-A and HLA-B as 
homozygous (with both alleles in the assembly matching one ground-truth allele). Both the Garg 
et al. and Porubsky et al. methods rely on initially collapsed assemblies that are then phased 
using the long-range data. These results suggest that separation of  haplotypes early in the 
assembly process (rather than trying to recover them from collapsed assemblies) may improve 
the accurate recovery of heterozygous variation. 
 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted March 19, 2020. ; https://doi.org/10.1101/2020.03.14.992248doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.14.992248


 

12 

 
 
Figure 2. Visual representation of the most continuous HiFi-based and Nanopore-based assemblies of the 
CHM13 genome. HiCanu assembly of the 20 kbp HiFi dataset (left) and Canu assembly of an ultra-long Nanopore 
dataset (right). White regions indicate gaps in the current reference genome, while each gray and black block 
indicates a continuous contig alignment. Color switches from gray to black represent either the end of a contig or an 
alignment break. Assemblies were aligned to GRCh38 using MashMap (Jain et al. 2018a) and plots were generated 
using coloredChromosomes (Böhringer et al. 2002) as previously described (Berlin et al. 2015; Jain et al. 2018b). 
Note that some chromosomes (e.g. chrX) are better resolved by the Nanopore assembly due to the presence of near-
perfect repeats. At the same time, chromosomes containing more diverged repeats (e.g. chr7 and chr16) are better 
resolved by the HiFi assembly. We note that some gaps in the HiFi assembly are caused by sequence-specific 
biases of current HiFi sequencing protocols (Supplementary Note 4). The red box highlights the β-defensin gene 
cluster on chromosome 8 which is split in both assemblies and detailed in Figure 4. 

Complex regions of the CHM13 human genome 
The CHM13 HiCanu assembly (Tables 2, 3, Figure 2) exceeded the predictions of our prior 
model of human assembly continuity (Supplementary Note 5, Supplementary Figure 7). To 
validate this result, we focused on the performance of HiCanu within some of the most difficult-
to-assemble regions of the genome, namely centromeres and segmental duplications. Unlike 
past assemblies of the human genome, including clone-based assemblies, HiCanu generated 
several contigs spanning megabases of satellite DNA. The CHM13 HiCanu assembly contains 9 
of 23 (39%) expected centromere regions; chromosomes 2, 3, 7, 8, 10, 12, 16, 19, and 20 
(Supplementary Note 6, Supplementary Table 10). The structure of these regions was 
consistent with an expectation of one or more higher-order repeat (HOR) array(s) flanked by 
more divergent tracts of monomeric satellite DNA (Willard and Waye 1987; Schueler et al. 2001; 
She et al. 2004). Mapped read depth across these contigs shows relatively uniform sequence 
coverage that spans the α-satellite HOR array(s) into the unique sequences on the p- and q-
arms (Figure 3, Supplementary Note 6, Supplementary Figure 8). The structure and length of 
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the centromeric HOR array(s) in each contig is highly concordant with those reported in the 
literature (reviewed in McNulty and Sullivan 2018).  
 
It is noteworthy that HiCanu generated a draft assembly of the CHM13 chromosome 19 
centromere (Figure 3). Historically, this region has been considered to be one of the more 
challenging centromeres to reconstruct, since it carries multiple HOR tracts and shares α-
satellite sequences with the centromere regions from chromosomes 1 and 5 (Hulsebos et al. 
1988; Baldini et al. 1989; Pironon et al. 2010; Sullivan et al. 2017; McNulty and Sullivan 2018). 
HiCanu was not only able to assemble a contig that completely spans this centromere but also 
accurately distinguished three distinct HOR tracts (D19Z1, D19Z2, and D19Z3) (Supplementary 
Note 6, Supplementary Figure 9). This contig revealed a more complete representation of the 
HOR structure of the D19Z1 HOR unit (13-mer vs. 10-mer, Supplementary Figure 9a, 
Supplementary Figure 10) (Hulsebos et al. 1988; Puechberty et al. 1999), a chromosome 19-
specific dimeric HOR (D19Z3, Supplementary Figure 9b, Supplementary Figure 10) (Baldini et 
al. 1989; Finelli et al. 1996), and two complex HORs (expected to represent D19Z2, 
Supplementary Note 6, Supplementary Figure 10). Alignment of HiFi sequence data to the 
corresponding HiCanu contig did not reveal any coverage anomalies (e.g. large dips or spikes) 
that could indicate the presence of structural errors. However, marker-assisted alignment of 
ultra-long Oxford Nanopore data (Miga et al. 2019), an orthogonal dataset, showed a coverage 
drop coinciding with the D19Z1 array. This may indicate a mis-assembly, mis-mapping of the 
noisy sequencing data, or biases in sequencing coverage. Due to the lack of a validated truth 
set in such regions, this will require extensive wet-lab validation and is left for future work. 
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Figure 3. HiCanu assembly of the CHM13 chromosome 19 centromere. RepeatMasker (Smit et al. 2013) of 
tig00006497 reveals three α-satellite HOR arrays that reside within the chromosome 19 centromere (D19Z1, D19Z2?, 
and D19Z3; marked with black bars). These HOR arrays are 606 kbp, 289 kbp, and 3.96 Mbp in length, respectively, 
and are composed of a 13-mer, a complex higher-order HOR, and a dimeric HOR unit, respectively. The HOR repeat 
underlying D19Z2 shares limited sequence identity with the pG-A16 repeat previously described (Hulsebos et al. 
1988; Choo et al. 1991; Finelli et al. 1996) and, therefore, is designated with a question mark. The α-satellite HOR 
arrays have relatively uniform coverage of HiFi and ultra-long Oxford Nanopore data, except for a drop in Oxford 
Nanopore sequencing coverage over the D19Z1 array, which may be due to a mis-assembly, read mis-mapping, or 
biases in sequencing. The HiFi coverage plot shows fold coverage of the most common base (black) and the second 
most common base (red). 
 
Beyond the obvious challenge of centromere assembly, segmental duplications (SDs) represent 
another significant impediment and have been estimated to account for 68% of mis-assemblies 
and contig breaks in recent long-read genome assemblies, irrespective of the platform or 
assembly algorithm (Porubsky et al. 2019). To estimate the effect of SDs on the continuity of 
HiCanu assemblies, we aligned contigs from the CHM13 genome assemblies to the human 
reference genome (GRCh38) and tested if the ends of contigs mapped within SDs. Compared 
to Canu, Peregrine, or ONT assemblies, HiCanu had the fewest contig breaks within SDs 
(n=95) and the smallest overall fraction of contig ends mapping to SDs (49%) (Table 4). Of 
these 95 regions, 59 (62%) correspond to the longest (>10 kbp), most identical (> 98%), copy-
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number polymorphic duplicated regions of the human genome (Supplementary Figure 11). 
These results indicate that SDs are better resolved using HiCanu; however, SDs still contribute 
disproportionately to the overall number of assembly breaks. 
 
Table 4. CHM13 contig ends found within segmental duplications. 

Assembly 
Total # of aligned 

contig ends 
Total # of contig ends within 

SDs 
Percent of contig ends within 

SDs 
ONTa 202 137 68% 

Canu 322 170 53% 

Peregrine 468 398 85% 

HiCanu 192 95 49% 
Previously published assemblies: aMiga et al. 2019. 
 
The β-defensin gene cluster on chromosome 8 is a case in point. This approximately 6 Mbp 
region plays an important role in immune function and disease (Weinberg et al. 2012; Mohajeri 
et al. 2016) and is known to be highly repetitive and difficult to assemble (Bakar et al. 2009). 
Previous reconstructions have relied on a BAC-by-BAC assembly approach (Mohajeri et al. 
2016), and the first continuous assembly of this region in CHM13 was obtained via manual 
assembly of both HiFi and ultra-long Nanopore data (Logsdon et al. in prep). Figure 4 illustrates 
self-alignment dot plots of the defensin region from the T2T chromosome 8 v3.0 assembly (Data 
Availability), as well as the de novo assembled contigs mapped against it. Both Canu and 
HiCanu assemblies of the HiFi data consist of four contigs without structural errors. In contrast, 
the complex inverted repeat structures resulted in mis-assembled and fragmented contigs in all 
other evaluated assemblies. 
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Figure 4. Chr8 β-defensin cluster repeat structure and assembly comparison. Top: Nucmer self-alignment dot 
plots (Kurtz et al. 2004) of the CHM13 reference defensin region at different alignment stringencies (Methods). A: 
greater than 7 kbp repeats at 98% identity. B: greater than 7 kbp repeats at 99.9% identity. Purple/blue indicates 
same/reverse strand matches. C: Icarus (Mikheenko et al. 2016) visualization of contig alignments from both HiFi-
based (Canu, HiCanu, Peregrine) and ultra-long Nanopore-based assemblies (Canu ONT and Flye ONT 
(Kolmogorov et al. 2019)) produced by QUAST (Gurevich et al. 2013). White space in the alignment figure indicates 
the assembly was fragmented into short contigs (<50 kbp). Red color indicates mis-assembled contigs. The HiCanu 
assembly breaks at two of three segmental duplication instances which share high sequence similarity (black arrows) 
and at a region of systematic HiFi coverage depletion (red arrow).  
 
The rightmost contig breaks in the HiFi assemblies are likely due to the presence of long, nearly 
identical repeats, which would require either longer reads or a careful examination of repeat 
copy number to resolve. We also investigated the fragmentation of HiCanu and Canu contigs at 
position 10.4 Mbp, which is not part of any observed repeat structure. Alignment of the raw HiFi 
reads onto this region with Minimap2 (Li 2018) revealed the presence of a 450 bp region 
covered by only two HiFi reads (Supplementary Figure 12), with a coverage drop present in 
both the 10 and 20 kbp HiFi libraries. This coverage drop is flanked by a >250 bp simple-
sequence repeat (AAAGG). Suspecting a possible bias in the HiFi datatype, we further 
examined chromosome X, for which we have a complete CHM13 reference sequence available 
(Miga et al. 2019). On this chromosome, we identified at least four additional cases of HiFi 
coverage dropout, with all four instances associated with long, low-complexity (A/G or T/C-rich) 
sequences. As our HiFi assembly of chromosome X is split into just 13 large contigs, this 
coverage bias appears to be a current weakness of the HiFi chemistry. 
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Discussion 
We have demonstrated that HiCanu is capable of generating the most accurate and complete 
human genome assemblies to date, and our approach to mitigating sequencing errors in HiFi 
reads is general enough to be applied to other applications, such as metagenomic assembly. 
HiFi data excels in resolving large highly-similar (but non-identical) repeat instances. The 
remaining unresolved sequences seem to primarily represent satellite repeats (Supplementary 
Figure 6). In particular, Figure 2 illustrates that HiCanu’s reconstruction of human chromosomes 
1, 7, 9 and 16 notably improves continuity over the previous assembly of ultra-long Nanopore 
reads (Koren et al. 2017; Kolmogorov et al. 2019; Shafin et al. 2019). These chromosomes 
contain several segmental duplications exceeding 200 kbp in length, requiring high-fidelity reads 
to identify variants and separate the individual copies. HiFi data further enabled draft 
assemblies of nine centromeric regions, which are one of the final challenges of automated 
telomere-to-telomere assembly. Assembly of other centromeric regions is likely limited by a low 
frequency of unique markers as compared to current HiFi read lengths. In contrast, 
chromosome X has the highest count of large (>20 kbp) near-identical (>99.9%) repeats (Bailey 
et al. 2002) that were better resolved by long, spanning Nanopore reads. Thus, the two 
technologies are complementary at present, and the best technology depends on the specific 
characteristics of the repeats and haplotypes being assembled. 
 
When choosing HiFi, the library size should also be considered when beginning a sequencing 
project. Since HiFi read accuracy depends on the size of the sequenced fragments (shorter 
equals more passes and higher accuracy), one should consider the relative importance of read 
length versus accuracy. A metagenomic project may aim for shorter, higher accuracy reads to 
confidently identify low-abundance strains, while a vertebrate genome project may benefit from 
longer reads to span mid-sized identical repeats. We also identified an apparent bias in the 
current HiFi chemistry at low-complexity A/G (T/C) repeats, leading to coverage drops and 
assembly fragmentation. This issue warrants further investigation and may limit the applicability 
of HiFi sequencing to genomes with large stretches of such repeats. Thus, identifying optimal 
sequencing strategies and developing methods that can combine multiple technologies remains 
an area for future research. 
 
HiCanu’s approach to read correction permits considering only the highest identity overlaps 
during contig construction. While HiCanu is not as fast as some of the competing methods, we 
note that the number of CPU hours required for assembly of a human genome is under 4,000, 
which could be completed on any modern cloud platform in less than a day for a few hundred 
dollars. This is 30-fold less than recent Oxford Nanopore assemblies that required more than 
100,000 CPU h (Jain et al. 2018b; Shafin et al. 2019). At the time of writing, the most 
computationally expensive step of HiFi analysis is generating the data itself, since each 
individual HiFi read represents a consensus of multiple, aligned sequences of the same DNA 
molecule. Coupled with the instrument runtime and sequencing cost, HiCanu is a small fraction 
of the total project cost and duration (Supplementary Note 7). 
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While HiCanu’s diploid assemblies include long and accurate haplotype blocks of very high 
quality (QV50), they still represent pseudo-haplotypes (i.e. they do not preserve phase across 
their entire length). Canu also does not assign contigs to haplotypes, and requires post-
processing with a tool such as Purge_dups (Guan et al. 2020) to split the diploid assembly into 
primary and alternate alleles. While recent studies have successfully integrated HiFi data with 
additional long-range linkage information (Garg et al. 2019; Porubsky et al. 2019), we do not 
expect that significant improvements in phasing can be achieved by HiFi-only assemblies 
without an increase of HiFi read lengths. One option is post-processing of HiCanu assemblies 
by a haplotype-aware scaffolder, such as FALCON-Phase (Kronenberg et al. 2019), which 
could potentially correct haplotype switch events and deliver further improvements to phasing 
accuracy and assembly continuity. In general, we feel that HiFi contigs combined with Hi-C 
phasing and scaffolding is a promising recipe for phased telomere-to-telomere vertebrate 
genome assembly, and we plan to integrate these data types in future versions of Canu.  
 

Methods 

Mitigating errors in HiFi data 
While HiFi reads are highly accurate compared to other long-read sequencing technologies, 
they are not error-free, which complicates the identification of reads originating from the same 
genomic loci during assembly. To identify and remove false read overlaps, we sought to 
increase the accuracy of HiFi data via read correction. 
 
Wenger et al. observed that the majority of HiFi errors are in homopolymers, where the number 
of individually repeating nucleotides is incorrectly counted (Wenger et al. 2019). To lessen the 
impact of such errors, HiCanu modifies the input reads by compressing every homopolymer to a 
single nucleotide. Our approach is similar to run-length encoding (RLE), which has been 
previously applied to 454 (Miller et al. 2008), Pacbio CLR (Li 2016; Ruan and Li 2020; Li 2018) 
and Oxford Nanopore (Shafin et al. 2019) reads. However, HiCanu does not explicitly store the 
lengths of the compressed homopolymer stretches, and instead reverts back to the 
uncompressed reads when needed. 
 
Although the transition to homopolymer-compressed sequence space can reduce the specificity 
of the read alignment search, the corresponding reduction in the number of observed errors in 
the reads allow for a more restrictive alignment identity threshold (based on empirical analyses 
we require a minimum overlap identity of 99%). Subsequent steps are performed on the 
homopolymer-compressed sequences, while the detailed correspondence between positions of 
original and compressed versions is generated on the fly when necessary. Compressed reads 
are first subjected to Overlap-Based Trimming (Koren et al. 2017). While this step does not 
affect the majority of HiFi assemblies, we enable it by default as a precautionary measure since 
it considerably improved assembly contiguity on one recent dataset (HG002 Sequel II System 
with pre-2.0 Early Access Chemistry 15 kbp library available from https://github.com/human-
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pangenomics/HG002_Data_Freeze_v1.0). This improvement suggests that a significant fraction 
of reads were structurally incorrect due to a low-quality sequencing library. Since other libraries 
did not show this problem, it is likely future versions of the HiCanu pipeline can skip this step 
and reduce runtime by more than 60%. 
 
To further reduce the influence of the errors in compressed HiFi reads we have updated the 
Overlap Error Adjustment (OEA) module of Canu (Holt et al. 2002; Koren et al. 2017). This 
module identifies errors in individual reads by jointly considering all of their overlapping reads. 
Every such read votes for the nucleotides at the positions that it covers based on the pairwise 
alignment of the overlapping regions. A read’s position is considered erroneous if no other reads 
support the original sequence and the majority of votes agree on a particular change (by default 
more than 50% and at least 7 if there is a read supporting the original sequence). After the 
corrections are introduced the alignment scores of the overlaps are recomputed, but the actual 
read sequences stored within the assembler are not modified as doing so would invalidate the 
previously computed overlap coordinates. Although our naive approach may not always be able 
to correct errors within highly-similar genomic repeats, such events are rare due to the low 
number of errors in compressed HiFi reads and the high identity threshold used for gathering 
candidate overlaps. 
 
Manual investigation of read alignments during HiCanu development revealed a previously 
unreported error mode in HiFi reads: incorrect repeat unit counts within microsatellite repeat 
arrays. Since the incorrect repeat counts are systematic and often supported by multiple reads, 
the conservative strategy described above is not able to correct them. Recognizing this, we 
modified the OEA procedure for recomputing overlap alignment scores to ignore sequence 
differences flanked by a microsatellite repeat in either read. Namely, the difference is ignored if 
5 out of 6 non-overlapping flanking k-mers are the same for any k ranging between 2 and 6 on 
either side (starting at 0 to k-1 bp from the difference). We note that this phenomenon deserves 
a deeper investigation and our strategy can be improved to capture additional genomic 
differences, which are ignored by the current approach. 
 
We evaluated the contribution of each of the above corrections using the recently completed  
CHM13 chromosome X (Miga et al. 2019) as a reference. Raw, compressed, corrected, and 
masked 20 kbp HiFi reads were mapped and the mappings filtered to retain high-confidence 
alignments (Supplementary Note 1). Figure 1 shows the resulting alignment identity values, with 
each correction step boosting the identity of the aligned sequence. Each step (compression, 
correction, masking) contributes to this improvement (Supplementary Table 1), and the 
combined effect is most dramatic for the number of perfect alignments. While almost no (<1%) 
raw HiFi reads map error-free, 97.23% of the compressed, corrected, and masked reads map 
without a single difference. Because we did not control for reads mapping from other 
chromosomes, and the chromosome X sequence itself is not error free, this likely represents a 
lower bound on the percentage of error-free reads. 
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Bogart modifications 
The Bogart module constructs a set of draft contigs from read overlap information. A detailed 
description is given in (Koren et al. 2017). We describe here the modifications made for HiFi 
data. 

Overlap identity threshold 
Canu’s initial overlap search uses a relaxed identity threshold to account for varying error rates 
between samples. Since overlap identities are changed by OEA, and to avoid considering false-
positive overlaps, Bogart first attempts to select a higher overlap identity threshold. Previously, 
Canu computed the identity of the best scoring overlap on each side of every read (where score 
is defined as the number of matching bases in the overlap alignment) and set a threshold based 
on the median and MAD of the computed values (Koren et al. 2017). However, during the 
development we realized that this way of computing the threshold was not informative for highly 
accurate reads because both the median and MAD were 100% across all tested datasets. 
Additionally, with the number of matching bases as a score, the read delivering the highest 
scoring overlap could come from a different haplotype in genomes with low heterozygosity. As a 
result, the selected threshold could inadvertently reflect the heterozygosity level of the organism 
rather than the accuracy of the reads. Based on empirical testing, we opted for an alternative 
two-step procedure. First, all overlaps with identity below a fixed value T (default 99.97% or 3 
differences in 10,000bp) are dropped. This step is aimed at removing from consideration the 
majority of the cross-haplotype overlaps even for low-heterozygosity organisms, e.g. human 
heterozygosity rate of 0.1% (1000 Genomes Project Consortium et al. 2012). Next, the identities 
of the highest scoring overlaps are collected as before and the final threshold is set as the 
90th% percentile of this sample. It is possible that 99.97% is too stringent given higher error 
reads. We could detect this condition when the 90th percentile is too close to 99.97% and re-run 
the overlap filtering. However, on all datasets evaluated to date, the chosen identity threshold 
was 100%. To support the desired overlap filtering stringency, the Canu codebase had to be 
modified to increase the precision with which the overlap identity values are stored. 

Handling heterozygous differences 
Bogart uses the filtered overlaps to identify and eliminate the reads likely representing 
sequencing artifacts and then constructs the best overlap graph (Miller et al. 2008), using the 
same overlap scoring function as before. This graph consists of the best scoring overlap off both 
the 5’ and 3’ ends of each read, and the non-branching paths within this graph form the 
preliminary layouts (arrangements of reads) that we refer to as greedy contigs. Bogart then 
inspects each greedy contig for long repeat instances that could have been incorrectly 
traversed. Repeats are detected by considering overlaps between the reads within and outside 
of the contig. If a suspected repeat has no reads spanning it, or there is a similar-length 
alternate read overlap, it is broken at the repeat boundary to avoid potential assembly errors as 
in (Koren et al. 2017) to form the final draft contigs. 
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HiCanu aims to reconstruct long pseudo-haplotype contigs (Vinson et al. 2005; Chin et al. 
2016)—potentially switching between paternal and maternal alleles—and capture the alternative 
regions as shorter contigs. Unfortunately, the original Bogart approach described above led to 
the classification of extended homozygous regions within greedy contigs as unspanned repeats, 
leading to fragmentation of the pseudo-haplotypes (Supplementary Figure 13). In Canu, this 
behavior had been affecting only genomes with >1% heterozygosity, since below this threshold 
most heterozygous differences were implicitly hidden by the relatively permissive threshold on 
overlap identity. With the high accuracy HiFi data, and correspondingly high overlap identity 
threshold, this over-fragmentation became an issue even for a human levels of heterozygosity. 
 
In HiCanu, Bogart has an additional step to identify contigs representing alternative alleles 
within the set of greedy contigs, which we refer to as bubble contigs. As suggested by the 
name, the bubble contigs are related to the bubble subgraphs, typically considered by most 
assemblers. Candidate bubbles are found by identifying reads in each contig that have  
overlaps to some other, larger, contig. A read within a smaller contig can be placed in the larger 
contig if the overlaps between it and the reads in the larger contig are below a specified 
threshold of similar quality to the previously incorporated overlaps (0.1% by default). If the 
placements for both the first and last reads of a candidate contig are correctly oriented and 
placed at approximately the correct distance in the larger contig (75–125% of the candidate 
contig size), the candidate contig is flagged as a bubble and its reads are excluded from later 
repeat detection. This avoids fragmentation of otherwise structurally correct pseudo-haplotype 
contigs. Similar strategies have previously been used in short-read assembly (Pevzner et al. 
2001; Zerbino and Birney 2008; Li et al. 2010; Gnerre et al. 2011), scaffolding metagenomes 
(Koren et al. 2011; Ghurye et al. 2019) and long-read assembly (Chin et al. 2016). Bubble 
contigs are also explicitly marked in the final output; however, because placements are not 
always found, especially for longer, more heterozygous alleles, we recommend using a post-
processing tool such as Purge_dups (Guan et al. 2020) to classify alternate alleles and remove 
any false duplications. 

Consensus calculation 
A consensus sequence is computed for all contigs using the uncompressed reads (trimmed to 
their good regions identified in compressed space). Canu originally used the layout produced by 
Bogart to estimate the position of each read within the contig and align it only to that location. 
Since the read layouts are now in homopolymer-compressed space, this strategy is unable to 
locate the read in uncompressed space. Instead, we compute the correspondence of each 
position in the compressed read to the original. This is used to update the read positions within 
the contig and expand the layout to uncompressed space. A modified version of the PBdagcon 
algorithm (Chin et al. 2013), with improved support for long contig sequences, is used to 
compute the final consensus sequence. Further consensus gains are likely possible using a 
more sophisticated approach for predicting homopolymer run length, similar to MarginPolish 
(Shafin et al. 2019). 
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Software commands 
HiCanu was run using Canu branch hicanu_rc with the following commands: 

canu -assemble -p asm -d asm genomeSize=G -pacbio-hifi reads.fastq.gz  

with G=3.1g for human and 150m for D. melanogaster. This required 131 CPU h and 16 GB of 
memory for D. melanogaster, 2780 CPU h and 66 GB of memory for CHM13 10 kbp library, 
5000 CPU h and 119 GB of memory for CHM13 20 kbp, 3999 CPU h and 62 GB of memory for 
HG002, and 5,233 CPU h and 50 GB of memory for HG00733. 
 
For the standard Canu assembles, Canu branch hicanu_rc ran with the following command: 

canu -p asm -d asm genomeSize=G correctedErrorRate=0.015 batOptions=“-eg 0.01 -eM 0.01 -dg 6 -db 6 
-dr 1 -ca 50 -cp 5” -pacbio-corrected reads.fastq.gz 

with G=3.1g for human and 150m for D. melanogaster. This required 232 CPU h and 12 GB of 
memory for D. melanogaster, 3,524 CPU h and 80 GB of memory for CHM13 20 kbp library, 
and 3,836 CPU h and 47 GB of memory for HG00733. 
 
For CLR data Canu branch hicanu_rc was run with the following command: 
 canu -p asm -d asm genomeSize=150m corOutCoverage=100 batOptions=“-dg 6 -db 6 -dr 1 -ca 500 -cp 
50” -pacbio-raw reads.fastq.gz 

 
All HiFi assemblies required less than 12 wall-clock hours on the NIH Biowulf cluster quick 
partition with all jobs using <120 GB RAM. We estimated the cost of an AWS run using the 
c5d.18xlarge instance which costs $3.456/hr. Assuming 4 reserved nodes and an average 
runtime of 4200 CPU h, the run would complete in 14.5 hours. We increase this by a factor of 
1.5 to account for any non-parallelized steps at a cost of $3.456 * 4 * 22 = $304. This cost could 
be reduced further if additional nodes were spun up on-demand for the parallel portions of 
compute and spun down when not needed. We omit this from the estimate for simplicity.  
 
Peregrine Assembler & SHIMMER ASMKit (0.1.5.3) was run with the command: 

yes yes | python3 /data/korens/devel/Peregrine/bin/pg_run.py asm \ 
    chm13.list 24 24 24 24 24 24 24 24 24 \ 
    --with-consensus --shimmer-r 3 --best_n_ovlp 8 \ 
    --output ./ 

This required 7 CPU h and 29 GB of memory for D. melanogaster, 32 CPU h and 347 GB of 
memory for CHM13 10 kbp library, 58 CPU h and 449 GB of memory for CHM13 20 kbp library, 
55 CPU h and 407 GB for HG0002, and 63 CPU h and 477 GB for HG00733. 
 
Commands for β-defensin validation: 
MUmmer 3.23 was used to identify repeats with the command: 

nucmer --maxmatch --nosimplify 
delta-filter -i 98 -l 10000 

And high-stringency repeats: 
nucmer --maxmatch --noextend --nosimplify -l 500 -c 1000 
delta-filter -i 99.9 -l 10000 

QUAST alignments were generated as: 
Quast.py --large --skip-unaligned-mis-contigs 

 
Commands for RepeatMasker: 
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RepeatMasker version 4.1.0 was run with the commands: 
RepeatMasker -pa 8 -q -species=mammal -xm -dir=asm.out asm.fasta 

on each contig ≥50 kbp in the assembly. Centromeric arrays were identified by taking all hits 

marked as Satellite/centr and merging any hits within 100 bp of each other using bedtools 
(Quinlan and Hall 2010). Resulting arrays greater than 800 kbp were reported. There were nine 
internal arrays whose start and end coordinates were at least 500 kbp away from a contig end. 
These initial coordinates were manually curated based on reference alignments and are 
reported in (Supplementary Table 10). 
 
Commands for MHC typing: 
HLA*LA version commit 24930adadb0d2b6bcd69a271401dfc88a5d09f4d was run with the 
commands: 

HLA-ASM.pl --use_minimap2 1 --assembly_fasta $asm --sampleID $prefix --workingDir `pwd`/$prefix --
truth reference_HLA_ASM/$truth 

where $asm was the assembly, $prefix was a unique identifier, and $truth was either 
truth_HG002.txt or truth_HG00733.txt. 
 
Commands for Purge_dups 
Purge_dups version commit 8f580b41e6aa20c99383d6ff19b8689e93d7490e was run with the 
commands: 

python pd_config.py asm.fasta `pwd` <pb folder> <10x folder left blank> asm 
minimap2 -I6G -xasm5 -DP asm.split asm.split > asm.split.self.paf       
minimap2 -I6G -xmap-pb asm.fasta $line > pb.$jobid.paf (for each HiFi cell) 
pbcstat pb.*.paf 
calcuts PB.stat > cutoffs 2>calcults.log 
purge_dups -2 -T cutoffs -c PB.base.cov asm.split.self.paf > dups.bed 2> purge_dups.log 
get_seqs dups.bed asm.fasta > purged.fa 2> hap.fa 

 
For D. melanogaster, an incorrect threshold was computed for the cutoffs due to the entire 
genome being separated and so the cutoffs were manually adjusted to be  

50 1 1 115 2 200 

The purged.fa output was then used as the primary set reported in the tables. To obtain the 
alternate set, we ran a second round of Purge_dups using hap.fa as the input assembly instead. 
 
Commands for Merqury: 
Merqury version commit 154610d19ee6f4fead77da077af1ed7abdbe8866 was used. For each 
assembly and read set, canonical k-mers were built using meryl available as a binary within 
Canu: 

meryl count k=<k-size> <reads.fastq.gz> output <genome>.k<k-size>.meryl 
meryl count k=<k-size> <asm.fasta> output <asm>.k<k-size>.meryl 

 using k=21 for humans and k=18 for D. melanogaster based on (Fofanov et al. 2004). QV and 
k-mer completeness were obtained with: 

eval/spectra_cn.sh 

which converts k-mer Jaccard to distance as in (Ondov et al. 2019) and to a Phred score (Ewing 
and Green 1998). Haplotype blocks were estimated by first building parent-specific k-mer 
databases. K-mers in each parental dataset were counted as above, then subtracted to obtain 
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parent-specific k-mers, and finally intersected with the child (in the case of human datasets 
where child Illumina data was available) with: 

trio/hapmers.sh 
trio/phased_block.sh 

 
For further information see Supplementary Note 2 and https://github.com/marbl/merqury/wiki.. 
  
Commands used for QUAST 
QUAST 5.0.2 ran with the command: 

quast.py <asm> -o quast_results/<asm> -r <reference> -t 16 -s --large  

 
Variants were filtered using the pipeline from (Shafin et al. 2019) to filter errors in varying sites, 
including known SVs (HG002 only available from GIAB (Zook et al. 2019) at ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG00
2_SVs_Tier1plusTier2_v0.6.1.bed): 

python3 reference/quast_sv_extractor.py -q quast_results/<asm>/contigs_reports/all_alignments*tsv 
-c reference/centromere.bed -d reference/GRCh38_marked_regions.bed -s reference/empty 

 
and 

 
python3 reference/quast_sv_extractor.py -q quast_results/<asm>/contigs_reports/all_alignments*tsv 

-c reference/centromere.bed -d reference/GRCh38_marked_regions.bed -s 
reference/HG002_SVs_Tier1plusTier2_v0.6.1.bed 

 
for HG002. We used https://www.ncbi.nlm.nih.gov/assembly/GCF_000001215.4, filtered to 
remove any unassigned sequences for D. melanogaster (chr2L, chr2R, chr3L, chr3R, chr4, 
chrM, chrX, chrY only) and 
https://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz filtered to exclude alts 
and unaligned sequences (chromosomes 1-22, X, Y, and MT only). Since no filtering file was 
available for D. melanogaster, we modified QUAST parameters to try to avoid false-positive mis-
assembly counts with the command: 
 quast.py <asm> -o quast_results/<asm> -r <reference> --large --min-alignment 20000 --extensive-
mis-size 500000 --min-identity 90 

  
Commands for BAC validation 
We used the BAC validation pipeline available at https://github.com/skoren/bacValidation run 
with default parameters. This pipeline aligns reads using minimap2 (Li 2018) and parses the 
SAM (Li et al. 2009) format to generate summary statistics. Output BAC identity was computed 
as the median across all BACs marked as correctly resolved. BAC libraries were downloaded 
from NCBI (CHM13: https://www.ncbi.nlm.nih.gov/nuccore/?term=VMRC59+and+complete, 
HG00733: https://www.ncbi.nlm.nih.gov/nuccore/?term=VMRC62+and+complete). HiFi read 
alignments to the assembly and BAC sequences were visualized with IGV (Robinson et al. 
2011) 
 
Commands for identifying contig ends 
Alignments were made between assemblies and GRCh38 using the following Minimap2 
command: 
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 minimap2 --secondary=no -a --eqx -Y -x asm20 -s 200000 -z 10000,50 -r 50000 --end-bonus=100 -O 
5,56 -E 4,1 -B 5 

Contig ends that intersected segmental duplications were identified by parsing the CIGAR string 
to find the location of contig ends and then intersecting these locations with annotated 
segmental duplications plus 10kbp on either side from the UCSC genome browser using the 
following commands:  
bedtools slop -i {segdups.bed} -b 10000 | bedtools merge -i - > {expanded.segdups.bed} && bedtools 
intersect -a {contig.ends.bed} -b {expanded.segdups.bed}  

 

Data Availability 
We have posted the downsampled datasets, generated assemblies, and corrected CHM13 BAC 
sequences at https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html. When available, 
previously published assemblies were downloaded and used. This included Oxford Nanopore 
UL Canu assemblies presented by (Shafin et al. 2019) for HG0002 (80x Guppy HAC 2.3.5) and 
HG00733 (50x Guppy HAC 2.3.5); Canu + Racon assembly presented by (Vollger et al. 2020); 
HG002 Canu assembly of HiFi reads presented by (Wenger et al. 2019); Oxford Nanopore 
Canu assembly for CHM13 (40x + 80x UL Guppy HAC 3.1.5) presented by (Miga et al. 2019); 
HiFi + Hi-C assemblies for HG002 presented by (Garg et al. 2019); HiFi + Strand-seq 
assemblies for HG0733 presented by (Porubsky et al. 2019). In the remaining cases, 
assemblies were run locally on the NIH Biowulf cluster. 
 
The D. melanogaster HiFi data is available from NCBI at PRJNA573706 (SRR10238607, 
median:, 24.4 kbp mean: 24.4 kbp) and CLR (SRR9969843, median 13.3 kbp, mean 17.2 kbp). 
Due to the high coverage, this dataset was downsampled to 40× HiFi data and 200× CLR data. 
These coverages represent approximately 25% of the full run output. Since the exact parents of 
the F1 were not available, we used the previously generated short-read sequencing for binning 
and analysis (A4: SAMN00849823, ISO1: SRR6702604). The CHM13 Nanopore data is 
available at https://s3.amazonaws.com/nanopore-human-
wgs/chm13/nanopore/rel3/rel3.fastq.gz, HiFi reads in PRJNA530776  (10 kbp: SRR9087597-
SRR9087600; 20 kbp: SRR11292120-SRR11292123), and Illumina at 
https://github.com/nanopore-wgs-consortium/CHM13#10x-genomics-data. The HG002 
Nanopore data is available at https://s3-us-west-2.amazonaws.com/human-
pangenomics/index.html, HiFi at SRX5327410. HG002 and parent Illumina data is available 
from GIAB (Zook et al. 2016) at https://github.com/genome-in-a-bottle/giab_data_indexes, we 
only used the 2×250 datasets. The HG00733 Nanopore data is available at https://s3-us-west-
2.amazonaws.com/human-pangenomics/index.html, HiFi at ERX3831682. Illumina data for 
HG00733 and parents were downloaded from the 1000 Genome consortium at 
https://www.internationalgenome.org/data-portal/sample (1000 Genomes Project Consortium et 
al. 2012) . 
The CHM13 chromosome 8 reference assembly is available at https://github.com/nanopore-
wgs-consortium/CHM13#downloads. 
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